Tejas-Java: Java Architecural Simulator

Indian Institute of Technology, New Delhi
http://www.cse.iitd.ac.in/tejas/

1 Introduction

Jikesrvm is an open-source research virtual machine for Java bytecodes. It runs on IA-32 Linux and PowerPC64 Linux
platforms. This manual describes how to build, run and collect the Java program traces by Jikesrvm on IA-32 and
x86-64 Linux. x86-64 is not currently supported but Jikesrvm can be built for x86-64 by using 32-bit addressing. This
manual also describes how to run these traces on Tejas simulator and find the heap memory usage of only some classes
of Java programs.

2 Getting the Code
3 Building JikesRVM

We are using JikesRVM 3.1.2 which can be downloded from the official Git repository or from here http://sourceforge.
net/projects/jikesrvm/files/jikesrvm/3.1.2/.
3.1 Dependencies

1. Java 6: 3.1.2 version of JikesRVM compiles using Java 6. Building it with +6 versions of Java fails because of
langaugre changes. We tested this using openjdk-6.

2. Ant: Requried for build script

gcc: Compilaton

= W

gee-multilib: This is required if you are building on a 64 bit machine (which most probably you are..).
5. g++-multilib: Same as above
6. Bison: Compilation

7. Perl: Build Scripts

3.2 Proxy Setup

During the build process, certain jar files are downloaded from the internet. Make sure you have a working Internet
connection. If you are behind a proxy, then you need to set some environment variable to make it work.

e Ant Proxy:

export ANT_OPTS="-Dhttp.proxyHost=<host here>
-Dhttps.proxyHost=<host here> -Dhttps.proxyPort=<port here>
-Dhttp.proxyPort=<port here> -Dftp.proxyHost=<host here>
-Dftp.proxyPort=<port here>"

export http_proxy=http://<host here>:<port here>
export https_proxy=https://<host here>:<port here>
export ftp_proxy=ftp://<host here>:<port here>

These lines can be added to /.bashre file, if you are using Ubuntu.

http://sourceforge.net/projects/jikesrvm/files/jikesrvm/3.1.2/
http://sourceforge.net/projects/jikesrvm/files/jikesrvm/3.1.2/

3.3 Configure JikeRVM

You may get an error java not found if you start building Jikesrvm directly, therefore modify bin/buildit.base__config
file and set these variables appropriately
For 32-bit and 64 bit systems set

global. javahome.ia32-1linux = /usr/1lib/jvm/openjdk-6-jdk
global. javahome.x86 64-linux = /usr/lib/jvm/openjdk-6-jdk

respectively.

3.4 Predefined build options

Jikesrvm can be build with different configurations. Two useful configurations used in this project are:

¢ Development:
This configurations defines the fully optimized versions of Jikesrvm with debug mode. It builds and executes
slowly. We can use this configuration to collect the traces for normal execution of Java programs with all the
optimizations turned on. This can be build by:

$cd jikesrvm
$sudo bin/buildit localhost development

o FullAdaptive NoGC:
This configurations defines no garbage collector versions of Jikesrvm. Since we need to implement hardware
garbage collector. Therefore we require there is no memory reuse done by software garbage collector. This can
be build by:

$cd jikesrvm
$sudo bin/buildit localhost FullAdaptiveNoGC

Other configurations details can be found in jikesrvm /build/configs directory. One or more configurations can
coexist in the same directory of jikesrvm.

4 Running JikesRVM

After Jikesrvm build is successful a directory jikesrvim/dist/config name is created. We can check build is successful or
not by running a sample Java program. To invoke Jikes virtual machine use rvi script in jikesrvm/dist/config_name.
The command for running Java program by Jikes virtual machine:

jikesrvm/dist/config name/rvm <java class name>

The program should run without crashing Jikesrvm.

5 Command Line options for JikesRVM

e -X:aos:enable recompilation=false -X:aos:initial compiler=base
This option will turn off all the runtime compiler optimization on the program.

e -X:base:mc=true
This option can be use for printing the assembly instruction generated by the baseline compiler. It can be useful
to compare the traces generated by jikes trace.

o -X:opt:mc=true
This option can be used for printing the assembly instructions generated by the optimizing compiler. It prints
the assembly instructions only for the classes which could be optimized by the virtual machine.

o -X:gc:ignoreSystemGC=true
This option can be used to ignore the system calls for garbage collection. It can be useful while running the
program with no garbage collection mode.

o -X:gc:harnessAll=true
This option can be used to print the stats related to garbage collectors like time spent in running mutator
program and garbage collector.

e -help
This option can be used to find the various option.

