
Operating Systems: A Linux
Kernel-Oriented Approach

(Partially written. Expect grammatical mistakes

and minor technical errors.

Updates are released every week on Fridays.)

Send bug reports/suggestions to

srsarangi@cse.iitd.ac.in

Version 0.96

Smruti R. Sarangi

February 2, 2026

mailto:srsarangi@cse.iitd.ac.in

This work is licensed under a Creative Commons Attribution-NoDerivs 4.0
International License. URL: https://creativecommons.org/licenses/
by-nd/4.0/deed.en

https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nd/4.0/deed.en

1 © Smruti R. Sarangi

List of Trademarks
• Linux is a registered trademark owned by Linus Torvalds.

• Intel, Intel SGX and Intel TDS are registered trademarks of Intel Corpo-
ration.

• AMD is a registered trademark of AMD corporation.

• Microsoft and Windows are registered trademarks of Microsoft Corpora-
tion.

• Android, Chrome and Chrome OS are registered trademarks of Google
LLC.

• The Unix trademark is owned by the Open Group.

• Red Hat is a registered trademark of Red Hat Inc.

• Suse is a registered trademark of Suse Linux AG.

• Ubuntu and Canonical and registered trademarks of Canonical Ltd.

• webOS is a registered trademark of LG Electronics Inc.

• Tizen is a registered trademark of The Linux Foundation.

• FreeBSD is a registered trademark of The FreeBSD Foundation.

• NetBSD is a registered trademark of The NetBSD Foundation, Inc.

• VMware vSphere is a registered trademark of VMware, Inc.

• Oracle VirtualBox is a registered trademark of Oracle Corporation.

• XenServer is a registered trademark of Citrix Systems, Inc.

• Docker is a trademark of Docker, Inc.

• Podman is a trademark of Podman, Inc.

Contents

1 Introduction 9
1.1 Types of Operating Systems . 11
1.2 The Linux OS . 12

1.2.1 Versions, Statistics and Conventions 14
1.3 Organization of the Book . 17

2 Basics of Computer Architecture 23
2.1 Cores, Registers and Interrupts 25

2.1.1 Multicore Systems . 25
2.1.2 Inside a Core . 26
2.1.3 Registers . 27
2.1.4 Interrupts, Exceptions, System Calls and Signals 29

2.2 Memory System . 35
2.2.1 Memory Map of a Process 38
2.2.2 Virtual Memory . 39
2.2.3 Address Translation System 43
2.2.4 Segmented Memory . 51

2.3 I/O System . 53
2.3.1 Overview . 54
2.3.2 Port-Mapped I/O . 55
2.3.3 Memory-Mapped I/O . 56
2.3.4 DMA . 57

2.4 Summary and Further Reading 59
2.4.1 Summary . 59
2.4.2 Further Reading . 61

3 Processes 63
3.1 The Process Descriptor . 66

3.1.1 The Notion of a Process 66
3.1.2 struct task struct . 67
3.1.3 struct thread info . 67
3.1.4 Task States . 69
3.1.5 Kernel Stack . 71
3.1.6 Task Priorities . 75
3.1.7 Computing Actual Task Priorities 76

3

© Smruti R. Sarangi 4

3.1.8 sched info . 77
3.1.9 Memory Management . 78
3.1.10 Storing Virtual Memory Regions 80
3.1.11 The Process ID . 81
3.1.12 Namespaces . 82
3.1.13 File System, I/O and Debugging Fields 88

3.2 Process Creation and Destruction 90
3.2.1 The Fork Mechanism . 90
3.2.2 The exec Family of System Calls 96
3.2.3 Kernel Threads . 97

3.3 Context Switching . 99
3.3.1 Hardware Context . 99
3.3.2 Types of Context Switches 101
3.3.3 Details of the Context Switch Process 104
3.3.4 Context Switch Process: Kernel Code 106

3.4 Summary and Further Reading 109
3.4.1 Summary . 109
3.4.2 Further Reading . 111

4 System Calls, Interrupts, Exceptions and Signals 115
4.1 System Calls . 117

4.1.1 Life of a Library Call . 117
4.1.2 The OS Side of Things . 119
4.1.3 Returning from a System Call 120

4.2 Interrupts and Exceptions . 121
4.2.1 APICs . 122
4.2.2 IRQs . 124
4.2.3 Kernel Code for Interrupt Descriptors 127
4.2.4 IRQ Domains . 129
4.2.5 IDT and APIC Initialization Process 130
4.2.6 The Interrupt Path . 131
4.2.7 Exceptions . 134

4.3 Softirqs, Threaded IRQs and Work Queues 138
4.3.1 Softirqs . 140
4.3.2 Threaded IRQs . 142
4.3.3 Work Queues . 142

4.4 Signal Handlers . 145
4.4.1 Example of a Signal Handler 145
4.4.2 Signal Delivery . 147
4.4.3 Kernel Code . 150
4.4.4 Entering and Returning from a Signal Handler 155

4.5 Summary and Further Reading 156
4.5.1 Summary . 156
4.5.2 Further Reading . 158

5 Synchronization and Scheduling 161
5.1 Synchronization . 164

5.1.1 Data Races . 164
5.1.2 Design of a Simple Lock 167
5.1.3 Theory of Data Races . 169

5 © Smruti R. Sarangi

5.1.4 Deadlocks . 171
5.1.5 Pthreads and Synchronization Primitives 176
5.1.6 Theory of Concurrent Programs 180
5.1.7 Progress Guarantees . 187
5.1.8 Semaphores . 189
5.1.9 Condition Variables . 190
5.1.10 Reader-Writer Lock . 191
5.1.11 Barriers and Phasers . 193

5.2 Queues . 194
5.2.1 Wait-Free Queue . 196
5.2.2 Queue with Mutexes . 198
5.2.3 Queue with Semaphores 199
5.2.4 Queue with Semaphores but No Busy Waiting 200
5.2.5 Reader-Writer Lock . 202
5.2.6 Linux Message Queues . 204

5.3 Concurrency within the Kernel 205
5.3.1 Kernel-Level Locking: Spinlocks 206
5.3.2 Kernel Mutexes . 212
5.3.3 Kernel Semaphores . 216
5.3.4 The Lockdep Mechanism 216
5.3.5 The RCU (Read-Copy-Update) Mechanism 218

5.4 Scheduling . 228
5.4.1 Space of Scheduling Problems 228
5.4.2 Single Core Scheduling . 231
5.4.3 Multicore Scheduling . 236
5.4.4 Banker’s Algorithm . 240
5.4.5 Scheduling in the Linux Kernel 246
5.4.6 Completely Fair Scheduling (CFS) 252
5.4.7 Deadline and Real-Time Scheduling 258

5.5 Real-Time Systems . 259
5.5.1 Types of Real-Time Systems 259
5.5.2 EDF Scheduling . 260
5.5.3 RMS Scheduling . 261
5.5.4 DMS Scheduling . 263
5.5.5 Priority Inheritance Protocol (PIP) 264
5.5.6 Highest Locker Protocol (HLP) 267
5.5.7 Priority Ceiling Protocol (PCP) 269

5.6 Summary and Further Reading 272
5.6.1 Summary . 272
5.6.2 Further Reading . 276

6 The Memory System 281
6.1 Traditional Heuristics for Page Allocation 283

6.1.1 Base-Limit Scheme . 283
6.1.2 Classical Schemes to Manage Virtual Memory 285
6.1.3 The Notion of the Working Set 294
6.1.4 Shared- Memory-Based Inter-Process Communication . . 295

6.2 Virtual and Physical Address Spaces 297
6.2.1 The Virtual Memory Map 297
6.2.2 The Page Table . 298

© Smruti R. Sarangi 6

6.2.3 Pages and Folios . 302
6.2.4 Managing the TLB . 305
6.2.5 Partitioning Physical Memory 308

6.3 Page Management . 314
6.3.1 Reverse Mapping . 314
6.3.2 The MGLRU Algorithm for Page Replacement 325
6.3.3 Thrashing . 338

6.4 Kernel Memory Allocation . 340
6.4.1 Buddy Allocator . 341
6.4.2 Slab Allocator . 345
6.4.3 Slub Allocator . 347

6.5 Summary and Further Reading 349
6.5.1 Summary . 349
6.5.2 Further Reading . 352

7 The I/O System, Storage Devices and Device Drivers 355
7.1 Basics of the I/O System . 358

7.1.1 The Motherboard and Chipset 358
7.1.2 Layers in the I/O System 360
7.1.3 Port-Mapped I/O . 362
7.1.4 Memory-Mapped I/O . 364

7.2 Storage Devices . 365
7.2.1 Hard Disks . 365
7.2.2 RAID . 371
7.2.3 SSDs . 375
7.2.4 Nonvolatile Memories . 380

7.3 Files and Devices in Linux . 380
7.3.1 Devices in Linux . 380
7.3.2 Notion of Files . 381

7.4 Block Devices . 384
7.4.1 Registering a Block Device 385
7.4.2 Drivers and Modules . 385
7.4.3 The Block I/O System . 388
7.4.4 I/O Scheduling . 395
7.4.5 A Simple Block Device Driver 397

7.5 Character Devices . 398
7.6 File Systems . 400

7.6.1 Tree-Structured Layout of a File System 400
7.6.2 Mounting a File System 403
7.6.3 Soft Links and Hard Links 404
7.6.4 Virtual File System . 406
7.6.5 Structure of an inode . 408
7.6.6 Ext4 File System . 413
7.6.7 The exFAT File System 418
7.6.8 Journaling File Systems 420
7.6.9 Accessing Files in Linux 421
7.6.10 Pipes . 425

7.7 Summary and Further Reading 427
7.7.1 Summary . 427
7.7.2 Further Reading . 431

7 © Smruti R. Sarangi

8 Virtualization and Security 435
8.1 Basics of Virtualization . 435

8.1.1 Overview . 435
8.1.2 Types of Hypervisors . 437
8.1.3 CPU Virtualization . 438
8.1.4 Memory Virtualization . 442
8.1.5 Hardware-Assisted Virtualization 446
8.1.6 I/O Virtualization . 448

8.2 Containers . 451
8.2.1 Namespaces . 452
8.2.2 Cgroups . 455
8.2.3 Overlay File System . 457

8.3 Summary and Further Reading 457
8.3.1 Summary . 457
8.3.2 Further Reading . 457

A The X86-64 Assembly Language 461
A.1 Registers . 461
A.2 Basic Instructions . 464

B Compiling, Linking and Loading 467
B.1 The Process of Compilation . 467

B.1.1 Compiler Passes . 467
B.1.2 Dealing with Multiple C Files 469
B.1.3 The Concept of the Header File 470

B.2 Linker . 473
B.2.1 Static Linking . 473
B.2.2 Dynamic Linking . 476
B.2.3 The ELF Format . 479

B.3 Loader . 479

C Data Structures 481
C.1 Linked Lists in Linux . 481

C.1.1 struct list head . 482
C.1.2 Singly-Linked Lists . 484

C.2 Red-Black Tree . 484
C.3 B-Tree . 485

C.3.1 The Search Operation . 486
C.3.2 The Insert and Delete Operations 487
C.3.3 B+ Tree . 487
C.3.4 Advantage of B-Trees and B+ Trees 488

C.4 Maple Tree . 488
C.5 Radix Tree . 489

C.5.1 Patricia Trie . 490
C.6 Augmented Tree . 490

C.6.1 Bloom Filters . 492

© Smruti R. Sarangi 8

Chapter 1
Introduction

Welcome to the exciting world of operating systems. An operating system –
commonly abbreviated as an OS – is the crucial link between hardware and
application programs. We can think of it like a class monitor whose job is
to manage the rest of the students. It is a special program, which exercises
some control over hardware and other programs. In other words, it has special
features and powers that enable it to manage all aspects of the underlying
hardware and also ensure that a convenient interface is provided to high-level
application software. They should be able to seamlessly operate oblivious of the
idiosyncrasies of the underlying hardware.

Let us begin our journey by asking a question, “What is the need for having
a specialized program for interacting with hardware and also managing the
normal C/Java/Python programs that we write?”

We need to start out with understanding that while designing hardware, our
main goals are power efficiency and high performance. Providing a convenient
interface to programs is not a goal and neither it should be. It is best to focus on
one thing at a time. Moreover, we do not want normal programs to have access
to all the features of the underlying hardware because of security concerns and
also because any otherwise benevolent, inadvertent change can actually bring
the entire system down. Hence, there is a need for a dedicated mechanism to
deal with hardware and to also ensure that any operation that potentially has
security implications or can possibly bring the entire system down, is executed
in a very controlled fashion. This is where the role of the OS becomes important.

Figure 1.1 shows the high-level design of a simple computer system. We
can see the CPUs, the memory and the storage/peripheral devices. These are,
broadly speaking, the most important components of a modern hardware sys-
tem. An OS needs to manage them and also needs to make it very easy for a
regular program to interact with these entities.

The second figure (Figure 1.2) shows the place of the OS in the overall
system. We can see the underlying hardware, high-level programs running on
top of it and the OS that sits in the middle. It acts as a mediator, a broker, a
security manager and an overall resource manager.

9

© Smruti R. Sarangi 10

HardMemory

CPU

Disk

I/0 devices

Figure 1.1: Diagram of the overall system

Opera�ng System

P1

Programs

P2 P3

Hardware
Memory

CPUs

I/O & Storage

Figure 1.2: Place of the OS in the overall system

Summary 1.0.1

• Programs share hardware such as the CPU, the memory and stor-
age devices. These devices have to be fairly allocated to different
programs based on user-specified priorities. The job of the OS is
to do a fair resource allocation.

• There are common resources in the system, which multiple pro-
grams may try to access concurrently. There is a need to regulate
this process such that concurrent accesses are disciplined. It should
not be possible for one resource to be used concurrently by multiple
running programs when that was not the original intention.

• Different devices have different methods and protocols for man-
aging them. It is essential to speak their language and ensure
that high-level commands are translated to device-level commands.
This responsibility cannot be put on normal programs. Hence, we
need specialized programs within the OS (device drivers) whose
job is to exclusively interact with devices.

• Managing the relationships between programs and shared resources
such as the memory is fairly complex. For instance, we can have

11 © Smruti R. Sarangi

many running programs that are trying to access the same set of
memory locations. This may be a possible security violation or this
may be a genuine shared memory-based communication pattern.
There is a need to differentiate between them by providing neat
and well-defined mechanisms.

• Power, temperature and security concerns have become very im-
portant over the last decade. Any operating system that is being
designed today needs to run on very small devices such as mobile
phones, tablets and even smartwatches. In the foreseeable future,
they may run on even smaller devices such as smart glasses or de-
vices that are embedded within the body. Hence, it is important
for an OS to be extremely power-aware.

Definition 1.0.1 Definition of an OS

An operating system (OS) works as a CPU manager, memory manager,
device manager and storage manager. Its job is to arbitrate accesses
to these resources and ensure that programs execute securely, and their
performance is maximized subject to power and temperature constraints.

1.1 Types of Operating Systems

We can have different kinds of operating systems based on the target hard-
ware. For instance, we can have operating systems for large high-performance
machines. In this case, they would be optimized to execute a lot of scientific
workloads and also participate in distributed computing scenarios. On the other
hand, operating systems for desktop/laptop machines need to keep the require-
ments for general-purpose users in mind. It is expected that regular users will
use OSes for running programs such as web browsers, word processors, email
clients and for watching videos or playing games. Given the highly heteroge-
neous nature of such use cases, there is a need to support a large variety of
programs and also a large variety of devices. Hence, in this case more flexibility
is desirable. This increases the susceptibility to viruses and malware. Hence,
security is a first-order concern as of today.

The next important usage scenario for an operating system is a mobile de-
vice. Nowadays, almost all mobile devices starting from phones to tablets have
an operating system installed. For all practical purposes, a mobile device is a
full-fledged computer, albeit with reduced hardware resources. Additionally, a
mobile phone operating system such as Android® needs to be extremely effi-
cient in terms of both power and performance. The reason is that we don’t
have a lot of resources available and battery capacity is a major constraint. As
a result, the focus should be on optimizing battery life yet providing a good
quality of experience.

Operating systems are also making their way into much smaller devices such
as smartwatches. Here, we don’t expect a lot of applications, but we expect
the few applications that run on such watches to operate seamlessly. We expect
that they will work under severe power constraints and deliver a good user

© Smruti R. Sarangi 12

experience. Moreover, in this case the code size and the memory footprint of
the OS needs to be very small.

1.2 The Linux OS

In this book, we will teach generic OS concepts in the context of the Linux®

OS. As compared to all other operating systems, Linux has a very different
history. It has not been written by one particular person or one particular
organization. In fact, it is a modern marvel in the sense that it has arisen out of
a massive worldwide collaboration comprising a very large number of individuals
who would otherwise not have been connected with each other. This is truly
a remarkable effort and a great example of people coming together to create
something that is beneficial to all. Given that the code is open source, and
the OS itself is freely available, it has now found widespread acceptance in all
kinds of computing platforms ranging from smartwatches to laptops to high-end
servers.

It all started in 1990 with Linus Torvalds, a student in Helsinki, Finland,
who wanted to work on a freely available version of a variant of the then popular
UNIX operating system (Minix). Given the fact that most versions of UNIX®

those days were proprietary and were beyond the reach of students, he decided
to create an operating system for his Intel-based machine that was a rival of
Minix, which was primarily developed and meant to be used in an academic
setting. Over the next few years, this activity attracted a lot of developers for
whom this was more of a hobby than a profession. All of them contributed
either in terms of code or in other ways such as testing the operating system
or porting it to new hardware. At the same time, the free software movement
was also taking shape. Under the GNU (GNU is not Unix, https://www.gnu.
org/) umbrella, a lot of software, specifically utilities, were being developed.
The Linux developers found a common cause with the GNU developers and
developers in the closely-related free software movement (FSF, https://www.
fsf.org/). As a result, many of the utilities that came to fruition because of
these movements got incorporated in the Linux operating system. This was a
good fusion of communities, which led to rapid development of the new OS.

Way back in 1992, the first version of Linux was released under the GNU
Public License (GPL) [License, 1989]. Believe it or not, the unique nature of
the GPL license had a fair amount of impact on the rise and popularity of
Linux. It was a free-to-use license similar to many other licenses that were
prevalent at that time. Like other free software licenses, it allowed the user
to freely download and distribute the code, and make modifications. However,
there was an important caveat, which distinguished GPL from other licenses. It
was that it is not possible for any redistributing entity to redistribute the code
with a more restrictive license. For instance, if let’s say someone downloads
the Linux code, then it is not possible for her to make proprietary changes
and then start selling the OS or even redistribute the modified version without
releasing its source code. It is mandatory to release the source code of the
modifications under the same GPL license. This ensured that whatever changes
and modifications are made to any piece of code that comes with a GPL license
still remains the property of the community. Others can use the modifications,
which most likely will be improvements, and then build on them. There were no

https://www.gnu.org/
https://www.gnu.org/
https://www.fsf.org/
https://www.fsf.org/

13 © Smruti R. Sarangi

proprietary walls; this allowed the community to make rapid progress because
all incremental improvements had to be shared. However, at that point of time,
this was not the case with other pieces of software. Users or developers were not
duty-bound to contribute back to the mother repository. This ensured that a lot
of the innovations that were made by large research groups and multinational
companies were not given back to the community.

Over the years, Linux has grown by leaps and bounds in terms of function-
ality and popularity. By 2000, it had established itself as a worthy desktop and
server operating system. People started taking it seriously and many academic
groups started moving away from UNIX to adopt Linux. Given that Linux was
reasonably similar to UNIX in terms of the interface and some other high-level
design decisions, it was easy to migrate from Unix to Linux. The year 2003
was a pivotal year for the Linux community. This year Linux kernel version 2.6
was released. It had a lot of advanced features and was very different from the
previous kernel versions. After this, Linux started being taken very seriously in
both academic and industry circles. In a certain sense, it had come of age and
had entered the big league. Many companies sprang up that started offering
Linux-based offerings, which included the kernel bundled with a set of packages
(software programs) and also custom support.

Over the years, Linux distributions such as Red Hat®, Suse® and Ubuntu®

(Canonical®) have come to dominate the scene. As of writing this book, circa
2024, they continue to be major Linux vendors. Since 2003, a lot of other
changes have also happened. Linux has found many new applications – it has
made major inroads into the mobile and handheld market. The Android oper-
ating system, which as of 2023 dominates the entire mobile operating space is
based on the Linux kernel. Many of the operating systems for smart devices and
other wearable gadgets are based on Android. In addition, Google®’s Chrome
OS is also a Linux-derived variant. So are other operating systems for Smart
TVs such as LG®’s webOS and Samsung®’s Tizen.

Point 1.2.1

It is important to understand the economic model. Especially in the
early stages, the GPL licensing model made a lot of difference and
was very successful in single-handedly propelling the Linux movement.
We need to understand that Linux carved a niche of its own in terms
of performance roughly a decade after the project began. The reason
it was grown and sustained by a large team of developers in the first
formative decade is that they saw a future in it. This also included large
for-profit companies. The financial logic behind such extraordinary
foresight is quite straightforward.

Why should a hardware company invest in creating a proprietary operat-
ing system, when its primary business is processors or software services?
It also does not make a lot of sense to buy hundreds of thousands of li-
censes of a proprietary operating system for its employees and customers.
The costs can be prohibitive. It is a much better idea to voluntarily con-
tribute a few employees to the Linux effort such that they create some-
thing that is the property of the entire community. This means that

© Smruti R. Sarangi 14

instead of devoting hundreds of engineers for developing and maintain-
ing a homemade operating system, only tens of engineers are required to
ensure that there is a version of Linux that suits the company’s needs.
If a lot of companies and non-profit groups get together, then the large
team is as good as a dedicated OS development team. It can produce
something of the same or even a superior quality, at a fraction of the
cost. Given that everything is free and users have full control, there is
no long-term business risk!

Linux is not the only free open-source operating system. There are many
others, which are derived from classical UNIX, notably BSD Unix (Berkeley
Standard Distribution) family of operating systems. Some other important
variants are FreeBSD®, OpenBSD and NetBSD®. Akin to Linux, their code
is also free to use and distribute. Of course, they follow a different licensing
mechanism, which is not as restrictive as GPL. However, they are also very good
operating systems in their own right. They have their niche markets, and they
have a large developer community that actively adds features and ports them
to new hardware. A paper by your author and his student S. S. Singh [Singh
and Sarangi, 2020] nicely compares three operating systems – Linux, FreeBSD
and OpenBSD – in terms of the performance across different workloads.

1.2.1 Versions, Statistics and Conventions

In this book, we will be primarily teaching generic OS concepts. However, it
is our firm belief that every operating system concept needs to be explained in
the light of a solid practical implementation. This is where code snippets from
the latest version of the Linux kernel (as of 2023) will be used. Specifically, we
shall use kernel version v6.2 to explain OS concepts. All the OS code that we
shall show will be from the main branch. It is available at https://elixir.

bootlin.com/linux/v6.2.12/source/kernel.

Let us now go through some key code-related statistics of the Linux kernel
version v6.2 that has roughly 23 million lines of source code. Every version
change typically adds 250,000 lines of source code. The numbering scheme for
the kernel version numbers is shown in Figure 1.3.

x y z

Major version
number

Minor version
number

Patch number

Example: 6.2.12

rc � release candidate
(test release)

-rc<num>

Figure 1.3: Rationale behind assigning Linux kernel versions

https://elixir.bootlin.com/linux/v6.2.12/source/kernel
https://elixir.bootlin.com/linux/v6.2.12/source/kernel

15 © Smruti R. Sarangi

Linux Versions

Consider Linux version 6.2.12. Here 6 is the major version number, 2 is the mi-
nor version number and 12 is the patch number. Every ⟨major,minor⟩ version
pair has multiple patch numbers associated with it. A major version represents
important architectural changes. The minor version adds important bug fixes
and feature additions. A patch mostly focuses on minor issues and security-
related bug fixes. Every time there is an important feature-related commit, a
patch is created. Prior to 2004, even minor versions were associated with sta-
ble versions and odd minor versions were associated with development versions.
Ever since Linux kernel version 3.0, this practice has not been adhered to. Ev-
ery version is stable now. Development versions are now release candidates that
predate stable versions.

Every new patch is associated with multiple release candidates. A release
candidate does not have major bugs; it incorporates multiple smaller fixes and
feature additions that are not fully verified. These release candidates are con-
sidered experimental and are not fully ready to be used in a production setting.
They are numbered as follows -rc1, -rc2, They are mainly aimed at other
Linux developers, who can download these release candidates, test their features,
suggest improvements and initiate a process of (mostly) online discussion. Once,
the discussions have converged, the release candidates are succeeded by a stable
version (read patch or major/minor version).

Details of the Linux Code Base

Figure 1.4: Breakup of the Linux code base

Let us now provide an overview of the Linux code base (see Figure 1.4). The

© Smruti R. Sarangi 16

architecture subsystem of the kernel contains all the code that is architecture
specific. The Linux kernel has a directory called arch that contains various
subdirectories. Each subdirectory corresponds to a distinct architecture such as
x86, ARM, Sparc, etc. An OS needs to rely on processor-specific code for various
critical actions like booting, device drivers and access to privileged hardware
operations. All of this code is nicely bundled up in the arch directory. The
rest of the code of the operating system is independent of the architecture. It
is not dependent on the ISA or the machine. It relies on primitives, macros
and functions defined in the corresponding arch subdirectory. All the operating
system code relies on these abstractions such that developers do not have to
concern themselves with details of the architecture such as whether it is 16-bit
or 32-bit, little endian or big endian, CISC or RISC. This subsystem contains
more than 1.7 million lines of code.

The other large subsystems that contain large volumes of code are the code
bases for the filesystem and network, respectively. Note that a popular OS such
as Linux needs to support many file systems and network protocols. As a result,
the code base for these directories is quite large. The other subsystems for the
memory and security modules are comparatively much smaller.

All the code

arch: All the assembly code
that is architecture
dependent

drivers: All the kernel
rou�nes that run the
devices. Translate generic
OS calls to HW-specific
instruc�ons.

HW-dependent code
Process manager

kernel: process scheduler,
synchroniza�on, �me
management, event
management, debugging

virt: Support for running a
guest OS as a regular
program.

Memory
and I/O

mm: physical and virtual
memory manager

fs: file systems

block: generic layer for
all block-based storage
devices like hard disks

io_uring: data structures
for I/O support

init: boot code

(c) Smru� R. Sarangi, 2023

Figure 1.5: Important directories in the Linux kernel’s code base

Figure 1.5 shows the list of prominent directories in the Linux kernel. The
kernel directory contains all the core features of the Linux kernel. Some of the
most important subsystems are the scheduler, time manager, synchronization
manager and debugging subsystem. It is by far the most important subsystem
– it is the core of the kernel. We will focus a lot on this subsystem.

We have already seen the arch directory. A related directory is the init
directory that contains all the booting code. Both these directories are hardware
dependent.

The mm, fs, block and io uring directories contain important code for the
memory subsystem, file system and I/O modules, respectively. The code for
virtualizing an operating system is resident in the virt directory. Virtualizing
the OS means that we can run an OS as a regular program on top of the Linux
OS. This subsystem is tightly coupled with the memory, file and I/O subsystems.

Finally, note that the largest directory is drivers that contains drivers (spe-

17 © Smruti R. Sarangi

cialized programs for talking to devices) for a large number of I/O devices. This
directory is so large because an operating system such as Linux needs to support
a large amount of hardware. For every hardware device, we should not expect
the user to browse the web, locate its driver and install it. Hence, there is a
need to include its code in the code base of the kernel itself. At the same time,
we do not want to include the code of every single device driver on the planet
in the code base of the kernel. Its code will become prohibitively large. Rarely
used and obsolescent devices can be left out. Hence, the developers of the ker-
nel need to judiciously choose the set of drivers that need to be included in
the kernel’s code base, which is released and distributed. These devices should
be reasonably popular, and the drivers should be deemed to be safe (devoid of
security issues).

1.3 Organization of the Book

Figure 1.6: List of chapters

Figure 1.6 shows the list of chapters and appendixes in the book. All the
chapters use concepts that may require the user to refer to the appendixes.
There are three appendixes in the book. Appendix A introduces the x86 as-
sembly language (the 64-bit variant). We shall refer to snippets of assembly
code throughout the text. To understand them thoroughly, it is necessary to
be familiar with x86 assembly. Most of the critical routines in operating sys-
tems are still written in assembly language for speed and efficiency. Appendix
B describes the compiling, linking and loading process. This appendix should
be read thoroughly because it is important to understand how large C-based
software projects are structured. Readers should know the specific roles of C
files, header files, .o files, static and dynamically linked libraries. These concepts
are described in detail in this chapter. Finally, Appendix C introduces the most
commonly used data structures in the Linux kernel. A lot of the data structures
that we typically study in a basic undergraduate data structures course have

© Smruti R. Sarangi 18

scalability problems. Hence, it is necessary to use specialized data structures in
the Linux kernel. We shall specifically introduce generic linked list containers,
red-black trees, B and B+ trees, maple trees, radix trees and augmented trees.
These are used in the Linux kernel to solve sophisticated problems. Let us now
provide a brief overview of each chapter.

We shall start with an overview of the computer architecture concepts needed
to undertake a study of operating systems. Recall that the primary function
of an OS is to abstract the architecture and provide a convenient interface to
high-level applications. Hence, it is very important to understand the nature
of the underlying hardware. It is what we are building an OS for. The three
important subsystems that we shall cover are the cores including their registers
and interrupt-processing hardware, virtual memory and the I/O system. Vir-
tual memory, especially, plays a very important role in the design of operating
systems. It is mostly managed by the OS and is needed to enforce isolation
across processes (running instances of programs). Finally, note that for writing
device driver code and for realizing the I/O subsystem, an understanding of I/O
devices and the interfaces needed to access them is required. We shall cover all
these topics and finally move to quintessential OS concepts.

The third chapter is on processes. Our focus will be on the data structures
used by the kernel to store the state of processes. We shall observe that data
structure design is a key challenge. There are important trade-offs involved.
In some cases, trees are more scalable and in some cases hash tables are more
scalable. Sometimes we need to use a combination of data structures to enhance
efficiency. Once the task struct structure that represents a process’s state is
fully understood, we shall move on to understanding the mechanisms of process
creation and destruction. Linux has a special method of creating new processes
– existing processes are cloned and if needed their runtime image is replaced.
Finally, we shall look at the process of context switching, i.e., switching between
processes. If one process is running it, we need to pause it and resume another
process that has been waiting to execute. This mechanism is the backbone of
any multitasking system and in practice is an intricate choreography of different
small operations that need to be executed in a precise sequence. Any process
can potentially be paused and resumed thousands of times unbeknownst to it –
its runtime state needs to be restored exactly. We shall see that doing this with
100% reliability is an engineering marvel.

Next in Chapter 4, we shall look at methods to communicate information to
and from processes using a host of mechanisms. Accessing any OS function is
not as simple as making a function call. The address spaces of the application
and the OS kernel are different. Hence, invoking an OS function and passing
arguments to it is a non-trivial task. This involves a context switch also. We
shall start with looking at system calls, which are methods for user programs
to seek OS intervention. Making a system call is an elaborate process, which
has a very well-defined convention for passing arguments and accessing return
values. Next, we shall look at interrupting events such as hardware interrupts
of software-generated exceptions. Both interrupt the running process and start
executing an OS routine to handle the interrupt. We shall look at accurately
saving the state of the running process and executing a very high-priority in-
terrupt handler in this section. We shall also answer complex questions of the
form, “What happens when an interrupt arrives when another interrupt is being
processed?” (case of nested interrupts) In Linux, interrupt processing happens

19 © Smruti R. Sarangi

in two stages: the urgent work is completed immediately and the rest of the
work is completed later. There are different types of kernel tasks that can do
such deferred work. They run with different priorities and have different fea-
tures. Specifically, we shall introduce softirqs, threaded IRQs and work queues.
Finally, we shall introduce signals, which are the reverse of system calls. The
OS uses signals to send messages to running processes. For example, if we
press a mouse button, then a message goes to the running process regarding the
mouse click and its coordinates. This happens via signals. Here also there is a
need to change the context of the user application because it now needs to start
processing the signal.

Chapter 5 is a long chapter on synchronization and scheduling. In any
modern OS, we have hundreds of running tasks that often try to access shared
resources concurrently. Many such shared resources can only be accessed by
one thread at a time. Hence, there is a need for synchronizing the accesses.
This is known as locking in the context of operating systems. Locking is a large
and complex field that has a fairly strong overlap with advanced multiprocessor
computer architecture. We specifically need to understand it in the context of
memory models and data races. Memory models determine the valid outcomes
of concurrent programs on a given architecture. We shall observe that it is
often necessary to restrict the space of outcomes using special instructions to
correctly implement locks. If locks are correctly implemented and used, then
uncoordinated accesses known as data races will not happen. Data races are
the source of a lot of synchronization-related bugs. Once the basic primitive
has been designed, we shall move on to discussing different types of locks and
advanced synchronization mechanisms such as semaphores, condition variables,
reader-writer locks and barriers. The kernel needs many concurrent data struc-
tures such as producer-consumer queues, mutexes, spinlocks and semaphores to
do its job. We shall look at their design and implementation in detail.

Next, we shall move on to explaining a very interesting synchronization
primitive that is extremely lightweight and derives its correctness by stopping
task preemption at specific times. It is known as the read-copy-update (RCU)
mechanism, which is widely used in the kernel code. It is arguably one of the
most important innovations made by the designers of the kernel, which has had
far-reaching implications. It has obviated the need for a garbage collector. We
shall then move on to discussing scheduling algorithms. After a cursory intro-
duction to trivial algorithms like shortest-job first and list scheduling, we shall
move on to algorithms that are actually used in the kernel such as completely
fair scheduling (CFS). This discussion will segue into a deeper discussion on
real-time scheduling algorithms where concrete guarantees can be made about
schedulability and tasks getting a specific pre-specified amount of CPU time.
In the context of real-time systems, another important family of algorithms
deal with locking and acquiring resources exclusively. It is possible that a low-
priority process may hold a resource for a long time while a high-priority process
is waiting for it. This is known as priority inversion, which needs to be avoided.
We shall study a plethora of mechanisms to avoid this and other problems in
the domain of real-time scheduling and synchronization.

Chapter 6 discusses the design of the memory system in the kernel. We shall
start with extending the concepts that we studied in Chapter 2 (architecture
fundamentals). The role of the page table, TLB, address spaces, pages and folios
will be made clear. For a course on operating systems, understanding these

© Smruti R. Sarangi 20

concepts in exquisite detail is necessary. We shall start with classical schemes
and move on to the way page management is done in the Linux kernel. The
most important concepts are reverse mapping and the MGLRU page aging and
replacement algorithm. Reverse mapping is defined as the process of mapping
physical frames to virtual pages. This is important because the same frame may
be mapped to the address spaces of multiple processes. We thus need to keep
track of this information and update it when processes are forked. The MGLRU
page aging and replacement algorithm is a game-changing innovation. It is a
novel approach to managing the state associated with a large number of pages in
a very scalable fashion. We shall do a thorough code-level analysis. The chapter
will conclude with a look at the different kernel-level memory allocators. Note
that we do not have a page table for a reasonably large part of the kernel’s
address space. Therefore, it is necessary to manage physical memory directly
and thus special memory allocators are necessary.

Chapter 7 introduces I/O systems, storage devices, device drivers and file
systems. We need to understand that the I/O stack is very intricately connected
with the design of the devices themselves. Hence, a good OS designer needs to
understand the details of the devices such that the software stack can use their
features efficiently and cover up for their deficiencies. In fact, it is necessary
to understand the hardware in a reasonable amount of detail otherwise the
device drivers will fall short of their desired performance targets. Hence, we
shall first look at commonly used I/O and storage devices used as of 2024 in
great detail. Once, we understand their relative pros and cons, we shall proceed
to understand the structure of devices and I/O requests in Linux. This is a
common layer that individual device drivers build on. Linux defines two kinds
of devices: block devices and character devices. The former type of devices are
typically storage devices such as flash memories and hard disks that read and
write large blocks in one go. Their device drivers are typically built in to the
kernel and have a quite elaborate structure. Given that they need to transfer a
large amount of data, it is important to minimize the latency and maximize the
throughput. On the other hand, character devices like mice and keyboards are
not that latency sensitive. However, for them the ease of use and installation
is quite important. There are a plethora of such devices. It should be easy to
write drivers for them and integrate them easily into a running system.

The final chapter (Chapter 8) deals with security and virtualization (Chapter
8). Today, security is a first-order design criterion. We shall start this chapter
with a discussion of different kinds of access control methods in modern oper-
ating systems. Security policies can be specified at the level of resources such
as file, or they can be specified at the level of users and groups. We will dis-
cuss specific technologies that have proven to be quite useful such as SELinux,
AppArmor, PAM and extended file attributes. They help specify fine-grained
security policies. We shall then discuss security modules in the latest version of
the Linux kernel. We shall specifically focus on how they monitor accesses and
restrict some aspects of user behavior that are deemed to be too risky. Finally,
we will touch upon the kernel’s cryptographic API and auditing infrastructure.

The second part of the chapter deals with virtualization. Virtualization
allows a guest operating system to run on top of Linux as a regular application.
For example, we can run three instances of Linux and two instances of Windows
on a Linux machine as if they were normal processes. Each operating system will
operate in isolation and presume that it is actually running on a real machine.

21 © Smruti R. Sarangi

Basically, the CPU and the devices are being virtualized here. As of today,
virtualization and its lightweight version namely containers are the most popular
technologies in the cloud computing ecosystem. Some popular virtualization
software are VMWare vSphere®, Oracle VirtualBox® and XenServer®. They
are also known as hypervisors. Linux has a built-in hypervisor known as Linux
KVM (kernel virtual machine). We will study more about them in this chapter.
We will also look at lightweight virtualization techniques using containers that
virtualize processes, users, the network, file systems, configurations and devices.
Docker® and Podman® are important technologies in this space. In the last
part of this chapter we shall look at specific mechanisms for virtualizing the I/O
system and file systems, and finally conclude.

© Smruti R. Sarangi 22

Exercises

Ex. 1 — What are the roles and functions of a modern operating system?

Ex. 2 — Is a system call like a regular function call? Why or why not?

Ex. 3 — Why is the drivers directory the largest directory in the kernel’s code
base?

Ex. 4 — What are the advantages of having a single arch directory that stores
all the architecture-specific code? Does it make writing the rest of the kernel
easier?

Ex. 5 — Write a report about all the open-source operating systems in use
today. Trace their evolution.

Ex. 6 — Discuss the implications of the GPL license on the development of
Linux.

Ex. 7 — Do you think the C language is the right choice for the Linux kernel?

Chapter 2
Basics of Computer Architecture

An operating system is the connecting link between application programs and
hardware. Hence, it is essential that any serious student of operating systems
gains a fair understanding of programming languages and the way programs are
written, and the way hardware is designed (computer architecture). The aim
of this chapter is to outline the fundamentals of computer architecture that are
needed to understand the working of an operating system. This chapter does
not aim to teach the student computer architecture in its entirety. The student
is requested to consult traditional textbooks on computer architecture [Sarangi,
2021,Sarangi, 2023] for getting a deeper understanding of all the concepts. The
aim of this chapter is to provide an overview such that the student has sufficient
opportunity for recapitulation and can get a clearer understanding of some key
hardware features that modern OSes rely on.

Organization of the Chapter

Figure 2.1 shows the organization of this chapter. The main aim of this
chapter is to cover all the computer architecture concepts needed to understand
modern operating systems. The objective is not to explain well-known computer
architecture concepts such as cores, caches and the memory system. The focus
is only on specific hardware features that are relevant for understanding a book
on operating systems.

We shall start with looking at the privileged mode of execution, which oper-
ating systems use. This is normally not taught in regular computer architecture
courses because regular user programs cannot access privileged registers and
privileged instructions. We need to look at such instructions because they are
very useful for writing software such as the Linux kernel. Privileged registers
can be used for controlling the underlying hardware such as turning off the dis-
play or the hard disk. Next we shall discuss methods to invoke the OS and
application-OS communication. No OS program normally runs. The kernel
(core part of the OS) begins to run only when there is an event of interest: the
system boots, a hardware device raises an interrupt, there is a software bug such
as an illegal access or the running program raises a dummy software interrupt
to get the attention of the OS kernel. If interrupts are not naturally being gen-
erated, then there is a need to create dummy interrupts using a timer chip – a

23

© Smruti R. Sarangi 24

Computer Architecture
Basics

Cores, Registers and Interrupts

Memory System

I/O System

Privileged Mode

Interrupts, Exceptions,
System Calls, Signals

Memory Map

Virtual Memory

Segmentation

Port-Mapped I/O

Memory-Mapped I/O

DMA

Figure 2.1: Organization of this chapter

programmable, periodic interrupt generator.

Next, we shall discuss the details of the memory system, especially the virtual
memory system, which is relevant from an OS perspective. We need to first
understand how a process views its memory space. It assumes that it on an n-bit
machine, it can access most of the 2n addressable bytes. Furthermore, it assumes
a fixed structure for the entire memory space. This is known as the memory
map. This is a very elegant assumption and makes it easy for programmers
to write code, compilers to generate code and processors to run instructions.
Given that processors run multiple processes at the same time, there is a need
to map this abstract view of memory (virtual memory) to a memory addressing
mechanism on a real machine. This is done using the memory management
unit of the processor and relevant OS code. This process involves the use of
hardware structures like the TLB and software structures like the page table.
Intel® and AMD® processors that use the x86 ISA further complicate the
situation by using segment registers where the entire virtual address space can
be split it into multiple segments. A hardware-based segment register maintains
the starting address for each segment.

Finally, we shall look at the hardware support for I/O instructions and
devices. The simplest approach is to create a set of I/O registers and assign them
to I/O devices. Reading or writing to these registers is tantamount to reading
or writing to the I/O device. This classical method is known as port-mapped
I/O. It is primarily meant for low-bandwidth devices. For faster devices that
consume more data at a time, it is a better idea to share a large memory region
with them. The underlying hardware ensures that any write to this memory
region by a device driver is equivalent to transferring the entire memory region
to the device. Reads work in a similar fashion, albeit the direction of the flow
of data is in the other way. This is known as memory-mapped I/O. Both these

25 © Smruti R. Sarangi

approaches require the active involvement of the CPU. The third approach relies
on outsourcing this work to DMA (Direct Memory Access) engines that often
reside outside the chip. They do the entire job of transferring data to or from
the I/O device. Once the transfer is done, they raise an interrupt.

After reading this entire chapter, the reader will have sufficient knowledge
in specific aspects of computer architecture that are relevant from an OS per-
spective. The reader is strong encouraged to also go through Appendixes A and
B. They cover the x86 assembly language and an introduction to the process of
compiling, linking and loading, respectively. We shall continuously be referring
to concepts discussed in these appendixes. Hence, it makes a lot of sense to go
through them after completing this chapter.