6 Tejas + JikesRVM

The instrumented code is used to get the trace of the program currently running, which then can be used along with
Tejas to get performance readings.
The instruction and memory traces of the java program can be obtained as follows:

o Write a java program hello.java.

¢ Get trace file using following commands:

$javac hello. java

$cp hello.class JIKES_HOME/dist/development-xxxx/
$cd JIKES_HOME/dist/development-xxxx/

$./rvm hello 2>trace file

Note: The trace file generated will have the traces of hello program. By default optimizations are enabled,
therefore if you don’t use any options the traces generated will be of optimized code.

Baseline Compiler: The execution traces of the program without any optimizations can be collected by:
$./rvm -X:aos:enable recompilation=false -X:aos:initial compiler=base hello 2>trace file

e No Garbage Collector: The execution traces of the program without garbage collector activity can be collected
by:

$cd JIKES_HOME/dist/FullAdaptiveNoGC_xxxx/
$./rvm -X:gc:ignoreSystemGC=true -X:aos:enable recompilation=false
-X:aos:initial compiler=base hello 2>trace file

6.1 Multithreaded Programs:

For multithreaded programs use rvin multithread (rvin modified for multithreaded programs) and build jikesrvim again
as described above. The traces generated by the Jikesrvm for multithreaded programs are interleaved. Corresponding
to each instruction and memory traces a threadld is also printed, we split these interleaved traces into multiple trace
file one for each thread:

python splitter.py trace file

trace file is the raw trace file generated by jikesrvm multithread. This generates multiple trace files. Each thread will
have one trace file named as its threadld. These trace files should be post processed individually.

Partial Traces: In case you don’t want the complete trace of a program, you can specify the number of instructions
to be traced. For this modify jikesrvm /rom/src/org/jikesrvm/runtime/RuntimeEntrypoints.java. Search for my check
function and add these statements at the beginning of function definition.

VM.inst_count++;

if (VM.inst_count == <noOfInst>) // noOfInst is the integer value of number of
//instructions to be traced.

VM.sysFail("instruction completed");

At the end of trace files there will be virtual machine crash messages, those statements should be removed before
disassembling the traces.

cat trace file | head - n -30 >trace filel

For multithreaded programs noOfInst should be sum of all instructions to be traced of each thread.

7 Disassemble to x86 Instructions

The traces generated by Jikesrvm are in a binary format. To run these traces on the architectural simulator Tejas, we
require traces in VISA format(instruction set of Tejas). The x86 to VISA translator is already implemented in Tejas.
Therefore we need to disassemble these raw traces into x86 instructions. We use the udis86 library for this purpose.
libudis86 is a disassembler library for the x86 architecture which decodes a stream of bytes as x86 instructions.

7.1

8

Separate the instruction and memory traces
python conv.py <tracefile>

It generates two files temp file.txt and out trace.txt.

temp_ file.txt: has 8 bytes of instructions in hexadecimal format per line which is the input for the udis86
disassembler.

out__trace.txt: has instruction pointer and the memory address accessed by the program which we use later
to merge the instruction and memory trace.

Disassemble into x86 instructions.
Download the libudis86 and untar:

$./configure

$make

$sudo make install

$compile disas.cpp using $g++ -std=c++11 disas.cpp -o disas.o -ludis86
$./disas.o

disas.o reads the instructions bytes from temp file.txt and disassembles it. The x86 instructions are of variable
length. Therefore to disassemble it disas.o reads as many bytes required to form a instruction and ignores the
remaining ;ytes in the line. The next instruction to be disassembled is read from the next line. The disassembled
instructions are written to temp_ filel.txt.

Merge disassembled instruction traces and memory traces

$javac convl.java
$java convl

It generates fin trace.tzt_0 which will be in right format to run on Tejas simulator.

Running on Tejas

Compress trace files using
gzip -c trace file >trace file 0.gz

Compressed file name should end with x.gz. For single threaded program x should be 0. And for the multi-
threaded programs x is the thread number.

Modify Tejas config file
Set the following parameters in Tejas config file:

— EmulatorType: none

— CommunicationInterface: file

Run Tejas

java -jar <tejas-jar><config-file><output-file><trace file>

Heap memory usage of program

The dynamic memory used by the program with and without garbage collector can be found by annotating benchmarks,
collecting the traces using Jikesrvim, post processing the traces and running on Tejas. The address of the dynamically
created objects are visible in the traces when we access the fields of the objects. Therefore to find the memory address
we insert the markers in the source code and using this markers we extract the memory addresses of dynamically
created objects.