2.1 Cores, Registers and Interrupts

2.1.1 Multicore Systems

Caches

Main memory

Core

Figure 2.2: A multicore processor

Figure 2.2 shows the structure of a typical multicore processor. As of 2024,
a multicore processor has anywhere between 4-64 cores, where each core is a
fully functional pipeline. Furthermore, it has a hierarchy of caches. Each core
typically has an instruction cache (i-cache) and a data cache (d-cache or L1
cache). These are small yet very fast memories ranging from 8 KB to 64 KB.
Then, we have an L2 cache and possibly an L3 cache as well, which are much
larger. Depending upon the type of the processor, the L3 cache’s size can go
up to several megabytes. Some recent processors (as of 2024) have started to
include an additional L4 cache as well. However, that is typically on a separate
die housed in the same multichip module, or on a separate layer in a 3D chip
(refer to the design of the Intel Meteorlake CPU [Zimmer et al., 2021]).

The last level of the cache (known as the LLC) is connected to the main
memory (via memory controllers), which is quite large – 8 GB to 1 TB as
of 2024. Needless to say it is the slowest of all the elements in the memory
hierarchy. It is typically made up of DRAM memory cells that are slow yet have

© Smruti R. Sarangi 26

a very high storage density. The most important point that we need to keep in
mind here is that it is only the main memory – DRAM memory located outside
the chip – that is visible to software, notably the OS. The rest of the smaller
memory elements within the chip such as the L1, L2 and L3 caches are normally
not visible to the OS. Some ISAs have specialized instructions that can flush
certain levels of the cache hierarchy either fully or partially. Sometimes even
user applications can use these instructions. However, this is the only notable
exception. Otherwise, we can safely assume that almost all software including
privileged software like the operating system are unaware of the caches. Let us
live with the assumption that the highest level of memory that an OS can see
or access is the main memory.

Let us define the term memory space as the set of all addressable memory
locations. A software program including the OS perceive this memory space to
be one large array of bytes. Any location in this space can be accessed at will
and also can be modified at will. Later on when we discuss virtual memory, we
will refine this abstraction.

2.1.2 Inside a Core

Let us now take a sneak peek inside a core. A core is a fully-featured pipeline,
which can either be a regular in-order pipeline or an out-of-order pipeline. Fur-
thermore, each core has some amount of cache memory: level 1 instruction and
data caches. The core also has a set of named storage locations that are accessi-
ble by instructions directly; they are known as registers. A typical processor has
8-32 registers. The advantage of having registers is that they can be accessed
very quickly by instructions, often in a fraction of a cycle. All the registers are
stored in a register file, which is made up of SRAMs; it is significantly faster
than caches that typically take multiple cycles to access.

Most of the operations in a core happen on the registers. Registers are
often both the operands in an instruction. Even when a location in memory
needs to be accessed, the memory address is computed based on values stored
in registers. For instance, in the 32-bit x86 ISA, the expression mov %eax,

4(%esp) stores the value in the eax register into the memory location whose
address is as follows. The base address A is stored in the %esp register and the
offset is 4. The memory address is equal to (A+4). Given the speed and ease of
access, registers are ubiquitous. They are additionally used to access privileged
locations and I/O addresses, as we shall see later.

Definition 2.1.1 CISC and RISC ISAs

A Reduced Instruction Set Computer (RISC) has a simple and regular
ISA. It needs to use a lot more registers as compared to its competitor,
i.e., CISC ISAs. A CISC (Complex Instruction Set Computer) has a large
and diverse collection of instructions that are often more complex than
a RISC ISA’s simple and regular set of instructions. The advantage of a
RISC ISA is the simplicity of its decoder and code generation algorithms.
Whereas, CISC ISAs excel on machines where the aim is to reduce the
number of bytes used to encode instructions.

Next, let us differentiate between CISC and RISC processors. RISC stands

27 © Smruti R. Sarangi

for “Reduced Instruction Set Computer”. A lot of the modern ISAs such as
ARM and RISC-V are RISC instruction sets, which are regular and simple.
RISC ISAs and processors tend to use registers much more than their CISC
(complex instruction set) counterparts. CISC instructions can have long im-
mediates (constants) and may also use more than one memory operand. The
instruction set used by Intel and AMD processors, x86, is a CISC ISA. Regard-
less of the type of the ISA, registers are central to the operation of any program
(be it RISC or CISC). The compiler needs to manage them efficiently.

2.1.3 Registers

General Purpose Registers

Let us look at the space of registers in some more detail. All the registers that
regular programs use are known as general purpose registers. They are visible
to all software including the compiler. Note that almost all the programs that
are compiled today use registers and the author is not aware of any compilation
model or any architectural model that does not rely on registers.

Privileged Registers

A core also has a set of registers known as privileged registers, which only the OS
or software with similar privileges can access. In Chapter 8, we shall look at hy-
pervisors or virtual machine managers (VMMs) that run with OS privileges. All
such software are known as system software or privileged mode software. They
are given special treatment by the CPU – they can access privileged registers.

For instance, an ALU has a flags register that stores its state, especially the
state of instructions that have executed in the past such as comparison instruc-
tions. Often these flags registers are not fully visible to regular application-level
software. However, they are visible to the OS and anything else that runs with
OS privileges such as VMMs. It is necessary to have full access to these registers
to enable multitasking: run multiple programs on a core one after the other.

We also have control registers that can enable or disable specific hardware
features such as the fan, LED lights on the chassis and can even turn off the
system itself. We do not want all the instructions that change the values stored
in these registers to be visible to regular programs because then a user appli-
cation can create havoc. Hence, we entrust only a specific set of programs (OS
and VMM) with access rights to these registers.

Then, there are debug registers that are meant to debug hardware and sys-
tem software. Given the fact that they are privy to additional information and
can be used to extract information out of running programs, we do not allow
regular programs to access these registers. Otherwise, there will be serious se-
curity violations. However, from a system designer’s point of view or from the
OS’s point of view these registers are very important. This is because they
give us an insight into how the system is operating before and after an error
is detected – this information can potentially allow us to find the root cause of
bugs.

Finally, we have I/O registers that are used to communicate with externally
placed I/O devices such as the monitor, printer and network card. Here again,
we need privileged access. Otherwise, we can have serious security violations,

© Smruti R. Sarangi 28

and different applications may try to monopolize an I/O resource. They may
not allow other applications to access them. Hence, the OS needs to act as a
broker. Its job is to manage, restrict and regulate accesses.

Given the fact that we have discussed so much about privileged registers, let
us see how the notion of privileges is implemented. Note that we need to ensure
that only the OS and related system software such as the VMM can have access
to privileged resources such as the privileged registers.

Current Privilege Level Bit

Along with registers, modern CPUs also store the current mode of execution.
For instance, they need to store the state/mode of the current CPU, which
basically says whether it is executing operating system code or not. This is
because if it is executing OS code, then we need to allow the executing code
to access privileged registers and also issue privileged instructions. Otherwise,
if the CPU is executing normal application-level code, then access to these
privileged registers should not be allowed. Hence, historically, processors always
have had a bit to indicate the status of the program that they are executing, or
alternatively the mode that they are in. This is known as the Current Privilege
Level or CPL bit. In general, a value equal to zero indicated a privileged mode
(the OS is executing) and a value equal to one indicated that an application
program is executing.

Ring 0

Ring 3

Figure 2.3: Rings in x86 processors

Modern-day processors typically have more modes of execution. Intel pro-
cessors, for instance, have four modes of execution, which are also known as
rings – Ring 0 (OS) to Ring 3 (application) (refer to Figure 2.3). The primary
role of rings 1 and 2 is to run guest operating systems (OSes as regular appli-
cations) and other software that do not require as much of privileged access as
the software running in ring zero. Nevertheless, they enjoy more privileges than
regular application code. As mentioned earlier, they are typically used while
running guest OSes on virtual machines, where a virtual machine is defined as
a software environment that emulates the functionality of a multicore CPU.

Privileged and Non-Privileged Instructions

Most instructions are non-privileged. This means that they are regular load-
/store, arithmetic, logical and branch instructions. These instructions can be
executed by all types of code including the application and the OS. These in-
structions can also seamlessly execute when the OS is executing as a guest OS
on a virtual machine.

29 © Smruti R. Sarangi

Recall that we also discussed privileged instructions, when we discussed priv-
ileged registers. These are specialized instructions that allow the program to
change the internal state of the processor like changing its frequency or access-
ing certain features that a regular program should never have access to. These
include control registers, debug registers and I/O registers.

We will ask an important question here and answer it when we shall discuss
virtual machines in Chapter 8. What happens when application code or code
running at a lower privilege level (higher ring) accesses instructions that should
be executed by code running at a higher privilege level (lower ring)? In general,
we would expect that there will be an exception. Then the appropriate exception
handler can take over and take appropriate action. If this is the case, we shall
see in Chapter 8 that writing a virtual machine is reasonably easy. However,
there are a lot of instructions in the instruction sets of modern processors that
do not show this behavior. Their behavior is far more confusing and pernicious.
They either remain silent (like a nop) or yield different results when executed in
different modes without generating exceptions. We shall see that handling such
instructions is quite difficult and that is why the design of virtual machines is
actually quite challenging. The main reason for this is that when instruction
sets were initially created, virtual machines were not around and thus designers
could not think that far. As a result, they thought that having such polymorphic
instructions (instructions that change their behavior based on the ring level) was
a good idea. When virtual machines started gaining prevalence, this turned out
to be a huge problem, as we shall see later.

2.1.4 Interrupts, Exceptions, System Calls and Signals

The discussion in this chapter up till now should have convinced the reader
that an application program in itself is quite incompetent. For instance, it does
not have access to large parts of the hardware and also does not have a lot of
control on its own execution or the execution of other processes. Hence, there
is a necessity to actively engage with the underlying operating system. There
are different ways by which the operating system and application communicate.
Let us quickly go through them.

Interrupts An interrupt is a specialized message sent to the processor via an
I/O device or its associated controller, which corresponds to an external
hardware event such as a key press or the arrival of a network packet.
In this case, it is important to draw the attention of the CPU such that
it can process the interrupt. This would entail stopping the execution of
the currently executing program and jumping to a memory location that
contains the code of the interrupt handler (specialized routine in the OS
to handle the interrupt).

Exception An exception corresponds to an error in the execution of the pro-
gram. This could be an event such as dividing by zero, issuing an illegal
instruction or accessing an address that is not mapped to main memory. In
this case, an exception is generated, which is handled by its corresponding
exception handler (part of the OS code).

System Call If an application needs some service from the OS such as creating
a file or sending a network packet, then it cannot use the conventional

© Smruti R. Sarangi 30

mechanism, which is to make a function call. OS functions cannot be
directly invoked by the application. Hence, there is a need to generate
a dummy interrupt to garner the attention of the OS. In this case, a
specialized system call handler takes over and satisfies the request made
by the application.

Signal A system call is a message that is sent from the application to the
OS. A signal is the reverse. It is a message that is sent from the OS
to the application. An example of this would be a key press. In this
case, a hardware interrupt is generated, which is processed by the OS.
The OS reads the key that was pressed, and then figures out the process
that is running in the foreground. The ASCII value of this key needs to
be communicated to this process. The signal mechanism is the method
that is used. In this case, a function registered by the process with the
OS to handle a “key press” event is invoked. The running application
process then gets to know that a certain key was pressed and depending
upon its logic, appropriate action is taken. A signal is basically a callback
function that an application registers with the OS. When an event of
interest happens (pertaining to that signal), the OS calls the callback
function in the application context. This callback function is known as
the signal handler.

As we can see, communicating with the OS does require some novel and un-
conventional mechanisms. Traditional methods of communication that include
writing to shared memory or invoking functions are not used because the OS
runs in a separate address space and also switching to the OS is an onerous
activity. It also involves a change in the privilege level and a fair amount of
bookkeeping is required at both the hardware and software levels, as we shall
see in subsequent chapters.

Example of a System Call

Let us provide a brief example of a system call. It is in fact quite easy to issue,
even though application developers are well advised to not directly issue system
calls mainly because they may not be sure of the full semantics of the call.
Furthermore, operating systems do tend to change the signature of these calls
over time. As a result, code that is written for one version of the operating
system may not work for a future version. Therefore, it is definitely advisable
to use library calls like the standard C library (glibc), which actually wrap the
system calls. Library calls almost never change their signature because they are
designed to be very flexible. Flexibility is not a feature of system calls because
parameter passing is complicated. Consequently, library calls remain portable
across versions of the same operating system and also across different variants
of an operating system such as the different flavors of Linux.

In the file arch/x86/entry/syscalls/syscall 64.tbl, a maximum of 548 system
calls can be defined. For kernel v6.2, roughly 362 calls are defined for 64-bit
architectures and 36 calls are defined for 32-bit architectures. The standard way
to make a system call is as follows.

mov $<sys call number >, %rax

syscall

https://elixir.bootlin.com/linux/v6.2.12/source/arch/x86/entry/syscalls/syscall_64.tbl

31 © Smruti R. Sarangi

As we can see, all that we need to do is that we need to load the number of
the system call in the rax register. The syscall instruction subsequently does
the rest. It generates a dummy interrupt, stores some data corresponding to
the state of the executing program (for more details, refer to [Sarangi, 2021])
and loads the appropriate system call handler. An older approach is to directly
generate an interrupt itself using the instruction int 0x80. Here, the code 0x80
stands for a system call. However, as of today, this method is not used for x86
processors.

Saving the Context

The state of the running program is known as its context. Whenever, we have
an interrupt, exception or a system call, there is a need to store the context,
jump to the respective handler, finish some additional work in the kernel (if
there is any), restore the context and start the original program at exactly the
same point. The caveat is that all of these actions need to happen without the
explicit knowledge of the program that was interrupted. Its execution should
be identical to a situation where it was not interrupted by an external event.
Of course, if the execution has led to an exception or system call, then the
corresponding event/request will be handled. In any case, we need to return to
exactly the same point at which the context was switched.

Registers
Flags and

special
registers

Memory PC
Program

state

Register state

Figure 2.4: The “context save” process

Figure 2.4 shows an overview of the process to store the context of a running
program. The state of the running program comprises the contents of the general
purpose registers, contents of the flags and special purpose registers, the memory
and the PC (program counter). Towards the end of this chapter, we shall
see that the virtual memory mechanism stores the memory space of a process
very effectively and stops other processes from unintentionally or maliciously
modifying it. Hence, we need not bother about storing and restoring the memory
contents of a process. It is not affected by the context switch and restore process.

Insofar as the rest of the three elements are concerned, we can think of all
of them as the volatile state of the program that is erased when there is a
context switch. As a result, a hardware mechanism is needed to read all of
them and store them in memory locations that are known a priori. We shall see
that there are many ways of doing this and there are specialized and privileged
instructions that are used.

For more details about what exactly the hardware needs to do, readers can
refer to the computer architecture text by your author [Sarangi, 2021]. In the
example pipeline in the reference, the reader will appreciate the need for having
specialized hardware instructions for automatically storing the PC, the flags and

© Smruti R. Sarangi 32

special registers, and possibly the stack pointer in either privileged registers or
a dedicated memory region. Regardless of the mechanism, we have a known
location where the volatile state of the program is stored, and it can later on
be retrieved by the interrupt handler. For clarity and readability, we will use
the term interrupt handler to refer to traditional interrupt handlers, as well as
exception handlers and system call handlers, whenever the context makes this
clear.

Subsequently, the first task of the interrupt handler is to retrieve the program
state or context of the executing program – either from specialized registers or
a dedicated memory area. Note that these temporary locations may not store
the entire state of the program, for instance they may not store the values of all
the general purpose registers. The interrupt handler will thus have to do more
work and retrieve the full program state. Regardless of the specific mechanism,
the role of the interrupt handler is to collect the full state of the executing
program and ultimately store it somewhere in memory, from where it can easily
be retrieved later.

Restoring the context of a program is quite straightforward. We need to
follow the reverse sequence of steps.

The life cycle of a process can thus be visualized as shown in Figure 2.5. The
application program executes, it is interrupted for a certain duration after the
OS takes over, then the application program is resumed at the point at which
it was interrupted. Here, the word “interrupted” needs to be understood in a
very general sense. It could be a hardware interrupt, a software interrupt like a
system call or a program-generated exception.

Execu�on

Context
switch

OS + other
processes
execute

Execu�on

OS + other processes
execute

Execu�on

Context
switch

Figure 2.5: The life cycle of a process (active and interrupted phases)

We can comprehend this situation as follows. The OS treats an application
as an atomic entity that can be moved from core to core, suspended at any
point of time and resumed later, possibly on the same core or on a different
core. It is a fully self-contained entity that does not carry any baggage from its
execution on a previous core (from a correctness point of view). The context
save and restore process is thus very effective – it fully saves the running state
of the process such that it can be restored at any point of time later (same or
different core).

Timer Interrupts

There is an important question to think about here. Consider a system where
there are no interrupts and executing processes do not generate system calls
and exceptions. Assume that there are n cores, and each core runs such a
process that does not lead to system calls or exceptions. This means that the

33 © Smruti R. Sarangi

OS will never get executed because its routines will never get invoked. Note
that the operating system never executes in the background (as one would want
to naively believe) – it is a separate program that needs to be invoked by a very
special set of mechanisms namely system calls, exceptions and interrupts. Let
us refer to these as events of interest. The OS cannot come into the picture
(execute on a core) any other way.

Now, we are looking at a very peculiar situation where all the cores are
occupied with programs that do none of the above. There are no events of
interest. The key question that we need to answer is whether the system becomes
unresponsive if these programs decide to run for a long time. Is rebooting the
system the only option?

Question 2.1.1

Assume we have a situation, where we have a single-core machine and
the program that is running on the core is purely computational in na-
ture. It does not make any system calls, and it also does not lead to
any exceptions. Furthermore, assume that there is no hardware or I/O
activity, and therefore no interrupts are generated. In such a situation,
the process that is running on the core can potentially run forever unless
it terminates on its own. Does that mean that the entire system will
remain unresponsive till this process terminates? We will have a similar
problem on a multicore machine where there are k cores and k regular
processes on them, where no events of interest are generated.

This is a very fundamental question in this field. Can we always rely on
system calls, exceptions and interrupts (events of interest) to bring in the oper-
ating system? It is indeed possible that we have a running program that does
not generate any events of interest. In such a situation, when the OS is not
running, an answer that the OS will somehow swap out the current process and
load another process in its place is not correct. A core can run only one process
at a time, and if it is running a regular application process, it is not running
the OS. If the OS is not running on any core, it cannot possibly act.

Point 2.1.1

The operating system is in many ways like a regular program that needs
a core to run. If no OS process is running at a point of time on any core,
then the OS is clearly not functional. It cannot act or take any action.
Unless it is invoked in some manner such as an interrupt or a system
call, there is no way to run OS code.

We need to thus create a mechanism to ensure that the OS periodically runs
regardless of the frequency of events of interest. This mechanism is known as a
timer interrupt. As shown in Figure 2.6, there is a separate timer chip on the
motherboard that periodically sends timer interrupts to the CPU. There is a
need for such a chip because we need to have a guaranteed source of interrupts.
Whenever, a timer interrupt is generated, it is routed to one of the cores, there is
a context switch and the OS starts executing. This is how the OS periodically
comes in even when there is no other event of interest. All platforms that

© Smruti R. Sarangi 34

Timer chip

Core Core

Core Core
Periodically send �mer
interrupts to the CPU

CPU

Figure 2.6: The timer chip generates periodic interrupts

support an operating system need to have a timer chip. It is arguably the
most integral part of a machine that supports an operating system. The key
insight is that it is needed for ensuring that the system is responsive, and it
periodically executes the OS code. The operating system kernel has full control
over the processes that run on cores, the memory, storage devices and I/O
systems. Hence, it needs to run periodically such that it can effectively manage
the system and provide a good quality of experience to users.

Listing 2.1: Jiffies
source : include/linux/jiffies.h

extern unsigned long volatile jiffies;

We divide time into jiffies. A timer interrupt is generated at the end of
every jiffy. The number of jiffies (jiffy count) is incremented by one when a
timer interrupt is received. The duration of a jiffy has been reducing over the
course of time. It used to be 10 ms in the Linux kernel around a decade ago
and as of 2023, it is 1 ms. It can be controlled by the compile-time parameter
HZ. If HZ =1000, it means that the duration of a jiffy is 1 ms. We do not want
a jiffy to be too long, otherwise the system will take a fair amount of time to
respond. Simultaneously, we also do not want it to be too short, otherwise a lot
of time will be spent in servicing timer interrupts.

Inter-processor interrupts

As we have discussed, the OS gets invoked on one core and its subsequent job is
to take control of the system and basically manage everything such as running
processes, waiting processes, cores, devices and memory. Often there is a need
to ascertain if a process has been running for a long time or not and whether it
needs to be swapped out or not. If there is a need to swap it out, then the OS
finds the most eligible process (using its scheduler) and runs it.

If the new process needs to run on the core on which the OS is executing,
then it is simple. All that needs to be done is that the OS needs to load the
context of the process that it wants to run. If a process on a different core

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/jiffies.h

35 © Smruti R. Sarangi

needs to be swapped out to make room for the selected process, the mechanism
becomes more complex. It is necessary to send an interrupt to the remote core
such that an OS process starts running on it. This mechanism is known as an
inter-processor interrupt (or IPI). Almost all processors today, particularly all
multicore processors, have a facility to send an IPI to any core with support
from the hardware’s interrupt controller. Relevant kernel routines frequently
use such APIs to run the OS on any core. The OS process may choose to do
more of management and bookkeeping activities or quickly find the next process
to run on the core.

Point 2.1.2

It is easy for the OS kernel to run a user process on the “current” core on
which it is executing. However, running a process on a different (remote)
core is a more elaborate task. There is a need to send an interrupt to
the remote core using the IPI mechanism. This causes a context switch
to the OS on the remote core. The OS process that starts on the remote
core can then swap in a user process.

2.2 Memory System

How does a process view the memory space? Should it be aware of other pro-
cesses and the memory regions that they use? Unless we provide an elegant
answer to such questions, we will entertain many complex corner cases and
managing memory will be very difficult. We are in search of simple abstrac-
tions.

One large array of bytes

Figure 2.7: The way that a programmer or compiler view the memory space

Such a simple abstraction is shown in Figure 2.7. A process simply views
the entire memory space as a sequence of bytes. For instance, in a 32-bit ar-
chitecture, a process assumes that it can access any of the 232 bytes at will.
Similarly, in a 64-bit architecture, a process assumes that it can access any of
the 264 bytes at will. The same assumption is made by the programmer and the
compiler. In fact, a large part of the pipeline and the CPU also make the same
assumption. It is quite difficult to make any other assumption. This assumption
is elegant and simplifies the job of everybody other than the engineers designing
the memory system.

© Smruti R. Sarangi 36

Trivia 2.2.1

In most modern ISAs, load and store instructions read their base ad-
dresses from registers. They add a constant offset to it. The size of
registers thus determines the range of addresses that can be accessed. If
registers are 32 bits wide, then the size of the address space is naturally
constrained to 232 bytes.

Compatibility Problem

As a rule, in an n-bit architecture, where the register size is n bits, we assume
that the instructions can access any of the addressable 2n bytes unless there are
specific constraints. The same assumption needs to be made by the program-
mer and the compiler because they only see the registers. Other details of the
memory system are not directly visible to them.

Note that a program is compiled only once on the developers’ machines and
then distributed to the world. If a million copies are running, then we can be rest
assured that they are running on a very large number of heterogeneous devices.
These devices can be very different from each other. Of course, they will have
to share the same ISA, but they can have radically different main memory sizes
and even cache sizes. Unless we assume that all the 2n addresses are accessible
to a program or process, no other elegant assumption can be made. This may
sound impractical for 64-bit machines, but this is the most elegant assumption
that can be made.

This has a potential to cause problems. For example, if we assumed that a
process can access 4 GB at will, it will not run on a system with 1 GB of memory,
unless we find a mechanism to do so. We thus have a compatibility problem
here, where we want our process to assume that addresses are n bits wide (n is
typically 32 or 64), yet run on machines with all memory sizes (typically much
lower than the theoretical maximum).

Definition 2.2.1 Compatibility Problem

Processes assume that they can access any byte in a hypothetically large
memory region of size 232 or 264 bytes at will (for 32-bit and 64-bit
systems, respectively). Even if processes are actually accessing very little
data, there is a need to create a mechanism to run them on physical
machines with far lower memory (let’s say a few GBs). The memory
addressing scheme is not compatible with the physical memory system
of real machines. This is the compatibility problem.

Our simplistic assumption allows us to easily write a program, compile it,
and also distribute the compiled binaries to run on machines that have memories
of all sizes. Subsequently, when a processor runs it, it can also live with the
same assumption and assume that the entire address space, which is very large
in the case of a 64-bit machine, is accessible to the running program (process).
All of this is subject to successfully solving the compatibility problem. There
are unfortunately several serious problems that get introduced because of this
assumption. The most important problem is that we can have multiple processes
that are either running one after the other (using multitasking mechanisms) or

37 © Smruti R. Sarangi

are running in parallel on different cores. These processes can access the same
address because nothing prohibits them from doing so.

Overlap Problem

In this case, unbeknownst to multiple processes, they can corrupt each other’s
state by writing to the same address. One program can be malicious, and then
it can easily get access to the other’s secrets. For example, if one process stores
a credit card number, another process can read it straight out of memory. This
is clearly not allowed and presents a massive security risk. Hence, we have two
opposing requirements over here. First, we want an addressing mechanism that
is as simple and straightforward as possible such that programs and compilers
remain simple and assume that the entire memory space is theirs. This is a
very convenient abstraction. However, on a real system, we also want different
processes to access a different set of addresses such that there is no unintended
overlap between the set of memory addresses that they access. This is known
as the overlap problem.

Definition 2.2.2 Overlap Problem

Unless adequate steps are taken, it is possible for two processes to access
overlapping regions of memory, and also it is possible to get unauthorized
access to other processes’ data by simply reading values that they write
to memory. This is known as the overlap problem.

Size Problem

We are sadly not done with our set of problems; it turns out that we have
another serious problem on our hands. It may happen that we want to run a
program whose memory footprint is much more than the physical memory that
is present on the system. For instance, the memory footprint could be two GBs
whereas the total physical memory is only one GB. It may be convenient to
say that we can simply deny the user the permission to execute the program on
such a machine. However, the implications of this are severe. It basically means
that any program that is compiled for a machine with more physical memory
cannot run on a machine with less physical memory. This means that it will
cease to be backward compatible – not compatible with older hardware that has
less memory. In terms of a business risk, this is significant.

Hence, all attempts should be made to ensure that such a situation does not
arise. It turns out that this problem is very closely related with the overlap and
compatibility problems that we have seen earlier. It is possible to slightly repur-
pose the solution that we shall design for solving the overlap and compatibility
problems.

Summary 2.2.1

We have identified three problems namely the compatibility, overlap and
size problems. All of these problems arise when we translate the hypo-
thetical or the virtual view of the user to the addressing mechanisms in

© Smruti R. Sarangi 38

a real system.

2.2.1 Memory Map of a Process

Let us continue assuming that a process can access all memory locations at will.
We need to understand how it makes the life of the programmer, compiler writer
and OS developer easy. Figure 2.8 shows the memory map of a process in the
Linux operating system. The memory map is a layout of the memory space that
a process assumes. It shows where different types of data and code are stored.

Metadata
0x08048000

0xC0000000

Text (instruc�ons)

Global, sta�c, and read-only
objects

Run-�me heap (created by
new and malloc)

.data (ini�alized data)

.bss (unini�alized data)

Memory mapped region and
libraries

Stack

Figure 2.8: The memory map of a process in 32-bit Linux

The memory map is partitioned into distinct sections. It starts from address
zero. Then after a fixed offset, the text section starts, which contains all the
program’s instructions. The processor starts executing the first instruction at
the beginning of the text section and then starts fetching subsequent instructions
as per the logic of the program. Once the text section ends, the data section
begins. It stores initialized data that comprises global and static variables that
are typically defined outside the scope of functions. After this, we have the bss
(block starting symbol) section that stores the same kind of variables, however
they are uninitialized. It is possible that one process has a very small data
section and another process has a very large data section – it all depends upon
how the program is written.

Then we have the heap and the stack. The heap is a memory region that
stores dynamically allocated variables and data structures, which are typically
allocated using the malloc call in C and the new call in C++ and Java. Tra-
ditionally, the heap section has grown upwards (towards increasing addresses).
As and when we allocate new data, the heap size increases. It is also possible
for the heap size to decrease as we free or dynamically delete allocated data
structures. Then there is a massive hole, which basically means that there is
a very large memory region that doesn’t store anything. Particularly, in 64-bit
machines, this region is indeed extremely large.

Next, at a very high memory location (0xC0000000 in 32-bit Linux), the
stack starts. The stack typically grows downwards (grows towards decreasing
addresses). Given the fact that there is a huge gap between the end of the heap
and the top of stack, both of them can grow to be very large. If we consider
the value 0xC0000000, it is actually 3 GB. This basically means that in a 32-bit

39 © Smruti R. Sarangi

system, an application is given at the most 3 GB of memory. One can argue
that if the size of the stack, heap and other sections combined exceeds 3 GB,
we shall run out of space. This indeed can happen and that is why the world
has transitioned to 64-bit systems, where such problems will not happen.

The last unanswered question is what happens to the one GB region that is
remaining (recall 232 bytes = 4 GB)? This is a region that is typically assigned
to the operating system kernel for storing all of its runtime state. As we shall
see in later chapters, there is a need to split the address space between user
applications and the kernel.

Now, the interesting thing is that all processes share the same structure of
the memory map. This means that the chances of them destructively interfering
with each other is even higher because most variables will have similar addresses:
they will be stored in roughly the same region of the memory map. Even if two
processes are absolutely innocuous (harmless), they may still end up corrupting
each other’s state, which is definitely not allowed. As a result, ensuring a degree
of separation is essential. Another point that needs to be mentioned with regard
to the kernel memory space is that it is an invariant across process memory
maps. It always resides in the top one GB of the memory map of every process.
This region is out of bounds for regular user processes.

The advantage of having a fixed memory map structure is that it is very
easy to generate code. Binaries can also have a fixed format that is in line with
the memory map and operating systems know how to layout code and data in
memory. Regardless of the elegance, simplicity and standardization, we need to
solve the overlap problem. Having a standard memory map structure makes this
problem worse because now regardless of the process, the variables are stored
in roughly the same set of addresses. Therefore, the chances of destructive
interference become very high.

2.2.2 Virtual Memory

Our objective is to basically respect each process’s memory map, run multiple
processes in parallel if there are multiple cores, and also run several processes
one after the other on the same core via the context switch mechanism. To
do all of this, we somehow need to ensure that they are not able to corrupt or
even access each other’s memory regions. Clearly, the simplest solution is to
somehow restrict the memory regions that a process can access.

Base and Limit Registers

Let us look at a simple implementation of this idea. Assume that we have two
registers associated with each process: base and limit. The base register stores
the first address that is assigned to a process and the limit register stores the last
address. Between base and limit, the process can access every memory address.
In this case, we are constraining the addresses that a process can access and via
this we are ensuring that no overlap is possible. We observe that the value of the
base register need not be known to the programmer or the compiler. All that
needs to be specified is the difference between the limit and base (maximum
number of bytes a process can access).

The first step is to find a free memory region when a process is loaded. Its
size needs to be greater than or equal to the maximum size specified by the

© Smruti R. Sarangi 40

process. The starting address of this region is set as the contents of the base
register. The address sent to the memory system is computed by adding the
address computed by the CPU with the contents of the base register. All the
addresses computed by the CPU are as per the memory map of the process;
however, the addresses sent to the memory system are different. In this system,
if the process accesses an address that is beyond the limit register, then a fault
is generated. Refer to Figure 2.9 for a graphical illustration of the base-limit
scheme.

base limit base limit base limit

hole

Figure 2.9: The base-limit scheme

We observe that there are many processes, and they have their memory re-
gions clearly demarcated. Therefore, there is no chance of an overlap. This idea
does seem encouraging, but this is not going to work in practice for a combi-
nation of several reasons. The biggest problem is that neither the programmer
nor the compiler know for sure how much memory a program requires at run
time. This is because for large programs, the user inputs are not known, and
thus the total memory footprint is not predictable. Even if it is predictable, we
will have to budget for a very large footprint (conservative maximum). In most
cases, this conservative estimate is going to be much larger than the memory
footprints we may see in practice. We may thus end up wasting a lot of memory.
Hence, in the memory region that is allocated to a process between the base and
limit registers, there is a possibility of a lot of memory getting wasted. This is
known as internal fragmentation.

Let us again take a deeper look at Figure 2.9. We see that there are holes or
unallocated memory regions between allocated memory regions. Whenever we
want to allocate memory for a new process, we need to find a hole that is larger
than or equal to what we need and then split it into an allocated region and
a smaller hole. Very soon we will have many such holes in the memory space,
which cannot be used for allocating memory to any other process. It may be the
case that we have enough memory available, but it is just that it is partitioned
among so many processes that we do not have a contiguous region that is large
enough. This situation where a lot of memory is wasted in such holes is known
as external fragmentation.

41 © Smruti R. Sarangi

Definition 2.2.3 Fragmentation

Fragmentation means wastage of memory space. It can be of two types:
internal and external. While allocating memory, processes are often as-
signed fixed chunks of memory that cannot be used by other processes.
Sometimes some memory space is wasted within a chunk. This is known
as internal fragmentation.
There may be regions of memory that are not a part of such allocated
chunks. It may not be possible to allocate this memory to processes.
This is known as external fragmentation.

There are many ways of solving this problem. Some may argue that period-
ically we can compact the memory space by reading data and transferring them
to a new region by updating the base and limit registers for each process. In
this case, we can essentially merge holes and create enough space by creating
one large hole. The problem is that a lot of reads and writes are involved in
this process and during that time the process needs to remain mostly stalled.

Another problem is that the prediction of the maximum memory usage may
be wrong. A process may try to access memory that is beyond the limit register.
As we have argued, in this case a fault is generated. However, this can be avoided
if we allocate another memory region and link the second memory region to the
first (using a linked list like structure). The algorithm now is that we first
access the memory region that is allocated to the process and if the offset is
beyond the limit register, then we access the second read memory region. The
second remain memory region will also have base and limit registers. We can
extend this idea and create a linked list of such memory regions. We can also
save time by having a lookup table. It will not be necessary to traverse linked
lists. Given an address, we can quickly figure out the memory region in which
it lies. Many of the early approaches focused on such kind of techniques, and
they grew to become very complex, but soon the community realized that this
is not a scalable solution, and it is definitely not elegant.

Need for Address Translation

However, an important insight came out of this exercise. It was that the ad-
dress that is generated by the CPU, which is also the same address that the
programmer, process and compiler see, is not the address that is ultimately sent
to the memory system. Even in this simple case, where we use a base and limit
register, the address generated by the program is actually added to the contents
of the base register to generate the real memory address. The real or physical
address is sent to the memory system. The gateway to the memory system is
the instruction cache for instructions and the L1 data cache for data. They
only see the physical address. On the other hand, the address generated by the
CPU is known as the virtual address. There is a need to translate or convert
the virtual address to a physical address such that we can access memory and
solve the overlap problem, as well as the compatibility problem.

© Smruti R. Sarangi 42

Definition 2.2.4 Virtual and Physical Addresses

The virtual address is the address seen by the programmer, process,
compiler and the CPU. In a k-bit architecture, it is normally k bits.
However, this address is not presented to the memory system. The
virtual address is converted or translated to a physical address, which
is then sent to the memory system. If every physical address is mapped
to only one virtual address, then there will never be any overlaps across
processes. This approach naturally solves the overlap and compatibility
problems.

A few ideas emerge from this discussion. Given a virtual address, there
should be a table that we can look up, and find the physical address that it
maps to. Clearly, one virtual address will always be mapped to one physical
address. This is a common sense requirement. However, if we can also ensure
that every physical address maps to only one virtual address across processes
(barring special cases), or in other words there is a strict one-to-one mapping,
then we observe that no overlaps between processes are possible. Regardless of
how hard a process tries, it will not be able to access or overwrite the data that
belongs to any other process. In this case we are using the term data in the
general sense – it encompasses both code and data. Recall that in the memory
system, code is actually stored as data.

Way Point 2.2.1

To effectively solve the compatibility and overlap problems, we have two
preliminary ideas now. The first is that we assume that the CPU issues
virtual addresses, which are generated by the running process. These
virtual addresses are then translated to physical addresses, which are
sent to the memory system. Clearly, we need a one-to-one mapping
to prevent overlaps. Furthermore, we desire a mechanism that uses a
fast lookup table to map a virtual address to its corresponding physical
address.

43 © Smruti R. Sarangi

Definition 2.2.5 Virtual Memory

Virtual memory is defined as an abstract view of the memory system
where a process assumes that it is the exclusive owner of the entire
memory system, and it can access any address at will from 0 to 2n − 1
in an n-bit memory system. Practical implementations of the virtual
memory abstraction solve the compatibility and overlap problems. It is
additionally possible to solve the size problem by also including storage
devices to expand the available memory space (as we shall see later).
The method for doing this is to map every virtual address to a physical
address. The mapping automatically solves the compatibility problem,
and if we ensure that a physical address is never mapped to two different
virtual addresses, then the overlap problem is also easily solved. We can
always extend the physical address space to comprise not only locations
in the main memory but also locations on storage media such as a part of
the hard disk. As a result, the physical address space can indeed exceed
the size of the main memory.

The crux of the entire definition of virtual memory (see Definition 2.2.5) is
that we have a mapping table that maps each virtual address (that is used by
the program) to a physical address. If the mapping satisfies some conditions,
then we can solve all the three problems. So the main technical challenge in
front of us is to properly and efficiently create the mapping table to implement
an address translation system.

2.2.3 Address Translation System

Pages and Frames

Let us start with a basic question. Should we map addresses at the byte level
or at a higher granularity? To answer this question, we can use the same logic
that we use for caches. We typically consider a contiguous block of 64 or 128
bytes in caches and treat it as an atomic unit. This is called a cache block. The
memory system comprising the caches and the main memory only deals with
blocks. The advantage of this is that the memory system remains simple, and
we do not have to deal with a lot of entries in the caches. The opposite would
have been true if we had addressed the caches at the byte level. Furthermore,
owing to temporal and spatial locality, the idea of creating blocks has some
inherent advantages. The first is that the same block of data will most likely
be used over and over again. The second is that by creating blocks, we are also
implicitly prefetching. If we need to access only four bytes, then we actually
fetch 64 bytes because that is the block size. This ensures that when we access
data that is nearby, it is already available within the same block.

Something similar needs to be done here as well. We clearly cannot main-
tain mapping information at the byte level – we will have to maintain a lot of
information – this is not a scalable solution. We thus need to create blocks of
data for the purpose of mapping. In this space, it has been observed that a
block of 4 KB typically suits the needs of most systems very well. This block
of 4 KB is known as a page in the virtual memory space and as a frame or a
physical page in the physical memory space.

© Smruti R. Sarangi 44

Definition 2.2.6 Pages and Frames

A page is typically a block of 4 KB of contiguous memory in the virtual
memory space. A page can be mapped to a 4 KB block in the physical
address space, which is referred to as a physical page or a frame.

Our mapping problem is much simpler now – we need to map 4 KB pages
to 4 KB frames. It is not always the case that we have 4 KB pages and frames.
In many cases, especially in large servers, it is common to have huge pages that
as of 2023 can be from 2 MB to 1 GB. In all cases, the size of a page is equal
to the size of the frame that it is mapped to.

An example mapping is shown in Figure 2.10. Here we observe that dividing
memory into 4 KB chunks has proven to be really beneficial. We can create the
mapping in such a way that there are no overlaps. Addresses that are contiguous
in virtual memory need not be contiguous in physical memory. However, if we
have a fast lookup table then all of this does not matter. We can access any
virtual address at will and the mapping system will automatically convert it to
a physical address, which can be accessed without the fear of overlaps or any
other address compatibility issues. We have still not brought in solutions for
the size problem yet. But we shall see later that it is very easy to extend this
scheme to incorporate additional regions within storage devices such as the hard
disk into the physical address space.

Process 1

Process 2

Divide memory into 4-KB
chunks

Map process’s virtual
pages to physical frames

Figure 2.10: Conceptual overview of the virtual memory based page mapping
system

The Page Table

Let us refer to the mapping table as the page table. Let us first explain in the
context of a 32-bit memory system. Each page is 4096 bytes or 212 bytes. We
thus require 12 bits to address a byte within a page, and we need 20 (32-12)
bits to specify a page address. We will thus have 220 or roughly a million pages
in the virtual address space of a process. For each page, we need to store a
20-bit physical frame address. The total storage overhead is thus (20 bits = 2.5
bytes) multiplied with one million, which turns out to be 2.5 MB. This is the

45 © Smruti R. Sarangi

storage overhead per process, because every process needs its own page table.
Now assume that we have 100 processes in the system, we therefore need 250
MB to just store page tables !!!

This is a prohibitive overhead. If we consider a 64-bit memory system,
then the page table storage overhead is even larger and clearly this idea will not
work. It represents a tremendous wastage of physical memory space. Let us thus
propose optimizations. To start with, note that most of the virtual address space
is actually not used. In fact, it is quite sparse particularly between the stack and
the heap. This region can actually be quite large (refer to Section 2.2.1). Recall
that the beginning of the virtual address space is populated with the text,
data, bss and heap sections. Then there is a massive hole between the heap
and the stack. The stack starts at the upper boundary of the virtual address
space. In some cases, memory regions corresponding to memory mapped files
and dynamic libraries can occupy a part of this region. We shall still have large
gaps and have a significant amount of sparsity. This insight can be used to
design a multilevel page table, which can leverage this pattern and prove to be
a far more space-efficient solution.

55

Bits 48-40 Bits 39-31 Bits 30-22 Bits 21-13

Level 1

CR3 register

Level 2 Level 3

48-bit
Virtual
address

Level 4

52-bit frame
address

12 bits
(intra-page)

(c) Smru� R. Sarangi, 2023

The top 16 bits of the VA
are assumed to be zero

Figure 2.11: The design of the multilevel page table

The design of a multilevel page table is shown in Figure 2.11. It shows an
example address translation system for a 64-bit machine. We typically realize
that we don’t need that large a virtual address space. 264 bytes is more than a
billion gigabytes, and no practical system (as of 2024) has that much of memory
space. Hence, most practical systems as of 2024, use a 48-bit virtual address.
This is sufficient. The top 16 (MSB) bits are assumed to be zero. We can always
break this assumption and have more levels in a multilevel page table. This is
seldom required. Let us thus proceed assuming a 48-bit virtual address. We
however assume a full 64-bit physical address in our examples. Note that the
physical address can be as wide as possible because we are just storing a few
additional bits per entry – we are not adding new levels in the page table (as we
shall observe). Given that 12 bits are needed to address a byte in a 4 KB page,
we are left with 52 bits. Hence, a physical frame number is specified using 52
bits. Figure 2.12 shows the memory map of a process assuming that the lower
48 bits of a memory address are used to specify the virtual memory address.

In our 48-bit virtual address, we use the bottom 12 bits to specify the address
of the byte within the 4 KB page. Recall that 212 bytes = 4 KB. We are left
with 36 bits. We partition this group of bits into four blocks of 9 bits each. If we
count from 1, then these are bit positions 40-48, 31-39, 22-30 and 13-21. Let us
consider the topmost level, i.e., the top 9 bits (bits 40-48). We expect the least
amount of randomness in these bits. The reason is obvious. In any system with
temporal and spatial locality, we expect most addresses to be close by. They may

© Smruti R. Sarangi 46

Metadata
0x400000

Text (instruc�ons)

Global, sta�c, and read-only
objects

Run-�me heap (created by
new and malloc)

.data (ini�alized data)

.bss (unini�alized data)

Memory mapped region and
libraries

Stack
248 - 1

Figure 2.12: The memory map in 64-bit Linux

vary in their lower bits, however, in all likelihood their more significant bits will
be the same. To cross-check, count from 0 to 999 (in base 10). The unit’s digit
changes the most frequently. It changes with every number. The ten’s digit on
the other hand changes more infrequently. It changes after every 10 numbers,
and the hundred’s digit changes even more infrequently. It changes once for
every 100 numbers. By the same logic, when we consider binary addresses we
expect the more significant bits to change far less often than the less significant
bits. Given this insight let us proceed to design an optimized version of the
page table.

Let us consider the first set of 9 bits (bits 40-48). They can be used to
access 29 (=512) entries in a table. Let us create a Level 1 page table that is
indexed using these 9 bits. An entry in this table is either null (empty) or points
to a Level 2 page table. Given our earlier explanation about the structure of
the memory map, we expect most of the entries in the Level 1 page table to
be null. This will happen because the memory map is sparse and each set of
top-level 9 bits points to a large contiguous region. Most of these regions will
be unallocated. This means that we shall have to allocate space for very few
Level 2 page tables. There is no need to allocate a Level 2 page table if the
set of addresses that it corresponds to are all unallocated. For example, assume
that there are no allocated virtual addresses whose top 9 bits (bits 40-48) are
equal to the binary sequence 011010100. Then, the corresponding row in the
L1 page table will store a null value and no corresponding Level 2 page table
will be allocated. This is the key insight that allows us to save space.

Note that we need to store the address of the Level 1 page table somewhere.
This is typically stored in a machine specific register on Intel hardware called
the CR3 register. Whenever a process is loaded, the address of its Level 1
page table is loaded into the CR3 register. Whenever, there is a need to find a
mapping in the page table, the first step is to read the CR3 register and find

47 © Smruti R. Sarangi

the base address of the Level 1 page table. It is a part of the process’s context.
We follow a similar logic at the next level. The only difference is that in this

case there may be multiple Level 2 page tables. Unlike the earlier case, we don’t
need to store their starting addresses in dedicated registers. The Level 1 entries
point to their respective base addresses. We use the next 9 bits to index entries
in the Level 2 page tables. In this case, we expect more valid non-null entries.
We continue with the same method. Each Level 2 page table entry points to the
starting address of a Level 3 page table, and finally each Level 3 page table entry
points to a Level 4 page table. We expect more and more valid entries at each
level. Finally, an entry in a Level 4 page table stores the corresponding frame’s
address. The process of address translation is thus complete. Each entry of the
Level 4 page table is known as a page table entry. We shall later see that it
contains the physical address of the frame and contains a few more important
pieces of information.

Note that we had to go through 4 levels to translate a virtual address to a
physical address. Reading the page table is thus a slow operation. If parts of
this table are in the caches, then the operation may be faster. However, in the
worst case, we need to make 4 reads to main memory, which requires more than
1000 cycles. This is a very slow operation. The sad part is that we need to
do this for every memory access !!! This is clearly an infeasible idea given that
roughly a third of the instructions are memory accesses.

The TLB (Translation Lookaside Buffer)

The notion of spending approximately 1000 cycles for translating a memory
address is absolutely impractical. It turns out that we can use the same old
notions of temporal and spatial locality to propose a very efficient solution that
almost totally hides the address translation latency.

Observe that a page is actually a lot of memory. If we consider a 4 KB page,
it can hold 1024 integers. If we assume some degree of locality – temporal and
spatial – then there is a high chance that most of the accesses in a short period
of time will fall within the range of a few pages. The same observation holds
true for code pages as well. There is much more locality at the page level than
at the cache block level primarily because of the larger size of a page. If we
create a small and fast hardware cache that stores the mappings that have been
used recently, it should have a very high hit rate. In fact, it has been shown
that caching just 64 to 128 entries is good enough. The hit rate can be as high
as 99%.

Hence, almost all processors have a small hardware cache called a TLB
(Translation Lookaside Buffer). It caches a few hundred frequently used virtual
to physical mappings. Modern TLBs have two levels (L1 TLB and L2 TLB) and
cache roughly 1000 entries. We can also have two different TLBs per core: one
for instructions and one for data. Given that the L1 TLB is quite small, it can
be accessed very quickly – typically in less than a cycle. In a large out-of-order
pipeline on a modern core, this small latency is hardly perceptible and as a
result, the address translation basically happens for free.

In the rare case, when there is a miss in the TLB, it is necessary to access
the page table, which is a slow process. It can take hundreds to thousands
of cycles to access the page table. Subsequently, it is necessary to add the
virtual→physical mapping to the TLB. Without adding a mapping to the TLB,

© Smruti R. Sarangi 48

it cannot be used to translate addresses.

Trivia 2.2.2

The page table is a software data structure. It is not implemented using
custom hardware. Whenever, there is a TLB miss, it is necessary to
traverse or walk the page table and find the frame corresponding to the
page. Walking the page table can be done in software by an OS process,
or it can be done by a dedicated hardware module. High-performance
Intel and AMD processors have hardware page walkers. Note that it is
necessary to add the mapping to the TLB first, otherwise it cannot be
used.

Solution to the Size Problem: Swap Space

Let us now solve the size problem. The problem is to run a program with a
large memory footprint on a machine with inadequate physical memory. The
solution is quite simple. We reserve a contiguous chunk of bytes on a storage
device such as the hard disk or a flash drive and use it to extend the physical
address space (set of all addressable physical locations). This reserved region is
known as the swap space. In theory, the storage device need not be connected
to the same machine. It can be on a friend’s machine and can be accessed over
the network.

Whenever we need more space than what physical memory can provide, we
take up space in the swap space. Frames can be resident either in physical
memory or in the swap space. However, for them to be usable, they need to
be brought into main memory first. They cannot directly be used in the swap
space.

Let us now go over the entire process. The processor computes the virtual
address based on the program logic. This address is translated to a physical
address using the TLB. If a valid translation or mapping exists, then the physical
address is sent to the memory system: instruction cache or L1 data cache. The
access traverses the memory system until the corresponding cache block is found.
Even if it is not found in all the caches, it is guaranteed to be present in main
memory. However, in the rare case when an entry is not there in the TLB, we
record a TLB miss. There is a need to walk the page table, which is a slow
process.

If the page table has a valid translation (frame present in main memory),
then there is a need to first bring this mapping into the TLB. Note that most
modern processors cannot use the mapping directly. They need to add it to the
TLB first, and then reissue the memory instruction. The second time around,
the mapping will be found in the TLB. When a new mapping is added to the
TLB, a need may arise to evict an earlier entry. An LRU scheme can be followed
to realize this.

If a mapping is not found in the page table, then we can have several situ-
ations. The first is that the address is illegal. Then an exception needs to be
raised. There might be a need to terminate the program in this case.

However, it is possible that the entry indicates that the frame is not in
memory, it is in the swap space. This situation is known as a page fault. There
is a need to bring the frame from the swap space to the main memory. If the

49 © Smruti R. Sarangi

main memory is full, then we need to evict a frame by writing it to a location
on the swap space. Its corresponding page table entry and TLB entry need to
be updated. Let us elaborate.

We can store a single bit in a page table entry that indicates if the frame
is in the main memory or in the swap space. In the latter case, we will have a
page fault. For example, a value of 1 may indicate that the frame is in main
memory and 0 may indicate that the frame is in the swap space. In theory, it
is possible that we do not have a single swap space. We rather have several
swap spaces hosted on multiple storage devices. Hence, a page table entry can
be more expressive. It can store the location of the frame and the location of
the swap space: id of the device that contains it and a unique device-specific
identifier. The device itself can have a complex description that could be a
combination of an IP address and a device id. All of this information needs to
be stored in the page table entry. This will allow us to host the swap space on
any local or remote storage device.

A page fault will involve reading the frame from the swap space into main
memory, and then updating the corresponding TLB and page table entries. In
this process, if a frame is evicted from main memory to create space, then its
entries need to be updated as well.

Permission Bits in a Page Table Entry

The page tables and TLBs store some additional information. They store some
permission information. For security reasons, a program is typically not allowed
to write to code pages. Otherwise, it is easy for viruses to modify the code pages
such that a program can execute code that an attacker wants it to execute.
Sometimes, we want to create an execute-only page if there are specific licensing
requirements where the developers don’t want user programs to read the code
that is being executed. This makes it easy to find loopholes. We can thus
associate three permission bits with each page: read, write and execute. If a
bit is 1, then the corresponding permission is granted to the page. For instance,
if the bits are 101, then it means that the user process can read and execute
code in the page, but it cannot write to the page. These bits are stored in each
page table entry and also in each TLB entry. The core needs to ensure that the
permission bits are respected.

We can additionally have a bit that indicates whether the page can only be
accessed by the kernel or not. Most OS kernel pages are not accessible in user
space. The page table can store this protection information. This stops user
pages from accessing and mapping kernel pages.

Sometimes, the page is present in memory, but the user process does not
have adequate permissions to access the page. This is known as a soft page
fault, which usually generates an exception. When we discuss the MGLRU page
replacement algorithm, we shall observe that sometimes this mechanism proves
to be quite handy. We can deliberately induce soft page faults to track page
accesses. This gives us an idea about the popularity of a process’s pages.

© Smruti R. Sarangi 50

Definition 2.2.7 Page Faults

A page fault is an exception condition, where a mapping is present in the
page table, but the corresponding frame is not present in main memory.
There is a need for the OS to transfer the frame from the swap space to
main memory. This is a very slow and time-consuming process.
Sometimes the page is present in memory, but the user process does not
have adequate access permissions. This is a soft page fault. In general,
such accesses are denied. However, there are other use cases also. Popu-
lar page replacement algorithms like the MGLRU algorithm deliberately
induce soft page faults to track page accesses. They subsequently change
the permission bits and allow the accesses to go through.

Shared Memory Channel

It is true that in the general case, we would like to have the virtual address
spaces of two processes separate. This is for correctness and security. However,
there are instances when we want two virtual pages in two different processes
to actually map to the same frame. Note that this process needs to be highly
regulated, and it should happen with the consent of both the processes and the
OS. However, if such a mapping can be established safely, then it is very bene-
ficial. We can use it as a shared memory data transfer channel between the two
processes. They can transfer data to each other very quickly without the in-
volvement of the OS. Linux’s standard C library supports the shmget and shmat

functions for creating and attaching shared memory segments, respectively.

Inverted Page Table

There is often a need to do the reverse – for a physical frame find all the virtual
pages across processes that map to it. There are several interesting use cases
for such a structure, which is known as an inverted page table. This process
is known as reverse mapping. Assume that a frame needs to be displaced from
main memory because it was chosen by the page replacement algorithm. In this
case, the page tables of all the processes that store a mapping to it need to be
updated. This means that we need to initiate a process of reverse mapping,
which yields a list of pages that map to this frame. The page table entries of
each of those pages need to be updated. The same holds true if we just want
to change the permission bits of the frame. We shall see in the next chapter
that this information is needed while creating a clone of a process (fork and
clone system calls). In secure systems such as Intel SGX® (Secure Guard
Extensions) and Intel TDX® (Trust Domain Extensions), it is necessary to
maintain an inverted page table such that secure pages are not mapped to
unsecure processes.

Definition 2.2.8 Inverted Page Table

An inverted page table maps a physical frame to all the virtual pages
(across processes) that are mapped to it.

51 © Smruti R. Sarangi

We shall discuss elaborate reverse mapping mechanisms in Section 6.3.1. In
general the idea is to have an entry in a table for each physical frame or a group
of physical frames. Given that the number of physical frames is much smaller
than the number of virtual pages, and they are not process-specific, this can be
done. Each entry of this table points to a list of virtual pages. We shall observe
in Section 6.3.1 that we can reduce the space requirements of such structures
by trading off time with space.

2.2.4 Segmented Memory

Let us now add one more virtualization layer and create “virtualized virtual
memory”. The x86 architecture has a set of segment registers that add a layer
of abstraction on top of virtual memory. The CPU generates logical addresses,
which are then converted to linear addresses. The linear addresses are akin to
virtual addresses, which are translated to physical addresses. Note that x86
architectures have such a mechanism known as segmented memory. ARM and
RISC-V do not have it.

A memory address generated by the CPU is a logical address. This address
is added to the contents of a segment register. In this case, we are effectively
adding an offset to obtain the virtual address. Let us alternatively refer to
this as a linear address such that it is clearly understood that the contents
of a segment register have been added to the CPU-generated logical address.
This address is then translated to a physical address using the regular address
translation mechanism. Hence, the linear address acts like a virtual address
in this case. Some prominent segment registers are the code, data and stack
segment registers.

Let us understand the advantages that we gain from segmentation. First,
there are historical reasons. There used to be a time when the code and data
used to be stored on separate devices. Those days, there was no virtual memory.
The physical address space was split between the devices. Furthermore, a base-
limit system was used. The segment registers were the base registers. When a
program ran, the base register for the code section was the code segment register
(cs register). Similarly, for data and stack variables, the data and stack segment
registers were the base registers, respectively. In this case, different physical
addresses were computed based on the contents of the segment registers. The
physical addresses sometimes mapped to different physical regions of memory
devices or sometimes even different devices.

Given that base-limit addressing has now become obsolete, segment registers
have lost their original utility. However, there are new uses. The first and
foremost is security. We can prohibit any data access from accessing a code
page. This is easy to do. We have seen that in the memory map, the lower
addresses are code addresses and once they end, the data region begins. These
sections store read-only constants and values stored on the heap. Any data
address is a positive offset from the location stored in the data segment register.
This means that a data page address will always be greater than any code page
address, and thus it is not possible for any data access to modify the regions of
memory that store instructions. Most malwares try to access the code section
and change instructions such that they can hijack the program and make it
do what they want. Segmented addressing is an easy way of preventing such
attacks.

© Smruti R. Sarangi 52

In a few other attacks, it is assumed that the addresses of variables and
functions in the virtual address space are known. For example, these type of
attacks try to modify return addresses stored on the stack. Thus, they need
to know the memory address at which the return address is stored. Using the
stack segment register, it is possible to obfuscate these addresses and confuse
the attacker. In every run, the operating system can randomly set the contents
of the stack segment register. This is known as stack obfuscation. The attacker
will thus not be able to guess what is stored at a given address on the stack – it
will change in every run. Note that program correctness is not affected because
a program is compiled in a manner where it is assumed that all stack-based
addresses are represented as offsets added to the stack pointer.

There are some other ingenious uses as well. Kernel threads often need to
quickly access some information such as the id of the previously running user
process and a subset of its context. This information needs to be accessed fre-
quently and quickly. The default mechanism is slow. The starting address of
this region needs to be loaded into a register. Loading a 64-bit value into a reg-
ister requires several instructions. This slows down such accesses significantly.
We need to access such information using preferably a single instruction. This is
only possible if the base address of this region is stored in advance somewhere.
The best way to do is to store it in an unused segment register. All accesses to
this region can then use this segment register as the base address. Recall that
a memory operand can take the segment register as input (see Appendix A).

Segmented Addressing in x86

Figure 2.13 shows the segment registers in the x86 ISA. Some segment registers
such as the code segment register can only be modified by privileged software;
however, some other segment registers can be modified by user-level processes.
There are six such registers per core. Needless to say, they are a part of a
process’s context. Whenever a new process is loaded, the values in the segment
registers also need to be loaded. We have already discussed the code segment
register (cs), the data segment register (ds) and the stack segment register (ss).
There are three additional segment registers for custom segments that the OS
can define. They are es, fs and gs. They are used to store information about
the previously running thread, as we shall see in the next chapter.

cs

ss

ds

es

gs

fs

16-bit segment registers

Figure 2.13: The segment registers in the x86 ISA

Figure 2.14 shows the way that segmented memory is addressed. The phi-
losophy is broadly similar to the paging system for virtual memory where the

53 © Smruti R. Sarangi

insight is to leverage temporal and spatial locality as much as possible. There is
a segment descriptor cache (SDC) that caches segment descriptors. A segment
descriptor contains the base address of the segment, a limit on the segment’s
size, type, execute permission and privilege level. Most of the time, the value of
the corresponding segment descriptor is found in the SDC. Segment descriptors
get updated far more infrequently as compared to TLB values. They are only
updated on a context switch.

Similar to a TLB miss, if there is a miss in the SDC, there is a need to search
in a larger structure. In the older days, there used to be an LDT (local descriptor
table) and a global descriptor table (GDT). We can think of the LDT as the L1
level (per process) and the GDT as the L2 level. However, the LDT stopped
being used, when there was a transition to 32-bit x86. Nowadays, if there is a
miss in the SDC, then a dedicated piece of hardware searches for the value in
the GDT, which is a hardware structure. It has a limit of 8191 entries (13-bit
addressing and one entry reserved). If there is a miss in the GDT, an interrupt
is raised. The operating system needs to populate the GDT with the correct
value as it does for the TLB. After a transition to x86-64, the segment registers
stopped being used altogether other than the fs and gs registers. These two
registers are still used by the kernel to point to specific memory regions in the
kernel’s address space. They obviate the need for loading 64-bit addresses into
registers. Instead, they are readily available in segment registers.

Virtual
memory

Segment Register

Logical
address

Segment
base address

SDC

GDT

Linear address

Figure 2.14: Computing the virtual address with memory segmentation

As seen in Figure 2.14, the base address stored in the relevant segment
register is added to the logical address. The resultant linear address further
undergoes translation to generate the physical address. This is then sent to the
memory system.

2.3 I/O System

Any computing machine needs to read inputs from the user and needs to relay
the output back to the user. In other words, there needs to be a method to
interact with the machine. Hence, we require an input/output or I/O system
where programs running on the CPU can interact with devices such as the
mouse, keyboard and monitor. These devices could be sending data to the
CPU or receiving data from it. Bidirectional transfer is also possible, such as
communication with a network device.

It should be easy for a user process to interact with the I/O devices. It is the
job of the operating system to provide an interface that is elegant, convenient,
safe and fast. Along with software support in the OS, we shall see that we
also need to add a fair amount of hardware on the motherboard to ensure that

© Smruti R. Sarangi 54

the I/O devices are properly interfaced. These additional chips comprise the
chipset. The motherboard is the printed circuit board that houses the CPUs,
memory chips, the chipset and the I/O interfacing hardware ports.

2.3.1 Overview

CPU

Northbridge

GPU

Southbridge

PCI
slots

Keyboard, mouse, USB
ports, I/O chips, ...

Figure 2.15: Overview of the I/O system

Any processor chip has hundreds of pins. Complex designs have roughly a
1000+ pins. Most of them are there to supply current to the chip: power and
ground pins. We need so many pins because modern processors draw a lot of
current. Note that a pin has limited current delivery capacity. However, a few
hundred pins are typically left for communication with external entities such as
the memory chips, off-chip GPUs and I/O devices.

Memory chips have their dedicated memory controllers on-chip. These mem-
ory controllers are aware of the number of memory chips that are connected and
how to interact with them. This happens at the hardware level and the OS is
blissfully unaware of what goes on here. Depending on the motherboard, there
could be a dedicated connection to an off-chip GPU. An ultra-fast and high-
bandwidth connection is required to a GPU that is housed separately on the
motherboard. Such buses (sets of copper wires) have their own controllers that
are typically on-chip.

Figure 2.15 shows a traditional design where the dedicated circuitry for com-
municating with the main memory modules and the GPU are combined, and
added to the Northbridge chip. The Northbridge chip used to traditionally be
resident on the motherboard (outside the chip). However, in most modern pro-
cessors today, the logic used in the Northbridge chip has moved into the main
CPU chip. It is much faster for the cores and caches to communicate with an
on-chip component. Given that both the main memory and GPU have very high
bandwidth requirements, this design decision makes sense. Alternative designs
are also possible where the Northbridge logic is split into two and is placed at
different ends of the chip: one part communicates with the GPU and the other
part communicates with the memory modules.

To communicate with other slower I/O devices such as the keyboard, mouse,
USB devices and the hard disk, a dedicated controller chip called the South-
bridge chip is used. In most modern designs, this chip is resident outside the

55 © Smruti R. Sarangi

chip – it is placed on the motherboard. Typically, there is a bus that con-
nects the Northbridge and Southbridge chips. However, this is not mandatory.
There could be a separate connection to the Southbridge chip and in a high-
performance implementation, we can have the Southbridge logic inside the CPU
chip also. Let us however stick to the simplistic design shown in Figure 2.15.

The Southbridge chip is further connected to dedicated chips in the chipset
whose job is to route messages to the large number of I/O devices that are
present in a typical system. In fact, we can have a tree of such chips, where
messages are progressively routed to the I/O devices through the different levels
of the tree. For example, the Soutbridge chip may send messages to the PCI-X
chip (PCI eXpress), which needs to subsequently send them to connected I/O
devices. The Southbridge chip may also choose to send a message to the USB
ports. A router in the chipset routes the message to the destination USB port.

The question that we need to answer is how do we programmatically interact
with these I/O ports? It should be possible for assembly programs to read and
write from I/O ports easily. There are several methods in modern processors.
There is a trade-off between the ease of programming, latency and achievable
bandwidth.

2.3.2 Port-Mapped I/O

The simplest method is to use the in and out instructions in the x86 ISA.
They use the notion of an I/O port for all their I/O. Let us elaborate. All
the connected devices and their associated controllers expose themselves as I/O
ports to software (read executables and assembly programs). An I/O port in
this case is different from the hardware ports that we find on the side of a laptop
like the USB ports. An I/O port in this case is an address in the I/O address
space.

In an x86 system, there are typically 216 (64k) 1-byte I/O ports. This is
the I/O address space of the system. Each device is assigned a set of I/O ports
during boot time. The hardware on the chipset ensures that reads and writes to
the I/O ports are relayed to the underlying device. When the operating system
boots, it becomes aware of the devices that are connected to the system and the
I/O ports that they are mapped to. This is one of the first post-boot tasks that
the operating system executes. This information is made available to device
drivers – specialized programs that within the OS that communicate with I/O
devices. The controllers in the chipset know how to route messages between the
CPU and I/O ports.

The size of an I/O port is 1 byte. However, it is possible to address a set
of contiguous I/O ports together and read/write 2 or 4 bytes at once. It is
important to note that a 2-byte access actually reads/writes two consecutive
I/O ports, and a 4-byte access reads/writes four consecutive I/O ports. There
are I/O controller chips in the chipset such as the Northbridge and Southbridge
chips that know the locations of the I/O ports on the motherboard and can
route the traffic to/from the CPUs.

The device drivers incorporate assembly code that uses variants of the in

and out instructions to access I/O ports corresponding to the devices. User-
level programs request the operating system for I/O services where they request
the OS to effect a read or write. The OS in turn passes on the request to the
device drivers, who use a series of I/O instructions to interact with the devices.

© Smruti R. Sarangi 56

Once, the read/write operation is done the data read from the device and the
status of the operation is passed on to the program that requested for the I/O
operation.

If we dive in further, we observe that an in instruction is a message that is
sent to the chip on the motherboard that is directly connected to the I/O device.
Its job is to further interpret this instruction and send device-level commands
to the device. It is expected that the chip on the motherboard knows which
message needs to be sent. The OS need not concern itself with such low-level
details. For example, a small chip on the motherboard knows how to interact
with USB devices. It handles all the I/O. It just exposes a set of I/O ports
to the CPU that are accessible via the in/out ports. Similar is the case for
out instructions, where the device drivers simply write data to I/O ports. The
corresponding chip on the motherboard knows how to translate this to device-
level commands.

Using I/O ports is the oldest method to realize I/O operations and has
been around for the last fifty years. It is however a very slow method and the
amount of data that can be transferred is very little. Also, for transferring a
small amount of data (1-4 bytes), there is a need to issue a new I/O instruction.
This method is alright for control messages but not for data messages in high
bandwidth devices like the network cards. There is a need for a faster method.
This is known as port-mapped I/O (PMIO).

2.3.3 Memory-Mapped I/O

Virtual
address
space

Mapped to I/O
addresses I/O device ports

Figure 2.16: Memory-mapped I/O

The faster method is to directly map regions of the virtual address space
to an I/O device. Insofar as the OS is concerned, it makes regular reads and
writes. The TLB however stores an additional bit indicating that the page is
an I/O page. The hardware automatically translates memory requests to I/O
requests. There are several advantages of this scheme (refer to Figure 2.16).

The first is that we can send a large amount of data in one go. The x86
architecture has instructions such as rep movs and rep stos that enable the
programmer to move hundreds of bytes between addresses in one go. These
instructions can be used to transfer kilobytes to/from I/O space. The hardware

57 © Smruti R. Sarangi

on the chipset can then use fast mechanisms to ensure that this process is
realized as soon as possible.

At the side of the processor, we can clearly see the advantage. All that we
need is a few instructions to transfer a large amount of data. This reduces the
instruction processing overhead at the end of the CPU and keeps the program
simple – we only need to use load and store instructions. I/O devices and
chips in the chipset have also evolved to support memory-mapped I/O. Along
with their traditional port-based interface, they are also incorporating small
memories that are accessible to chips in the chipset. The data that is in the
process of being transferred to/from I/O devices can be temporarily buffered in
these small memories.

A combination of these technologies makes memory-mapped I/O very effi-
cient. Hence, it is very popular as of 2025. In many reference manuals, it is
conveniently referred to by its acronym MMIO.

2.3.4 DMA

CPU DMA

1. Transfer details (device�� memory)

2. Interrupt the CPU (transfer done)

Figure 2.17: I/O using DMA

Even though memory-mapped I/O is much more efficient than the older
method that relied on primitive instructions and basic I/O ports, it turns out
that we can do far better. Even in the case of memory-mapped I/O, the proces-
sor needs to wait for the load/store instruction that is doing the I/O to finish.
Given that I/O operations take a lot of time, the entire pipeline fills up and
the processor remains stalled until the outstanding I/O operations complete.
One simple solution is that we do the memory-mapped I/O operations in small
chunks and do other work in the middle; however, this slows down the entire
transfer process. We can also remove write operations from the critical path
and assume that they are done asynchronously. Still the problem of slow reads
will be there.

Our main objective here is that we would like to do other work while I/O
operations are in progress. We can extend the idea of asynchronous writes to
also have asynchronous reads. In this model, the processor does not wait for
the read or write operation to complete. The key idea is shown in Figure 2.17,
where there is a separate DMA (direct memory access) chip that effects the
transfers between the I/O device and memory. The CPU basically outsources
the I/O operation to the DMA chip. The chip is provided with the addresses in
memory as well as the addresses on the I/O device along with the direction of
data transfer. Subsequently, the DMA chip initiates the process of data transfer.
In the meanwhile, the CPU can continue executing programs without stalling.
Once the DMA operation completes, it is necessary to let the OS know about
it.

Hence, the DMA chip issues an interrupt, the OS comes into play, and then
it realizes that the DMA operation has completed. Since user programs cannot

© Smruti R. Sarangi 58

directly issue DMA requests, they instead just make system calls and let the
OS know about their intent to access an I/O device. This interface can be kept
simple primarily because it is only the OS’s device drivers that interact with
the DMA chip.

When the interrupt from the DMA controller arrives, the OS knows what
to do with it and how to signal the device drivers that the I/O operation is
done. The device driver can then either read the data that has been fetched
from an I/O device or assume that the write has completed. In many cases,
it is important to let the user program also know that the I/O operation has
completed. For example, when the printer successfully finishes printing a page,
the icon changes from “printing in progress” to “printing complete”. Signals
can be used for this purpose.

To summarize, in this section we have seen three different approaches for
interacting with I/O devices. The first approach is also the oldest approach
where we use old-fashioned I/O ports. This is a simple approach especially
when we are performing extremely low-level accesses, and we are not reading
or writing a lot of data. Currently, I/O ports are primarily used for interacting
with the BIOS (booting system), simple devices like LEDs and in embedded sys-
tems. This method has mostly been replaced by memory-mapped I/O (MMIO).
MMIO is easy for programmers, and it leverages the natural strengths of the
virtual memory system. It provides a convenient and elegant interface for device
drivers – they use regular load/store instructions to perform I/O. Also, another
advantage is that it is possible to implement a zero-copy mechanism where if
some data is read from an I/O device, it is very easy to transfer it to a user
program. The device driver can simply change the mapping of the pages and
map them to the user program after the I/O device has populated the pages.
Consequently, there is no necessity to read data from an I/O device into pages
that are accessible only to the OS, and then copy all the data once again to user
pages. This is inefficient.

Subsequently, we looked at a method, which provides much more bandwidth
and also does not stall the CPU. This is known as DMA (direct memory access).
Here, the entire role of interacting with I/O devices is outsourced to an off-chip
DMA device; it finally interrupts the CPU once the I/O operation completes.
After that the device driver can take appropriate action, which also includes
letting the user program know that its I/O operation is over.

Point 2.3.1

There are three kinds of methods to perform I/O operations from a
software perspective.

PMIO We rely on classical I/O ports, which are small 1-4-byte I/O
locations in the system’s I/O address space (total size: 64 KB).
The in and out x86 instructions can be used to read and write
bytes from I/O ports, respectively.

MMIO To enable faster transfers, a part of the virtual address space
of a process can be mapped to an I/O device’s internal memory.
I/O operations can now be realized with simple load and store in-
structions. x86 has specialized instructions that can transfer large

59 © Smruti R. Sarangi

chunks of data in one go.

DMA The entire job of effecting the transfer is outsourced to the DMA
chip (or DMA controller). After performing the transfer, it raises
an interrupt to let the OS know that the transfer has completed.

2.4 Summary and Further Reading

2.4.1 Summary

Summary 2.4.1

1. Each core has general-purpose registers and privileged registers.
The latter are used by the operating system or virtual machine
monitor. They can be used to control the behavior of hardware at
a very low-level.

2. Modern processors define four privilege rings. The OS kernel oper-
ates in ring 0, and the application operates in ring 3. Middleware
software operate in rings 1 and 2.

3. Kernel processes do not run all the time. They can be invoked
via only three mechanisms: hardware interrupts, program-generate
exceptions and system calls.

4. The kernel uses signals to communicate with user processes.

5. The values stored in the general purpose registers, a few privileged
registers and the program counter comprise the context of a pro-
cess. The values in memory remain intact during context switches.
Hence, they need not be a part of the context that is saved and
restored upon every context switch.

6. There is a need to have a timer chip that generates a timer interrupt
periodically. It is a guaranteed source of interrupts. It is needed
to ensure that kernel processes run periodically and perform tasks
related to scheduling, memory and device management.

7. If there is a need to run a kernel process on a remote core, then an
IPI (inter-processor interrupt) needs to be sent to it. The remote
core’s interrupt handler will invoke the relevant interrupt handler.

8. Whenever the core is notified of an event of interest (exception,
system call, interrupt), it pauses the currently running process,
stores its context, runs the interrupt handler, finishes other kernel
work, possibly schedules other user processes and finally restores
the context of the process that was paused.

9. A process assumes that it owns a large contiguous memory space.
For example, if it runs on an n-bit machine, it may assume that

© Smruti R. Sarangi 60

it can access any location from 0 to 2n − 1 at will. Moreover, all
processes lay out their code, data, heap and stack sections in a
similar manner in memory. This is known as the memory map of
the process. The stack typically starts at a very high address and
grows downwards.

10. This “virtual view” of memory is an elegant and convenient ab-
straction for the compiler, programmer and processor. However,
in a practical real-world system, there are three problems.

Compatibility Problem There is a need to translate 48 or 64-bit
addresses in the assumed conceptual address space to physical
addresses that are in a much smaller address space. The size of
the physical address space is basically equal to the number of
available physical locations (in the main memory and storage
devices).

Overlap Problem Two different processes should never access
the same set of addresses, unless otherwise intended.

Size Problem We would like to run programs whose memory
footprint is greater than the size of the main memory.

11. The virtual memory subsystem solves all of these problems. It
divides the virtual address space (assumed by the process) into 4-
KB pages. It does the same with the physical address space and
divides it into many 4-KB frames. A dedicated multi-level page
table maintains the mapping between a virtual page and a physical
frame. It never maps two different virtual pages to a physical frame
unless this is the original intention.

12. To speed up the translation process a small hardware cache con-
taining frequently-used mappings is used. It is known as the Trans-
lation Lookaside Buffer (TLB).

13. To augment the size of the physical address space, some space in
storage devices can be used. This is known as the swap space. If a
frame is not found in main memory, then this event is known as a
page fault. There is a need to bring in the frame from swap space
and possibly replace a frame already resident in main memory.

14. x86 uses six different segment registers. The CPU generates a
logical address that is added to the base address stored in the
associated segment descriptor. The resultant linear address acts
like a virtual address that is translated to a physical address.

15. x86-64 primarily uses the fs and gs segments.

16. All these segment registers contain an index that maps to a segment
descriptor in the GDT table. The lookup process is accelerated by
using a segment descriptor cache.

61 © Smruti R. Sarangi

17. There are three methods for performing I/O: port-mapped I/O (us-
ing regular I/O ports, 64-KB I/O address space), memory-mapped
I/O (map a region of the virtual address space to the I/O device’s
internal memory) and DMA (outsource the job of transferring data
to a dedicated off-chip circuit).

2.4.2 Further Reading

This chapter has discussed a lot of computer architecture concepts. For further
reading, the best resources are standard textbooks on computer architecture
such as the books written by your author namely Basic Computer Architecture
[Sarangi, 2021] and Next-Gen Computer Architecture [Sarangi, 2023]. They
will provide the reader with a thorough understanding of all the architectural
mechanisms that are used in modern processors.

For readers who are interested in how privileged instructions operate and
control low-level aspects of hardware, the most comprehensive resources are In-
tel’s software developer manuals. Volume 3 [Corporation, 2024a] is a guide for
system programmers. This manual describes paging, protection, interrupt han-
dling, memory management and debugging in great detail. All OS developers
must read this manual. Volume 4 [Corporation, 2024b] describes all model-
specific registers (MSRs). Recall that all low-level hardware functions can be
programmed and controlled by writing values to MSRs.

Exercises

Ex. 1 — Why are multiple rings there in an x86 processor? Isn’t having just
two rings enough?

Ex. 2 — How does a process know that it is time for another process to run
in a multitasking system? Explain the mechanism in detail.

Ex. 3 — Assume a 16-core system. There are 25 active threads that are purely
computational. They do not make system calls. The I/O activity in the system
is negligible. Answer the following questions:

a)How will the scheduler get invoked?

b)Assume that the scheduler has a special feature. Whenever it is invoked,
it will schedule a new thread on the core on which it was invoked and
replace the thread running on a different core with another active (ready
to run) thread. How do we achieve this? What kind of hardware support
is required?

© Smruti R. Sarangi 62

Ex. 4 — What is the need for having privileged registers in a system? How
does Intel avoid them to a large extent?

Ex. 5 — How can we design a virtual memory system for a machine that does
not have any kind of storage device such as a hard disk attached to it? How do
we boot such a system?

Ex. 6 — Assume a system has practically infinite amount of physical memory
(much more than what all the processes need). Would we still need virtual
memory? Justify your answer.

Ex. 7 — Do the processor and compiler work with physical addresses or vir-
tual addresses?

Ex. 8 — How does the memory map of a process influence the design of a
page table for 64-bit systems?

Ex. 9 — What are the advantages of segment-based memory addressing?

Ex. 10 — Can segments be used in place of privileged registers in the context
switch process? Can we create storage space akin to a scratch pad (temporary
storage area)?

Ex. 11 — How does segmentation allow us to define per-CPU memory re-
gions? Where are these regions (possibly) stored in the virtual address space?
Why is this more efficient than other methods that rely on storing data at
pre-specified locations on the stack?

Ex. 12 — When is it preferred to use an inverted page table over the tradi-
tional (tree-based) page table?

Ex. 13 — Why are the memory contents not a part of a process’s context?

Ex. 14 — Assume two processes access a file in read-only mode. They use
memory-mapped I/O. Is there a possibility of saving physical memory space
here?

Chapter 3
Processes

The concept of a process is arguably the most important concept in operating
systems. A process is simply defined as a program in execution. A program or
an executable is represented as a file in the ELF format (refer to Appendix B)
on the disk. Within the file system1, it lies dormant – it does not execute.
A program is brought to life when the user invokes a command to run the
program and the loader loads the code and data into memory. Subsequently, it
sets the program counter to the starting address of the first instruction in the
text section of the memory image of the newly created process. This process
then begins to execute. It can have a long life and can make system calls, receive
messages from the OS in terms of signals, and the OS can swap the process in
and out a countless number of times. A process may undergo thousands of
context switches before it is finally destroyed.

A process during its execution can acquire a lot of resources. It finally re-
leases them once it terminates. Some resources include a right to use the CPU
for some time, memory space, open file and network connections. Processes
have a very elaborate interface for interacting with the OS. Bidirectional com-
munication is possible. As we have discussed earlier, there are two popular
mechanisms: system calls are used to request services from the OS, whereas
signals are used by the OS to communicate information back to a process.

We shall learn in this section that creating data structures to represent in-
formation about a process is the key challenge. Most of the algorithms that
are subsequently used are straightforward and taught in a regular course on
algorithms. However, using the right combination of data structures and repre-
senting information in a way that it is quickly accessible without unnecessary
redundancy is much more difficult than it sounds. There is a need to design
several data structures to represent information, embed and interconnect them
such that there is very little redundancy and the diverse nature of a process is
nicely captured.

We shall also learn that the process of creating and destroying a process is
quite tricky. Linux follows the same mechanisms that other Unix-like operating

1The file system is a hierarchical organization of files on a storage device. A file is defined
as a logically contiguous sequence of bytes on a storage device. Files can be of various types
such as documents, video files, audio files, and so on.

63

© Smruti R. Sarangi 64

systems use. They first fully copy the parent process’s memory image and then
replace the memory image if there is a need. This approach is however not
followed in other operating systems like Windows. We shall learn more about
Linux’s approach and its pros and cons. Finally, we shall also spend some time in
understanding the different kinds of context switch mechanisms that are needed
in a modern operating system. Some of them can be made more efficient and
admit optimizations.

Organization of this Chapter

Processes

Process Descriptor

Process Creation and Destruction

Context Switching

struct task_struct

Kernel Stack

Fork System Call

Exec Family of Calls

Threads

Hardware Context

Types of Context Switches

Details Virtual Memory Metadata

Process ID and Namespaces

Figure 3.1: Organization of this chapter

This chapter has three subparts (refer to Figure 3.1). We will start with
discussing the main concepts underlying a process in the latest Linux kernel.
A process is a very complex entity because the kernel needs to create several
data structures to represent all the runtime state of the running program. This
would, for example, include creating elaborate data structures to manage all the
memory regions that the process owns. This makes it easy to allocate resources
to processes and later on deallocate them. The kernel uses the task struct

structure to maintain this information.
Subsequently, we shall discuss the relevant code for managing process ids

(pids in Linux) and the overall state of the process. We shall specifically look
at a data structure called a maple tree, which the current version of the Linux
kernel uses extensively. We shall then also look at two more kinds of trees, which
are very useful for searching data namely the radix tree and the augmented tree.
Appendix C describes these data structures in great detail. It is thus necessary
to keep referring to it.

In the subsequent section, we shall look at the methods of process creation
and destruction. Specifically, we shall look at the fork and exec system calls.
Using the fork system call, we can clone an existing process. Then, we can use
the exec family of calls to superimpose the image of a different executable on

65 © Smruti R. Sarangi

top of the currently running process. This is the standard mechanism by which
new processes are created in Linux.

Finally, we shall discuss the context switch mechanism in a fair amount of
detail. We shall first introduce the different types of context switches and the
state that the kernel needs to maintain to suspend a running process and resume
it later. The process of suspension and resumption of a process is different for
different kinds of processes. For instance, if we are running an interrupt handler,
then certain rules apply that are quite restrictive whereas if we are running a
regular program, then some other rules apply.

Summary: Data Structures used in this Chapter
The reader is requested to kindly take a look at some important data structures
that are used in the Linux kernel (see Appendix C). Before proceeding forward,
we would like the reader to be fully familiar with the following data structures:
B-tree, B+ tree, maple tree and radix tree. They are extensively used through-
out the kernel. It is important to understand them before we proceed.

The kernel heavily relies on tree-based data structures. We frequently face
problems such as identifying the virtual memory region that contains a given
virtual memory address. This boils down to a search problem – given a key
find the value. Often using a hash table is not a very wise idea in such cases,
particularly when we are not sure of how many keys we need to store. They
also have poor cache locality and do not lend themselves to easily implementing
range queries. Trees, on the other hand, are very versatile data structures. With
logarithmic-time complexity they can implement a wide variety of functions.
They support concurrent accesses and highly cache-efficient organizations. This
is why they are often used in high-performance implementations. Trees are
naturally scalable as well in terms of the number of nodes that they store.

We can always use the classical red-black and AVL trees. However, it is far
more common to use m-ary B-trees where a node’s size is equal to that of one
or more cache blocks. This leads to minimizing cache block fetches and also
allows convenient node-level locking. A B+ tree is a variation of a B-tree where
the keys are only stored at the leaves. A maple tree is a specialized B+ tree
that is used in the Linux kernel. The arity of the nodes changes with the level.
Internal nodes close to the root typically have fewer children and nodes with
higher depths have more children. Such adaptive node sizing is done to improve
memory efficiency.

Another noteworthy structure for storing keys and values is the radix tree.
It works well if keys share common prefixes. We traverse such a tree based on
the digits in the key. The search time is linear in terms of the number of digits
in the key.

The kernel also uses augmented trees that help us solve problems of the
following type: given a bit vector, find the location of the first 0 or 1 in log-
arithmic time (starting from a given location and proceeding towards higher
or lower indexes). Such trees are used to accelerate operations on bit vectors
especially scan operations that attempt to find the next 0 or 1 in a bit vector.
The implementation can be optimized. Each leaf of the augmented tree need
not correspond to a single bit. It can instead correspond to a set of 32 or 64
bits (size of a memory word). Their parent node in the tree just needs to store
if any of those 32 or 64 bits are equal to a 0 or 1 or not. Note that in modern
machines data can only be stored at the granularity of 32 or 64 bits; hence, the

© Smruti R. Sarangi 66

tree needs to be designed in such a manner. Moreover, to speed up accesses,
a parent node can store the status of each of its children. It stores whether a
child (which is the root of a subtree) contains a 0/1 in the range that it spans
or not. It is thus not necessary to access the child nodes.

3.1 The Process Descriptor

3.1.1 The Notion of a Process

It is amply clear by now that a process is an entity that is quite multifaceted and
this makes it reasonably difficult to represent. It is true that it is an instance of
a running program, however, this simple description does not yield to a simple
implementation of its descriptor. We need to create elaborate data structures
to store information associated with the process: details of the resources that it
uses and owns throughout the system.

Processes can run with different privilege levels. We can have user processes,
kernel processes and middleware processes (run at ring levels 1 and 2). Further-
more, processes can be standalone (unrelated to other processes) or they can be
part of a group of processes that share resources and memory with each other.