8.1 Annotating benchmark

e Object creation:
In order to keep track of the heap memory used by the program, annotate the source code at places where
memory is allocated to the object dynamically. Therefore add markers whenever the new keyword occurs in
the program. The new operation in Java invokes the constructor of the class, thus add the Ozbee marker in
the constructor of the class whose memory usage need to be calculated. Insert this marker after every field of
the object is accessed in the constructor. In case the class uses default constructor, write your own constructor
which accesses all the fields of the class. Suppose there is a class Employee and its constructor is:

public Employee(int id, String name, int age) {
this.id = id;
this.name = name;
this.age = age;
this.next = null;

}
Annotate this constructor as follows, marker is a global volatile static integer variable.

public Employee{
this.id = id;
marker = Oxbee;
this.name = name;
marker = Oxbee;
this.age = age;
marker = Oxbee;
this.next = null
marker = Oxbee;

}

e Reference Updation

During the lifespan of the program, a reference may point to different objects. At somepoint of time during
the execution of the program, there may be an object which is not referred to by any reference. Then we can
reclaim the memory allocated to that object, thus we keep track of updates to references. In order to do this add
the function call dummy ge(Employee empl, Employee emp2) whenever there is a reference update i.e Employee
empl starts pointing to Employee emp2 object. We decrement the reference count of the object to which empl
was previously pointing to and increment the reference count of emp2, to which emp! now points to. The Ozdea
marker is used for the object whose reference count has decremented and Oxdee marker is used for the object
whose reference count has incremented. We use this information in the hardware for maintaining the reference
count and when the reference count of the object becomes zero that memory is reclaimed. Suppose there is a
statement empl.next = emp2 in the program, insert the function call dummy-gc() before this statement. The
annotated source code will be:

dummy_gc (Employee empl, Employee emp2)
empl.next = emp2

Add dummy-gc() as the Employee class member function with following definition:

dummy_gc (Employee empl, Employee emp2){
if(a !'= null){
a.next.id = a.next.id;
marker = Oxdea;
a.next.name = a.next.name;
marker = Oxdea;
a.next.age = a.next.age;
marker = Oxdea;
}
if(b !'= null){
b.id = b.id;
marker= Oxdee;

b.name = b.name;
marker = Oxdee;
b.age = b.age;

marker = Oxdee;

(-

8.2 Collecting Traces

Use Jikesrvm to get the traces of annotated benchmarks and disassemble the traces as described in above sections.

9 Processing Traces
$python postprocess (fin_trace.txt_0)

fin__trace.txt_ 0 is the disassembled trace file.

The traces are post processed to mark the addresses of the objects which will be managed bythe hardware garbage
collector. The hardware garbage collector maintains the reference count of the objects. When the object is created
its reference count is one. When a new reference to the object is created the reference count is incremented by one.
And when the reference is deleted the reference count is decremented by one. The memory space is dead when its
reference count becomes zero. The markers in the annotated benchmarks are captured in the trace file and special
instructions for allocation, incrementing and decrementing reference count are inserted in the trace files. Three type
of instructions allocate, ref inc and ref dec are added to the trace file after extracting the useful information
from the disassembled trace file.

Marker in source code | x86 instruction in trace file Instruction inserted in trace file
Oxbee marker Push dword Oxbee or Push Oxbee allocate address
Oxdee marker Push dword Oxdee or Push Oxdee ref inc address
Oxdea marker Push dword Oxdea or Push Oxdea ref dec address

Table 1: Instructions inserted in trace files for memory managment by hardware

9.1 Run on Tejas

After postprocessing the traces, there are we inserted certain instructions in the trace file which are used by the
hardware garbage collector in Tejas for memory management. To calculate the memory usage with garbage collector
set the Tejas config file parameters as follows:

1. memory usage = true
2. garbage collection = true

To calculate the memory usage without garbage collector set the Tejas config file parameters as follows:
1. memory usage = true

2. garbage collection = false

	Introduction
	Getting the Code
	Building JikesRVM
	Dependencies
	Proxy Setup
	Configure JikeRVM
	Predefined build options

	Running JikesRVM
	Command Line options for JikesRVM
	Tejas + JikesRVM
	Multithreaded Programs:

	Disassemble to x86 Instructions
	Running on Tejas

	 Heap memory usage of program
	Annotating benchmark
	Collecting Traces

	Processing Traces
	Run on Tejas