The former type of processes are known as single-threaded processes. When
we write a regular C program and launch it, a single-threaded process is created.
We can alternatively have a multi-threaded process, which actually represents
a group of processes. The individual processes known as threads share resources
such as a part of the virtual memory space, open files, environment variables
and resource limits with each other. A thread is thus a lightweight process.
Specifically, it shares a part of its memory space notably the code, data, bss
and heap sections (see Appendix B) with other threads along with resources
like open file and network connections. Think of a thread as a process in its
own right. It is an independently schedulable entity, yet it shares some resources
with other threads. A thread does not share its stack, register state and thread-
local storage area with other threads. Threads in a thread group share a single
thread group id (tgid). A thread group often has a group leader (leader thread),
which is typically the thread that spawned the rest of the threads. Its process
id (pid) is equal the tgid of the entire group of threads.

Point 3.1.1

A thread and a standalone process are actually two points in a spectrum
of process definitions. A standalone process does not share anything with
other processes. However, truly standalone processes are rare because the
code pages of dynamically linked libraries are typically shared. In fact,
while creating a process it is possible to exactly specify which resources
the child process shall share with the parent process that is creating it.
There is thus a spectrum of possibilities. A thread is an extremity of
this spectrum where it shares as much as it can with other threads in its
thread group. All the points in this spectrum can be viewed as regular
processes that just have different degrees of inter-process sharing of code
and data pages.

We shall revisit this definition in Section 3.3.2, where we shall look at how

67 © Smruti R. Sarangi

threading is implemented. In Linux, different threads in a thread group share
the complete virtual address space. Each thread still has its dedicated stack
and TLS region. This is achieved by assigning every stack and TLS region to a
unique thread-specific point in the shared virtual space.

3.1.2 struct task struct

Let us now describe the process descriptor, which is the key data structure in the
operating system for storing all process-related information. Linux traditionally
uses the struct task struct data structure for storing all such process-related
bookkeeping information. This data structure keeps all of this information in
one place. The key components of the task struct data structure are shown
in Table 3.1. Linux internally refers to every process as a task.

The approach that we shall follow in this section is to go through each field
of the task struct structure one by one. We shall see a complex story unfold
in front of us. The reader is advised to read the relevant sections of Appendix C
on the implementation of linked lists in the Linux kernel, B-trees, B+ trees,
maple trees and augmented trees.

Field Description
struct thread info thread info Low-level information
uint state Process state
void * stack Kernel stack
Priorities prio, static prio, normal prio
struct sched info sched info Scheduling information
struct mm struct *mm, *active mm Pointer to memory information
pid t pid Process id
struct task struct *parent Parent process
struct list head children, sibling Child and sibling processes
Other fields file system, I/O, synchroniza-

tion, and debugging fields

Table 3.1: Key fields in task struct

3.1.3 struct thread info

Overview of Low-Level Data Types and Structures

A low-level data type is either a primitive data type or a C structure that is
hardware-aware. Its design is heavily influenced by how it can be efficiently
stored and accessed. For example, a structure that is aware of low-level de-
tails has its fields arranged in such a way that they are aligned to cache line
boundaries. This minimizes false sharing misses.

The thread info structure used to be the heart of the task struct struc-
ture in older kernels. However, it is on its way out now. It is a quintessential
example of a low-level data structure. We need to understand that high-level
data structures such as linked lists and queues are defined at the software level
and their connections with the real hardware are at best tenuous. They are
usually not concerned with the details of the machine, the memory layout or

© Smruti R. Sarangi 68

other constraints imposed by the memory system. For instance, we typically
do not think of word or variable level alignment in cache lines, etc. Of course,
highly optimized libraries care about them, but normal programmers typically
do not concern themselves with hardware-level details. However, while imple-
menting an operating system, it becomes quite essential to align the fields of
the data structure with actual memory words such that they can be accessed
very efficiently. For example, if it is known that a given data structure always
starts at a 4 KB page boundary, then it becomes very easy to calculate the
addresses of the rest of the fields or solve the inverse problem – find the starting
point of the data structure in memory given the address of one of its fields. The
thread info structure is a classic example of this.

Before looking at the structure of thread info, let us describe the broad
philosophy surrounding the definitions of its constituent fields. The Linux ker-
nel is designed to run on a large variety of machines that have very different
instruction set architectures – in fact some may be 32-bit architectures and some
may be 64-bit architectures. Linux can also run on very small 16-bit machines
as well. We thus want most of the kernel code to be independent of the machine
type otherwise it will be very difficult to write the code. Hence, there is an arch

directory in the kernel that stores all the machine-specific code. The job of the
code in this directory is to provide an abstract interface to the rest of the kernel
code, which is not machine dependent. For instance, we cannot assume that an
integer is four bytes on every platform or a long integer is eight bytes on every
platform. These things are quite important for implementing an operating sys-
tem because many a time we are interested in byte-level information. Hence,
to be 100% sure, it is a good idea to define all the primitive data types in the
arch directories.

For example, if we are interested in defining an unsigned 32-bit integer,
we should not use the classic unsigned int primitive because we never know
whether an int is 32 bits or not on the architecture on which we are compiling
the kernel. Hence, it is a much better idea to define custom data types. For
example, they can guarantee that regardless of the architecture, a data type will
always be an unsigned integer (32 bits long). Courtesy the C preprocessor, this
can easily be done. We can define types such as u32 and u64 that correspond
to unsigned 32-bit and 64-bit integers, respectively, on all target architectures.
It is the job of the architecture-specific module writers to include the right kind
of code in the arch folder to implement these virtual data types (u32 and u64).
Once this is done, the rest of the kernel code can use these data types seamlessly.

Similar abstractions and virtualization mechanisms are required to imple-
ment other parts of the boot subsystem, and other low-level services such
as memory management and power management. Basically, anything that is
architecture-specific needs to be defined in the corresponding subfolder in the
arch directory and then a generic interface needs to be exposed to the rest
of the kernel code. The rest of the kernel code can be blissfully unaware of
architectural details.

Description of thread info

Let us now look at the important fields in the thread info structure. Note
that throughout the book, we will not list all the fields in a data structure. We
will only list the important ones. In some cases, when it is relevant, we will use

69 © Smruti R. Sarangi

the ellipses . . . symbol to indicate that something is omitted, but most of the
time for the sake of readability, we will not have any ellipses.

The declaration of thread info is shown in Listing 3.1.

Listing 3.1: The thread info structure.
source : arch/x86/include/asm/thread info.h#L56

struct thread_info {

/* Flags for the state of the process , system calls and

thread synchrony (resp.) */

unsigned long flags;

unsigned long syscall_work;

u32 status;

/* current CPU */

u32 cpu;

}

This structure basically stores the current state of the thread, the state of
the executing system call and synchronization-related information. Along with
that, it stores another vital piece of information, which is the number of the
CPU on which the thread is running or is scheduled to run at a later point
in time. We shall see in later sections that finding the id of the current CPU
(and the state associated with it) is a very frequent operation and thus there is a
pressing need to realize it as efficiently as possible. In this context, thread info

provides a somewhat suboptimal implementation. There are faster mechanisms
of doing this, which we shall discuss in later sections. It is important to note
that the reader needs to figure out whether we are referring to a thread or a
process depending upon the context. In most cases, it does not matter because
a thread is treated as a process by the kernel. However, given that we allow
multiple threads or a thread group to also be referred to as a multi-threaded
process (albeit, in limited contexts), the term thread will more often be used
because it is more accurate. It basically refers to a single program executing as
opposed to multiple related programs (threads) executing.

3.1.4 Task States

Let us now look at the process states in Linux. This is shown in Figure 3.2.
In the scheduling world, it is common to refer to a single-threaded process or
a thread in a multithreaded process as a task. A task is the basic unit of
scheduling. We shall use the Linux terminology and refer to any thread that
has been started as a task. Let us thus look at the states that a task can be in.

Here is the fun part in Linux. A task that is currently running and a ready
task that is queued to run in a CPU-specific runqueue have the same state:
TASK RUNNING. There are historical reasons for this as well as there are simple
common sense reasons in terms of efficiency. We are basically saying that a task
that is ready to run and one that is running have the same state and thus
in a certain sense are indistinguishable. This little trick allows us to use the
same queue for maintaining all such tasks that are ready to run or are currently
running. This simplifies many design decisions and reduces task state updates.
Specifically, if there is a context switch, then there is no need to change the
status of the task that was swapped out. Of course, someone may argue that

https://elixir.bootlin.com/linux/v6.2.12/source/arch/x86/include/asm/thread_info.h#L56

© Smruti R. Sarangi 70

TASK_RUNNING
(ready but not

running)

New task created

TASK_RUNNING
(currently
running)

Preempted for some reason

Scheduler asks it to execute

TASK_ZOMBIE
(task finishes or
is terminated)

TASK_INTERRUPTIBLE or
TASK_UNINTERRUPTIBLE

Execu�on
finished

Go to sleep

Wake up
(by the 0S)

TASK_STOPPED
(stopped)

SIGSTOP

SIGCONT

Figure 3.2: Linux task states

using the same state (TASK RUNNING) introduces ambiguity. To a certain
extent it is true, but it does simplify a lot of things and does not appear to be
a big hindrance in practice.

Now, it is possible that a running task may keep on running for a long time
and the scheduler may decide that it is time to swap it out so that other tasks
get a chance. In this case, the task is said to be “preempted”. This means that
it is forcibly displaced from a core (swapped out). However, it is still ready to
run, hence its state remains TASK RUNNING. Its place is taken by another task
– this process thus continues.

Let us look at a few other interactions. A task may be paused by sending
it the SIGSTOP signal. Specifically, the kill system call or the command line
utility having the same name can be used to send the stop signal to a task.
We can also issue the following command on the command line: kill -STOP

pid. Another approach is to send the SIGTSTP signal by pressing Ctrl-z on the
terminal. The only difference here is that this signal can be ignored. Sometimes
there is a need for suspending or pausing a task, especially if we want to run
the task at a later point of time when sufficient CPU and memory resources
are available. In this case, we can just pause the task. Note that SIGSTOP is a
special type of signal that cannot simply be discarded or caught by the process
that corresponds to this task. In this case, this is more of a message to the
kernel to actually pause the task. It has a very high priority. At a later point
of time, the task can be resumed using the SIGCONT signal. Needless to say,
the task resumes at the same point at which it was paused. The correctness of
the process is not affected unless it relies on some aspect of the environment
that possibly got changed while it was in a paused state. The fg command line
utility can be used to resume such a suspended task.

Let us now come to the two interrupted states namely INTERRUPTIBLE
and UNINTERRUPTIBLE. A task enters these states when it requests for some
service like accessing an I/O device, which is expected to take a lot of time.
In the first state, INTERRUPTIBLE, the task can still be resumed to act on a

71 © Smruti R. Sarangi

message sent by the OS, which we refer to as a signal. For instance, it is possible
for other tasks to send the interrupted process a message (via the OS) and in
response it can invoke a signal handler. Recall that a signal handler is a specific
function defined in the program that is conceptually similar to an interrupt
handler, however, the only difference is that it is implemented in user space.
In comparison, in the UNINTERRUPTIBLE state, the task does not respond to
signals.

Zombie Tasks

The process of deleting the state of a task after it exits is quite elaborate in
Linux. To start with, note that the processor has no way of knowing when
a task has completed. It will continue to fetch bytes from memory and try
to execute them. It is thus necessary to explicitly inform the kernel that a
task has completed by making the exit system call. However, a task’s state is
not cleaned up at this stage. Instead, the task’s parent is informed using the
SIGCHLD signal. Every task has a parent. It is the task that has spawned the
current task. The parent then needs to call the system call wait to read the
exit status of the child. It is important to understand that every time the exit
system call is called, the exit status is passed as an argument. Typically, the
value zero indicates that the task completed successfully. On the other hand,
a non-zero status indicates that there was an error. The status in this case
represents the error code.

Here again, there is a convention. The exit status ‘1’ indicates that there
was an error, however it does not provide any additional details. We can refer to
this situation as a non-specific error. Given that we have a structured hierarchy
of tasks with parent-child relationships, Linux explicitly wants every parent to
read the exit status of all its children. Until a parent task has read the exit status
of the child, the child remains a zombie task – neither dead nor alive. After the
parent has read the exit status, all the state associated with the completed child
task can be deleted.

3.1.5 Kernel Stack

Let us ask an important question. Where does the kernel store all the informa-
tion of a running task when there is a context switch? This is where we come to
an important concept namely the kernel stack. For every running thread in the
user space, there is an associated kernel thread that typically remains dormant
when the user thread is executing. The kernel thread uses its own stack to
execute. Whenever the user thread makes a system call and requests the kernel
for a specific service, instead of spawning a new thread, the OS simply runs the
kernel thread associated with the user-level thread. Furthermore, we use the
kernel stack associated with the kernel thread. This keeps things simple – the
kernel stack becomes a natural home for all thread-related state. We will add
some nuance to this simple abstraction in later chapters. However, for the time
being, let us continue with this.

There are many limitations associated with the kernel stack given that kernel
memory management is complex. Unlike a user-level stack, we do not want it to
become arbitrarily large. This will cause a lot of memory management problems.

© Smruti R. Sarangi 72

Hence, typically all versions of the Linux kernel have placed strict hard limits
on the size of the kernel stack.

The Kernel Stack in Yesteryears

Stack

thread_info

task_struct
Pointer to
thread_info

current

Problem: Given an esp, find the address
of the bo�om of the stack (assume it is

aligned to an 8 KB boundary)

Figure 3.3: The structure of a kernel stack (older versions of Linux)

The size of the kernel stack is limited to two 4-KB pages, i.e., 8 KB. It
contains useful data about the running thread. These are basically per-thread
stacks. In addition, the kernel maintains a few other stacks, which are specific to
a CPU. The CPU-specific stacks are used to run interrupt handlers, for instance.
Sometimes, we have very high priority interrupts and some interrupts cannot
be ignored (not maskable). The latter kind of interrupts are known as NMIs
(non-maskable interrupts). This basically means that if we are executing an
interrupt handler, if a higher priority interrupt arrives, we need to do a context
switch and run the interrupt handler for the higher-priority interrupt. This is
conceptually similar to the regular context switch process for user-level tasks.
It is just that in this case interrupt handlers are being paused and subsequently
resumed. This is happening within the kernel. Note that each such interrupt
handler needs its own stack to execute. Every time an interrupt handler runs,
we need to find a free stack and assign it to the handler. Once, the handler
finishes running, the stack’s contents can be cleared and the stack is ready to
be used by another handler. Given that nested interrupts (running interrupt
handlers by pausing other handlers) are supported, we need to provision for
many stacks. Linux has a limit of 7. This means that the level of interrupt
handler nesting is limited to 7.

Figure 3.3 shows the structure of the kernel stack in older kernels. The
thread info structure was kept at the lowest address in the 8-KB memory re-
gion that stored the kernel stack. Even in current kernels, this memory region
is always aligned to an 8-KB boundary. The thread info structure had a vari-
able called task that pointed to the corresponding task struct structure. The
current macro subsumed the logic for getting the thread info of the current
task and then getting a pointer to the associated task struct from it. The main
aim here is to design a very quick method for retrieving the task struct asso-
ciated with the current task. This is a very time-critical operation in modern
kernels and is invoked very frequently. Hence, a need was felt to optimize this

73 © Smruti R. Sarangi

process as much as possible. Even saving a few instructions provides substantial
benefits.

The greatness of this scheme is as follows. From any stack address, we can
quickly compute the address at which thread info is stored, which is at the
bottom of the 8-KB region. This address is simply the largest multiple of 8
KB that is smaller than the address of a variable on the stack. Simple bitwise
operations on the address that involve zeroing out the 13 LSB bits do the trick!
Once, we get the address of the thread info structure, we can get the pointer
to the task struct with one load operation.

Example 3.1.1

Write a short function in C to find the largest multiple of 8 that is smaller
than a given value.

Answer:

int find_multiple(int x) {

return (x & ~7);

}

Example 3.1.2

Write a function to extract the ith bit in the number x. The LSB is the
first bit.

Answer:

int extract(int x, int i){

return (x & (1 << (i - 1))) >> (i-1);

}

Point 3.1.2

Often a need is felt to store a set of bits. Each bit could be a flag or
some other status code. The most space-efficient data structure to store
such bits is often a variant of the classical unsigned integer. For example,
if we want to store 12 bits, it is best to use an unsigned short integer
(u16). The 12 LSB bits of the primitive data type can be used to store
the 12 bits, respectively. Similarly, if we wish to store 40 bits, it is best
to use an unsigned long integer (u64). The bits can be extracted using
the logic followed in Example 3.1.2.

The Kernel Stack in the Latest Kernels

The kernel stack as of today looks more or less the same. It is still limited to 8
KB in size. However, the trick involving placing thread info at the lowest ad-
dress and using that to reference the corresponding task struct is not needed
anymore. We can use a better method that relies on segment registers. This
is one of the rare instances in which x86 segmentation proves to be extremely

© Smruti R. Sarangi 74

beneficial. It provides a handy reference point in memory for storing specific
data that is highly useful and is frequently used. Furthermore, to use segmented
addressing, we do not need any extra instructions (see Appendix A). The seg-
ment information can be embedded in the memory address itself. Hence, this
part comes for free and the Linux kernel designers leverage this to the hilt.

Listing 3.2: The current task
source : arch/x86/include/asm/current.h#L39

DECLARE_PER_CPU(struct task_struct *, current_task);

static __always_inline struct task_struct *get_current(void)

{

return this_cpu_read_stable(current_task);

}

#define current get_current ()

Refer to the code in Listing 3.2. It defines a macro current that returns a
pointer to the current task struct via a chain of macros and in-line functions. 2

The code ultimately resolves to a single instruction that reads the address of
the current task’s task struct in the gs segment [Lameter and Kumar, 2014].
The gs segment thus serves as a dedicated region that stores information that
is quickly accessible to a kernel thread. In fact, the kernel partitions a part of
this region to store information specific to each core (CPU in kernel’s parlance).
It can thus instantly access the task struct structures of processes running on
all the CPUs.

Note that here we are using the term “CPU” as a synonym for a “core”.
This is Linux’s terminology. We can store a lot of important information in a
dedicated per-CPU/per-core area, notably the current (task) variable, which
is needed very often. It is clearly a global variable insofar as the kernel code
running on the CPU is concerned. We thus want to access it with as few
memory accesses as possible. In our current solution with segmentation, we
are reading the variable with just a single instruction. This was made possible
because the gs register directly stores a pointer to the beginning of the dedicated
storage region, and the offset of the task struct from that region is known.
An astute reader can clearly make out that this mechanism is more efficient
than the earlier method that used a redirection via the thread info structure.
The slower redirection-based mechanism is still used in architectures that do
not have support for segmentation.

There are many things to be learned here. The first is that for something as
important as the current task, which is accessed very frequently, and is often on
the critical path, there is a need to devise a very efficient mechanism. Further-
more, we also need to note the diligence of the kernel developers in this regard
and appreciate how much they have worked to make each and every mechanism
as efficient as possible – save memory accesses wherever and whenever possible.
In this case, several conventional solutions are clearly not feasible such as storing
the current task pointer in CPU registers, a privileged/model-specific register
(not a portable choice), or even a known memory address. The issue with stor-
ing this pointer at a known memory address is that it significantly limits our

2In an inline function, the code of the function is expanded at the point of invocation.
There is no function call and return. This method enhances the performance of very small
functions.

https://elixir.bootlin.com/linux/v6.2.12/source/arch/x86/include/asm/current.h#L39

75 © Smruti R. Sarangi

flexibility in using the virtual address space. This may create portability issues
across architectures. As a result, the developers chose the segmentation-based
method for x86 hardware.

There is a small technicality here. We need to note that different CPUs
(cores on a machine) will have different per-CPU regions. This, in practice,
can be realized very easily with this scheme because different CPUs have dif-
ferent segment registers. We also need to ensure that these per-CPU regions
are aligned to cache line boundaries. This means that a cache line is uniquely
allocated to a per-CPU region – there are no overlaps. If this is the case, we
will have a lot of false sharing misses across the CPUs, which will prove to be
detrimental to the overall performance. Recall that false sharing misses are an
artifact of cache coherence. A cache line may end up continually bouncing be-
tween cores if they are interested in accessing different non-overlapping chunks
of that same cache line.

3.1.6 Task Priorities

Now that we have discussed the basics of the kernel stack, task states and basic
bookkeeping data structures, let us move on to understanding how we specify
the priorities of tasks. This is an important input to the scheduler.

Task types Range
Real time priorities 0-99
User task priorities 100-139

Table 3.2: Linux task priorities

Linux uses 140 task priorities. The priority range as shown in Table 3.2 is
from 0 to 139. The priorities 0-99 are for real-time tasks. These tasks are for
mission-critical operations, where deadline misses are often not allowed. The
scheduler needs to execute them as soon as possible.

The reason we have 100 different priorities for such real-time processes is
because we can have real-time tasks that have different degrees of importance.
We can have some that have relatively “soft” requirements, in the sense that
it is fine if they are occasionally delayed. Whereas, we may have some tasks
where no delay is tolerable. The way we interpret the priority range 0-99 is as
follows. In this space, 0 corresponds to the least priority real-time task and the
task with priority 99 has the highest priority in the overall system.

Some kernel threads run with real-time priorities, especially if they are in-
volved in important bookkeeping activities or interact with sensitive hardware
devices. Their priorities are typically in the range of 40 to 60. In general, it is
not advisable to have a lot of real-time tasks with very high priorities (more than
60) because the system tends to become quite unstable. The reason is that the
CPU time is completely monopolized by these real-time tasks, resulting in the
rest of the tasks, including many OS tasks, not getting enough time to execute.
Hence, a lot of important kernel activities get delayed.

Now for regular user-level tasks, we interpret their priority slightly differ-
ently. In this case, higher the priority number, lower is the actual priority. This
basically means that in the entire system, the task with priority 139 has the

© Smruti R. Sarangi 76

least priority. On the other hand, the task with priority 100 has the highest
priority among all regular user-level tasks. It still does not have a real-time
priority but among non-real-time tasks it has the highest priority. The impor-
tant point to understand is that the way that we understand these numbers
is quite different for real-time and non-real-time tasks. We interpret them in
diametrically opposite manners in both the cases (refer to Figure 3.4).

0

Real-�me

99

100

139

User

Priority value

A
ct

u
al

p
ri

o
ri

ty

Figure 3.4: Real time priority vs the priority number (value)

3.1.7 Computing Actual Task Priorities

Listing 3.3: The thread info structure.
source : kernel/sched/core.c#L2106

else if (rt_policy(policy))

prio = MAX_RT_PRIO - 1 - rt_prio;

else

prio = NICE_TO_PRIO(nice);

There are two concepts here. The first is the number that we assign in the
range 0-139, and the second is the way that we interpret the number as a task
priority. It is clear from the preceding discussion that the number is interpreted
differently for regular and real-time tasks. However, if we consider the kernel,
it needs to resolve the ambiguity and use a single number to represent the
priority of a task. We would ideally like to have some degree of monotonicity.
Ideally, we want that either a lower value should always correspond to a higher
priority or the reverse, but we never want a combination of the two in the actual
kernel code. This is exactly what is being rectified in the code snippet shown
in Listing 3.3. We need to note that there are historical reasons for interpreting
user and real-time priority numbers at the application level differently, but in
the kernel code this ambiguity needs to be resolved and monotonicity needs to
be ensured.

In line with this philosophy, let us consider the first else if condition that
corresponds to real-time tasks. In this case, the value of MAX RT PRIO is 100.
Hence, the range [0-99] gets translated to [99-0]. This basically means that lower
the value of prio, greater the priority. We would want user-level priorities

https://elixir.bootlin.com/linux/v6.2.12/source/kernel/sched/core.c#L2106

77 © Smruti R. Sarangi

to be interpreted similarly. Hence, let us proceed to the body of the else

statement. Here, the macro NICE TO PRIO is used. Before expanding the micro,
it is important to understand the notion of being nice in Linux.

The default user-level priority associated with a regular task is 120. Given
a choice, every user would like to raise the priority of her task to be as high
as possible. After all everybody wants their task to finish quickly. Hence,
the designers of Linux decided (rightfully so) to not give users the ability to
arbitrarily raise the priorities of their tasks. Instead, they allowed users to do
the reverse, which was to reduce the priority of their tasks. It is a way to be
nice to others. There are many instances where it is advisable to do so. For
instance, there are many tasks that do routine bookkeeping activities. They are
not very critical to the operation of the entire system. In this case, it is a good
idea for users to be courteous and let the operating system know that their task
is not very important. The scheduler can thus give more priority to other tasks.
There is a formal method of doing this, which is known as the nice mechanism.
As the name suggests, the user can increase the priority value from 120 to any
number in the range 121-139 by specifying a nice value. The nice value in this
case is a positive number, which is added to the number 120. The final value
represents the priority of the process. The macro NICE TO PRIO implements this
addition – it adds the nice value to 120.

There is a mechanism to also have a negative nice value. This mechanism
is limited to the superuser, who is also known as the root user in Linux-based
systems. This user has some additional privileges such as being able to access
all the files and being able to raise the priority of processes. However, she does
not have kernel-level privileges. She is supposed to play the role of a system
administrator, and can specify a negative nice value that is between -1 and -
20. Note that this mechanism cannot be used to raise the priority of a regular
user-level process to that of a real-time process. We are underscoring the fact
that regular users who are not superusers cannot access this facility. Their nice
values are strictly positive and are in the range [1-19].

Now we can fully make sense of the code shown in Listing 3.3. We have
converted the user or real-time priority to a single number prio. Lower it is,
greater is the actual priority. This number is henceforth used throughout the
kernel code to represent actual task priorities. We will observe that when we
discuss schedulers, the process priorities will be very important and shall play
a vital role in making scheduling decisions.

3.1.8 sched info

Listing 3.4: The sched info structure.
source : include/linux/sched.h#L377

/* # of times we have run on this CPU: */

unsigned long pcount;

/* Time spent waiting on a runqueue: */

unsigned long long run_delay;

/* Timestamps: */

/* When did we last run on a CPU? */

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/sched.h#L377

© Smruti R. Sarangi 78

unsigned long long last_arrival;

/* When were we last queued to run? */

unsigned long long last_queued;

The class sched info (shown in Listing 3.4) contains some meta-information
about the overall scheduling process. The variable pcount denotes the number
of times this task has run on the CPU. run delay is the time spent waiting in
the runqueue. The runqueue is a structure that stores all the tasks whose status
is TASK RUNNING.3 As we have discussed earlier, this includes tasks that are
currently running on CPUs as well as tasks that are ready to run. Then we have
a bunch of timestamps. The most important timestamps are last arrival and
last queued, which store when a task last ran on the CPU, and it was last
queued to run, respectively. In general, the unit of time within a CPU is either
in milliseconds or in jiffies (refer to Section 2.1.4).

3.1.9 Memory Management

Key components

struct maple_tree mm_mt Stores all VM regions

unsigned long task_size Size of the VM space

int map_count Number of VM regions

stats:
total_vm, locked_vm,
pinned_vm

Total pages mapped,
#locked and #pinned

pages

start_code, end_code,
start_data, end_data,
start_stack, ….

Start/end of memory regions

struct task_struct *owner

Owner process

unsigned long cpu_bitmap[]

The CPUs that the process has
executed on

pgd_t * pgd; Pointer to the page table

Figure 3.5: The key components of a process’s address space (these fields belong
to the mm struct field of the task struct)

A process typically owns a lot of memory space. It owns numerous virtual
memory regions and a page table. Each page table entry stores the virtual-
to-physical mapping and a lot of additional information. We have already
looked at the protection bits stored in each entry. In addition, performance
and correctness-related hints are also stored, such as information related to
page locking and pinning (see [Corbet, 2014]).

For instance, we may want to lock a set of pages in memory and not swap
them to the disk unless there is a system emergency. This will eliminate page
faults for those set of pages at the cost of disadvantaging accesses to other pages.
On the other hand, we can also pin the pages in memory, which introduces a
different kind of restriction. It does not allow the kernel to move the pages
around in memory, i.e., change the virtual to physical mapping. It directs the
kernel to keep the page at a single physical location and not relocate it over
time as is the case with regular pages. For example, we would want the pages

3We use the same terminology as the Linux kernel and omit the space between the words
“run” and “queue”.

79 © Smruti R. Sarangi

of the page table to be pinned. This way, we would exactly know where they
are, and this information will remain the same throughout the execution of the
process. The kernel can access the page table using its physical address. There
is no need to issue a lookup operation to find where the page table of a given
process is currently located. This approach also reduces TLB misses because a
lot of the mappings do not change.

The kernel uses a very elaborate data structure known as struct mm struct

to maintain all memory-related information of this nature as shown in Figure 3.5.
The core data structure, mm struct, has many fields as shown in the figure.

As we just discussed, one of the key roles of this structure is to keep track
of the memory map (refer to Section 2.2.1). This means that we need to keep
track of all the virtual memory regions that are owned by a process. The kernel
uses a dedicated structure known as a maple tree that keeps track of all these
regions. It is a sophisticated variant of a traditional B+ tree (see Appendix C).
Each key in the maple tree is actually a 2-tuple: starting and ending address of
the region. The key thus represents a range. In this case, the keys (and their
corresponding ranges) are non-overlapping. Hence, it is easily possible to find
which region a virtual address is a part of by just traversing the maple tree.
This takes logarithmic time.

Along with the memory map, the other important piece of information that
the mm struct stores is a pointer to the page table (pgd). Linux uses a multi-
level page table, where each entry contains a lot of information – this is necessary
for address translation, security and high performance. Readers should note the
high level of abstraction here. The entire page table is referenced using just a
single pointer: pgd t* pgd. All the operations performed on the page table
require nothing more than this single pointer. This is a very elegant design
pattern and is repeated throughout the kernel.

Next, the structure contains a bunch of statistics about the total number of
pages, the number of locked pages, the number of pinned pages and the details of
different memory regions in the memory map. For example, this structure stores
the starting and ending virtual addresses of the code, data and stack sections.
Next, the id of the owner process (pointer to a task struct) is stored. There
is a one-to-one correspondence between a process and its mm struct.

The last field cpu bitmap is somewhat interesting. It is a bitmap of all the
CPUs on which the current task has executed in the past. For example, if there
are 8 CPUs in the system, then the bitmap will have 8 bits. If bit 3 is set to 1,
then it means that the task has executed on CPU #3 in the past. This is an
important piece of information because we need to understand that if a task has
executed on a CPU in the past, then most likely its caches will have warm data.
In this case “warm data” refers to data that the current task is most likely going
to use in the near future. Given that programs exhibit temporal locality, they
tend to access data that they have recently accessed in the past. This is why it
is a good idea to record the past history of the current task’s execution. Given
a choice, it should always be relocated to a CPU on which it has executed in
the recent past. In that case, we are maximizing the chances of finding data in
the caches, which may still prove to be useful in the near future.

© Smruti R. Sarangi 80

3.1.10 Storing Virtual Memory Regions

Let us now address the first problem: storing a list of all the virtual memory
regions owned by the process. Recall that when we had introduced the memory
map of a process, we had observed that there are a few contiguous regions
interspersed with massive holes. The memory map, especially in a 64-bit system,
is a very sparse structure. In the middle of the large sparse areas, small chunks
of virtual memory are used by the process. Hence, any data structure that is
chosen needs to take this sparsity into account.

Many of the regions in the memory map have already been introduced such
as the heap, stack, text, data and bss regions. In between the stack and heap
there is a huge empty space. In the middle of this space, some virtual memory
regions are used for mapping files and loading shared libraries. There are many
other miscellaneous entities that are stored in the memory map such as handles
to resources that a process owns. Hence, it is advisable to have an elaborate
data structure that keeps track of all the used virtual memory regions regardless
of their actual purpose. Each virtual memory region can have the same level
of memory protection, read/write policies and methods to handle page faults.
Instead of treating each virtual page distinctly, it is a good idea to group them
into regions and assign common attributes and policies to each region. Hence,
we need to design a data structure that answers the following question.

Question 3.1.1

Given a virtual memory address, find the virtual memory region that it
is a part of.

Listing 3.5: The vm area struct structure.
source : include/linux/mm types.h#L535

struct vm_area_struct {

unsigned long vm_start , vm_end;

struct mm_struct *vm_mm; /* Pointer to the address space

*/

struct list_head anon_vma_chain; /*List of all anon VM

regions */

struct file *vmfile;

}

Listing 3.5 shows the code of vm area struct that represents a contiguous
virtual memory region. As we can see from the code, it maintains the details of
each virtual memory (VM) region including its starting and ending addresses. It
also contains a pointer to the parent mm struct. For understanding the rest of
the fields, let us introduce the two kinds of memory regions in Linux: anonymous
and file-backed.

Anonymous memory region These are many memory regions that are not
mirrored or copied from a file such as the stack and heap. These memory
regions are created during the execution of the process and store dynam-
ically allocated data. Hence, these are referred to as anonymous memory
regions. They have a dynamic existence, and are not linked to specific
sections in a binary or object file.

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/mm_types.h#L535

81 © Smruti R. Sarangi

File-backed memory region These memory regions are copies of chunks of
data stored in files (sequence of bytes stored on a storage device). For
example, we can have memory-mapped files, where a part of the virtual
memory space is mapped to a file. This means that the contents of the file
are physically copied to memory and that region is mapped to a virtual
memory region. Typically, if we write to that region in memory, the
changes will ultimately reflect in the backing file. This backing file is
referred to as vmfile in struct vm area struct.

For tracking anonymous memory, there is a very elaborate data structure,
which is actually a complex graph of linked lists. We will study this later
when we discuss physical memory allocation in detail, especially reverse map-
ping. For now, it suffices to say that there is a linked list pointed to by the
anon vma chain structure to store these regions. Basically, there is a pointer
from vm area struct to the corresponding region in the linked list of anony-
mous regions.

3.1.11 The Process ID

Let us now come to one of the most important fields of task struct. It is
the process id or pid. This number uniquely identifies the task. Its type is
pid t, which resolves to an unsigned int on most architectures. Recall that
every thread has a unique pid (process id). However, threads can be grouped,
and the group has a unique thread group id (tgid). The tgid is equal to the
pid of the leader thread. In Linux the ps utility lists all this information for
running processes. It is equivalent to looking at all the running processes in
the task manager on Microsoft Windows. Many times, we inspect the state
of a process after it has finished and its pid has possibly been reused. For
such cases, Linux provides a data structure called struct pid that stores all
process-related information. This structure retains its information even after
the process has terminated and become a zombie.

Point 3.1.3

Unfortunately, in Linux two different entities share the same name, i.e.,
pid. The number of a process has type pid t and the name of the corre-
sponding member in task struct is pid. The structure that maintains
all the information related to a process is also called pid. Its type is
struct pid. This can cause a lot of confusion. We sadly do not have a
choice. We need to infer the nature of the usage given the context. We
adopt the following convention. When we use the term pid, we will be
referring to pid t pid. We will also use the term “pid number”. Simi-
larly, when we wish to refer to struct pid, we will use the term “struct
pid”.

Now, managing all the pid numbers is an important problem. Whenever a
new process is started, we need to allocate a new pid (pid t) to it. Likewise,
whenever a process’s state is destroyed, we need to deallocate its pid. The file
proc/sys/kernel/pid max stores the maximum number of pids we can have in
the system. Its default value is 32,768.

© Smruti R. Sarangi 82

Next, we need to answer the following questions while managing pids (pid
numbers).

1. How do we locate the struct pid structure for a given pid?

2. How do we find the next free pid?

3. How do we quickly deallocate a pid?

4. How do we find if a pid is allocated or not?

Mapping a pid to a pid Structure

Let us answer the first question here. We shall defer answering the rest of the
questions until we have explained some additional concepts. For mapping a pid
to a struct pid, the kernel uses a radix tree (see Appendix C).

A natural question that will arise here is why not use a hash table? The
kernel developers conducted a lot of experiments and tested a lot of data struc-
tures. They found that most of the time, process ids (pids) share prefixes: their
more significant digits. This is because, most of the time, the processes that are
active have a roughly similar set of pids (created at roughly the same time). As
a result, if let’s say we have looked up one process’s entry, the relevant part of
the radix tree is still present in the processor’s caches. The process of looking up
the struct pid of a related process can use some of this information to quickly
realize a lookup. Hence, in practice, such radix trees were found to be faster
than hash tables.

3.1.12 Namespaces

Containers

Traditional cloud computing is quickly being complemented with many new
technologies: microservices, containers and serverless computing. We shall focus
on them in Chapter 8. The basic idea is that a virtual machine (VM) is a
full virtualized environment where every processor resource including the CPUs
and memory are virtualized. These VMs can be suspended, moved to a new
machine and restarted. However, this is a heavy-duty solution. Containers on
the other hand are lightweight solution where the environment is not virtualized.
A container is used to create a small isolated environment within a machine that
is a “mini-virtual machine”. Processes within a container perceive an isolated
environment. They have their own set of processes, network stack and file
system. They also provide strong security guarantees.

Almost all modern versions of Linux support containers such as Docker4,
Podman5 and LXC6. A container is primarily a set of processes that own file
and network resources. These are exclusive to the container that allow it to
host a custom environment. For example, if the user has spent a lot of effort in
creating a custom software environment, she would not like to again install the
same software programs on another machine. Along with re-installing the same
software, configuring the system is quite cumbersome. A lot of environment

4https://www.docker.com/
5https://www.docker.com/
6https://linuxcontainers.org/

https://www.docker.com/
https://www.docker.com/
https://linuxcontainers.org/

83 © Smruti R. Sarangi

variables need to be set and a lot of script files need to be written. Instead
of repeating this same sequence of burdensome steps repeatedly, it is a better
idea to create a custom file system, mount it on a Docker container and simply
distribute the Docker container. All that one needs to do on a remote machine
is just run the container. No additional effort is involved in installing software
or configuring the runtime. This saves a lot of time. Given that containers
have their virtual network interfaces, a lot of the overhead related to network
configuration is also reduced.

Our focus in this chapter is the set of processes in a container. They are iso-
lated from the rest of the system. We shall shortly see that the notion of process
namespaces allows the creation of such functionality. In fact, in conjunction with
software such as CRIU7, it is possible to suspend all the processes running in the
container, migrate the container (along with all its constituent processes) and
restart all of them on a new machine. The entire container restarts magically
on a new machine, unbeknownst to all the constituent processes.

The container creates a barrier between its constituent set of processes and
the rest of the system. This feature allows the user to securely execute a process
on a remote system. It is not necessary for the user’s code and the remote system
to completely trust each other. Containers ensure that the process cannot do a
lot of damage to the remote system as well as the remote system cannot tamper
with the process’s execution beyond a point.

Details of Namespaces

Let us discuss the idea of namespaces, which underlie the key process man-
agement subsystem of containers. They need to provide a virtualized process
environment where processes retain their pid numbers, inter-process communi-
cation structures and state after migration.

Specifically, the kernel groups processes into namespaces. Recall that the
processes are arranged as a tree. Every process has a parent process, and there
is one global root process. Similarly, the namespaces are also hierarchically
organized as a tree. There is a root namespace. Every process is visible to its
own namespace and is additionally also visible to all ancestral namespaces. No
process is visible to any child namespace.

Point 3.1.4

Every process is visible to its own namespace and is additionally also
visible to all ancestral namespaces.

In this case, a pid (number) is defined only within the context of a names-
pace. When we migrate a container, we also migrate its namespace. Then the
container is restarted on a remote machine, which is tantamount to re-instating
its namespace. This means that all the paused processes in the namespace are
activated. Given that this needs to happen unbeknownst to the processes in
the container, the processes need to maintain the same pids even on the new
machine.

As discussed earlier, a namespace itself can be embedded in a hierarchy of
namespaces. This is done for the ease of managing processes and implementing

7https://criu.org/

https://criu.org/

© Smruti R. Sarangi 84

containers. Every container is assigned its separate namespace. It is possible for
the system administrator to provide only a certain set of resources to the parent
namespace. Then the parent namespace needs to appropriately partition these
resources among its child namespaces. This allows for fine-grained resource
management and tracking.

Listing 3.6: The struct pid namespace

source : include/linux/pid namespace.h#L19

struct pid_namespace{

/* A radix tree to store allocated pid structures */

struct idr idr;

/* Cache of pid structures */

struct kmem_cache *pid_cachep;

/* Level of the namespace */

int level;

/* Pointer to the parent namespace */

struct pid_namespace *parent;

}

The code of struct pid namespace is shown in Listing 3.6. The most
important structure that we need to consider is idr (IDR tree). This is an
annotated Radix tree (of type struct idr) and is indexed by the pid. The
reason that there is such a sophisticated data structure here is because, in
principle, a namespace could contain a very large number of processes. Hence,
there is a need for a very fast data structure for storing and indexing them.

We need to understand that often there is a need to store additional data
associated with a process. It is stored in a dedicated structure called (struct
pid). The idr tree returns the pid structure for a given pid number. We need
to note that some confusion is possible here given that both are referred to using
the same term “pid”.

Next, we have a kernel object cache (kmem cache) or pool called pid cachep.
It is important to understand what a pool is. Typically, free and malloc calls for
allocating and deallocating memory in C take a lot of time. There is also need
for maintaining a complex heap memory manager, which needs to find a hole of
a suitable size for allocating a new data structure. It is a much better idea to
have a set of pre-allocated objects of the same type in an 1D array called a pool.
It is a generic concept and is used in a lot of software systems including the
kernel. Here, allocating a new object is as simple as fetching it from the pool
and deallocating it is also simple – we need to return it back to the pool. These
are very fast calls and do not involve the action of the heap memory manager,
which is far slower. Furthermore, it is very easy to track memory leaks. If we
forget to return objects back to the pool, then in due course of time the pool
will become empty. We can then throw an exception, and let the programmer
know that this is an unforeseen condition and is most likely caused by a memory
leak. The programmer must have forgotten to return objects back to the pool.

To initialize the pool, the programmer should have some idea about the

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/pid_namespace.h#L19

85 © Smruti R. Sarangi

maximum number of instances of objects that may be active at any given point
of time. After adding a safety margin, the programmer needs to initialize the
pool and then use it accordingly. In general, it is not expected that the pool
will become empty because as discussed earlier it will lead to memory leaks.
However, there could be legitimate reasons for this to happen such as a wrong
initial estimate. In such cases, one of the options is to automatically enlarge
the pool size up till a certain limit. Note that a pool can store only one kind
of objects. In almost all cases, it cannot contain two different types of objects.
Sometimes exceptions to this rule are made if the objects are of the same size.

Next, we store the level field that indicates the level of the namespace.
Recall that namespaces are stored in a hierarchical fashion. This is why, every
namespace has a parent field.

Listing 3.7: The struct pid

source : include/linux/pid.h#L54

struct upid {

int nr; /* pid number */

struct pid_namespace *ns; /* namespace pointer */

};

struct pid

{

refcount_t count;

unsigned int level;

/* lists of tasks that use this pid */

struct hlist_head tasks[PIDTYPE_MAX]; /* A task group */

/* Array of upids , one per level */

struct upid numbers [];

};

Let us now look at the code of struct pid in Listing 3.7. As discussed
earlier, often there is a need to store additional information regarding a process,
which may be used after the pid has been reused, and the process has terminated.
The count field refers to the number of resources that are using the process.
Ideally, it should be 0 when the process is freed. Also, every process has a
default level, which is captured by the level field. This is the level of its
original namespace.

The linked list tasks stores several lists of tasks. Note that hlist head

points to a linked list (singly-linked). It has several members. The most impor-
tant members are as follows:

• tasks[PIDTYPE TGID] (list of processes in the thread group)

• tasks[PIDTYPE PGID] (list of processes in the process group)

• tasks[PIDTYPE SID] (list of processes in the session)

We have already looked at a thread group. A process group is a set of
processes that are all started from the same shell command. For example, if we
start an instance of the Chrome browser, and it starts a set of processes, they

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/pid.h#L54

© Smruti R. Sarangi 86

are all a part of the same process group. If the user presses Ctrl+C on the shell
then the Chrome browser process and all its child processes get terminated. A
session consists of a set of process groups. For example, all the processes created
by the login shell are a part of the same session.

Point 3.1.5

A process may belong to a thread group. Each thread group has a thread
group id, which is the pid of the leader process. A collection of processes
and thread groups is referred to as a process group. All of them can be
sent SIGINT (Ctrl+C) and SIGTST (Ctrl+z) signals from the shell. It
is possible to terminate all of them in one go. A collection of process
groups form a session. For example, all the processes started by the same
login shell are a part of the same session.

The last field numbers is very interesting. It is an array of struct upid

data structures (defined in Listing 3.7). Each struct upid is a tuple of the pid
number and a pointer to the namespace. Recall that we had said that a pid
number makes sense in only a given namespace. In other ancestral namespaces,
the same process (identified with struct pid) can have a different process id
number (pid value). Given that every process needs to also be listed in all
ancestral namespaces, there is a need to store such ⟨pid,namespace⟩ tuples –
one for each namespace.

IDR Tree

Each namespace has a data structure called an IDR tree (struct idr). IDR
stands for “ID Radix” We can think of the IDR tree as an augmented version
of the classical radix tree. Its nodes are annotated with additional information,
which allow it to function as an augmented tree as well. Its default operation
is to work like a hash table, where the key is the pid number and the value
is the pid structure. This function is very easily realized by a classical radix
tree. However, the IDR tree can do much more in terms of finding the lowest
unallocated pid. This functionality is normally provided by an augmented tree
(see Appendix C). The IDR tree is a beneficial combination of a radix tree and
an augmented tree. It can thus be used for mapping pids to pid structures and
for finding the lowest unallocated pid number in a namespace in logarithmic
time.

A node in the IDR tree is an xa node, which typically contains an array of
64 pointers. Each entry can either point to another internal node (xa node) or
an object such a struct pid. In the former case, we are considering internal
nodes in the augmented tree. The contiguous key space assigned to each subtree
is split into non-overlapping regions and assigned to each child node. The leaves
are the values stored in the tree. They are the objects stored in the tree (values
in the key-value pairs). We reach an object (leaf node) by traversing a path
based on the digits in the key.

Let us explain the method to perform a key lookup using the IDR tree.
We start from the most significant MSB bits of the pid, and gradually proceed
towards the LSB bit. This ensures that the leaves of the tree that correspond to
unique pids are in sorted order if we traverse the tree using a preorder traversal.

87 © Smruti R. Sarangi

Each leaf (struct pid) corresponds to a valid pid.

Definition 3.1.1 IDR Tree

An IDR tree is a key-value storage structure, where the key is the pid
number and the value is its corresponding struct pid. The values are
stored in the leaves of the tree. It is a combination of a radix tree and
an augmented tree.

Using the IDR Tree as an Augmented Tree
Each xa node in the IDR tree stores a bit vector (marks) and an array of pointers
(slots). Typically, both have 64 entries each. If the ith bit is 1 in the bit vector,
then the ith subtree has a free entry: unallocated pid in its assigned range. If it
is 0, then it means that the ith subtree does not have any unallocated pids. The
advantage of such augmented trees is that the entire subtree can be skipped if
it does not have any free entries.

Let us explain with an example shown in Figure 3.6. Assume there are five
allocated pids: 0, 1, 3, 4 and 7. Their binary representations are 000, 001, 011,
100 and 111, respectively. Given that we start from the most significant bit, we
can create a radix tree as shown in Figure 3.6. The internal nodes are shown as
ovals and the leaf nodes corresponding to struct pids are shown as rectangles.

pidsfree

free
free

0

0

1

101

0: 000
1: 001
3: 011
4: 100
7: 111

IDR Tree

alloc free

11

free

0

free

1

struct pids

Has a free
entry

1 00 0 0 1 1 0

0 1 1 1

1 1

Figure 3.6: Example of an IDR tree

Trivia 3.1.1

It is important to note that we do not store a bit vector explicitly at one
place. The bit vector is distributed across all the internal nodes at the
second-last level. Nodes at this level point to the leaves.

Scanning every bit sequentially in the bit vector marks stored in an xa node

can take a lot of time (refer to Figure 3.7). If it is a 64-bit wide field, we need

© Smruti R. Sarangi 88

xa_node

slots

marks

pointers to
xa_nodes or
pid_structs

Figure 3.7: The slots and marks arrays in an xa node

to run a for loop that has 64 iterations. Fortunately, on x86 machines, there
is an instruction called bsf (bit scan forward) that returns the position of the
first (least significant) 1. This is a very fast hardware instruction that executes
in 2-3 cycles. The kernel uses this instruction to almost instantaneously find
the location of the first 1 bit (free bit).

Once a free bit is found, it is set to 0, and the corresponding pid number
is deemed to be allocated. This is equivalent to converting a 1 to a 0 in a
augmented tree (see Appendix C). There is a need to traverse the path from the
leaf to the root and change the status of nodes accordingly. Similarly, when a
pid is deallocated, we convert the corresponding bit from 0 to 1, and appropriate
changes are made to the nodes in the path from the leaf to the root.

Allocating a pid Structure

Let us now look at the process of allocating and registering a new process id.
We start with invoking the alloc pid function defined in kernel/pid.c. The
first step is to find a free struct pid structure from the pool of pid structures.
This is always the method of choice because it is very fast and a pool also helps
detect memory leaks. There is no additional overhead of malloc calls.

The next step is to allocate a pid number in each namespace that the process
is a part of. This includes its default namespace as well as all ancestral names-
paces. The idea is that a namespace can potentially see all the processes in its
descendant namespaces. However, the reverse is not possible. Hence, there is
a need to visit all ancestral namespaces, access their respective IDR trees, find
the smallest unallocated pid number, and then create a mapping between the
pid number and the newly allocated pid structure. Note that a pid number is
only defined within its namespace, not in any other namespace. Hence, there is
a need to iteratively visit every ancestral namespace and make an entry in its
respective IDR tree.

3.1.13 File System, I/O and Debugging Fields

A file is a contiguous array of bytes that is stored on a storage device such as a
hard disk or a flash drive. Files can have different formats. For example, video
files (.mp4) look very different from Word documents (.docx). However, for the
operating system, a file is simply an array of bytes. There are different kinds
of file systems. They organize their constituent files and directories differently
based on considerations such as read-write patterns, sequential vs random ac-
cesses, need for reliability, and so on. At the task level, all that is needed is a
generic handle to a file system and a list of open files.

https://elixir.bootlin.com/linux/v6.2.12/source/kernel/pid.c

89 © Smruti R. Sarangi

Along with that, we also need to understand that the file system is typically
coupled with a storage device. Linux defines most storage devices like hard disks
and flash drives to be block-level storage devices – their atomic storage units
are blocks (512 B to 4 KB). It is necessary to also maintain some information
regarding the I/O requests that have been sent to different block devices. Linux
also defines character devices such as the keyboard and mouse that typically
send a single character (a few bytes) at a time. Whenever, some I/O operation
completes or a character device sends some data, it is necessary to call a signal
handler. Recall, that a signal is a message sent from the operating system to
a task. The signal handler is a specialized function that is registered with the
kernel.

The fields that store all this information in the task struct are as follows.

Listing 3.8: I/O and signal-handling fields in task struct

/* Pointer to the file system */

struct fs_struct *fs;

/* List of files opened by the process */

struct files_struct *files;

/* List of registered signal handlers */

struct signal_struct *signal;

/* Information about block devices. bio stands for block

I/O*/

struct bio_list *bio_list;

/* I/O device context */

struct io_context *io_context;

The PTrace Mechanism

There is often a need for a parent process to observe and control the execution of
a child process. This needs to be done for debugging purposes. However, there
are other security-related applications also. In many cases, especially when we
do not trust the child process, it is necessary to keep a tab on its activity and
ensure that from a security point of view everything is alright – the child process
is not doing something that it is not supposed to do. This mechanism is known
as tracing.

In this mechanism, a process can be traced by another process (the tracing
process). The task struct has a field called unsigned int ptrace. The flags
in this field define the kind of tracing that is allowed.

The general idea is as follows. Whenever there is an event of interest such as
a system call, then the task stops and a SIGTRAP signal is sent to the tracing
process. We are quite concerned about system calls because this is the primary
mechanism by which a process interacts with the operating system. If a user’s
intent is malicious, then this will manifest via potentially erroneous or mala fide
system calls. As a result, it is important to thoroughly scrutinize the interaction
of a process with the kernel.

In this case, the tracing process runs the SIGTRAP signal handler. In the
signal handler, it inspects the state of the traced process (it has the permission

© Smruti R. Sarangi 90

to do so) and looks at all the system call parameters. At this stage, it is also
possible to change the system call parameters. This is especially interesting
when we are trying to put in additional information for the purposes of debug-
ging. Also, sometimes we would like to send specific information to the kernel
such that it can track the information flow emanating from a traced process
much better. This is why, modifying system call arguments can be very use-
ful. Furthermore, if system calls can potentially do something malicious, then
it makes a lot of sense to create more innocuous forms of them such that their
potential to do damage is limited.

3.2 Process Creation and Destruction

The notion of creation and destruction of threads, processes and tasks is vital to
the execution of any system. There needs to be a seamless mechanism to create
and destroy processes. The approach that Linux takes may seem unconven-
tional, but it is a standard approach in all Unix-like operating systems. There
are historical reasons and over time programmers have learned how to lever-
age it to design efficient systems. Other operating systems like Windows use
other mechanisms. This model is simple and is also intuitive, once understood
properly.

The kernel defines a few special processes notably the idle process that does
nothing and the init process. At the outset, the kernel starts a single process to
boot the operating system. Once booting is done, this booting process becomes
the idle process (also known as the swapper). Its pid is 0. It spawns the init
process that starts as a kernel process. init transitions to the user mode and
spends the rest of its life as a user process. Its pid is 1. It acts as the mother
process of all user space processes. Its role is to spawn all user-level processes.
Recall that processes are arranged as a tree. In this case, init is the root of the
tree that comprises all user space processes. Its parent is the idle process. The
idle process spawns another process called kthreadd (pid = 2), which acts like
the mother process for all kernel threads. A kernel thread exclusively does work
for the kernel. It never transitions to user mode. kthreadd is the root of the tree
that comprises all kernel processes.

3.2.1 The Fork Mechanism

The fork system call is arguably the most famous in this space. It creates a
clone of a running process at the point that it is called. Its role is to create a
straightforward copy of the running process, which involves copying its entire
memory and runtime state. The process that executed the fork call is hence-
forth the parent process, and the process that was created as a result of the call
becomes its child. The child inherits a copy of the parent’s complete memory
and execution state. A twin of the parent is created. We need to note that
after returning from the fork call, the parent and the newly created child are
separate entities. They do not share any resources, and the two processes are
free to go their separate ways. For all practical purposes, they are separate
processes and are free to choose their execution paths. Right after the fork

call, their memory spaces just happen to be exact copies of each other and their
program counters have the same values. Note that they have separate virtual

91 © Smruti R. Sarangi

and physical address spaces, and never share frames that any processes writes
to (after the fork call).

Before we delve more into the details of the fork system call, let us re-
visit the init process. The systems boots by calling the function start kernel

(defined in init/main.c). Its job is to initialize the kernel as well as all the
connected devices. Think of it as the kernel’s main function. After doing its
job, it forks the init process. The init process thus begins its life inside the ker-
nel. However, it quickly transitions to the user mode and remains a user-mode
process subsequently. This is achieved using another kernel mechanism (system
call) known as execve, which we shall discuss later. This is a rare instance of a
process being born in the kernel and living its life as a regular user-mode pro-
cess. Subsequently, every user-mode process is born (created) by either forking
the init process or another user process. Note that we are pretty much creating
a tree of processes that is rooted at the init process.

Once the init process has been created, and all the necessary user-level pro-
cesses and kthreadd have been created, the boot process ends. We can then
interact with the system and launch applications. Note that all processes are
created using exactly the same mechanism. Some process that has already been
created is forked to create an application process. After creation, a child process
is not bound to use the state that it copied from its parent or execute the same
code. It is an independent process and it is free to execute any piece of code,
as long as it has the requisite permissions.

Listing 3.9: Example of the fork system call

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4

5 int main(void) {

6 int pid = fork();

7

8 if (pid == 0) {

9 printf("I am the child \n");

10 } else {

11 printf("I am the parent: child = %d\n", pid);

12 }

13 }

An example of using the fork system call is shown in Listing 3.9. Here, the
fork library recall is used that encapsulates the fork system call. The fork

library call returns a process id (variable pid in the code) after creating the
child process.

It is clear that inside the code of the forking procedure, a new process is
created, which is a child of the parent process that made the fork call. It is a
perfect copy of the parent process. It inherits the parent’s code as well as its
memory state. In this case, inheriting means that all the memory regions and
the state are fully copied and the copy is assigned to the child. For example, if
a variable x is defined to be 7 in the code before executing the fork call, then
after the call is over and the child is created, both of the processes can read x.
They will see its value to be 7. However, there is a point to note here. The
variable x is different for both the processes even though it has the same value,

https://elixir.bootlin.com/linux/v6.2.12/source/init/main.c

© Smruti R. Sarangi 92

i.e., 7. This means that if the parent changes x to 19, the child will still read
it to be 7 because it has its own private copy of x. We need to appreciate that
the child gets a copy of the value of x, not a reference to the parent’s x variable.
Even though the name x is the same across the two processes, the variables
themselves are different.

Now that we have clarified the meaning of copying the entire memory space,
let us look at the return value. Both the child and the parent will return from
the fork call. The weird part of the whole story is that the child process will
appear to return from the fork call even though it did not invoke it. It clearly
did not exist when the fork call was invoked. Regardless of this small non-
intuitive anomaly, the child will “appear” to return from the fork call. This is
the fun and tricky part. When the child is created deep in the kernel’s process-
cloning logic, a complete task struct along with all of its accompanying data
structures is created. The memory space is fully copied including the register
state and the value of the return address. The state of the task is also fully
copied. Since all the addresses are virtual, creating a copy does not hamper
correctness. Insofar as the child process is concerned, all the addresses that it
needs are a part of its address space. It is, at this point of time, indistinguishable
from the parent. The same way that the parent will eventually return from the
fork call, the child also will. The child will get the return address from either
the register or the stack (depending upon the architecture). This return address,
which is virtual, will be in its own address space. Given that the code is fully
copied, the child will place the return value in its private variable pid and start
executing Line 8 in Listing 3.9. Also refer to Figure 3.8.

Original
process

Child process

fork()

Create a
copy

child's
 pid

0

Figure 3.8: Forking a child process

Herein lies the brilliance of this mechanism – the parent and child are re-
turned different values.

Point 3.2.1

The child is returned 0 and the parent is returned the pid of the child.

93 © Smruti R. Sarangi

This part is crucial because it helps the rest of the code differentiate between
the parent and the child. A process knows whether it is the parent process or
the child process from the return value: 0 for the child and the child’s pid for
the parent. Subsequently, the child and parent go their separate ways. Based
on the return value of the fork call, the if statement is used to differentiate
between the child and parent. Both can execute arbitrary code beyond this
point and their behavior can completely diverge. In fact, we shall see that the
child can completely replace its memory map and execute some other binary.
However, before we go that far, let us look at how the address space of one
process is completely copied. This is known as the copy-on-write mechanism.

Copy-on-Write

Parent Child

Page

Parent Child

Page Page

(a) Parent and child sharing a page

(b) Separate mappings after a copy-on-write

Page table Page table

Figure 3.9: The copy-on-write mechanism

Figure 3.9(a) shows the copy-on-write (CoW) mechanism. To begin with, we
just copy the page tables. The child inherits a complete copy of the parent’s page
table even though it has a different address space. This mechanism ensures that
the same virtual address in both the child and parent’s virtual address spaces
points to the same physical address. No memory is wasted in the copying process
and the size of the memory footprint remains exactly the same. This is a fast
mechanism. Copying the page table implies copying the entire memory space
including the text, data, bss, stack and heap sections. Other than the return
value of the fork call, nothing else differentiates the child and parent. Note

© Smruti R. Sarangi 94

that this is an implementation hack that just makes the fork process fast. As
long as there are no write operations after the fork call, this mechanism will
work. Since we are only performing read operations, we are only interested in
getting the correct values – the same will be obtained. However, the moment
there is a write operation, initiated by either the parent or the child after the
fork operation, some additional work needs to be done.

Let us understand our constraints. We do not share any variables between
the parent and the child. As we have discussed earlier, if a variable x is de-
fined before the fork call, after the call it actually becomes two variables: x in
the parent’s address space and x in the child’s address space. This cannot be
achieved by just copying the page table of the parent. We clearly need to do
more if there is a write.

This part is shown in Figure 3.9(b). Whenever there is a write operation
that is initiated by the parent or the child, we create a new copy of the data
for the writing process. This is done at the page level. This means that a
new physical copy of the frame is created and mapped to the respective virtual
address space. This requires changes in the TLB and page table of the writing
process. The child and parent now have different mappings in their TLBs and
page tables. The virtual addresses that were written to now point to different
physical addresses. Assume that the child initiated the write, then it gets a new
copy of the frame and appropriate changes are made to its TLB and page table
to reflect the new mapping. Subsequently, the write operation is realized. To
summarize, the child writes to its “private” copy of the page. This write is not
visible to the parent.

As the name suggests, this is a copy-on-write mechanism where the child
and parent continue to use the same physical page (frame) until there is a write
operation initiated by either one. This approach can easily be realized by just
copying the page table, which is a very fast operation. The moment there is a
write, there is a need to create a new copy of the corresponding frame, assign
it to the writing process, and then proceed with the write operation. This
increases the performance overheads when it comes to the first write operation
after a fork call; however, a lot of this overhead gets amortized and is seldom
visible.

There are several reasons for this. The first is that the parent and child
may not subsequently write to a large part of the memory space such as the
code and data sections. In this case, the copy-on-write mechanism will never
get activated. The child may end up overwriting its memory image with that of
another binary and this will end up erasing its entire memory map. There will
thus be no need to invoke the CoW mechanism. Furthermore, lazily creating
copies of frames as and when there is a demand, distributes the overheads over
a long period of time. Most applications can absorb this overhead very easily.
Hence, the fork mechanism has withstood the test of time.

Tracking Page Accesses

A question that naturally arises here is how do we know if a page has been
written to? We need to cleverly use the permission bits in the TLB and page
table. Recall that every TLB or page table entry has a few permission bits that
specify whether the page can be written to or not. In this case, we mark all the
pages as read-only (after a fork operation). Whenever there is a write access,

95 © Smruti R. Sarangi

a fault will be generated, which the kernel can detect. The kernel will quickly
detect that it is a fake page fault that was deliberately induced to track page
accesses. It is a page protection fault, which arose because pages’ protection
bits were set to read-only. There is a need to perform a copy-on-write and reset
the read-only status for both the parent’s and child’s versions of the page.

Let us now delve into the fine print. It is possible that the parent process
already has some pages such as code pages, which are meant to be always
read-only. Their READONLY bit would have been set even before the fork call.
This information needs to be preserved, otherwise we may erroneously reset the
read-only status of such pages on a copy-on-write. Hence, modern systems have
another bit, which we shall refer to as P2. Whenever a process is forked, we set
the value of P2 to 1 for all the pages that belong to either the parent or the
child. This bit is set in the page tables.

Whenever, a process tries to write to a page whose READONLY bit is set to
0 (can write in normal circumstances) and P2 is set to 1, we realize that we
are trying to write to a page that has been “copied”. This page was normally
meant to be written because its READONLY bit is not set. However, its P2 bit was
set because we wish to trap all write accesses to this page. Hence, the copy-
on-write mechanism needs to be invoked and a new copy of the page needs to
be created. Subsequently, we can set the P2 bits of the corresponding pages in
both the parent’s and child’s page tables to 0. The need to track write accesses
for this page is not there anymore. A separate copy has already been created
and the parent and child can happily perform read and write operations on their
respective private copies of the page.

Details

We would like to draw the reader’s attention to the file in the kernel that lists
all the supported system calls: include/linux/syscalls.h. It has a long list of
system calls. However, the system calls of our interest are clone and vfork.
The clone system call is the preferred mechanism to create a new process or
thread in a thread group. It is extremely flexible and takes a wide variety of
arguments. However, the vfork call is optimized for the case when the child
process immediately makes an exec call to replace its memory image. In this
case, there is no need to fully initialize the child and copy the page tables of the
parent. Finally, note that in a multithreaded process (thread group), only the
calling thread is forked.

Inside the kernel, all of these functions ultimately end up calling the copy process

function in kernel/fork.c. While forking a process the vfork call is preferred,
whereas while creating a new thread, the clone call is preferred. The latter
allows the caller to accurately indicate which memory regions need to be shared
with the child and which memory regions need to be kept private. The signature
of the copy process function is as follows:

struct task struct* copy process (struct pid* pid, ...)

Here, the ellipses . . . indicate that there are more arguments, which we are
not specifying for the sake of readability. The main tasks that are involved in
copying a process are as follows:

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/syscalls.h
https://elixir.bootlin.com/linux/v6.2.12/source/kernel/fork.c

© Smruti R. Sarangi 96

1. Duplicate the current task struct.

(a) Create new task and its accompanying task struct.

(b) Set up its kernel stack.

(c) Duplicate the complete architectural state, which includes pushing
the state of all the registers (general purpose, privileged and flags)
to the kernel stack.

(d) Add all the other bookkeeping information to the newly created
task struct.

(e) Set the time that the new task has run to zero.

(f) Assign this task to a CPU, which means that when the task is fully
initialized, it can run on the CPU that it was assigned to.

(g) Allocate a new pid for the child task in its namespace, and also its
ancestral namespaces.

2. Copy all the information about open files, network connections, I/O, and
other resources from the parent task.

(a) Copy all the connections to open files. This means that from now
on the parent and child can access the same open file (unless it is
exclusively locked by the parent).

(b) Copy a reference to the current file system.

(c) Copy all information regarding signal handlers to the child.

(d) Copy the page table and other memory-related information (the com-
plete struct mm struct).

(e) Recreate all namespace memberships and copy all the I/O permis-
sions. By default, the child has the same level of permissions as the
parent.

3. Create external relationships:

(a) Add the new child task to the list of children of the parent task.

(b) Fix the parent and sibling list of the newly added child task.

(c) Add thread group, process group and session information to the child
task’s struct pid.

3.2.2 The exec Family of System Calls

It is important to note that after returning from a fork operation, the child and
parent process are independent entities – they can go their separate ways. For
example, the child may decide to completely reset its execution state and start
executing a new binary, afresh and anew. This is typically the case with many
user-level processes. When we issue a command on the command line, the shell
process forks and creates a child process. The shell is basically the program
that we interact with in a terminal. It accepts user inputs and starts executing
a binary specified in the command. In this case, the forked shell process decides
to run the binary and replaces its memory map with the memory map of the
binary that needs to be executed. This is like starting a new execution afresh.

97 © Smruti R. Sarangi

Listing 3.10: Example of the execv system call

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4

5 #define PWDPATH "/usr/bin/pwd"

6

7 int main(void) {

8 char *argv [2] = {"pwd",NULL};

9 int pid = fork();

10

11 if (pid == 0) {

12 execv (PWDPATH ,argv);

13 } else {

14 printf("I am the parent: child = %d\n", pid);

15 }

16 }

The exec family of system calls are used to achieve this. In Listing 3.10,
an example is shown where the child process runs the execv library call. Its
arguments are a null-terminated string representing the path of the executable
and an array of arguments. The first argument is by default the file name – pwd

in this case. The next few arguments should be the command-line arguments to
the executable and the last argument needs to be NULL. Since we do not have
any arguments, our second argument is NULL. There are many library calls in
the exec family. All of them wrap the exec system call.

There are many steps involved in this process. The first action is to clean
up the memory space (memory map) of a process and reinitialize all the data
structures. We need to then load the starting state of the new binary in the
process’s memory map. This includes the contents of the text and data sections.
Then there is a need to initialize the stack and heap sections, and set the starting
value of the stack pointer. In general, file and network connections are preserved
in an exec call. Hence, there is no need to modify, cleanup or reinitialize them.
After the exec call returns, we can start executing the process from the start of
its new text section. We are basically starting the execution of a new program.
The fact that we started from a forked process is conveniently forgotten. This
is the Linux way.

3.2.3 Kernel Threads

Linux distinguishes between user threads, I/O threads, and kernel threads.
The term “user thread” has two connotations. The first connotation is that

it is a regular process that starts its life in user mode. Whenever it executes a
system call or its context is switched because of an interrupt, it transitions to
kernel mode. Note that no additional kernel thread is spawned. The same user
thread is reused to do kernel work. Its state in its task struct is changed to
indicate that it is a kernel thread. There is a need to ensure that whatever data
it reads or writes in kernel mode is not accessible when the thread transitions
back to user mode. Two steps are taken to ensure this. The first is that
in kernel mode, it is assigned a separate kernel stack, which is stored in the
kernel’s virtual address space. The user thread in its kernel avatar can access

© Smruti R. Sarangi 98

data in its user-mode virtual address space and can also access data in the
kernel’s virtual address space. The next step is that the kernel’s virtual address
is kept separate. For example, on a 32-bit system the lower 3 GB of the virtual
address space is reserved for user programs and the upper 1 GB represents the
kernel’s virtual address space. All kernel-level data structures including the
kernel stacks are stored in this upper 1 GB. Unless a kernel thread is explicitly
accessing user space, it accesses data structures only in kernel space. No user
thread can access kernel virtual memory. It will be immediately stopped by
the TLB. The TLB will quickly realize that a user process wishes to access a
kernel page. This information is stored in each TLB entry. Hence, processes can
keep transitioning from user mode to kernel mode, and vice versa, repeatedly,
without revealing kernel data to the user, unless the information is the return
value of a system call.

The other type of “user threads” are not real threads. They are purely
user-level entities that are created, managed and destroyed in user space. This
means that a single process (recognized by the kernel) can create and manage
multiple user threads. This could also be a multithreaded process. Regardless of
its implementation, we need to note that a single group of threads manage user
threads that could be far more numerous. Consider the case of a single-threaded
process P that creates multiple user threads. It partitions its virtual address
space and assigns dedicated memory regions to each created user thread. Each
such user thread is given its own stack. Process P also creates a heap that is
shared between all user threads. We need to understand that the kernel still
perceives a single process P . If P is suspended, then all the user threads are also
suspended. This mechanism is clearly not as flexible as native threads that are
recognized by the kernel. It is hard to pause processes, collect their context and
restore the same context later. However, user-threading libraries have become
mature. It is possible to simulate much of kernel’s activities such as timer
interrupts and context collection using signal handlers, kernel-level timers and
bespoke assembly routines. We shall use the term pure-user threads to refer to
this type of threads, which are not recognized by the kernel.

Let us now look at I/O threads and kernel threads. We need to understand
that Linux has a single task struct and all threads are just processes. We do
not have different task structs for different kinds of threads. A task struct

however has different fields that determine its behavior. Every task has a priority
and it can be a specialized task that only does kernel work. Let us look at such
variations.

I/O threads are reasonably low-priority threads that are dedicated to I/O
tasks. They can be in the kernel space or run exclusively in user space. Kernel
threads run with kernel permissions and are often very high-priority threads.
The PF KTHREAD bit is set in task struct.flags if a task is a kernel thread.
Kernel threads exclusively do kernel work and do not transition to user mode.
Linux defines analogous functions such as kthread create and kernel clone

to create and clone kernel threads, respectively. They are primarily used for
implementing all kinds of bookkeeping tasks, timers, interrupt handlers and
device drivers.

99 © Smruti R. Sarangi

3.3 Context Switching

Let us now delve into the internals of the context switch process. The process of
switching the context, i.e., suspending a running process, handling the interrupt
or event that caused the process to be suspended, invoking the scheduler and
loading the context of the process that the scheduler chose is a very involved
process. We can end up resuming the process that was paused, or we may end
up waking up another process. In either case, the core algorithm is the same.

3.3.1 Hardware Context

We need to start with understanding that every process has its hardware con-
text. This basically means that it has a certain state in hardware, which is
contained in the registers, the program counter, ALU flags, etc. All of these
need to be correctly saved such that the same process can be restarted later
without the process even knowing that it was swapped out. This means that we
need to have a very accurate mechanism to save and restore all this information.
No errors are tolerable. In the context of x86-64, let us understand the term
hardware context in some more detail. It specifically contains the contents of
the following hardware entities:

1. All the general-purpose registers including the stack pointer

2. Program counter (instruction pointer in x86)

3. Segment registers

4. Privileged registers such as CR3 (starting address of the page table)

5. ALU and floating-point unit flags

There are many other minor components of the hardware context in a large
and complex processor like an x86-64 machine. We have listed the main com-
ponents for the sake of readability. The key point that we need to note is that
this context needs to be correctly stored and subsequently restored.

Let us focus on the TLB now and understand the role it plays in the con-
text switch process. It stores the most frequently (or recently) used virtual-to-
physical mappings. There is a need to flush the TLB when the process changes,
because the new process will have a new virtual memory map. We do not want
it to use the mappings of the previous process. They will be incorrect and this
will also be a serious security hazard because now the new process can access
the memory space of the older process. Hence, once a process is swapped out,
at least no other user-level process should have access to its TLB contents.
An easy solution is to flush the TLB upon a context switch. However, as we
shall see later, there is a more optimized solution, which allows us to append
the pid number to each TLB entry. This does not require the system to flush
the TLB upon a context switch, which is a very expensive solution in terms of
performance. Every process should use its own mappings. Because of the pid
information that is present, a process cannot access the mappings of any other
process. This mechanism (enforced by hardware) reduces the number of TLB
misses. As a result, there is a net performance improvement.

© Smruti R. Sarangi 100

Software Context

The page table, open file and network connections and the details of similar
resources that a process uses are a part of its software context. This information
is maintained in the process’s task struct. There is no need to store and restore
this information upon a context switch – it can always be retrieved from the
task struct.

The structure of the page table is quite interesting if we consider the space of
both user and kernel threads. The virtual address space of any process is typi-
cally split between user space addresses and kernel addresses. On x86 machines,
the kernel addresses are located at the higher part of the virtual address range.
The user space addresses are at the lower end of the virtual address range. Sec-
ond, note that all the kernel threads share their virtual address space. This
means that across processes, the mappings of kernel virtual addresses are iden-
tical. This situation is depicted in Figure 3.10. It helps to underscore the fact
that the virtual address spaces of all user processes are different. This means
that across user processes, the same virtual address maps to different physical
addresses unless they correspond to a shared memory channel. However, this is
not the case for the kernel region. Here, the same virtual address maps to the
same physical address regardless of the user process. For kernel threads that
exclusively run in kernel mode, they do not use any user space virtual address.
They only use kernel space virtual addresses at the upper end of the virtual
address space. They also follow the same rule – all kernel space mappings are
identical across all processes.

User space

Kernel space

User space

Kernel space

User space

Kernel space

Different virtual address spaces

Identical mappings

Figure 3.10: User and kernel space virtual addresses

Figure 3.10 shows that a large part of the virtual address spaces of processes
have identical mappings. Hence, a part of the page table will also be common
across all processes due to such identical mappings. This “kernel portion” of
the page table will not change even if there is a transition from one process to
another, even though the page tables themselves may change. The mappings
that stand to change on a context switch are in the portion corresponding to
user space addresses.

101 © Smruti R. Sarangi

Point 3.3.1

The page table needs to be changed only when the user space virtual
address mappings change. If there is a switch between kernel threads,
there is no need to change the page table because the kernel virtual
address space is the same for all kernel threads. There is no need to
change the page table even if there is a transition from user mode to
kernel mode. The kernel space mappings will remain the same.

Way Point 3.3.1

• The virtual address space of any process is split between user and
kernel addresses.

• All kernel threads share the virtual address space.

• The kernel portion of the virtual address space has identical map-
pings across all processes. A kernel virtual address always maps
to the same physical address. This is quite unlike user space vir-
tual addresses, where the same virtual address typically maps to
different physical addresses across processes.

• Because the kernel space mappings are identical, there is of-
ten no need to change page tables on context switches (refer to
Point 3.3.1).

3.3.2 Types of Context Switches

There are three types of context switches.

1. Process context switch

2. Thread context switch

3. Interrupt context switch

Process Context Switch

This is a regular context switch between processes: user or kernel. Specifically,
four subtypes can be defined: kernel → kernel, kernel → user, user → kernel
and user→ user. As we have discussed earlier, a context switch can be triggered
by three events of interest namely an interrupt, an exception or a system call.
Additionally, we have a method of generating dummy interrupts using a timer
chip because the kernel needs to execute periodically. If genuine interrupts,
exceptions and system calls are not being made, there is a need to generate fake
interrupts such that at least the kernel gets a chance to periodically run and do
its job. After handling the event of interest, the kernel runs the scheduler. Its
role is to decide whether the currently executing task has run for a long time or
not, and if there is a need to suspend it and give the CPU to another task.

Whenever such an event of interest arrives, the hardware takes over and does
a minimal amount of context saving. Then based on the nature of the event, it

© Smruti R. Sarangi 102

calls the appropriate handler. If we consider the case of a timer interrupt, then
the reason for the kernel’s invocation is not very serious – it is a routine matter.
In this case, there is no need to create an additional kernel thread that is tasked
to continue the process of saving the context of the user-level thread that was
executing. As discussed earlier, we can reuse the same user-level thread that
was interrupted. Specifically, the same task struct can be used, and the user
thread can simply be run in “kernel mode”. Think of this as a new avatar of the
same thread, which has now ascended from the user plane to the kernel plane.
This saves a lot of resources as well as time; there is no need to initialize any
new data structure or create/resume any thread here.

The job of this newly converted kernel thread is to continue the process
of storing the hardware context. This means that there is a need to collect
the values of all the registers and store them somewhere. In general, in most
architectures, the kernel stack is used to store this information. We can pretty
much treat this as a soft switch. This is because the same thread is being reused.
Its status just gets changed – it temporarily becomes a kernel thread and starts
executing kernel code (not a part of the original binary though). Also, it now
uses its kernel stack. Recall that the user-level stack cannot be used in kernel
mode. This method is clearly performance-enhancing and is very lightweight in
character. Let us now answer two key questions.

Is there a need to flush the TLB?
There is only a need to flush the TLB when the mappings change. This will
only happen if the user-mode virtual address space changes (see Point 3.3.1).
There is no need to flush the TLB if there is a user→kernel or kernel→kernel
transition – the kernel part of the address space remains the same. Now, if we
append the pid to each TLB entry, there is no need to remove TLB entries if
the user space process changes.

Is there a need to change the page table?
The answer to this question is the same as the previous one. Whenever we
are transitioning from user mode to kernel mode, there is no need to change
the page table. The kernel space mappings are all that are needed in kernel
mode, and they are identical for all kernel threads. Similarly, while switching
between kernel threads, there is also no need. A need arises to switch the page
table when we are transitioning from kernel mode to user mode, and that too
not all the time. If we are switching back to the same user process that was
interrupted, then also there is no need because the same page table will be used
once again. We did not switch it while entering kernel mode. A need to switch
the page table arises if the scheduler decides to run some other user task. In
this case, it will have different user space mappings, and thus the page table
needs to be changed.

Point 3.3.2

Because the kernel’s virtual address space is the same for all kernel
threads, there is often no need to switch the page table upon a context
switch. For example, while switching from user mode to kernel mode,
there is no need to switch the page table. A need only arises when we
are running a new user task, where the user space mappings change.

103 © Smruti R. Sarangi

Thread Context Switch

As we have discussed earlier, for the Linux kernel, especially its scheduler, the
basic unit of scheduling is a task, which is a single thread. It is true that the
kernel supports the notion of a thread group, however all major scheduling
decisions are taken at the level of tasks, i.e., single threads of execution.

Point 3.3.3

A task is the atomic unit of scheduling in the kernel.

Let us now come to the problem of switching between threads that belong
to the same thread group. This should, in principle, be a more lightweight
mechanism than switching between unrelated processes. There should be a way
to optimize this process from the point of view of performance and total effort.
The Linux kernel supports this notion.

Up till now we have maintained that each thread has its dedicated stack
and TLS region. Here, TLS stands for Thread Local Storage. It is a private
storage area for each thread. Given that we do not want to flush the TLB or
switch the page table, we can do something very interesting. We can mandate
all threads to actually use the same virtual address space like kernel threads.
This is a reasonable decision for all memory regions other than the stack and
the TLS region. Here, we can adopt the same solution as kernel threads and
pure-user threads (see Section 3.2.3). We simply use the same virtual address
space and assign different stack pointers to different stacks. This means that all
the stacks are stored in the same virtual address space. They are just stored in
different regions. We just have to ensure that the spacing between them is large
enough in the virtual address space to ensure that one stack does not overflow
and overwrite the contents of another stack. If this is done, then we can nicely
fit all the stacks in the same virtual address space. The same can be done for
TLS regions. On an x86 machine that supports segmentation, doing this is even
easier. We just set the value of the stack segment register to the starting address
of the stack – it is a function of the id of the currently executing thread in the
thread group. This design decision solves a lot of problems for us. There is no
need to frequently replace the contents of the CR3 register, which stores the
starting address of the page table. On x86 machines, any update to the CR3
register typically flushes the TLB also. Both are very expensive operations,
which in this case are fortunately avoided.

Point 3.3.4

In Linux, different threads in a thread group share the complete virtual
address space. The stack and TLS regions of the constituent threads are
stored at different points in this shared space.

There is however a need to store and restore the register state. This includes
the contents of all the general-purpose registers, privileged registers, the pro-
gram counter and the ALU flags. Finally, we need to set the current pointer
to the task struct of the new thread.

To summarize, this is a reasonably lightweight mechanism. Hence, many
kernels typically give preference to another thread from the same thread group

© Smruti R. Sarangi 104

as opposed to an unrelated thread.

Interrupt Context Switch

Whenever a HW interrupt from a device arrives, we need to process it quickly.
Servicing a timer interrupt is often a routine matter, however, other interrupts
especially non-maskable interrupts have much higher priorities. Moreover, in-
terrupt handlers are special because of the restrictions placed on them in terms
of their code size, need to access native hardware and the fact that they are
independent of any user thread. They are also not allowed to use locks. Never-
theless, the same trick of reusing the user thread and making it a kernel thread
is used. However, in this case, a dedicated interrupt stack is used. Recall that
in Section 3.1.5, we had mentioned that we maintain a set of interrupt stacks
per CPU. Whenever an interrupt arrives, we find a free stack and assign it to
the current thread.

Interrupt handling in Linux follows the classical top half and bottom half
paradigm. Here, the interrupt handler, which is known as the top half, does
basic interrupt processing. However, it may be the case that a lot more work
is required. This work is deferred to a later time, and is assigned to a lower-
priority thread, which is classically referred to as the bottom half. Of course,
this mechanism has become more sophisticated now; however, the basic idea is
still the same: do the high-priority work immediately and defer the low-priority
work to a later point in time. The bottom-half thread does not have the same
restrictions that the top-half thread has. It thus has access to a wider array of
features. Here also, the interrupt handler’s (top-half’s) code and variables are
in a different part of the virtual address space (not in a region that is accessible
to any user process). Hence, there is no need to flush the TLB or reload any
page table. This speeds up the context switch process.

3.3.3 Details of the Context Switch Process

Let us explain the details of the context switch process. We shall focus on
system call handlers. Interrupt and exception handlers work similarly. There
are minor differences, which we shall point out. First, understand that whenever
there is an event of interest (system call, interrupt or exception), the hardware
does a minimal amount of context saving and transfers control to the relevant
handler. At this point, there is an automatic mode change (from user mode to
kernel mode).

System Call Handlers

The context switch process is very architecture-specific. This typically involves
a fair amount of hardware support and the code needs to be written at the
assembly level. Recall that we need to explicitly store registers, ALU flags and
other machine-specific information. The code for effecting a context switch for
the x86-64 architecture can be found in arch/x86/entry/entry 64.S. The job
of the functions and macros defined in this assembly program is to store the
context of the current thread. For system calls, there is a common entry point
on all 64-bit x86 machines. It is the entry syscall 64 function. It is defined
using the SYM CODE START directive. This directive indicates that the function is

https://elixir.bootlin.com/linux/v6.2.12/source/arch/x86/entry/entry_64.S

105 © Smruti R. Sarangi

written in assembly language. Assembly language is needed because we access
individual registers, especially many privileged registers, which are known as
model-specific registers (MSR registers) in the x86-64 architecture.

Let us now look in detail at the steps involved in saving the context after a
system call is made using the syscall instruction. The initial steps are performed
automatically by hardware, and the later steps are performed by the system call
handler. Note that during the process of saving the state, interrupts are often
disabled. This is because this is a very sensitive operation, and we do not
want to be interrupted in the middle. If we allow interruptions, then the state
will be partially saved and the rest of the state will get lost. Hence, to keep
things simple it is best to disable interrupts at the beginning of this process
and enable them when the context is fully saved. Of course, this does delay
interrupt processing a little bit; however, we can be sure that the context was
saved correctly. Let us now look at the steps.

1. The hardware stores the program counter (rip register) in the register
rcx and stores the flags register rflags in r11. Before making a system
call, it is assumed that the two general purpose registers rcx and r11 do
not contain any useful data.

2. However, if there is an interrupt, then we cannot afford this luxury because
interrupts can arrive at any point of time. In this case, the hardware
needs to use MSR registers and dedicated memory regions to store the
state. Specifically, we need to be concerned about storing the values of
rip (PC), CS (code segment register) and rflags. These registers are
ephemeral and change instruction to instruction. On many x86 machines,
the hardware pushes them on to the current stack. This means that the
hardware needs to read the value of the stack pointer and update it as
well.

3. Subsequently, the software code of the interrupt handler takes over. It
invokes the swapgs instruction to store the contents of the gs segment
register in a pre-specified address (stored in an MSR). Recall that the
gs segment plays a vital role in maintaining information regarding the
current task – it stores the start of the per-CPU region.

4. Almost all x86 and x86-64 processors define a special segment in each CPU
known as the Task State Segment or TSS. The size of the TSS segment is
small, but it is used to store important information regarding the context
switch process. It was previously used to store the entire context of the
task. However, these days it is used to store a part of the overall hardware
context of a running task. On x86-64 machines, the stack pointer (rsp)
is stored on it. There is sadly no other choice. We cannot use the kernel
stack because for that we need to update the stack pointer – the old value
will get lost. We also cannot use a general-purpose register. Hence, a
separate memory region such as the TSS segment is necessary.

5. Finally, the stack of the current process can be set to the kernel stack.

6. We can now push the rest of the state to the kernel stack. This will include
the following:

© Smruti R. Sarangi 106

(a) The data segment register

(b) The stack pointer (get rsp from the TSS)

(c) r11 (flags)

(d) The code segment register

(e) rcx (program counter)

(f) The rest of the general-purpose registers

To restore the state, we need to exactly follow the reverse sequence of steps.

sysret and iret Instructions

The sysret instruction is used to return from a system call. It transfers the
contents of rcx (saved instruction pointer) to rip and r11 to rflags. For the
entire sequence of instructions, we cannot disable interrupts – the slowdowns
will be prohibitive. It is possible that an interrupt arrives between restoring
the stack pointer (rsp) and executing sysret. At some of these points, it is
possible to execute an interrupt handler using its dedicated stack (from the
interrupt stack table). There will be no correctness issue.

The iret instruction is used to return from interrupts. Specifically, it re-
stores the values of rip, the code segment register and rflags from the stack.
Note that rip is set at the end of this process. Setting the instruction pointer is
tantamount to returning from the interrupt. Given that this instruction pointer
points to a program counter in the virtual address space of the user process, we
are effectively jumping to the return address in the user process.

Finally, note that both of these instructions cause a mode change: kernel
mode to user mode.

Additional Context

Along with the conventional hardware context, there are additional parts of
the hardware context that need to be stored and restored. Because the size of
the kernel stack is limited, it is not possible to store a lot of information there.
Hence, a dedicated structure called a thread struct is defined to store all extra
and miscellaneous information. It is defined at the following link:
arch/x86/include/asm/processor.h.

Every thread has TLS regions (thread local storage). It stores variables
specific to a thread. The thread struct stores a list of such TLS regions
(starting address and size of each), the stack pointer (optionally), the segment
registers (ds,es,fs and gs), I/O permissions and the state of the floating-point
unit.

3.3.4 Context Switch Process: Kernel Code

Once the context is fully saved, the user thread starts to execute in “kernel
mode”. It can then service the interrupt or system call. Once this is done, the
thread needs to check if there is additional work to do. It checks if there is a
high-priority user thread that is waiting. In such a case, that other high-priority
thread should run as opposed to the erstwhile user thread continuing.

https://elixir.bootlin.com/linux/v6.2.12/source/arch/x86/include/asm/processor.h

107 © Smruti R. Sarangi

The kernel thread calls exit to user mode loop in kernel/entry/common.c,
whose job is to basically check if there is other high-priority work to be done.
If there is work, then there is a need to call the scheduler’s schedule function.
It finds the task to run next and effects a context switch.

The context switch(runqueue, prev task, next task) function is in-
voked. It is defined in kernel/sched/core.c. It takes as input the runqueue,
which contains all the ready processes, the previous task and the next task that
needs to run. There are five major steps in the context switch process.

• prepare task switch: prepare the context switch process

• arch start context switch: initialize the architectural state (if required).
At the moment, x86 architectures do basic sanity checks in this stage.

• Manage the mm struct structures (memory maps) for the previous and
next tasks

• switch to: switch the register state and stack

• finish task switch: finish the process

Prepare the Task Switch

There are two tasks here, prev and next. prev was running and next is going
to run. If they are different tasks, we need to set the status of the prev task as
“not running”.

Switch the Memory Structures

Every task struct has a member called struct mm struct *mm, as we have
seen before. It contains a pointer to the page table and a list of VMA (vir-
tual memory) regions. The task struct also has a member called struct

mm struct* active mm, which has a special role.
There are two kinds of kernel threads. One kind are user threads that have

been temporarily converted to kernel threads after a system call or interrupt.
The other type of kernel threads are pure kernel threads that are not associated
with any user-level threads. For a user-level thread, mm and active mm are the
same. However, for a kernel-level thread, mm is set to NULL and active mm

points to the mm of the last user process. The reason that we maintain this
state is because even if a pure kernel thread is executing, it should still have a
reference to the last user process that was running on the CPU. In case, there
is a need to access the memory of that user process, it should be possible to
do so. Its mappings will be alive in the TLB. This is a performance-enhancing
measure.

Listing 3.11: Code for switching the memory structures (partial code shown
with adaptations)
source : kernel/sched/core.c#L5266

if (! next ->mm) {

next ->active_mm = prev ->active_mm;

if (prev ->mm) {

// increment reference count

https://elixir.bootlin.com/linux/v6.2.12/source/kernel/entry/common.c
https://elixir.bootlin.com/linux/v6.2.12/source/kernel/sched/core.c
https://elixir.bootlin.com/linux/v6.2.12/source/kernel/sched/core.c#L5266

© Smruti R. Sarangi 108

mmgrab (prev ->active_mm);

} else {

prev ->active_mm = NULL;

}

} else {

...

if (!prev ->mm) {

prev ->active_mm = NULL;

}

}

Some relevant code is shown in Listing 3.11. If next->mm is NULL, it
means that we are switching to a kernel thread. In this case, we simply set
the active mm of the kernel thread to that of the previous thread. This means
that we are just transferring the active mm, which is the mm struct of the last
user process that executed. If the previous thread was a user thread, then we
increment its reference count. Otherwise, we set the active mm field of the
previous thread to NULL because this information is not required any more.

Consider the other case. Assume a switch to a user process: next->mm is
not NULL. First, we compare prev->active mm and next->mm. If both are the
same, then it means that the user process that last executed on the CPU is going
to execute again. There could be a lot of kernel threads that have executed in
the middle, but finally the same user process is coming back. Since its page table
and TLB state have been maintained, there is no need to flush the TLB. This
improves performance significantly. Specifically, if prev->mm is NULL, it means
that the previous process is a kernel thread. Given that the current process is
a user process, there is no need for the kernel thread to maintain its active mm

pointer. It is set to NULL.

Switching the Registers and the Stack

The switch to function accomplishes this task by executing the steps to save
the context in the reverse order (context restore process). The first step is to
extract all the information in the thread struct structures and restore them.
They are not very critical to the execution and thus can be restored first. Then
the thread local state and segment registers other than the code segment register
are restored. Finally, the current task pointer, a few of the registers and the
stack pointer are restored.

Finishing the Process

The function finish task switch completes the process. It updates the process
states of the prev and next tasks and also updates the timing information
associated with the respective tasks. This information is used by the scheduler.
Sometimes it can happen that the kernel uses more memory than the size of
its virtual address space. On 32-bit systems, the kernel can use only 1 GB.
However, there are times when it may need more memory. In this case, it is
necessary to temporarily map some pages to kernel memory (known as kmap in
Linux). These pages are typically unmapped in this function before returning
back to the user process.

109 © Smruti R. Sarangi

Finally, we are ready to start the new task !!! We set the values of the rest of
the flags, registers, the code segment register and finally the instruction pointer.

Trivia 3.3.1

One will often find statements of this form in the kernel code:

if (likely (<some condition >)) {...}

if (unlikely (<some condition >)) {...}

These are hints to the branch predictor of the CPU. The term likely
means that the branch is most likely to be taken, and the term unlikely
means that the branch is most likely to be not taken. These hints increase
the branch predictor accuracy, which is vital for good performance.

Trivia 3.3.2

One often finds statements of the form:

static __latent_entropy struct task_struct *

copy_process (...) {...}

Here, we are using the value of the task struct* pointer as a source
of randomness. Many such random sources are combined in the kernel
to create a good random number source that can be used to generate
cryptographic keys.

3.4 Summary and Further Reading

3.4.1 Summary

Summary 3.4.1

1. A process is a program in execution.

2. struct task struct is the key data structure that stores all the
information related to processes.

3. The pointer to the current task struct is given by the current

macro. It is stored in a per-CPU storage area, which is pointed to
by the gs segment register.

4. The task states in Linux are TASK RUNNING (ready to ex-
ecute or currently executing), TASK ZOMBIE (completed),
TASK STOPPED (suspended due to a SIGSTOP signal),
TASK INTERRUPTIBLE and TASK UNINTERRUPTIBLE. The
last two states are blocked states.

5. Once a task completes, it calls the exit system call. Subsequently,
it enters the ZOMBIE state. The SIGCHLD signal is sent to the
parent. It subsequently calls the wait system call and collects the

© Smruti R. Sarangi 110

exit status of the child. Subsequently, the child’s state is fully
erased.

6. Each task has a kernel stack whose size is limited to 8 KB.

7. Linux tasks have 140 priorities. It has 100 real-time priorities (in-
creasing from 0 to 99) and 40 user-level priorities (100-139). The
default process priority is 120, which can be changed using the
nice command (varies from -20 to 19).

8. The key structure in a process for storing the list of virtual memory
regions (struct vma) and the page table is struct mm struct.
The set of VM regions are stored using a maple tree: a B+ tree
with variable branching factors (different per level).

9. Every process has an id known as its pid, which is a number that
uniquely identifies it in its namespace. A namespace is an isolated
set of processes. All the processes in a namespace can be sus-
pended, checkpointed and migrated to a new machine. They can
then be seamlessly resumed on the new machine.

10. Namespaces are arranged hierarchically. Every process is also vis-
ible to all of its ancestral namespaces. It can be referenced by dif-
ferent pid numbers in different namespaces. All of them however
point to the same struct pid, which is a structure that contains
all the details of the process.

11. Processes themselves are organized in a tree-like structure. The
root of this tree is the init process (pid = 1) for all user space pro-
cesses. Similarly, kernel threads also have a hierarchical structure
where every kernel task has a parent. The root of this tree is the
kthreadd process (pid = 2).

12. A new process is created using the forking mechanism. Here, a
child process is created by fully copying the memory and execution
state of the parent process. The child and the parent are separate
entities; however, the child is initialized with a copy of the memory
map of the parent.

13. The copy-on-write mechanism is used to ensure that the child has
a separate physical address space. Whenever there is a write to a
page that is shared between the child and parent process, a new
copy is created for the writer. The writes are directed to the new
copy of the physical page (frame). Note that there is a need to
update the page table and the TLB contents of the writer process.

14. The child process can decide to go its own way and totally replace
its memory image with that of another binary. It can do so by
calling the exec family of system calls. They completely clean up
the memory image of the child process and load the memory image
corresponding to the binary specified as the argument of the exec

111 © Smruti R. Sarangi

call. The program counter is initialized to the first instruction of
the text section. The child process starts executing the new binary
from the beginning.

15. The hardware context comprises the values of all the registers
(general-purpose and privileged), the next program counter and
the ALU flags. This context needs to be saved and later restored.

16. All the kernel threads share the kernel virtual address space.
This insight can be used to eliminate TLB flushes and page ta-
ble switches whenever there is a context switch to kernel mode or
there is a context switch between kernel threads.

(a) Split the virtual space between the user space and kernel
space.

(b) The mappings for all the kernel pages across all the processes
(user and kernel) are identical.

(c) There is no need to flush the TLB when there is a kernel to
user-mode transition and the interrupted user process is being
resumed once again.

(d) A need to arises for a TLB flush and a page table switch only
when we are resuming a different user process.

17. In practice, it is a wise idea to share the complete virtual address
space across all the threads in a thread group. The illusion of
separate stacks can be provided by storing the stacks of different
threads at different points in the virtual address space and by en-
suring that the stacks of two threads never overlap. The same can
be done for thread-local regions.

18. The process of storing the context is a very elaborate sequence of
steps where there is a need to create bespoke solutions for storing
the next PC, flags, segment registers, the stack pointer, MSRs
and other general-purpose registers. Restoring the context follows
exactly the reverse sequence of steps.

3.4.2 Further Reading

Readers should start by looking at the man (manual) pages of the following sys-
tem calls: fork, clone, exec, exit and wait. This will give them a feel of how
processes are created, destroyed and managed in Linux. They will appreciate
the user space API that interacts with the kernel to manage processes.

The next activity will be to use kernel tracing tools to understand the activity
of processes. Some of the tools in this space are ftrace (traces function calls and
events), perf (performance monitoring), systemtap (dynamic instrumentation
of the kernel and user processes) and eBPF (observability and sandbox API).
These tools help a process monitor the activity in another user process or even
the kernel. They can also attach themselves to two probing mechanisms: kprobes
and uprobes. kprobes inserts a breakpoint at a given address in the kernel code.

© Smruti R. Sarangi 112

Whenever that address is reached, a call is made to the kprobes handler function.
It can be used to inspect the state of the kernel and debug the execution from
then on. The uprobes mechanism does the same for user space processes. These
are dynamic mechanisms that allow breakpoints to be placed at run time.

On the other hand, the tracepointsmechanism in the kernel is a static mecha-
nism. The trace points are statically placed instrumentation points in the kernel
code. They need to be there at compile time. Whenever they are reached, the
corresponding handler is called. Relevant data can be collected, and it can also
be made available to other higher level tools such as ftrace.

In the world of kernel-level code instrumentation (code modification) and
debugging, SystemTap and Berkeley packet filters (BPF and eBPF) have a very
special place. SystemTap is a high-level wrapper on kprobes and uprobes.
The user specifies the functions and locations within functions that need to be
tapped into. Subsequently, probes are inserted at those points. It is possible to
analyze the state at these probe points.

Extended Berkeley Packet Filter (eBPF) allows for the creation of a sand-
box – a restricted environment for running a small set of processes that do some
sort of performance monitoring, safety checking and network packet processing.
eBPF programs can be written in C. They are compiled to custom byte code (an
intermediate architecture-independent representation). The Linux kernel uses
a small custom virtual machine to run such code. The byte code is compiled
at run time using a JIT (just-in-time) compiler and is also checked. The reader
is encouraged to write such programs and connect them to the kernel and user
processes such that they can perform the following tasks: tracing and profil-
ing kernel code, detecting malicious activity and enforcing security policies by
monitoring the system calls made by the process.

Exercises

Ex. 1 — Why do we need a kernel stack in a multiprocessor operating system?
Explain with an example.

Ex. 2 — Why do we use the term “kernel thread” as opposed to “kernel pro-
cess”?

Ex. 3 — How does placing a limit on the kernel thread stack size make kernel
memory management easy?

Ex. 4 — If the kernel wants to access physical memory directly, how does it
do so using the conventional virtual memory mechanism?

Ex. 5 — Explain the design and operation of the kernel linked list structure
in detail.

Ex. 6 — Why cannot the kernel code use the same user-level stack and delete

113 © Smruti R. Sarangi

its contents before a context switch?

Ex. 7 — What are the advantages of creating a child process with fork and
exec, as compared to a hypothetical mechanism that can directly create a pro-
cess given the path to the binary?

Ex. 8 — Assume that there are some pages in a process such as code pages
that need to be read-only all the time. How do we ensure that this holds during
the forking process as well? How do we ensure that the copy-on-write mechanism
does not convert these pages to “non-read-only”?

Ex. 9 — What is the role of the TSS segment in the overall context switch
process?

Ex. 10 — Do we need extra registers for servicing a hardware interrupt? Are
the existing set of general purpose registers enough for implementing an inter-
rupt handler? Explain your answer.

Ex. 11 — What is the role of the active mm field?

Ex. 12 — What makes rip, rsp, rflags and the code segment register spe-
cial?

Ex. 13 — Why do we use registers to store the values of rip and rflags in
the case of system calls, whereas we use the stack for interrupts?

* Ex. 14 — To save the context of a program, we need to read all of its reg-
isters, and store them in the kernel’s memory space. The role of the interrupt
handler is to do this by sequentially transferring the values of registers to ker-
nel memory. Sadly, the interrupt handler needs to access registers for its own
execution. We thus run the risk of inadvertently overwriting the context of the
original program, specifically the values that it saved in the registers. How do
we stop this from happening?

Ex. 15 — How does the design of a namespace facilitate its migration?

Ex. 16 — Consider a situation where a process exits, yet a few threads of that
process are still running. Will those threads continue to run? Explain briefly.

Ex. 17 — Why are idr trees used to store pid structures? Why can’t we use
BSTs, B-Trees, and hash tables? Why is it effective?

Ex. 18 — Which two trees does the idr tree combine? How and why?

Ex. 19 — What is the need of a struct pid in addition to a pid number?

Ex. 20 — What are the advantages of dynamically loaded libraries? How do
they save memory space (at runtime)?

Ex. 21 — Describe the operation of a dynamic loading library (DLL). Focus
on the following issues.

a)What happens if multiple programs need to use the same DLL concur-
rently?

© Smruti R. Sarangi 114

b)How do we manage two versions of the same DLL?

c)Assume that the location of the DLL changes across two versions of the
same operating system. Will programs stop working?

d)How do DLLs support global and static variables? If the same DLL is
being used concurrently, wouldn’t this cause a problem?

Ex. 22 — How do we implement a clone system call where a part of a pro-
cess’s memory map is copied, and the rest is shared? This can, for instance, be
used to create a new thread that has a separate stack but shares the heap.

Ex. 23 — How do we create a thread-local storage area?

* Ex. 24 — Consider a thread library such as pthreads. Here, we create a
new thread and assign it with a function to execute. Once the function finishes
execution, the thread is supposed to be destroyed. However, the return value
of the function needs to be preserved and made available to the parent thread.
How is such a mechanism implemented?

Ex. 25 — How are the radix and augmented trees combined? What is the
need for combining them? Answer the latter question in the context of process
management.

Open-Ended Questions

Ex. 26 — What is the difference between a shell and a terminal?

Ex. 27 — Read about the following Linux commands and explain their oper-
ation: objdump, nm, strip, ld and ldd.

Chapter 4
System Calls, Interrupts,
Exceptions and Signals

In this chapter, we will delve into the details of system calls, interrupts, excep-
tions and signals. The first three are the only methods to invoke the OS kernel,
or in other words bring something to its attention. It is important to bear
in mind that the kernel code normally remains dormant. It comes into action
only after three events of interest: system calls, interrupts and exceptions. In
a generic context, all three of these events are often referred to as interrupts.
They involve transferring control from one process to a dedicated kernel han-
dler. Note that sometimes specific distinctions are made such as using the terms
“hardware interrupts” and “software interrupts”. Hardware interrupts refer to
classical interrupts generated by I/O devices whereas software interrupts refer
to system calls and exceptions.

The classical method of making system calls on x86 machines is to invoke
the instruction int 0x80 that simply generates an interrupt with interrupt code
0x80. The generic interrupt processing mechanism is used to process the system
call. Modern machines have the syscall instruction, which is more direct and
specialized (as we have seen in Section 3.3.3), even though the basic mechanism
is still the same. x86 processors further simplify things. They treat exceptions
as a special type of interrupts. It is a good idea to group events in this fashion
– kernel routines can be reused.

All hardware interrupts have their own interrupt codes – they are also known
as interrupt vectors. Similarly, all exceptions have their unique codes and so do
system calls. Whenever any such event of interest happens, the hardware first
determines its type. Subsequently, the corresponding table with the code of the
event of interest is accessed. For example, an interrupt vector is used to index
interrupt handler tables. Each entry of this table points to a function that is
meant to handle the interrupt.

Finally, we shall discuss communication in the reverse direction. Sometimes
the kernel needs to inform user processes about some event that they may be
interested in. A user process starts with registering a function pointer with
some kernel-specific event, which is known as a signal. Whenever the kernel
needs to raise a signal, it invokes this function in the user process’s context.

115

© Smruti R. Sarangi 116

Such a function is known as a signal handler and plays the role of an interrupt
handler, albeit in the context of a regular user process. This mechanism is very
useful in applications with graphical user interfaces (GUIs). Whenever there
is a mouse click, the kernel needs to inform the foreground application about
it. This is easily achieved using signal handlers. These signal handlers (also
referred to as event handlers) implement application-specific logic based on the
details associated with the mouse click.

In this chapter, we shall realize that bidirectional communication between
user applications and the kernel is very important. All user processes require
OS services and thus elaborate mechanisms need to be provided. Similarly,
there needs to be a mechanism for the kernel to inform user applications about
specific events. Beyond this simple explanation, there lies a lot of detail, which
we shall appreciate in this chapter.

Organization of this Chapter

Communication

System Calls

Interrupts and ExceptionsBottom Half Handlers

Library Calls

OS Implementation

Context Restoration

APIC Architecture

IRQS

The Interrupt Path

Exceptions

Softirqs

Threaded IRQs

Work Queues

Signal Handlers

Signal Delivery

Kernel Code

User Process-Kernel Interaction

Figure 4.1: Organization of this Chapter

Figure 4.1 shows the organization of this chapter. We will start with an
in-depth study of system calls. It is necessary to understand the life cycle of a
library call and understand how it prepares the arguments for a system call. We
shall see that after several stages of processing, the system call is finally made.
There are precise rules for making system calls. It is associated with detailed
register- and stack-usage semantics. The system call ultimately ends up calling
a large number of kernel routines. We shall end this section with providing a
few more details about running the scheduler, storing and restoring the context.

Next, we shall study the interrupt architecture on x86 machines. The CPU
relies on a bunch of chips in the chipset known as advanced programmable

117 © Smruti R. Sarangi

interrupt controllers (APICs). These APICs are hierarchically organized and
can perform complex interrupt processing. Ultimately, after passing through a
sequence of APICs, interrupts arrive at the CPU. The correct interrupt handler
is invoked. However, servicing the interrupt is not as easy as directly jumping to
the corresponding logic in the device driver code. We shall appreciate the fact
that even identifying the device that led to an interrupt is quite complicated.
Exceptions are also handled like interrupts on x86 machines. They broadly
follow the same processing path.

Interrupt handlers are ultra-high-priority tasks. They are outside the normal
scheduling regime. This means that no process is scheduled if an interrupt
handler needs to run. As a result, there are a lot of restrictions on interrupt
handlers. They cannot make blocking calls and cannot access certain subsystems
of the kernel such as accessing user space memory or making kernel-level malloc
calls. Their execution duration should also be short. Hence, there is a need to
defer some work that can be done at a later point of time. Such handlers are
known as bottom-half handlers that finish the leftover work of regular interrupt
handlers (known as top-half handlers). We shall discuss three types of bottom-
half handlers: softirqs, threaded IRQs and work queues. They have different
trade-offs in terms of their priority and the type of actions that they are allowed
to do.

Finally, we shall discuss the signal subsystem in Linux. In this subsection,
we first introduce C programming constructs that are used to register signal
handlers and handle signals. Then we shall delve into the intricacies of the
corresponding library and kernel code. The focus will be on the interaction of
user processes and the kernel, steps involved in entering the signal context (one
that runs the signal handler) and restoring the state of the user process that
was interrupted.

4.1 System Calls

4.1.1 Life of a Library Call

Consider the simple piece of C code shown in Listing 4.1. It shows a call to the
printf library call (part of the standard C library). It prints the string “Hello
World” to the terminal. Recall that a library call encapsulates a system call. It
prepares the arguments for the system call, sets up the environment, makes the
system call and then appropriately processes the return values. The glibc library
on Linux contains all the relevant library code for the standard C library.

Listing 4.1: Example code with the printf library call

#include <stdio.h>

int main() {

printf ("Hello World \n");

}

Let us now understand this process in some detail. The signature of the
printf function is as follows: int printf(const char* format, ...). The
format string is of the form ‘‘The result is %d, %s’’. It is succeeded by a
sequence of arguments, which replace the format specifiers (‘‘%d’’ and ‘‘%s’’)

© Smruti R. Sarangi 118

in the format string. The ellipses . . . indicate that the number of arguments is
variable.

A sequence of functions is called in the glibc code. The sequence is as follows:
printf→ printf→ vfprintf→ printf positional→ outstring→ PUT.
Gradually the signature changes – it becomes more and more generic. This
ensures that other calls like fprintf that write to a file are all covered by the
same function as special cases. Note that Linux treats every device as a file
including the terminal. The terminal is a special kind of file, which is referred
to as stdout. The function vfprintf accepts a generic file as an argument,
which it can write to. This generic file can be a regular file in the file system
or the terminal (stdout). The signature of vprintf is as follows:

int vfprintf (FILE *s, const CHAR_T *format , va_list ap ,

unsigned int mode_flags);

Note the generic file argument FILE *s, the format string, the list of ar-
guments and the flags that specify the nature of the I/O operation. Every
subsequent call generalizes the function further. Ultimately, the control reaches
the new do write function in the glibc code (fileops.c). It makes the write

system call, which finally transfers control to the OS. At this point, it is impor-
tant to digress and make a quick point about the generic principles underlying
library design.

prin�

vfprin�

prin�_posi�onal

outstring

Function that is visible
to the programmer

Generic version that
prints to a file

stdout→ the terminal

stdin→ from the terminal (scanf)

stderr→ the error stream (defaults to the terminal)

Creates the string that
needs to be printed

Send the output
to the file

Abstracted out
as a file

Access a table of
func�on pointers

Prepare the arguments
for the write system call

Make the system call

Figure 4.2: General concepts underlying library design

General Concepts in Library Design

Figure 4.2 shows the generic design of the printf library call. The printf function
is visible to the programmer. It, by default, writes to the stdout (standard out)
file (the terminal). It is the default/standard output stream for all programs.

Let us quickly mention the two other standard streams recognized by the
glibc library. The first is the standard error stream (stderr). stderr is normally
mapped to the terminal, however this mapping can be changed. Note that there
is another standard file defined – stdin – which is the standard input stream.
Whenever we call the scanf function in C, the stdin input stream is used to read
input from the terminal.

119 © Smruti R. Sarangi

Figure 4.2 shows the sequence of calls that are made. They have different
levels of abstraction. The vfprintf function is more generic. It can write to
any file including stdout. The printf positional function creates the string
that needs to be printed. It sends the output to the outstring function that
ultimately dispatches the string to the function that writes to the file. The file
write is achieved by the write system call, which sends the string that needs to
be printed along with other details to the kernel.

4.1.2 The OS Side of Things

There are two ways to make a system call in Linux. We can either use the
older method, which is to issue a software interrupt int 0x80 or call the syscall
instruction. Regardless of the method used, we arrive at the entry point of a sys-
tem call, which is the do syscall 64 function defined in arch/x86/entry/entry 64.S.
At this point, there is a ring level switch and interrupts are switched off. The
reason to turn off interrupts is to ensure that the context is saved correctly. If
there is an interrupt in the middle of saving the context, there is a possibility
that an error may be induced due to race conditions. Hence, the context saving
process cannot terminate prematurely. Saving the context is a short process
and masking interrupts during this process normally does not create a lot of
performance issues in handling critical tasks. Interrupts can be enabled as soon
as the context is saved.

Linux has a standard system call format. It is shown in Table 4.1 that
shows which register stores which type of argument. For instance, rax stores
the system call number. Six more arguments can be supplied via registers
as shown in Table 4.1. If there are more arguments, then they need to be
transferred via the user stack. The kernel can read user memory, and thus it
can easily retrieve these arguments. However, passing arguments using the stack
is not the preferred method. It is a much slower method as compared to passing
values via registers.

Note that a system call is a planned activity, as opposed to an interrupt.
Hence, we can keep some registers free such as rcx and r11 by spilling their
contents to the stack. Recall that the PC (of the return address) and the flags
are automatically stored in these registers once a system call is made. The
system call handler subsequently stores the contents of these registers on the
kernel stack.

Attribute Register
System call number rax

Arg. 1 rdi

Arg. 2 rsi

Arg. 3 rdx

Arg. 4 r10

Arg. 5 r8

Arg. 6 r9

Table 4.1: Convention for system call arguments

Let us now discuss the do syscall 64 function more. After basic context

https://elixir.bootlin.com/linux/v6.2.12/source/arch/x86/entry/entry_64.S

© Smruti R. Sarangi 120

saving, interrupts are enabled, and then the function accesses a system call table
as shown in Table 4.2. Given a system call number, the table lists the pointer
to the function that handles the specific type of system call. This function
is subsequently invoked. For instance, the write system call ultimately gets
handled by the ksys write function, where all the arguments are processed, and
the real work is done.

Number System call Function
0 read sys read

1 write sys write

2 open sys open

3 close sys close

4 stat sys newstat

5 fstat sys newfstat

6 lstat sys newlstat

7 poll sys poll

8 lseek sys lseek

9 mmap sys mmap

10 mprotect sys mprotect

11 munmap sys munmap

Table 4.2: Entries in the syscall table

4.1.3 Returning from a System Call

The kernel is sadly not a very grateful friend. Once a process goes to the kernel,
there is no guarantee that it will immediately get scheduled once the work of the
system call is done. The kernel can decide to do its own work such as perform
routine bookkeeping, update its data structures or service devices by running
kernel threads. It can also schedule other user processes.

The kernel starts out by checking the TIF NEED RESCHED bit in the flags
stored in the thread info structure (accessible via task struct). This flag
is set by the scheduler when it feels that the current task has executed for
a long time, and it needs to give way to other processes or there are other
higher priority processes that are waiting. Sometimes threads explicitly request
for getting preempted such that other threads get a chance to execute (via
sched yield). In this case, the thread that wishes to yield the CPU gets the
TIF NEED RESCHED bit set.

If this flag is set, the scheduler needs to run and find the most worthy task
(user process or kernel thread) to run next. It uses complex algorithms to find
the next task. Note that it treats the TIF NEED RESCHED bit as a directive to
run the scheduler. Once the scheduler runs, it makes its independent decision.
It may decide to continue with the same task, or it may decide to start a new
task on the same core. This is purely the scheduler’s prerogative.

After a task is chosen, its context needs to be restored. The context restore
mechanism follows the reverse sequence vis-á-vis the context switch process.
The issue of segment registers needs to be discussed here. On x86-64, the ds,
es and ss segment registers are typically not used. Hence, the need to save and

121 © Smruti R. Sarangi

restore them is often not present. However, the fs and gs segment registers are
used. fs stores a pointer to the thread local storage area (TLS) and gs stores
a pointer to per-CPU data structures. Hence, they are stored and restored as
regular registers – they are a part of a task’s context. The code segment register
cs register is special. All kernel threads (running in ring 0) typically use the
same value for cs and so do all user processes. Hence, whenever there is a ring
level switch, the value of cs can be automatically inferred by hardware and
appropriately set.

Finally, the kernel calls the sysret instruction that sets the value of the PC
and completes the control transfer back to the user process. It also changes the
ring level or in other words effects a mode switch (from kernel mode to user
mode).

4.2 Interrupts and Exceptions

Figure 4.3 shows the structure of the Interrupt Descriptor Table (IDT) that is
pointed to by the idtr register. As we can see, regardless of the source of the
interrupt, ultimately an integer code called an interrupt vector gets associated
with it. It is the job of the hardware to assign the correct interrupt vector to
an interrupting event. Once this is done, a hardware circuit accesses the IDT
using the interrupt vector as the index.

IDT

idtr
Register

Excep�ons

System calls

(via int 0x80)

Interrupts

Interrupt
vector

Address of
the handler

Hardware device
iden�fied by its IRQ

Figure 4.3: The Interrupt Descriptor Table (IDT)

Accessing the IDT is a simple process. A small module in hardware simply
finds the starting address of the IDT by reading the contents of the idtr register
and then accesses the relevant entry using the interrupt vector. The output is
the address of the interrupt handler, whose code is subsequently loaded. The
handler finishes the rest of the context switch process and begins to execute the
code to process the interrupt. Let us now understand the details of the different
types of handlers.

Intel processors have APIC (Advanced Programmable Interrupt Controller)
chips that do the job of liaising with hardware and generating interrupts. These
dedicated chips are sometimes known as just interrupt controllers. There are
two kinds of interrupt controllers on standard Intel machines: LAPIC (local
APIC), a per-CPU interrupt controller, and the I/O APIC. There is only one

© Smruti R. Sarangi 122

I/O APIC for the entire system. It manages all external I/O interrupts. Refer
to Figure 4.4 for a pictorial explanation.

CPU CPU

CPU CPU

LAPIC

I/O
APIC
cntrlr

Figure 4.4: Interrupt processing mechanism in x86 processors

4.2.1 APICs

Figure 4.5 represents the flow of actions. We need to distinguish between two
terms: interrupt request (IRQ) and interrupt number/vector. The interrupt
number or interrupt vector is a unique identifier of the interrupt and is used to
identify the interrupt service routine that needs to run whenever the interrupt
is generated. The IDT is indexed by this number.

The interrupt request(IRQ), on the other hand, is a hardware signal that is
sent to the interrupt controller indicating that a certain hardware unit’s request
needs to be serviced. A modern CPU has many IRQ lines (see Figure 4.5).
For example, one line may be dedicated for the keyboard, one for the mouse,
one for the mouse, and so on. In older systems, there was a one-to-one map-
ping between IRQ lines and interrupt vectors. However, with the advent of
programmable interrupt controllers (read APICs), this has been made more
flexible. The mappings can also be changed dynamically. It is possible for a
single IRQ line to generate many types of interrupts with different interrupt
vectors. For example, the network card can signal the completion of a request,
or it can also indicate that there was an error in transmitting a message in an
internal queue. Similarly, it is also possible to generate the same interrupt vec-
tor for different IRQ lines, although this situation is rare. In general, there is
a many-to-many mapping, which is dynamically programmable. Note that it is
the job of the LAPIC to generate interrupt vectors and send them to the CPU.
Let us elaborate.

The flow of actions (for the LAPIC) is shown in Figure 4.5.

1. The first step is to check if interrupts are enabled or disabled. Recall
that we discussed that often there are sensitive portions of the kernel’s
execution, where it is a wise idea to disable interrupts such that no cor-
rectness problems are introduced. Interrupts are typically not lost. They
are queued in the hardware queue in the respective APIC and processed in
priority order when interrupts are enabled back again. Of course, there is
a possibility of overflows. This is a rare situation but can happen. In this
case interrupts will be lost. In this context, let us differentiate between
disabling and masking interrupts. They are different terms. Disabling in-
terrupts is like a sledgehammer, where all the interrupts are temporarily
disabled. However, masking is a more fine-grained action, where only cer-
tain interrupts are disabled in the APIC. Akin to disabling, the interrupts

123 © Smruti R. Sarangi

APIC
IRQ
lines

1. CPU enables/disable interrupts
2. Choose the highest priority
interrupt

CPU

3. Buffer the interrupt vector (number) and data
4. Don’t deliver if the interrupt is masked, else deliver
5. The CPU acknowledges receipt to the APIC

IRQ (interrupt request):
Kernel iden�fier for a HW

interrupt source

An interrupt vector (INT) identifies any kind
of an interrupting event: interrupt, system

call, exception, fault, etc.

The LAPIC sends an
interrupt vector to the
CPU (not an IRQ)

Figure 4.5: Interrupt processing flow

are queued in the APIC and presented to the CPU at a later point of time
when they are unmasked.

2. Let us assume that interrupts are enabled. The LAPIC chooses the highest
priority interrupt and finds the interrupt vector for it. In legacy systems,
the voltage of a single IRQ line is raised from zero to one. The LAPIC
simply maps the IRQ line to an interrupt vector based on an internal
table. However, in modern MSI architectures that use message-signaled
interrupts, some data can also be written to APIC registers by the device.
This information is used to appropriately process the interrupt and send
the right interrupt vector to the concerned CPU.

3. The LAPIC buffers the interrupt vector and data, and then checks if the
interrupt is masked or not.

4. If it is masked, then it is added to a queue, otherwise it is delivered to the
CPU.

5. The CPU needs to acknowledge that it has successfully received the inter-
rupt and only then does the APIC remove the interrupt from its internal
queue.

Let us now understand the roles of the different interrupt controllers in some
more detail.

I/O APIC

There is only one I/O APIC chip in the entire system. It is not a part of any
CPU core, instead it is typically a separate chip on the motherboard (part of
the chipset). It maintains a redirection table, whose role is to receive interrupt
requests from different devices, process them and dispatch the interrupts to the
LAPICs. It is essentially an interrupt router. Many modern I/O APICs have
24 interrupt request lines. Typically, each device is assigned its IRQ number –
the lower the number, higher the priority. A noteworthy mention is the timer
interrupt, whose IRQ number is typically 0.

© Smruti R. Sarangi 124

Local APIC (LAPIC)

Each LAPIC receives interrupts from the I/O APIC. It can also receive a spe-
cial kind of interrupt known as an inter-processor interrupts (IPI) from other
LAPICs. This type of interrupt is very important for kernel code. Assume that
a kernel thread is running on CPU 5, and the kernel decides to preempt the
task running on CPU 1. Currently, we are not aware of any method of doing
so. The kernel thread only has control over the current CPU, which is CPU
5. It does not have any control over what is happening on CPU 1. The IPI
mechanism is precisely designed to solve this problem. CPU 5 on the behest of
the kernel thread running on it, can instruct its LAPIC to send an IPI to the
LAPIC of CPU 1. This will be delivered to CPU 1, which will get interrupted.
The usual set of actions will follow. It will switch its context and run the IPI
interrupt handler on CPU 1. After doing the necessary bookkeeping steps, the
kernel thread running on CPU 1 will realize that it was brought in because the
kernel thread on CPU 5 wanted to replace the task running on CPU 1 with
some other task. In this manner, one kernel thread can exercise its control over
all CPUs. However, it does need the IPI mechanism to achieve this, which is
hardware-based. Often, the timer chip is often housed inside the LAPIC. De-
pending upon the needs of the kernel, its interrupt frequency can be configured
or even changed dynamically.

Distribution of Interrupts

The next question that we need to address is how are the interrupts distributed
among the LAPICs? There are regular I/O interrupts, timer interrupts and
IPIs. We can either have a static distribution or a dynamic distribution. In
the static distribution, one specific core or a set of cores are assigned the role
of processing a given interrupt. Of course, there is no flexibility when it comes
to IPIs. Even in the case of timer interrupts, it is typically the case that each
LAPIC generates periodic timer interrupts to interrupt its local core. However,
this is not absolutely necessary, and some flexibility is provided. For instance,
instead of generating periodic interrupts, it can be programmed to generate an
interrupt at a specific point of time. In this case, this is a one-shot interrupt like
an alarm – periodic interrupts are not generated. This behavior can be changed
dynamically owing to the fact that LAPICs are programmable.

In the dynamic scheme, it is possible to send the interrupt to the core that is
running the task with the least priority. This again requires hardware support.
Every core on an Intel machine has a task priority register, where the
kernel writes the priority of the current task that is executing on it. This
information is used by the I/O APIC to deliver the interrupt to the core that
is running the least priority process. This is a very efficient scheme, because it
allows higher priority processes to run unhindered. If there are idle cores, then
the situation is even better. They can be used to process all the I/O interrupts
and sometimes even timer interrupts (if they can be rerouted to a different core).

4.2.2 IRQs

The file /proc/interrupts contains the details of all the IRQs and how they
get processed (refer to Figure 4.3). Note that this file is relevant to only the
author’s machine and that too as of 2023.

125 © Smruti R. Sarangi

The first column is the IRQ number. As we see, the timer interrupt is
IRQ# 0. The next four columns show the count of timer interrupts received
at each CPU. Note that there are many small values. This is because any
modern machine has a variety of timers. The data is shown for the low-resolution
LAPIC timer. In this case, a more high-resolution timer was used. Modern
kernels prefer high-resolution timers because they can dynamically configure
the interrupt interval based on the processes that are executing in the kernel.
Many modern kernels are also tickless, which means that they have gotten away
with periodic timer interrupts altogether. The term “2-edge” means that this
is an edge-triggered interrupt on IRQ line 2. An astute reader will note that
some interrupt remapping is happening. The interrupt was triggered on IRQ
line 0; however, it got remapped to IRQ line 2 by the I/O APIC chip. From
then on, it appears as if there has been an interrupt on IRQ #2. This behavior
is programmable, and can definitely be used to coalesce interrupts from multiple
sources. “edge” corresponds to edge-triggered interrupts that are activated when
there is a level transition on the IRQ line (0 → 1 or 1 → 0). The last column
contains the name of the function that plays the role of the interrupt handler.

“fasteoi” interrupts are level-triggered. Instead of being based on an edge
(a signal transition), they depend upon the level of the signal in the interrupt
request line. “eoi” stands for “End of Interrupt”. The line remains asserted
until the interrupt is acknowledged by a CPU. For example, if the interrupt sets
the voltage on the line from low to high, then the acknowledgement sets it from
high back to low.

IRQ# CPU 0 CPU 1 CPU 2 CPU 3 HW IRQ type Handler
0: 7 0 0 0 2-edge timer
1: 0 0 0 0 1-edge i8042
8: 0 0 0 0 8-edge rtc0
9: 0 4 0 0 9-fasteoi acpi
12: 0 0 0 0 12-edge i8042
16: 0 0 252 0 16-fasteoi ehci hcd:usb1
23: 0 0 0 33 23-fasteoi ehci hci:usb2

Table 4.3: Example of a /proc/interrupts file

Now, for every request that comes from an IRQ, an interrupt vector is gen-
erated. Table 4.4 shows the range of interrupt vectors. NMIs (non-maskable
interrupts and exceptions) fall in the range 0-19. The interrupt numbers 20-31
are reserved by Intel for future use. The range 32-127 corresponds to interrupts
generated by external sources (typically I/O devices). We are all familiar with
interrupt number 128 (0x80 in hex), which is the traditional way to invoke sys-
tem calls – it is a software-generated interrupt. Most modern machines have
stopped using this mechanism because they now have a faster method based on
the syscall instruction.

239 is the local APIC (LAPIC) timer interrupt. Many IRQs can generate
this interrupt vector because there are many timers in modern systems with
different resolutions. Finally, the range 251-253 corresponds to inter-processor
interrupts (IPIs). A disclaimer is due here. This is the interrupt vector range
on the author’s Intel i7-based system as of 2023. In all likelihood, this may

© Smruti R. Sarangi 126

change in the future or even be different for other systems. Hence, a request to
the reader is to treat this data as just an example.

Interrupt Vector Range Meaning
0-19 Non-maskable interrupts and exceptions
20-31 Reserved by Intel
32-127 External interrupts
128 System calls
239 Local APIC timer interrupt
251-253 IPIs

Table 4.4: Meaning of interrupt vector ranges

Table 4.5 summarizes our discussion. It shows the IRQ number, interrupt
vector and the hardware device for a subset of interrupts. We see that IRQ 0
for the default timer corresponds to interrupt vector 32. The keyboard, system
clock, network interface and USB ports have their IRQ numbers and correspond-
ing interrupt vector numbers. One advantage of separating the two concepts –
IRQ and interrupt vector – is clear in the case of timers. We can have a wide
variety of timers with different resolutions. However, they can be mapped to
the same interrupt vector. This will ensure that whenever an interrupt arrives
from any one of them, the timer interrupt handler is invoked. The kernel can
dynamically decide which timer to use depending on the requirements and load
on the system.

IRQ Interrupt Vector HW Device
0 32 Timer
1 33 Keyboard
8 40 System clock
10 42 Network interface
11 43 USB port

Table 4.5: IRQ, interrupt vector and HW device

Given that HW IRQs are limited in number, it is possible that we may have
more devices than the number of IRQs. In this case, several devices have to share
an IRQ. We can do our best to dynamically manage the available IRQs such as
deallocating the IRQ when a device is not in use or dynamically allocating an
IRQ when a device is accessed for the first time. In spite of all this, we still may
not have enough IRQs. Hence, there is a need to share an IRQ between multiple
devices. Whenever an interrupt is received from an IRQ, the kernel’s interrupt
subsystem needs to find which device generated it by running all the handlers
corresponding to the connected devices that share the IRQ. These handlers will
query the individual devices or inspect the interrupt data and find out which
device had raised the interrupt. This inevitably slows down the system, yet is
necessary.

127 © Smruti R. Sarangi

Interrupt Handling in Hardware

Let us now go to the next phase, which is the interrupt handler circuitry on
a CPU core. It receives the interrupt vector from the LAPIC. This number is
between 0-255 and can be used to index the IDT. From the IDT, we get the
address of the code segment of the interrupt handler and its base address. After
transitioning to kernel mode, the hardware initiates the process of running the
interrupt handler. The hardware at this stage is supposed to make a copy of
some portions of the running program’s context such as the flags register and
the PC (of the return address). There is some amount of complexity involved.
Depending upon the nature of the exception/interrupt, the return address can
either be the current program counter or the next one (next PC = either PC
+ 4 or the branch target). If an I/O interrupt is received, then without doubt
we need to store the next PC. However, if there is a page fault, then we need
to execute the same instruction once again. In this case, the return address is
set to the current PC. It is assumed that the interrupt processing hardware is
smart enough to figure all this out. It needs to then store the return address
(appropriately computed) and the flags register on the user’s stack. On x86-64
hardware, the code segment register’s contents are also pushed to the stack. This
part has to be automatically done in hardware prior to starting the interrupt
handler.

4.2.3 Kernel Code for Interrupt Descriptors

struct irq desc

Listing 4.2: The struct irq desc structure
source : include/linux/irqdesc.h#L55

struct irq_desc {

/* CPU affinity and per -IRQ data */

struct irq_common_data irq_common_data;

/* All data w.r.t. the IRQ */

struct irq_data irq_data;

/* Pointer to the interrupt flow handler */

irq_flow_handler_t handle_irq;

/* Handler , device , flags , IRQ details */

struct irqaction *action;

}

Listing 4.2 shows the important fields in struct irqdesc. It is the nodal
data structure for all IRQ-related data. It stores all the information regarding
the hardware device, the interrupt vector, CPU affinities (which CPUs process
it), pointer to an interrupt flow handler, special flags and so on.

irq common data stores CPU affinity information and specialized informa-
tion regarding interrupts that have associated messages (message-signaled inter-
rupts (MSI interrupts)). irq data stores the interrupt vector, IRQ number and
other relevant metadata. handle irq is a pointer to a function that is actually
a flow handler – it is not a regular interrupt handler. Its job is to collect data

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/irqdesc.h#L55

© Smruti R. Sarangi 128

from the device, acknowledge the interrupt, convey information to higher layers
(if required) and process the interrupt. The last stage requires the flow handler
to first identify the device that had originally raised the interrupt. The devices
that are associated with an IRQ are pointed to by the struct irqaction struc-
tures (refer to Figure 4.6). These structures are organized as a linked list. Let
us delve into this further.

Figure 4.6: The irqaction linked list

struct irqaction

Listing 4.3: struct irqaction

source : include/linux/interrupt.h#L118

struct irqaction {

unsigned int irq;

irq_handler_t handler;

/* associated device */

void *dev_id;

/* arrange as a linked list */

struct irqaction *next;

/* spin off an additional thread */

irq_handler_t thread_fn;

struct task_struct *thread;

}

Listing 4.3 shows the structure of struct irqaction and its major fields.
It is associated with an irq (irq) and points to an interrupt handler, which
is typically implemented by the corresponding device driver. It is of type
irq handler t – a function pointer. Additionally, irqaction points to a device
(dev id). Such irqaction structures are organized as a linked list (note the
linked list member).

Sometimes, there is a necessity to start a new thread to do additional inter-
rupt processing work. This thread can run with a lower priority and finish the

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/interrupt.h#L118

129 © Smruti R. Sarangi

work at a later point in time. Hence, there is optionally a pointer to a thread
(task struct) and a function pointer. The function pointer points to a function
that needs to be executed by the thread to perform some deferred work.

4.2.4 IRQ Domains

Akin to process namespaces, IRQs are organized in domains. This is especially
necessary given that modern processors have a lot of devices, IRQ lines and
interrupt controllers. Hence, a hierarchical structure of IRQ domains is needed.
Even though we can have a plethora of IRQs, at the end of the day, the processor
will only use the interrupt vector (a simple number between 0-255) to access the
IDT. It has continued to retain its identity over the years. We will understand
the flow of information from an IRQ to the IDT in this section.

A solution similar to hierarchical namespaces is used to manage IRQ domains
and IRQs. Within a domain, the IRQ numbers are unique. Recall that we
followed a similar logic in process namespaces – within a namespace pid numbers
are unique. The IRQ number (like a pid) is in a certain sense getting virtualized.
Similar to a namespace’s IDR tree whose job was to map pid numbers to struct
pid data structures, we need a similar mapping structure here per domain. It
needs to map IRQ numbers to irq desc data structures. Such a mapping
mechanism allows us to quickly retrieve an irq desc data structure given an
IRQ number. Each IRQ domain is also associated with one or more interrupt
controllers. A subset of their pins are mapped to the IRQs in the domain. The
function irq domain add is used to register an IRQ domain with the kernel.
Subsequently, interrupt controllers can be added to it. This is similar to adding
a process to a namespace first before starting any operation on the process.

In the case of an IRQ domain, the kernel uses a more nuanced solution. If
there are less than 256 IRQs in the domain, the kernel uses a simple linear list,
otherwise it uses a radix tree. This gives us the best of both worlds. When we
have a few IRQs, we avoid the overheads of a radix tree and instead prefer the
simplicity of a linked list.

The domains are organized hierarchically. The I/O APIC domains are typi-
cally at the leaf level. Their parents are known as interrupt remapping domains.
Their job is to virtualize multiple I/O APICs. Each such domain forwards the
interrupt to the controllers in the LAPIC domain that further virtualize the
IRQs, map them to interrupt vectors and present them to the cores. The LAPIC
domains are closest to the root.

An astute reader will quickly notice the difference between hierarchical names-
paces and hierarchical IRQ domains. In the former, the aim is to make a child
process a member of the parent namespace such that it can access resources
that the parent owns. However, in the case of IRQ domains, interrupts flow
from the child to parent. There is some degree of virtualization and remapping
at every stage. For example, one of the domains in the middle could send all
keyboard interrupts to only one VM (virtual machine) running on the system.
This is because the rest of the VMs may not be allowed to accept inputs from
the keyboard. Such policies can be enforced with IRQ domains.

© Smruti R. Sarangi 130

4.2.5 IDT and APIC Initialization Process

Point 4.2.1

The IDT maps the interrupt vector to the address of the handler.

The IDT table is initialized by the BIOS. During the process of the kernel
booting up, it is sometimes necessary to process user inputs or other important
system events like a voltage or thermal emergencies. Hence, the BIOS needs
to run a nanokernel to manage such events. The entries in the IDT point to
handlers in the BIOS code. In many cases prior to the OS booting up, the
bootloader shows up on the screen; it asks the user about the kernel that she
would like to boot. For all of this, we need a bare bones IDT that is already
set up. However, once the kernel boots, it needs to overwrite the IDT and adds
its own entries. For every single device and exception-generating situation,
entries need to be made. These will be custom entries and only the chosen
kernel can make them because the BIOS would simply not be aware of them
– they are kernel-specific. Furthermore, the interrupt handlers will be in the
kernel’s address space and thus only the kernel will be aware of their locations.
In general, interrupt handlers are not kept in a memory region that can be
relocated or swapped out. The pages are locked and pinned in physical memory
(see Section 3.1.9).

The kernel uses the idt table data structure to store the IDT. Each entry of
this table is indexed by the interrupt vector, and it points to the corresponding
interrupt handler. It basically contains two pieces of information: the value
of the code segment register and an offset within the code segment. This is
sufficient to load the interrupt handler. Even though this data structure is
set up by the kernel, it is actually looked up in hardware (like page walks on
x86 machines). There is a simple mechanism to enable this. There is a special
register called the IDTR register. Similar to the CR3 register for the page table,
it stores the base address of the IDT. Thus, the processor knows where to find
the IDT in physical memory. A dedicated hardware circuit can walk this table,
and interrupt handlers can also be automatically loaded by a hardware circuit.
The OS need not be involved in this process. Its job is to basically set up the
table and let the hardware do the rest.

Setting up the IDT at Boot Time

The main entry point into the kernel, akin to the main function in a C program,
is the start kernel function defined in init/main.c. This master function sets
up IDT entries quite early in its execution. It makes a call to early irq init

to probe the default PCI devices and initialize an array of irq desc structures.
This probing is done only for setting up devices that one would usually expect
such as a graphics card or a network card. These devices are essential to the
operation of a modern system.

Next, it makes a call to init IRQ to set up the per-CPU interrupt stacks
(Section 3.1.5) and the basic IDT. Once this process is done, the LAPICs and
I/O APICs can be setup along with all the connected devices. The apic bsp setup

function realizes this task. All the platform specific initialization functions for
x86 machines are defined in a structure .irqs that contains a list of function

131 © Smruti R. Sarangi

pointers as shown in Listing 4.4. The function apic intr mode init specifically
initializes the APICs on x86 machines.

Listing 4.4: The function pointers associated with IRQ handling
source : arch/x86/kernel/x86 init.c#L77

.irqs = {

.pre_vector_init = init_ISA_irqs ,

.intr_init = native_init_IRQ ,

.intr_mode_select = apic_intr_mode_select ,

.intr_mode_init = apic_intr_mode_init ,

.create_pci_msi_domain = native_create_pci_msi_domain ,

}

Setting up the LAPICs

Intel defines a bunch of APIC-related MSRs (model-specific registers) in its ar-
chitecture. These are privileged registers that are used to interact with interrupt
controllers. They are accessible using the wrmsr and rdmsr instructions. Let us
define a few of the important ones.

Logical Destination Register (LDR) Large multi-socket manycore Intel pro-
cessors can be organized in a 2-level hierarchy. This 32-bit register stores
a 16-bit cluster id and a 16-bit processor id (only valid within its clus-
ter). This provides a unique method of addressing a core (especially its
LAPIC).

Destination Format Register (DFR) It indicates whether we are following
clustering or not.

TPR Task priority register. This stores the priority of the task. When we
are dynamically assigning interrupts to cores, the priority stored in this
register comes handy.

Initializing a LAPIC in a core includes initializing its full state (all APIC-
related MSRs), setting its timers to 0 and finally activating it to receive and
process interrupts.

Setting up the I/O APIC

Setting up an I/O APIC is somewhat different 1. For every single pin in the I/O
APIC that is connected to a hardware device, we need to probe the attached
devices and set up IRQ data structures for them. Next, for each I/O APIC in
the system, there is a need to either create an IRQ domain for it or register it
in an existing domain.

4.2.6 The Interrupt Path

Once all the data structures are set up, we are ready to process the interrupt.
After saving the context in the default interrupt entry point, the interrupt code
pushes the received interrupt vector to the interrupt stack and jumps to the
entry point of the IDT.

1Refer to the code in arch/x86/kernel/apic/io apic.c

https://elixir.bootlin.com/linux/v6.2.12/source/arch/x86/kernel/x86_init.c#L77
https://elixir.bootlin.com/linux/v6.2.12/source/arch/x86/kernel/apic/io_apic.c

© Smruti R. Sarangi 132

Listing 4.5: The interrupt entry point
source : arch/x86/kernel/irq.c#L240

DEFINE_IDTENTRY_IRQ(common_interrupt)

{

...

struct irq_desc *desc;

desc = __this_cpu_read(vector_irq[vector]);

if (likely (! IS_ERR_OR_NULL(desc))) {

handle_irq(desc , regs);

} else {

...

}

The code for accessing an IDT entry is shown in Listing 4.5. The vector irq

array is the IDT table that uses the interrupt vector (vector) as an index to
fetch the corresponding irq desc data structure. This array is stored in the
per-CPU region, hence the this cpu read macro is used to access it. Once
we fetch the irq desc data structure, we can process the interrupt by calling
the handle irq function. The array regs contains the values of all the CPU
registers. This was populated in the process of saving the context of the running
process that was interrupted. Let us now look at an interrupt handler, referred
to as an IRQ handler in the parlance of the Linux kernel. The specific interrupt
handlers are called from the handle irq function.

Structure of an IRQ Handler

As we have discussed earlier, there are primarily two kinds of interrupts: level-
sensitive and edge-sensitive. They have their separate generic handler functions.
For example, the function handle level irq handles level-sensitive interrupts.
It is invoked by handle irq. After a series of calls, all these interrupt handlers
ultimately end up invoking the function handle irq event percpu. It is a
generic interrupt handler, whose return values are quite interesting. They are
as follows.

• NONE: This means that the interrupt was not handled.

• HANDLED: The interrupt was successfully handled.

• WAKE THREAD: A separate low-priority interrupt handling thread was
started. Such threads complete the unfinished work of interrupt handling
at a later point in time.

Listing 4.6: Low-level IRQ event handler
source : kernel/irq/handle.c#L139

irqreturn_t __handle_irq_event_percpu (struct irq_desc *desc

)

{

irqreturn_t retval = IRQ_NONE;

/* retrieve the irq number */

unsigned int irq = desc ->irq_data.irq;

https://elixir.bootlin.com/linux/v6.2.12/source/arch/x86/kernel/irq.c#L240
https://elixir.bootlin.com/linux/v6.2.12/source/kernel/irq/handle.c#L139

133 © Smruti R. Sarangi

struct irqaction *action;

/* iterate through all the irqactions */

for_each_action_of_desc (desc , action) {

/* handle the interrupt */

irqreturn_t res;

res = action ->handler(irq , action ->dev_id);

/* wake a thread if there is a need */

switch (res) {

case IRQ_WAKE_THREAD:

/* start a separate thread */

__irq_wake_thread(desc , action);

break;

default: break;

}

retval |= res;

}

return retval;

}

Listing 4.6 shows the code for handling IRQs. Recall that an IRQ can be
shared across many devices, which is why we have a linked list of irqaction
structures. The code traverses the entire linked list of irqaction structures.
Regardless of the return value, the entire linked list is traversed and all the
handlers are invoked. In some cases, there is a need to create a separate thread
to handle the interrupt. It is possible for a device to register multiple handlers
associated with an interrupt vector. All of them are invoked.

All the handlers (of type irq handler t) are function pointers. They can
either point to functions that are generic interrupt handlers defined in the ker-
nel or device-specific handlers defined in the device driver code (the drivers

directory). Whenever a device is connected in plug-and-play mode or at boot
time, the kernel locates the device driver for it. Subsequently, the device driver
registers a list of functions with the kernel. One of them is the interrupt han-
dler. It is wrapped in an irqaction structure and added to the relevant linked
list associated with the interrupt vector.

Top and Bottom Halves

The interrupt handler that does the basic interrupt processing is conventionally
known as the top half. Its primary job is to acknowledge the receipt of the
interrupt to the APIC and urgently service the device’s request. Note that such
interrupt handlers need to operate in an environment with a lot of restrictions.
For some reason, if they are blocked or run for a long time, then they can stall
the entire system owing to their high priority.

Interrupt Context
Top-half interrupt handlers run in a specialized interrupt context. In the inter-
rupt context, blocking calls such as lock acquisition are not allowed, preemp-
tion is disabled, there are limitations on the stack size (similar to other kernel
threads) and access to user-space memory is not allowed. They also cannot raise

© Smruti R. Sarangi 134

other interrupts (mostly), cannot perform large memory allocations, print data
and perform process-related functions. These are clearly necessary attributes of
very high-priority threads that should run and finish quickly.

If the interrupt processing work is very limited, then the basic top-half in-
terrupt handler is good enough. Otherwise, it needs to schedule a bottom-half
thread for deferred interrupt processing. A bottom-half thread typically has
fewer restrictions. Some variants of bottom-half threads can acquire locks, per-
form complex synchronization and can take a long time to complete. Moreover,
interrupts are enabled when a bottom-half thread is running. This is because
such threads have a low priority and there is no risk of the system getting
destabilized if they run for a long time.

4.2.7 Exceptions

The Intel processor on your author’s machine defines 24 types of exceptions.
These are treated exactly the same way as interrupts and similar to an interrupt
vector, an exception number is generated.

Even though interrupts and exceptions are conceptually different, they are
still handled by the same mechanism, i.e., the IDT. Hence, from the stand-
point of interrupt handling, they are the same (they index the IDT in the same
manner), however, later on within the kernel their processing paths diverge.
Table 4.6 shows a list of some of the most common exceptions supported by the
x86 subsystem in the latest version of the Linux kernel.

Trap/Exception Number Description
X86 TRAP DE 0 Divide by zero
X86 TRAP DB 1 Debug
X86 TRAP NMI 2 Non-maskable interrupt
X86 TRAP BP 3 Breakpoint
X86 TRAP OF 4 Overflow
X86 TRAP BR 5 Bound range exceeded
X86 TRAP UD 6 Invalid opcode
X86 TRAP NM 7 Device not available
X86 TRAP DF 8 Double fault

Table 4.6: An excerpt from the list of exceptions.
source : arch/x86/include/asm/trapnr.h

Many of the exceptions are self-explanatory. However, some need some ad-
ditional explanation as well as justification. Let us consider the “Breakpoint”
exception. This is pretty much a user-added exception. While debugging a
program using a debugger such as gdb, we normally want the execution to stop
at a given line of code. This point is known as a breakpoint. This sadly requires
hardware support. Pure software solutions slow down the program significantly.
First, it is necessary to include detailed symbol and statement-level information
while compiling the binary (known as debugging information). This is achieved
by adding the ‘-g’ flag to the gcc compilation process. This debugging informa-
tion maps each line of code to its corresponding program counter value and each
variable to its respective memory address. This information is typically stored

https://elixir.bootlin.com/linux/v6.2.12/source/arch/x86/include/asm/trapnr.h

135 © Smruti R. Sarangi

in the DWARF format. The debugger subsequently extracts this information
and stores it in its internal hash tables.

When the programmer requests the debugger to set a breakpoint corre-
sponding to a given line of code, the debugger finds the program counter that
is associated with that line of code and informs the hardware that it needs to
stop when it is encountered. Every x86 processor has dedicated debug registers
(DR0 . . . DR3 plus a few more), where this information can be stored a priori.
The processor uses this information to stop at a breakpoint. At this point, it
raises the Breakpoint exception, which the OS catches and subsequently lets the
debugger know about it. Note that after the processor raises the Breakpoint ex-
ception, the program that was being debugged remains effectively paused. The
debugger can analyze the state of the running program such as its registers and
memory contents. Given that the program is compiled in such a way that at all
points of time the mapping between variables and registers/memory addresses
is known, it is possible to find the values of all the local and global variables.
The user can thus easily find the cause of the bug.

The other exceptions correspond to erroneous conditions that should nor-
mally not arise such as accessing an invalid opcode, device or address. An
important exception is the “Double fault”. It is an exception that arises while
processing another exception: it is basically an exception in an exception han-
dler. This indicates a bug in the kernel code, which is never supposed to be
there.

Creation of an Entry in the IDT

Let us now look at exception handling (also known as trap handling). For every
exception, we create an entry in the IDT using the DECLARE IDT ENTRY macro
as shown in Listing 4.7.

Listing 4.7: Declaration of a trap handler
source : arch/x86/include/asm/idtentry.h#L548

DECLARE_IDTENTRY(X86_TRAP_DE , exc_divide_error);

Here, we are declaring a macro for division-related errors. It is named
exc divide error, and is defined in Listing 4.8. It is important to note that
creating an IDT entry is a two-stage process: there is a declaration and a defini-
tion. This is a standard design pattern that users must have seen in C programs
as well.

Now, in Listing 4.8, we observe that the generic function do error trap is
being invoked. It does the preliminary processing of all exceptions (also known
as traps). Along with details of the trap, it takes all the CPU registers (regs)
as input. Let us quickly explain its arguments. The regs argument is a pointer
to the stored register state. The next argument is the error code, which in
this case is unused. Next is the textual name of the exception, “divide error”.
X86 TRAP DE is the exception or trap number. It corresponds to the division
exception, which can be thrown if the divisor is zero or there is an overflow.
The next argument SIGFPE is the POSIX error code for a general floating-point
exception. FPE INTDIV is an additional argument that indicates this exception
arose because of integer division. POSIX is an international standard for an
operating system interface. Linux is generally POSIX compliant (not completely

https://elixir.bootlin.com/linux/v6.2.12/source/arch/x86/include/asm/idtentry.h#L548

© Smruti R. Sarangi 136

though). Hence, a need was felt to also include the POSIX trap codes in a
Linux exception handler. The last argument returns the address of the faulting
instruction. In the case of a page fault, we need the virtual address responsible
for the fault also. This is automatically stored by the hardware in the CR2

register. It is an MSR (model-specific register).

Listing 4.8: Definition of a trap handler
source : arch/x86/kernel/traps.c#L205

DEFINE_IDTENTRY(exc_divide_error)

{

do_error_trap(regs , 0, "divide error", X86_TRAP_DE ,

SIGFPE , FPE_INTDIV , error_get_trap_addr(regs));

}

Exception Handling

There are several things that an exception handler can do. The various options
are shown in Figure 4.7.

Pass it to the User Process
The first option is clearly the most innocuous, which is to simply send a signal to
the process and not take any other kernel-level action. Debugging is a prominent
example. Here, the processor generates an exception upon the detection of a
debug event such as a breakpoint. The kernel is informed. It subsequently sends
a signal to the debugging process. Watchpoints (pause when a given address is
accessed) also function similarly.

Add a Message to the Logs
The second option is not an exclusive option – it can be clubbed with the other
options. The exception handler can additionally print messages to the kernel
logs using the built-in printk function. This is a kernel-specific print function
that writes to the kernel logs. These logs are visible using either the dmesg

command or are typically found in the /var/log/messages file. Many times
understanding the reasons behind an exception is very important, particularly
when kernel code is being debugged.

Kernel Panic
The third option is meant for genuinely exceptional cases. Consider a double
fault – an exception within an exception handler. This is never supposed to
happen unless there is a serious bug in the kernel code. In this case, the recom-
mended course of action is to halt the system and restart the kernel This event
is also known as a kernel panic (srckernel/panic.c).

Dynamic Binary Translation
The fourth option is very useful. For example, assume that a program has been
compiled for a later version of a processor that provides a certain instruction that
an earlier version does not. For example, processor version 10 in the processor
family provides the cosine instruction, which version 9 does not. In this case, it
is possible to create a very easy patch in software such that code that uses this
instruction can still seamlessly run on a version 9 processor.

The idea is as follows. We allow the original code to run unmodified. When
the CPU will encounter an unknown instruction (in this case the cosine instruc-

https://elixir.bootlin.com/linux/v6.2.12/source/arch/x86/kernel/traps.c#L205

137 © Smruti R. Sarangi

DEFINE_IDTENTRY_*

Send a signal to the process

Write to the kernel logs using printk

Go to kernel panic mode in the case
of a double fault (fault within fault

handler). Halt the system

If it is a math error like invoking an
instruc�on that the processor does

not support, then try to emulate it or
ignore it.

Use the no�fy_die mechanism

Figure 4.7: Exception handling in Linux
source : arch/x86/kernel/traps.c

tion), it will generate an exception (illegal instruction). The kernel’s exception
handler can then analyze the nature of the exception and figure out that it
is actually the cosine instruction, which is not supported. Killing the entire
program for just a single unsupported instruction appears too harsh. In this
case, it is possible to use other existing instructions and perform a numerical
computation to compute the cosine of the argument and populate the destina-
tion register with the result (basically solve the Maclaurin series). The running
program can be restarted at the next instruction. The destination register of
the cosine instruction will have the correct result. The program will not even
perceive the fact that it was running on a CPU that did not support the cosine
instruction. Hence, from the point of view of correctness, there is no issue.

Of course, there is a performance penalty – this is a much slower solu-
tion as compared to having a dedicated instruction implemented in hardware.
However, the code now becomes completely portable across machines. Had
we not implemented this dynamic binary translation (or patching) mechanism
via exceptions, the entire program would have had to be terminated. A small
performance penalty is a very small price to pay in this case.

The notify die Mechanism
The last option is known as the notify die mechanism, which implements the
classic observer pattern in software engineering.

An event like an exception can have multiple processes interested in it. All of
them can register and can ask to be notified in case such an exception is raised
in the future. All that they need to do is add a callback function (pointer to the
exception handler) in a linked list associated with the exception. The callback
function (handler) will then be invoked along with some arguments that the
exception will produce. This basically means that we would like to associate
multiple handlers with an exception. The aim is to invoke them in a certain

https://elixir.bootlin.com/linux/v6.2.12/source/arch/x86/kernel/traps.c

© Smruti R. Sarangi 138

sequence and allow all of them to process the exception as per their own internal
logic.

Each of these processes that register their interest are known as observers or
listeners. For example, if there is an error within the core (known as a Machine
Check Exception), different handlers can be invoked. One of them can look at
the nature of the exception and try to deal with it by running a piece of code
to fix any errors that may have occurred. Another interested listener can just
log the event. These two exception handlers are clearly doing different things,
which was the original intention. We can add more handlers to the chain of
listeners, and do many more things. The notify die mechanism simply calls
these handlers in sequence.

The return values of the different handlers are quite relevant and important
here. This process is similar in character to the irqaction mechanism, where
we sequentially invoke all the interrupt handlers that share an IRQ line. The
return value indicates whether the interrupt was successfully handled or not. In
the case of IRQs, we would like to handle an interrupt only once. However, in
the case of an exception, multiple handlers can be invoked, and they can perform
different kinds of processing. Exception handlers do not enjoy a similar sense
of exclusivity. Let us elaborate on this point by looking at the return values of
exception handlers that are invoked using the notify die mechanism (shown in
Table 4.7). We can either continue traversing the chain of listeners/observers
after processing an event or stop calling any more functions. All the options
have been provided.

Value Meaning
NOTIFY DONE Do not care about this event. However, other

functions in the chain can be invoked.
NOTIFY OK Event successfully handled. Other functions in

the chain can be invoked.
NOTIFY STOP Do not call any more functions.
NOTIFY BAD Something went wrong. Stop calling any more

functions.

Table 4.7: Status values returned by exception handlers that have subscribed
to the notify die mechanism. source : include/linux/notifier.h

NOTIFY DONE indicates that the exception is not relevant for the exception
handler. Hence, the next handler in the chain of handlers may be invoked. On
the other hand, NOTIFY OK means that the event was successfully handled.
However, the handler was not invoked exclusively. Subsequent handlers in the
chain need to be invoked. This means that the process of exception handling
hasn’t terminated. It terminates when either NOTIFY STOP is returned or
something goes wrong (NOTIFY BAD).

4.3 Softirqs, Threaded IRQs and Work Queues

Let us now look at a set of bottom-half mechanisms that are used to store and
subsequently execute deferred work items. These are used by the top half and
bottom half interrupt handlers.

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/notifier.h

139 © Smruti R. Sarangi

Modern versions of Linux use softirqs and threaded IRQs, which are special-
ized bottom-half mechanisms to store and execute deferred work items. These
are not meant to be used for doing other kinds of regular work (this is their
spirit). Linux has a more generic mechanism known as work queues. Work
queues can be used to execute any generic function as a deferred function call.
They run as regular kernel threads in the kernel space. Work queues were
conceived to be generic mechanisms.

A brief explanation of the terminology is necessary here. We shall refer to
an IRQ using capital letters. A softirq is however a Linux mechanism and thus
will be referred to with small letters or with a specialized font softirq (when
representing a variable in the code).

It is also important to note that the kernel has several execution contexts (or
execution modes). The first is the mode in which user processes execute, which
is in Ring 3. This is known as the “user context”. However, within the kernel
itself, we can have different contexts. All regular kernel threads execute in the
process context. This includes those kernel threads that are associated with a
user process and pure kernel threads that are not associated with any. Top-half
handlers run in the interrupt context. Here, all maskable interrupts are disabled
and such threads cannot be preempted by other kernel threads. They execute
till completion unless they are preempted by higher-priority top-half interrupt
handlers. We shall shortly introduce a softirq context that is quite similar to
the interrupt context. However, the priority of a softirq handler is effectively
lower. Interrupts are enabled, which means that low-priority top-half interrupt
handlers can preempt it. However, the softirq handler cannot be preempted by
other kernel threads including other threads running in the softirq context.

Definition 4.3.1 Execution Contexts

User Context Typical user-mode process operation (in Ring 3).

Process Context The mode of operation of regular kernel threads that
have a priority attached to them. They can either be created out
of user processes (temporarily promoted to kernel threads) or can
be kernel threads without any user process association. They are
the lowest-priority kernel tasks.

Interrupt Context Interrupt top halves run in this context. Maskable
interrupts and preemption are disabled. There are a lot of restric-
tions on the code executing in this context. They cannot access
user space memory, cannot make blocking calls, etc. Such threads
cannot be swapped out and run until completion. The only excep-
tion is if they are interrupted by higher-priority interrupts. In any
case, no regular kernel thread in process context gets to run until
all the threads in the interrupt context finish.

Softirq Context This is related to the interrupt context. However,
in this case interrupts are enabled. Hence, even low-priority in-
terrupts can get serviced. However, no other thread running in
the softirq context or any regular kernel thread can swap out the
current thread running in softirq context.

© Smruti R. Sarangi 140

4.3.1 Softirqs

A regular interrupt’s top-half handler is bound by a large number of rules and
constraints regarding what it can and cannot do. A softirq inherits the same
restrictions and has a lower effective priority because typically interrupts are
enabled when it executes (in softirq context). There are two ways that it can
be invoked (refer to Figure 4.8).

Hard IRQ

Raise a softirq request

local_bh_enable()

do_so�irq

System management
(kernel threads)

raise so�irq requests

process using a kernel
daemon kso�irqd

Figure 4.8: Two ways of invoking softirqs

The first method (on the left) starts with a regular I/O interrupt (hard IRQ).
After basic interrupt processing, a softirq request is raised. This means that a
work parcel is created that needs to be executed either immediately or perhaps
later. It is necessary to call the function local bh enable after this such that
the processing of softirq threads can be started. Here “bh” stands for “bottom
half”.

Subsequently, the function do softirq is invoked. Its job is to check all
the deferred softirq work items and execute them one after the other. The
thread still runs in interrupt context. However, interrupts are enabled. It is
possible that there are a lot of softirq items. Given that no other kernel task
can execute, the CPU resources may get monopolized. Hence, there is a need
to create a timeout mechanism. This works as follows. Any softirq task in
the softirq context runs until completion. It cannot be preempted in middle.
However, during its execution, it can raise other softirq requests. Those requests
need not be executed after a timeout. Instead, their processing can be deferred
till a later point in time.

There is another mechanism for doing this type of work (the right path in
the figure). It is not always necessary for top-half interrupt handlers to raise
softirq requests. They can be raised by regular kernel threads that want to defer
some specialized work for later processing. It is important to note that there
may be more urgent needs in the system and thus some kernel work needs to be
done immediately. Hence, a deferred work item can be created and stored as a
softirq request.

A dedicated kernel thread called ksoftirqd runs periodically and checks for
pending softirq requests. These threads are called daemons. Daemons are ded-
icated kernel threads that typically run periodically and check/process pending
requests. Now, it is interesting to note that ksoftirqd runs in process context.
It does not run in softirq context. This means that when it calls the function
do softirq, it does so in the process context. Any softirq task that it executes

141 © Smruti R. Sarangi

can thus get preempted by other kernel threads. Sadly, it does not enjoy the
privileges that it would expect to enjoy in softirq context. ksoftirqd also ex-
ecutes those softirq work items, which could not be processed after a top-half
handler finished due to a timeout.

The net summary is that softirqs are generic mechanisms that can be used
by both top-half interrupt handlers and specialized kernel threads; both can
create softirq requests. Some of them execute in interrupt context if they are
invoked right after a top-half handler finishes. The deferred work items executed
by ksoftirqd run in process context.

Raising a softirq

Many kinds of interrupt handlers can raise softirq requests. They all invoke the
raise softirq function whenever they need to add a softirq request. Instead
of using a software queue, there is a faster method to record this information.
A fast method is to store a word in memory in the per-CPU region. Each bit
of this memory word has a bit corresponding to a specific type of softirq. If a
bit is set, then it means that a softirq request of the specific type is pending at
the corresponding CPU.

Table 4.8 shows a few examples of softirqs2.

Softirq type Explanation
HI SOFTIRQ High-priority software interrupts
TIMER SOFTIRQ Timer-related event processing
NET TX SOFTIRQ Network packet transmission
BLOCK SOFTIRQ Handle block-device operations
SCHED SOFTIRQ Runs the scheduler
HRTIMER SOFTIRQ Runs time-sensitive kernel tasks

Table 4.8: Examples of softirqs

As the names suggest, for different kinds of interrupts, we have different
kinds of softirqs defined. Note that the size of this list is limited and so is
the overall flexibility. The softirq mechanism was never meant to be a generic
mechanism in the first place. It was always meant to offload deferred work for a
few well-defined classes of interrupts and kernel tasks. It is also not meant to be
used by device drivers even though they theoretically can raise softirq requests.
We shall see later that work queues are more appropriate for device drivers.

Invoking a softirq Handler

Invoking a handler can either be done after some kernel task finishes like process-
ing the top half of an interrupt or periodically by the kernel daemon (ksoftirqd).
The processing is quite similar.

It starts with checking all the softirq bits that are set to 1 in the CPU-specific
memory word. This means that for each bit set to 1, there is a pending softirq
request. Then in a known priority order, the kernel invokes the softirq handlers
corresponding to all the bits that are set to 1.

2Defined in include/linux/interrupt.h

© Smruti R. Sarangi 142

4.3.2 Threaded IRQs

Note that softirq threads are still quite restrictive. They are not meant to run
for long durations and cannot acquire locks. A mechanism is thus needed to
defer work to threads that run as regular processes and do not suffer from any
restrictions. This is where threaded IRQs come handy. They have replaced an
older mechanism called tasklets in terms of use.

They run functions to process deferred work items, albeit using separate
kernel threads. The kernel threads that run them still have reasonably high
real-time priorities, but these priorities are not as high as interrupt-processing
threads that run top-half or softirq tasks. On most Linux distributions, their
real-time priority is set to 50, which is clearly way more than all user-level
threads and a lot of low-priority kernel threads as well.

We can appreciate this much better by looking at struct irqaction again.
Refer to Listing 4.9.

Listing 4.9: Relevant part of struct irqaction

source : include/linux/interrupt.h#L118

struct irqaction {

...

struct task_struct *thread;

irq_handler_t thread_fn;

...

}

Every struct irqaction structure has a pointer to a thread that executes
the handler as a threaded IRQ if there is a need. This execution happens in
process context, where the thread executes as a regular process. It can perform
all regular operations like going to sleep, waiting on a lock and accessing user
space memory. If this field is NULL, then the IRQ is not meant to be run as a
threaded IRQ. Instead, a dedicated interrupt handling thread will process the
interrupt.

The next argument of type irq handler t is a pointer to a function that
needs to be executed to handle the interrupt. If the thread argument is not
NULL, then a kernel thread executes this function.

4.3.3 Work Queues

Softirqs and threaded IRQs are not very generic mechanisms. Hence, the kernel
has work queues that are meant to execute all kinds of deferred tasks. These
are generic, flexible and low-priority threads. Work queues have explicitly been
designed for this purpose. Their structure is far more elaborate and complex as
compared to the rest of the mechanisms.

Broad Overview

Let us provide a brief overview of how a work queue works (refer to Figure 4.9).

A work queue is typically associated with a specific class of tasks such as
high-priority tasks, batch jobs or bottom halves. This is not a strict requirement,
however, in terms of software engineering, this is a sensible decision.

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/interrupt.h#L118

143 © Smruti R. Sarangi

Wrapper

Worker pool

Wrapper

Worker pool

Work queue

Wrapper

Worker pool

Linked list of work
items (work_structs)

Threads

Inac�ve

items

Figure 4.9: Overview of a work queue

Each work queue contains a bunch of worker pool wrappers that each wrap
a worker pool. Let us first understand what is a worker pool, and then we will
discuss the need to wrap it (create additional code to manage it). A worker
pool has three components: set of inactive work items, a group of threads that
process the work in the pool and a linked list of work items that need to be
processed (executed).

The main role of the worker pool is to basically store a list of work items
that need to be completed at some point of time in the future. Consequently,
it has a pool of ready threads to perform this work and to also guarantee some
degree of timely completion. This is why it maintains a set of threads that
can immediately be given a work item to process. There is no need to create
and destroy threads every time a work item is allocated or completed – a pool
of threads is maintained. A work item contains a function pointer and the
arguments of the function. A thread executes the function with the arguments
that are stored in the work item.

It may appear that all that we need for creating such a worker pool is a
bunch of threads and a linked list of work items. However, there is a little bit
of additional complexity here. It is possible that a given worker pool may be
overwhelmed with work. For instance, we typically associate a worker pool with
a CPU or a group of CPUs. It is possible that a lot of work is being added to
it and thus the linked list of work items ends up becoming very long. Hence,
there is a need to limit the size of the work that is assigned to a worker pool.
We do not want to traverse long linked lists.

An ingenious solution to limit the size of the linked list is as follows. We
tag some work items as active and put them in the linked list of work items
and tag the rest of the work items as inactive. The latter are stored in another
data structure, which is specialized for storing inactive work items (meant to be
processed much later). The advantage that we derive here is that for the regular
operation of the worker pool, we deal with smaller data structures namely the
list of active items. It is the role of the wrapper of a worker pool to intercept
calls and manage the active and inactive lists.

The worker pool along with its wrapper can be thought of as one cohesive
unit. Note that we may need many such wrapped worker pools because in a large

© Smruti R. Sarangi 144

system we shall have a lot of CPUs, and we may want to associate a worker
pool with each CPU or a group of CPUs. This is an elegant way of partitioning
the work and also doing some load-balancing.

Let us now look at the kernel code that is involved in implementing a work
queue.

Kernel Code

The important kernel-level data structures and their relationships are shown in
Figure 4.10.

pool_workqueue

worker_pool *pool;

workqueue_struct

struct list_head pwqs;

worker_pool

struct list_head
worklist;

/kernel/workqueue.c

work_struct

kernel task

worker

/kernel/workqueue
internal.h

Figure 4.10: The detailed structure of work queues

A work queue is represented using the workqueue struct. It points to a
set of wrapped worker pools. Note that a work queue needs to have at least
one worker pool wrapper (pool workqueue). Each such wrapper points to a
worker pool. The wrapper’s role is to basically manage the worker pool as
discussed earlier. Each worker pool contains a linked list of work items. Each
such work item is a parcel of work that is embodied within a structure called
work struct.

Each work struct needs to be executed by a worker thread. A worker thread
is a kernel task that is a part of the worker pool (of threads). Let us now focus
on the fields of work struct (see Listing 4.10).

Listing 4.10: struct work struct

source : include/linux/workqueue.h#L97

struct work_struct {

atomic_long_t data;

struct list_head entry;

work_func_t func;

};

The member struct list head entry indicates that this is a part of a
linked list of work structs. This is per se not a field that indicates the details
of the operation that needs to be performed. The only two operational fields
of importance are data (data to be processed) and the function pointer (func).
The data field can also be a pointer to an object that contains all the arguments.

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/workqueue.h#L97

145 © Smruti R. Sarangi

The advantage of work queues is that they are usable by third-party code
and device drivers as well. This is quite unlike threaded IRQs and softirqs that
are not supposed to be used by device drivers. Any entity can create a struct

work struct and insert it in a work queue. This is executed later on when there
is enough CPU time.

Point 4.3.1

The workqueue struct contains a list of wrappers (pool workqueue

structures). Each wrapper wraps a worker pool. Each worker pool is
associated with either one CPU or a group of CPUs. It contains a pool
of worker threads that process all the constituent work items.

Examples of Some Common Work Queues

Listing 4.11 shows examples of some common work queues defined in the kernel.
As we can observe, there are different kinds of work: system-wide work, high-
priority tasks, long duration tasks, tasks that have very strict power constraints,
tasks that can be inactivated for a long time, etc.

Listing 4.11: Work queues in the system
source : include/linux/workqueue.h#L380

extern struct workqueue_struct *system_wq;

extern struct workqueue_struct *system_highpri_wq;

extern struct workqueue_struct *system_long_wq;

/* not bound to a specific CPU */

extern struct workqueue_struct *system_unbound_wq;

/* can be suspended and resumed */

extern struct workqueue_struct *system_freezable_wq;

/* power -efficient jobs */

extern struct workqueue_struct *system_power_efficient_wq;

extern struct workqueue_struct *

system_freezable_power_efficient_wq;

In addition, each CPU has two dedicated work queues: one for low-priority
tasks and one for high-priority tasks.

4.4 Signal Handlers

4.4.1 Example of a Signal Handler

Listing 4.12: Code that defines and uses signal handlers

1 void handler (int sig){

2 printf ("In the signal handler of process %d \n",

3 getpid ());

4 exit (0);

5 }

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/workqueue.h#L380

© Smruti R. Sarangi 146

6

7 int main(){

8 pid_t child_pid , wpid; int status;

9

10 signal (SIGUSR1 , handler); /* Register the handler */

11 child_pid = fork(); /* Create the child */

12

13 if (child_pid == 0) {

14 printf ("I am the child and I am stuck \n");

15 while (1) {}

16 } else {

17 sleep (2); /* Wait for the child to get initialized

*/

18 kill (child_pid , SIGUSR1); /* Send the signal */

19 wpid = wait (& status); /* Wait for the child to

exit */

20 printf ("Parent exiting , child = %d, wpid = %d,

status = %d \n",child_pid , wpid , status);

21 }

22 }

Listing 4.12 shows the code of a signal handler. Here, the handler function is
handler that takes as input a single argument: the number of the signal. Then
the function executes like any other function. It can make library calls and also
call other functions. In this specific version of the handler, we are making an
exit call. This kills the thread that is executing the signal handler. However,
this is not strictly necessary. These are meant to be generic functions.

Let us assume that we did not make the call to the exit library function, but
just returned from the handler, then one of the following could have happened:
if the signal blocked other signals or interrupts, then their respective handlers
would be executed. In the case of some signals such as SIGSEGV and SIGABRT,
returning from the handlers is not advisable. They typically indicate a serious
issue with the functioning of the program. It is a good idea to save the state,
perform a cleanup, release resources and terminate the executing program. For
regular signal handlers, the interrupted user thread resumes execution from the
point at which it was paused and the signal handler’s execution began. From
the thread’s point of view this is like a regular context switch.

Now let us look at the rest of the code. Refer to the main function. We need
to register the signal handler. This is done in Line 10. After that, we fork the
process. It is important to bear in mind that signal handling information is also
copied. In this case, for the child process its signal handler will be the copy of
the handler function in its address space. The child process prints that it is
the child, and then goes into an infinite while loop.

The parent process, on the other hand, has more work to do. First, it waits
for the child to get fully initialized. There is no point in sending a signal to a
process that has not been fully initialized. Otherwise, it will ignore the signal.
It thus sleeps for 2 seconds, which is deemed to be enough. It then sends a signal
to the child using the kill library call that in turn makes the kill system call,
which is used to send signals to processes. In this case, it sends the SIGUSR1
signal. SIGUSR1 has no particular significance otherwise – it is meant to be
defined by user programs for their internal use.

147 © Smruti R. Sarangi

When the parent process sends the signal, the child at that point of time is
stuck in an infinite loop. It subsequently wakes up and runs the signal handler.
The logic of the signal handler is quite clear – it prints the fact that it is the
child along with its process id and then makes the exit call. The parent in turn
waits for the child to exit, and then it collects the pid of the child process along
with its exit status. The WEXITSTATUS macro can be used to parse the exit value
(extract its lower 8 bits).

The output of the program shall clearly indicate that the child was stuck in
an infinite loop. Then the parent called the signal handler and waited for the
child to exit. Finally, the child thread exited.

4.4.2 Signal Delivery

Point 4.4.1

In general, a signal is meant to be a message that is sent by the operating
system to a process. The signals may be generated by kernel code in
response to some hardware interrupt or software event like an exception,
or they may be sent by another process (via the kernel). Note that all
the signals cannot be blocked, ignored or handled. A signal that cannot
be handled like immediate process termination is meant to be exclusively
handled by the kernel.

In a multithreaded process that comprises multiple threads, if a signal is sent
to it, then one of the threads shall be assigned by the OS to handle the signal.
Note that all the signal handling structures are in general shared among all the
threads in a thread group. A thread group (also referred to as a multithreaded
process) is a single unit insofar as signal handling is concerned. The kill com-
mand or system call can be used to send a signal to any other process from
either the command line or programmatically. Note that kill does not mean
killing the process as the literal meaning would suggest. It should have been
named send signal instead. Let us decide to live with such anomalies /. Using
the kill command on the command line is quite easy. The format is: kill

-signal pid.

Signal Number Description
SIGHUP 1 Sent when the terminal that started the process

is closed.
SIGINT 2 The signal generated when we press Ctrl+C. This

default action can be overridden in a signal han-
dler.

SIGQUIT 3 Terminates a process. It generates a core dump
file (can be used by the debugger to find the state
of the process’s variables at the time of termina-
tion)

SIGILL 4 It is raised when an invalid instruction is exe-
cuted or the process has inadequate privileges to
execute that instruction.

© Smruti R. Sarangi 148

SIGTRAP 5 It is used for debugging. The debugger can pro-
gram the debug registers to generate this sig-
nal when a given condition is satisfied such as
a breakpoint or certain other kinds of exceptions.

SIGABRT 6 It is typically generated by library code to indi-
cate an internal error in the program. The signal
can be handled but returning to the same point of
execution does not make sense because the error
in all likelihood will happen again.

SIGBUS 7 It indicates an access to invalid memory. In gen-
eral, it is raised when there are issues with align-
ment errors (accessing an integer that starts at
an odd-numbered address on some architectures)
or other such low-level issues.

SIGFPE 8 It is raised when there is an arithmetic exception
such as an overflow or division by zero.

SIGKILL 9 It is a very high-priority signal that causes the
program to terminate with immediate effect. It
cannot be blocked, ignored or handled.

SIGUSR1 10 This is meant to be used by regular programmers
in any way they deem suitable.

SIGSEGV 11 This is similar in character to SIGBUS; however,
is far more generic. It is raised when we are trying
to dereference a null pointer or accessing memory
that is not mapped to a process. It is the most
common memory error that C/C++ programmers
have to deal with.

SIGUSR2 12 It is similar to SIGUSR1 – it is meant to be used
by programmers in their code. This signal is not
associated with a fixed set of events.

SIGPIPE 13 This signal is associated with the inter-process
communication mechanism where two processes
use a pipe (similar to a FIFO queue) to commu-
nicate between themselves. If one end of the pipe
is broken (process terminates or never joins), then
this signal is raised by the OS.

SIGALRM 14 A process can set an alarm using any of the timer
chips available in the hardware. Once the time
elapses, the OS raises a signal to let the process
know. It works like a regular alarm clock.

SIGTERM 15 It is a signal that causes process termination. It
is a “polite” way of asking the program to termi-
nate. It can be blocked, ignored or handled.

SIGSTKFLT 16 This signal is very rarely used these days. It
stands for “stack fault”. It is used to indicate
memory access problems in the stack segment of
a process. SIGSEGV has replaced this signal in
modern kernels.

149 © Smruti R. Sarangi

SIGCHLD 17 When a child process terminates, this signal is
sent to the parent.

SIGCONT 18 This resumes a stopped process.
SIGSTOP 19 It stops a process. It has a very high priority. It

cannot be caught, handled or ignored.
SIGTSTP 20 It is a polite version of SIGSTOP. This signal

can be handled. The application can be stopped
gracefully after the handler performs some book-
keeping actions.

Table 4.9: List of common signals including their definitions
source : include/uapi/asm− generic/signal.h

Refer to Table 4.9 that shows some of the most common signals used in the
Linux operating system. Many of them can be handled and blocked. How-
ever, there are signals such as SIGSTOP and SIGKILL that cannot be handled,
blocked and ignored. The kernel directly stops or kills the associated processes,
respectively.

In modern kernels, there are different ways of sending a signal to a thread
group. One of the simplest approaches is the kill system call that can send
any given signal to a thread group (as we have seen in Listing 4.12). One of
the threads handles the signal. There are many versions of this system call.
For example, the tkill call can send a signal to specific thread within a thread
group, whereas the tgkill call takes care of a corner case. It is possible that
the thread id specified in the tkill call is recycled. This means that the thread
completes, and then a new thread is spawned with the same pid. This can lead
to the signal being sent to the wrong thread. To guard against this rare case,
the tgkill call takes an additional argument, the thread group id. It is unlikely
that both will be recycled and still remain the same.

SIGKILL and SIGSTOP are special in other ways as well. Even though signals
are generally sent to a specific thread in a thread group, these signals are sent
to all the threads. This is because they are meant to affect the entire thread
group. They either destroy all the threads or stop all of them (resp.).

Regardless of the method that is used and the nature of the signal, it is very
clear that signals are sent to a thread group; they are not meant to be sent
to a particular thread unless the tkill or tgkill calls are used. An example
of thread-specific handling is as follows. Sometimes, there is an arithmetic
exception in a thread and there is a need to call the specific handler for that
thread only. In this case, it is not possible nor advisable to call the handler
associated with another thread in the same thread group.

Furthermore, signals can be blocked as well as ignored. When a blocked
signal is raised, it is queued. All such queued/pending signals are handled once
they are unblocked. Here also there is a caveat: no two pending signals of the
same type can be pending for a process at the same time. Moreover, when a
signal handler executes, it blocks the corresponding signal.

https://elixir.bootlin.com/linux/v6.2.12/source/include/uapi/asm-generic/signal.h

© Smruti R. Sarangi 150

Point 4.4.2

No two pending signals of the same type can be pending for a process at
the same time. Moreover, when a signal handler executes, it blocks the
corresponding signal.

More about Signal Handling

There are several ways in which a signal can be handled.

The first option is to ignore the signal – it means that the signal is not
important, and no handler is registered for it. In this case, the signal can be
happily ignored. On the other hand, if the signal is important and must lead
to process termination, then the process needs to be terminated. Examples of
such signals are SIGKILL and SIGINT (refer to Table 4.9). There can also be a
case where process termination is inevitable. However, prior to terminating the
process, an additional file called the core dump file needs to be generated. It
contains the entire memory and register state of the process. It can be used by
a debugger to inspect the state of the process at which it was paused or stopped
because of the receipt of a signal. For instance, we can find the values of all the
local variables, the stack’s contents and the memory contents.

We have already seen the process stop and resume signals earlier. The stop
action is associated with suspending a process indefinitely until the resuming
action is initiated. The former corresponds to the SIGSTOP and SIGTSTP
signals, whereas the latter corresponds to the SIGCONT signal. It is important
to understand that like SIGKILL, these signals are intercepted by the kernel and
the corresponding set of threads in the thread group are either all terminated
or stopped/resumed. SIGKILL and SIGSTOP in particular cannot be ignored,
handled or blocked.

Finally, the last method is to handle the signal by registering a handler.
Applications that provide a graphical user interface often use signal handlers to
process keyboard and mouse click events. For example, when a mouse button is
clicked, the kernel catches the interrupt and raises a signal to let the foreground
application know about the mouse click. The relevant signal handler runs and
processes the event. It can, for instance, open a new window or make a change
to some visual element.

Note that in many cases this may not be possible, especially if the signal
arose because of an exception. The same exception-causing instruction will
execute after the handler returns and again cause an exception. In such cases,
terminating or stopping the faulting thread are good options. In some cases, if
the circumstances behind an exception can be changed, then the signal handler
can provide an effective solution. For example, it can remap a memory page
or change the value of a variable that is causing an exception. Making such
changes in a signal handler to fix the state of a running program is quite risky
and is only meant for black belt programmers ,.

4.4.3 Kernel Code

Let us now look at the relevant kernel code (shown in Listing 4.13). It contains
the fields in the task struct that pertain to signal handling.

151 © Smruti R. Sarangi

Listing 4.13: Fields in the task struct that pertain to signals
source : include/linux/sched.h#L1098

/* signal handling apex structure */

struct signal_struct *signal;

/* list of all the handlers */

struct sighand_struct *sighand;

/* currently blocked and originally blocked signals */

sigset_t blocked;

sigset_t real_blocked;

/* list of all the pending signals */

struct sigpending pending;

/* custom signal stack */

unsigned long sass_ss_sp;

size_t sass_ss_size;

The apex data structure is signal struct. It holds all the details about the
threads involved in signal handling and the list of pending signals. The infor-
mation about the registered signal handlers is kept in struct sighand struct.
The two important fields that store the set of blocked/masked signals are blocked
and real blocked. They are of the type sigset t, which is nothing but a bit
vector: one bit for each signal (that has been raised). It is possible that a lot
of signals have been blocked by the process because it is simply not interested
in them. All of these signals are stored in the variable real blocked. During
the execution of any signal handler, typically more signals are blocked including
the signal that is being handled. There is a need to add all of these additional
signals to the set real blocked. With these additional signals, the expanded
set of signals is called blocked.

Hence, we have the following relationship.

real blocked ⊂ blocked (4.1)

In this case, we set the blocked signal set, which is a super set of the set
real blocked. These are all the signals that we do not want to handle when
a signal handler is executing. After finishing executing the handler, the kernel
sets blocked to real blocked.

struct sigpending stores the list of pending/queued signals that have not
been handled by the process yet. We will discuss its intricacies later.

Finally, consider the last two fields, which specify the details of an alternative
stack. For a signal handler, we may want to use the same stack of the thread that
was interrupted or a different one. If we are using the same stack, then there is
no problem; we can otherwise use a different stack in the thread’s address space.
In this case its starting address and the size of the stack need to be specified.
If we are using the alternative stack, which is different from the real stack that
the thread was using, no correctness problem is created. The original thread in
any case is stopped and thus the stack that is used does not matter.

struct signal struct

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/sched.h#L1098

© Smruti R. Sarangi 152

Listing 4.14: Fields in signal struct

source : include/linux/sched/signal.h#L93

struct signal_struct {

/* number of active threads in the group */

atomic_t live;

/* all the threads in the thread group */

struct list_head thread_head;

/* threads waiting on the wait system call */

wait_queue_head_t wait_chldexit;

/* last thread that received a signal */

struct task_struct *curr_target;

/* shared list of pending signals in the group */

struct sigpending shared_pending;

};

Listing 4.14 shows the important fields in the main signal-related structure
signal struct. It contains process-related information such as the number of
active threads in the thread group, a linked list containing all the threads (in
the thread group), list of all the constituent threads that are waiting on the
wait system call, the last thread that processed a signal and the list of pending
signals (shared across all the threads in a thread group).

We need to understand that in general the kernel does not attach any special
significance to threads. The scheduler and other parts of the kernel, by and large,
treat each thread as an independent process. It has its own pid. The signal
subsystem is a noteworthy exception. Here, a lot of information is maintained
regarding the status of all the threads in a thread group, whether they are
waiting for a child to terminate or not, and load-balancing information. For
example, the id of the last thread that processed a signal is maintained. Next
time, another thread could be assigned to process the signal such that all the
threads are equally slowed down. Also note that pending signal information is
stored at the level of a thread group, not at the level of individual threads. Next,
let us discuss the structure that maintains the details of the signal handlers,
which are also shared across the threads. Given that all the threads in a thread
group share the virtual address space, the same virtual address points to the
same function, which in this case is a signal handler.

struct sighand struct

Listing 4.15: Fields in sighand struct

source : include/linux/sched/signal.h#L20

struct sighand_struct {

refcount_t count;

wait_queue_head_t signalfd_wqh;

struct k_sigaction action[_NSIG];

};

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/sched/signal.h#L93
https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/sched/signal.h#L20

153 © Smruti R. Sarangi

Listing 4.15 shows the sighand struct, which serves as a wrapper of signal
handlers.

The first field count maintains the number of task struct s that use this
handler. Reference counting of this nature is a common design pattern in the
kernel. When the count reaches zero, it means that there are no processes with
registered signal handlers. The next field signalfd wqh is a queue of waiting
processes. At this stage, it is fundamental to understand that there are two ways
of sending a signal to a process. We have already seen the first approach, which
involves calling the signal handler directly. This is a straightforward approach
and uses the traditional paradigm of using callback functions, where a callback
function is a function pointer that is registered with the caller. In this case, the
caller (invoker) is the signal handling subsystem of the OS.

It turns out that there is a second mechanism, which is not used that widely.
As compared to the default mechanism, which is asynchronous (signal handlers
can be run any time), this is a synchronous mechanism. In this case, signal
handling is a planned process. It is not the case that signals can arrive at
any point of time, and then they need to be handled immediately. The idea is
that the process registers a file descriptor with the OS – we refer to this as the
signalfd file. Whenever a signal needs to be sent to the process, the OS writes
the details of the signal to the signalfd file. Threads in this case, typically wait
for signals to come (get queued in signalfd wqh). When a signal arrives, the
relevant thread is woken up. If there is already a waiting signal, the invoking
thread can pick the details and start processing the signal. The locus of control
is transferred to the thread.

The asynchronous mechanism is more commonly used. Threads are imme-
diately notified if there is a signal. This allows them to be responsive, especially
with graphical user interfaces. Hence, let us continue our journey in describing
the key structures associated with it.

For signal handing, we need to store an array of NSIG (set to 64) signal
handlers. 64 is the maximum number of signal handlers that Linux supports on
x86 systems. Each signal handler is wrapped using the k sigaction structure.
On most architectures, this simply wraps the sigaction structure, which we
shall describe next.

struct sigaction

Listing 4.16: struct sigaction (x86 systems)
source : arch/x86/include/uapi/asm/signal.h#L94

struct sigaction {

/* pointer to the handler */

__sighandler_t sa_handler;

unsigned long sa_flags;

/* additional signals masked */

sigset_t sa_mask;

};

The important fields of struct sigaction are shown in Listing 4.16. The
fields are reasonably self-explanatory. sa handler is a function pointer in the
thread’s user space memory. flags represents the parameters that the kernel

https://elixir.bootlin.com/linux/v6.2.12/source/arch/x86/include/uapi/asm/signal.h#L94

© Smruti R. Sarangi 154

uses to handle the signal such as whether a separate stack needs to be used or
not. Finally, we have the set of signals that are additionally masked when the
handler is running.

struct sigpending

The final data structure that we need to define is the list of pending signals
(struct sigpending). This data structure is reasonably complicated. It uses
some of the tricky features of linked lists, which we have very nicely steered
away from up till now.

struct sigpending {
struct list_head list;
sigset_t signal;

}

struct sigqueue {
struct list_head list; /* Poin�ng to its current posi�on in the

queue of sigqueues */
kernel_siginfo_t info; /* signal number, signal source, etc. */

}

sigqueue sigqueue sigqueue sigqueue

Figure 4.11: Data structures used to store pending signals

Refer to Figure 4.11. The structure sigpending wraps a linked list that
contains all the pending signals. The name of the list is as simple as it can be,
list. The other field of interest is signal that is simply a bit vector whose ith

bit is set if the ith signal is raised. Note that this is why there is a requirement
that two signals of the same type can never be pending for the same process.
We just have a single bit to record the fact that a signal has been raised. Hence,
two signals of the same type cannot be outstanding at the same point of time.

Each entry of the linked list is of type struct sigqueue. Note that we
discussed in Appendix C that in Linux, different types of nodes can be part
of a linked list. Hence, in this case we have the head of the linked list as a
structure of type sigpending, whereas all the entries are of type sigqueue. As
non-intuitive as this may seem, this is indeed possible in Linux’s linked lists.

Each sigqueue structure basically functions as a node of a linked list. Hence,
it is mandated to have an element of type struct list head. Recall that a
struct list head points to linked list nodes on the left and right (previous and
next), respectively. Each such sigqueue encapsulates a raised signal using the
kernel siginfo t structure (kernel signal information).

This structure contains the following fields: signal number, number of the
error or exceptional condition that led to the signal being raised, source of the
signal and the sending process’s pid (if relevant). This is all the information
that is needed to store the details of the signal that has been raised, and process
it later.

155 © Smruti R. Sarangi

Trivia 4.4.1

If n bits are set (equal to 1) in the field signal, then it means that there
are n signals raised. For each raised signal, we have an entry in the linked
list whose head is the sigpending structure. Each such entry stores the
details of the signal and is represented by a sigqueue structure.

4.4.4 Entering and Returning from a Signal Handler

A signal is similar to a context switch. The executing thread is stopped, and
the signal handler is run. We are, of course, assuming that we are using the
default version of signal handling and not the file-based method. Assuming the
default method, the first task is to save the context of the user process.

Kernel routines that are specialized to save the context are used to collect
the context of the running process. This part is similar to a system call or
interrupt. However, the difference is that the context is not stored on the kernel
stack. There is no need to do so given that we don’t expect a kernel thread to
subsequently run. An elaborate low-level data structure is created to store the
context on the user stack, which is often referred to as the signal frame. The
data structures to capture the context are shown in Listing 4.17.

Listing 4.17: User thread’s context stored by a signal handler
source : arch/x86/um/signal.c#L349

source : include/uapi/asm− generic/ucontext.h#L5

struct rt_sigframe {

struct ucontext uc; /* context */

struct siginfo info; /* kernel_siginfo_t */

char __user *pretcode; /* return address:

__restore_rt glibc function */

};

struct ucontext {

unsigned long uc_flags;

stack_t uc_stack; /* user’s stack pointer */

struct sigcontext uc_mcontext; /* Snapshot of all the

registers and other state */

};

struct rt sigframe keeps all the information required to store the context
of the thread that was signaled. The context per se is stored in the structure
struct ucontext. Along with some signal handling flags, it stores two vital
pieces of information: the pointer to the user thread’s stack and the snapshot
of all the user thread’s registers and its state. The stack pointer can be in
the same region of memory as the user thread’s stack or in a separate memory
region. Recall that it is possible to specify a separate address for storing the
signal handler’s stack.

The next argument info is the signal information that contains the details
of the signal: its number, the relevant error code and the details of the source
of the signal.

The last argument pretcode is the most interesting. The question is where
should the signal handler return to? It cannot return to the point at which

https://elixir.bootlin.com/linux/v6.2.12/source/arch/x86/um/signal.c#L349
https://elixir.bootlin.com/linux/v6.2.12/source/include/uapi/asm-generic/ucontext.h#L5

© Smruti R. Sarangi 156

the original thread stopped executing. This is because its context has not been
restored yet. Hence, we need to return to a special function that needs to do
a host of things such as restoring the user thread’s context. Hence, here is the
big idea. Before launching the signal handler, we deliberately tweak the return
address such that the handler returns to a custom function that can restore the
user thread’s context. Note that on x86 machines, the return address is stored
on the stack prior to invoking any function. All that we need to do is change
the corresponding entry on the stack and make it point to a specific function:
restore rt function in the glibc standard library.
When the signal handler returns, it will start executing the restore rt

function. Note that there is no reason to write the signal handling function
in any special manner. It is completely oblivious of such changes. Tweaking
the return address by modifying the stack or the return address register is a
standard technique. This idea find many uses in OS kernels. For example, there
is typically a need to execute a function on a separate thread. It returns to a
special code snippet that records the return value and tears down the thread.

Now, the restore rt function does a lot of important things. It does some
bookkeeping and makes the important sigreturn system call. This transfers
control back to the kernel. It is only the kernel that can restore the context of a
process. This cannot be done in user space without hardware support. Hence, it
is necessary to bring the kernel into the picture. The kernel’s system call handler
copies the context stored in the user process’s stack using the copy from user

function to the kernel’s address space. The same way that we restore the context
while loading a process on a core, we do exactly the same here. The context
collected from user space is transferred to the same subsystem in the kernel;
it restores the user thread’s context (exactly at where it stopped). The kernel
populates all the registers of the user thread including the PC and the stack
pointer. Ultimately, the user thread starts from exactly the same point at which
it was paused to handle the signal.

To summarize, a signal handler is a small process within a process. It has a
short-lived life. It ceases to exist after the signal handling function finishes its
execution. Subsequently, the original thread resumes.

4.5 Summary and Further Reading

4.5.1 Summary

Summary 4.5.1

1. A library call wraps a system call. It prepares its arguments, in-
vokes it, processes the return value and informs the user application
accordingly.

2. Library calls such as printf are implemented in multiple layers
arranged sequentially. Each layer processes the output of the pre-
vious layer. Ultimately, in the case of printf, a single string is
created and sent as an argument of the system call.

3. On x86 machines, the system call number is sent via the rax reg-

157 © Smruti R. Sarangi

ister. The rest of the six arguments are sent via other registers. If
there are additional arguments, they are sent via the user stack.

4. System calls use the syscall instruction to enter the kernel. Af-
ter a mode switch, the context is first saved and then system call
processing begins.

5. Interrupts and exceptions are associated with an 8-bit number
known as the interrupt vector. This is used to access the Inter-
rupt Descriptor Table (IDT). Each entry stores a pointer to an
irq desc structure, which the kernel uses to locate the handler.

6. Every device is associated with an interrupt line known as an IRQ.
These IRQs can be physical copper wires or could be virtual. Ev-
ery device is connected to an Advanced Programmable Interrupt
Controller (APIC). The APIC can raise an IRQ (indicate that it
is set to 1) upon either sensing a voltage change on the IRQ line
or on receiving a message.

7. The APICs themselves are organized hierarchically (in domains).
There are a few system-wide I/O APICs, and every core has a local
APIC (LAPIC). The LAPIC sends the interrupt vector to the CPU
and also provides other services such as maintaining a timer that
can generate periodic interrupts or work as an alarm.

8. There is a limit of 256 interrupt vectors, and a modern mother-
board can potentially have many more devices and IRQs. Hence,
there is a need to dynamically map IRQs to interrupt vectors,
and potentially multiplex an interrupt vector among several IRQs.
There is also a need to share an IRQ between several devices.

9. When an interrupt is raised, the kernel can get a pointer to the
IRQ via the corresponding entry in the IDT. Subsequently, it is
necessary to query every device associated with the IRQ and find
if it had raised the interrupt. If the device agrees, then its device
driver’s handler is invoked.

10. The interrupt handler is known as the top half. It is a very high-
priority task. Its priority is much more than all normal and real-
time tasks. Because of such high priorities, there need to be re-
strictions on top-half handlers. They cannot acquire locks, can-
not access user-space memory, and dynamically allocate memory.
Moreover, during their execution, interrupts are disabled. Hence,
if there is work of a more generic nature, it needs to be deferred for
later processing. Another task needs to pick up the work, which is
known as a bottom-half handler.

11. When an exception is detected, there are several things that the
kernel can do. Note that exceptions are often generated when
there is some bug in the program. The following options are not
exclusive.

© Smruti R. Sarangi 158

(a) Send a signal to the process and let it handle the exception.

(b) Print to the kernel logs using the printk function.

(c) If there is a fault within an exception handler, then this situ-
ation is known as a double fault. The kernel in this case goes
into panic mode and the system shuts down.

(d) Perform dynamic binary translation and replace the faulting
instruction with a software-generated code snippet.

(e) Use the notify die mechanism to inform entities that have in-
dicated interest in getting notified about this exception.

12. There are three methods to implement bottom-half handlers.

Softirqs Sometimes the top-half handler finishes and raises a
softirq. It can immediately start executing the softirq request
in the interrupt context. In this case, interrupts are enabled
and the softirq thread has a lower priority than all top-half
interrupt handlers.

Threaded IRQs These threads run at a high real-time priority,
which is typically 50.

Work Queues This is the most generic mechanism and can be
used by all subsystems. In this case, the worker threads run
with normal kernel process priorities.

13. The signal call is used to register signal handlers and the kill

call is used to send a signal to a process.

14. At any point of time only one signal of a given type can be raised.
The kernel has elaborate data structures to maintain all signal-
related information such as the list of waiting threads, pending
signals and registered handlers.

15. Every signal handler returns to a custom location and starts exe-
cuting the restore rt function. It makes the sigreturn system
call, which copies the saved context from the user process’s stack
to kernel space, and subsequently directs the kernel to restore the
context of the user process and resume it.

4.5.2 Further Reading

The most important reference is the Intel software developer’s manual (volume
3) [Corporation, 2024a] that details how to setup all the programmable interrupt
controllers. It also has a section on how to issue inter-processor interrupts. If
readers want to read a concise document that explains how to create a minimal
boot loader that also sets up the interrupt vector tables, then they should read
the white paper by Pelner and Pelner [Pelner and Pelner, 2010]. For a deeper
survey on how different operating systems handle interrupts, readers can refer
to [Mejia-Alvarez et al., 2018].

For a thorough understanding of Linux signals, the article by Thangaraju [Thangaraju,

159 © Smruti R. Sarangi

2003] is quite relevant. Given that signals interrupt running processes and start
a new thread that runs in the same address space, the possibility of an attack
is high. Hence, there is a fair amount of recent research in secure signal han-
dling (see [Cai et al., 2022]). For exception handling, the paper by Koopman
et al. [Koopman and DeVale, 2002] characterizes the effectiveness of existing
handlers and hardware mechanisms in POSIX operating systems.

Exercises

Ex. 1 — What is the need to organize APICs as domains?

Ex. 2 — How are arguments passed to system calls? What happens if we
have a lot of arguments?

Ex. 3 — What are top-half and bottom-half interrupt handlers in Linux?
What are their advantages?

Ex. 4 — The way that we save the context in the case of interrupts and system
calls is slightly different. Explain the nature of the difference. Why is this the
case?

Ex. 5 — If we want to use the same assembly language routine to store the
context after both an interrupt and a system call, what kind of support is
required (in SW and/or HW)?

Ex. 6 — Why is the signal context stored on the user stack?

Ex. 7 — Consider a signal handler that is registered by a multithreaded user
process. When the signal is delivered to the user process, there are a host of
options for processing the signal. Comment on the following options and their
relative pros and cons.

i)Deliver the signal to any one of the threads.

ii)Create a separate thread for the signal handler.

iii)Deliver the signal to all the threads.

Ex. 8 — Consider the case of a signal handler – a function that is registered
with the operating system that the OS needs to invoke when it needs to send a
signal to a process.

a)The arriving signal causes a new function to run in the address space of
a process by interrupting its execution. Should it use the same stack or a
different stack? What are the pros and cons?

b)For the signal handler to take any effect, it needs to make changes to
global variables. How should the programmer deal with such asynchronous
events?

© Smruti R. Sarangi 160

c)Can a graphical user interface that takes input from the mouse benefit
from signal handlers?

d)How is a signal handling function expected to complete? Where will it
return to and how?

Ex. 9 — Answer the following questions regarding signal handlers.

a)Do struct sigpending and struct sigqueue reference the same data structure?
Explain.

b)How is the return address of a signal handler set? What is it set to?

Ex. 10 — What is the philosophy behind having sets like blocked and real-blocked
in signal-handling structures? Explain with examples.

Ex. 11 — How does the interrupt controller ensure real-time task execution
on an x86 system? It somehow needs to respect real-time process priorities.

Ex. 12 — What is the need to share IRQs between devices? How do we
ultimately find out which device raised an interrupt? Explain the low-level
details as well.

Ex. 13 — How is the use of softirqs restricted? What is the need for this
restriction?

Ex. 14 — What is the need for having a specific handler such as a softirq and
a generic handler such as a workqueue?

Ex. 15 — What are the beneficial features of softirqs and threaded IRQs?

Ex. 16 — Why is the notify die mechanism useful?

Ex. 17 — If an instruction is not supported, there is an illegal instruction
exception. However, the exception handler can sometimes fix the problem.
Answer the following questions in this context:

a)When is this facility useful?

b)How does the exception handler typically perform the “fix”?

c)Where does it return to?

Chapter 5
Synchronization and Scheduling

In this chapter we will discuss one of the most important concepts in operating
systems namely synchronization and scheduling. Synchronization deals with
managing resources that are common to a bunch of processes or threads (shared
between them). It is possible that there will be competition among the threads
or processes to acquire a resource: this is also known as a race condition. Such
races can lead to errors and undefined behavior. As a result, there is a need
to enforce certain restrictions. For example, it is often necessary to allow only
one thread to access a shared resource at a time. This is known as mutual
exclusion. It is one of the simplest examples of synchronization. There may be
a need to enforce more complex conditions such as all the threads need to arrive
at a certain point before any thread is allowed to proceed (a barrier). Another
example could be a simple producer-consumer queue. The producer thread can
add items to the queue till it fills up. Subsequently, it needs to block and wait
for the consumer thread to dequeue items. Similarly, the consumer thread needs
to block if the queue is empty. This is another example of synchronization that
requires a complex interaction between threads. There is often a need for such
patterns because a lot of tasks on modern systems require multiple processes
and unless they effectively interact with each other, complex objectives cannot
be realized. The kernel needs to facilitate such interactions.

The kernel is also not a monolith. It has a lot of concurrently running threads
that often run in parallel on different cores. As a result, all of its internal data
structures have to be thread safe. This means that they need to allow concurrent
accesses by multiple threads. Furthermore, these concurrent accesses may be
write accesses that change the state of the data structure. We shall observe
that there are different ways for ensuring that concurrent accesses remain safe.
The simplest mechanism is locking, which is a way of allowing only on thread
execute a piece of code known as a critical section. However, locks are the
simplest mechanisms in this space. There are more complex mechanisms that
enable the kernel to efficiently discard old versions of a data item, and there are
strategies that avoid such locks altogether.

Once all such synchronizing conditions have been designed and implemented,
it is the role of the kernel to ensure that all the computing resources namely
the cores and accelerators are optimally used. There should be no idleness

161

© Smruti R. Sarangi 162

or excessive context switching. Therefore, it is important to design a proper
scheduling algorithm such that tasks can be efficiently mapped to the available
computational resources. We shall see that there are a wide variety of scheduling
algorithms, constraints and possible scheduling goals. Given that there is such a
diversity of use cases and there are so many practical scenarios possible, there is
no one single universal scheduling algorithm that outperforms all the others. In
fact, we shall see that for different types of problems, we need to have different
types of scheduling algorithms. Some are well suited for resource-constrained
environments, some work well in large multicore systems and some perform well
in systems that try to minimize context switching.

Subsequently, it is necessary to consider real-time systems that associate
deadlines with tasks. In soft real-time systems, deadlines can be occasionally
violated. However, in hard real-time systems, it is not possible to violate dead-
lines. Hard real-time systems are deployed on missiles, controllers in nuclear
reactors and healthcare systems. In such systems, violating a deadline can have
lethal consequences. It is thus necessary to re-architect the kernel to run such
systems. Furthermore, it should be possible to make theoretical guarantees of
the following nature: if the load on the system is below a certain threshold,
no deadlines will be violated. This is an established area now and the entire
field of real-time systems has led to a plethora of real-time kernels including
Linux RT (real-time version of the Linux kernel). Along with supporting real-
time scheduling and resource management, almost all the parts of the kernel
are preemptible. This means that it is possible for higher priority tasks to dis-
place them. They do not allow long executions with interrupts disabled. This
would mean that a low-priority interrupt handler can stop a real-time task from
executing. This is not permissible. Hence, disabling interrupts should either
be avoided altogether or should be done as infrequently as possible. Even if
interrupts have to be disabled, the code executed in such regions needs to be as
little as possible.

Organization of this Chapter

Figure 5.1 shows the organization of this chapter.

We will start with discussing the basics of synchronization. It is important to
realize that there is a need to wrap shared variables in critical sections because
of the possibility of data races. Hence, there is a need to use locks such that
critical sections can be created. We will subsequently move on to discussing
pthreads – the most popular threading library on Linux systems. In the con-
text of pthreads, we will discuss semaphores and condition variables, which are
advanced synchronization primitives. The advantage of using synchronization
primitives is that concurrent data structures can be created such as concurrent
producer-consumer queues that are heavily used in the kernel. We thus have a
section dedicated to queues.

The next section deals with kernel-level concurrency. Spinlocks and kernel
mutexes are two of the most basic mechanisms in the kernel. They are used to
implement complex data structures and synchronization mechanisms. It is pos-
sible that in this process deadlocks can get introduced, where a set of processes
wait on each other to release their locks. Hence, there is a need for a dedicated
mechanism in the kernel to detect and recover from deadlocks. This is known
as the lockdep mechanism. Another important issue that arises in concurrent

163 © Smruti R. Sarangi

Synchronization and
Scheduling

Synchronization

Queues

Concurrency

Data races

Locks

Pthreads

Semaphores

Condition variables

Wait-free queues

Queues with semaphores

Reader-writer lock

Spinlocks

Kernel mutexes

Lockdep

RCU mechanism

Scheduling

Taxonomy

Scheduling algorithms

Banker's algorithm

CFS algorithm

RT and Deadline scheduling

Real-Time Systems

EDF scheduling

RMS/DMS scheduling

Priority inheritance protocol

Highest locker protocol

Priority ceiling protocol

Figure 5.1: Organization of the chapter

kernels is that when a pointer is updated to point to a new object, the object
that was previously pointed to needs to be garbage collected. However, prior to
doing so we need to ensure that no process holds active references to it. Hence,
this process needs to be automated such that it is easy to switch pointers and
perform automatic garbage collection to some extent. The Linux kernel is fa-
mous for implementing the read-copy-update (RCU) mechanism, which we shall
cover in detail. It solves this problem.

Next, we will move on to discuss scheduling. Instead of looking at simple
variants of the problem that have no practical significance, we shall directly pro-
ceed to discussing a taxonomy of all scheduling problems. We shall observe that

© Smruti R. Sarangi 164

there is a plethora of problems. Many of them have fairly simple optimal solu-
tions, even though proving optimality may not be that simple. However, a large
number of problems in this space are provably NP-complete. We shall discuss a
few of the common heuristics in this space, especially algorithms that are prov-
ably deadlock-free. The Banker’s algorithm is quite popular in this space. It
considers multiple identical copies of resources and mimics real-world scenarios
closely. Next, we shall discuss the Linux kernel’s native CFS (Completely Fair
Scheduling) algorithm. It balances priority with fairness. Finally, we shall move
on to discussing Linux’s real-time scheduling classes: priority-based scheduling
and deadline scheduling.

In the last section, we shall discuss real-time systems and associated schedul-
ing algorithms. In the world of real-time systems the aim is to design scheduling
algorithms where every task is guaranteed to finish by its deadline, subject to
the system load being below a threshold. Different guarantees can be made
based on whether tasks are preemptible or not. We shall discuss the EDF (Ear-
liest Deadline First) and the Rate/Deadline Monotonic Scheduling algorithms
that work well for aperiodic and periodic tasks, respectively. Note that these
algorithms do not take resource locking into account. The moment we consider
locks, it is possible that a low-priority task holds a lock that is required by
a high-priority task. This scenario is known as priority inversion. There are
many algorithms in this space that reduce the likelihood of repeated (and in
some cases unbounded) priority inversion. We shall conclude this chapter with
discussing such protocols and their trade-offs.

5.1 Synchronization

5.1.1 Data Races

Consider the case of a multicore CPU. We want to do a very simple operation,
which is to just increment the value of the count variable that is stored in
memory. It is a regular variable and incrementing it should be easy. Listing 5.1
shows that it translates to three assembly-level instructions. We are showing C-
like code without the semicolon for the sake of enhancing readability. Note that
each line corresponds to one line of assembly code (or one machine instruction)
in this code snippet. count is a global variable that can be shared across
threads. t1 corresponds to a register (private to each thread and core). The
first instruction loads the variable count to a register, the second line increments
the value in t1 and the third line stores the incremented value in the memory
location corresponding to count.

Listing 5.1: Assembly code corresponding to the count++ operation

t1 = count

t1 = t1 + 1

count = t1

This code is very simple, but when we consider multiple threads, it turns
out to be quite erroneous because we can have several correctness problems.
Consider the scenario shown in Figure 5.2. Note again that we first load the
value into a register, then we increment the contents of the register and finally
save the contents of the register in the memory address corresponding to the

165 © Smruti R. Sarangi

variable count. This makes a total of 3 instructions that are not executed
atomically; they can be executed at three different instants of time. Here there
is a possibility of multiple threads trying to execute the same code snippet at
the same point of time and also updating count concurrently. This situation is
called a data race (a more precise and detailed definition follows later).

t1 = count
t1 = t1 + 1
count = t1

t2 = count
t2 = t2 + 1
count = t2

Thread 1 Thread 2

count = 0

Figure 5.2: Incrementing the count variable in parallel (two threads). The
run on two different cores. t1 and t2 are thread-specific variables mapped to
registers

Before we proceed towards that and elaborate on how and why a data race
can be a problem, we need to list a couple of assumptions.

① The first assumption is that each basic statement in Listing 5.1 corre-
sponds to one line of assembly code, which is assumed to execute atomically.
This means that it appears to execute at a single instant of time.

② The second assumption here is that the delay between two instructions
can be indefinitely long (arbitrarily large). This could be because of hardware-
level delays or could be because there is a context switch and then the context
is restored after a long time. We cannot thus assume anything about the timing
of the instructions, especially the timing between consecutive instructions given
that there could be indefinite delays for the aforementioned reasons.

Now given these assumptions, let us look at the example shown in Figure 5.2
and one possible execution in Figure 5.3. Note that a parallel program can have
many possible executions. We are showing one of them, which is particularly
problematic. We see that the two threads read the value of the variable count

at exactly the same point of time without any synchronization or coordination
between them. Then they store the value of the count variable in two registers
(temporary variables t1 and t2, respectively). Finally, they increment their re-
spective registers, and then store the incremented values in the memory address
corresponding to count. Since we are calling the instruction count++ twice, we
expect the final value of count to be equal to 2 (recall that it was initialized to
0).

In this example, we get to see that the final value of count is equal to 1,
which is clearly incorrect. Basically because there was a competition or a data
race between the threads, the value of count could not be incremented correctly.
This allowed both the threads to compete or race, which did not turn out to be a
good idea in hindsight. Instead, we should have allowed one thread to complete

© Smruti R. Sarangi 166

t1 = count

t1 = t1 + 1

count = t1

t2 = count

t2 = t2 + 1

count = t2

count = 0

count = 1

count = 1

Should be 2

• There is no synchroniza�on
between threads here

• Arbitrary overlaps are possible

5

Figure 5.3: An execution that leads to the wrong value of the count variable

the entire sequence of operations first, and then allowed the other thread to do
the same. The final value of count would have been correctly set to 2.

The main issue here is that of competition between threads. The overlapped
execution does not lead to an intuitive outcome. Hence, there is a need for
a locking mechanism that sequentializes the execution. A lock needs to be
acquired before we enter such a sequence of code, which is also referred to as a
critical section. At any point of time, a lock can only be acquired by one thread.
It needs to be released before another thread can acquire it. In other words, if
multiple threads try to acquire the lock at the same time, then only one of them
is successful. This successful thread proceeds to execute the instructions in the
critical section, which in this case increments the value of the shared variable
count. Finally, there is a need to release the lock or unlock it. Once this is done,
the other threads waiting to acquire the lock can compete among themselves to
acquire it. The same process continues. Any thread that has acquired the lock
can immediately begin to execute the associated critical section.

This is how traditional code works using locks; this mechanism is extremely
popular and effective. All shared variables such as count should always be
accessed using such kind of lock-unlock mechanisms. This mechanism avoids
such competing situations because locks play the role of access synchronizers
(see Figure 5.4).

Figure 5.5 shows the execution of the code snippet count++ by two threads.
Note the critical sections, the use of the lock and unlock calls. Given that the
critical section is protected with locks, there are no data races here. The final
value is correct: count = 2.

167 © Smruti R. Sarangi

t1 = count
t1 = t1 + 1
count = t1

Acquire a lock. Only
one thread can get in

Unlock.

Figure 5.4: Protection of a critical section with locks

t1 = count
t1 = t1 + 1
count = t1

Thread 1 Thread 2

t2 = count
t2 = t2 + 1
count= t2

Figure 5.5: Two threads incrementing count by wrapping the critical section
within a lock-unlock call pair

Definition 5.1.1 Critical Section

If the same shared variable is accessed concurrently by more than one
threads and one of the accesses is a write, there is a possibility of getting
non-intuitive outcomes. Such a scenario is known as a data race (informal
definition).
To discipline such executions, such code segments (known as critical
sections) should be encapsulated within a lock-unlock call pair. A lock
can be acquired by only one thread at a time. This ensures that only one
thread can execute the critical section at any given point of time. Critical
sections cannot be executed concurrently. Subsequently, the lock needs
to be released such that other threads can execute the critical section.

5.1.2 Design of a Simple Lock

Let us now look at the design of a simple lock (refer to Figure 5.6). It is referred
to the test-and-test-and-set (TTAS) lock. A lock is always associated with an
address. In this case, it is address A as shown in the figure. Let us use the
convention that if the lock is free, then its value is 0 otherwise if it is busy, its

© Smruti R. Sarangi 168

Test if the memory address
contains a 0, else loop

Atomically set the value to 1

If successfulSome other thread was
successful in se�ng the

loca�on to 1

fail

Figure 5.6: The test-and-test-and-set (TTAS) lock

value is set to 1.

All the threads that are interested in acquiring the lock need to keep checking
the value stored in address A (test phase). If the value is equal to 1, then it
means that the lock is already acquired or in other words it is busy. Once a
thread finds that the value has changed back to 0 (free), it tries to set it to 1
using a special instruction (test-and-set phase). In this case, it is inevitable that
there will be a competition or a race among the threads to acquire the lock (set
the value in A to 1). Regular reads or writes cannot be used to implement such
operations because we want the entire test-and-set process to appear to execute
instantaneously (i.e., atomically).

It is important to use an atomic synchronizing instruction that almost all
the processors provide, as of today. For instance, we can use the test-and-set
instruction that is already available on most hardware. This instruction checks
the value of the variable stored in memory and if it is 0, it atomically sets it
to 1 (appears to happen instantaneously). If it is able to do so successfully
(0 → 1), it returns a 1, else it returns 0. This basically means that if two
threads are trying to set the value of a free lock variable to 1, only one of them
will be successful. The hardware guarantees this feature. To summarize, the
test-and-set instruction returns 1 if it is successful, and it returns 0 if it fails
(cannot set 0→ 1).

We can extend this argument to n concurrent threads that all want to convert
the value of the lock variable from 0 to 1. Only one of them will succeed. The
thread that is successful is deemed to have acquired the lock. For the rest of
the threads that were unsuccessful, they need to keep trying (iterating). This
process is also known as busy waiting. Such a lock that involves busy waiting is
also called a spin lock.

It is important to note that we are relying on a hardware instruction that
atomically sets the value in a memory location to another value and indicates
whether it was successful in doing so or not. There is a lot of theory around
this and there are also a lot of hardware primitives that play the role of such
atomic operations. Many of them fall in the class of read-modify-write (RMW)
operations. They read the value stored at a memory location, sometimes test
if it satisfies a certain property or not, and then they modify the contents of
the memory location accordingly. These RMW operations are typically used in
implementing locks. The standard method is to keep checking whether the lock
variable is free or not. The moment the lock is found to be free, threads compete

169 © Smruti R. Sarangi

to acquire the lock using atomic instructions. Atomic instructions guarantee
that only one instruction is successful at a time. Once a thread acquires the
lock, it can proceed to safely access the critical section. After executing the
critical section, unlocking is quite simple. The lock variable needs to be set to
0 (free).

This entire process is sadly not all that simple. We have the following re-
quirement. All the memory operations that have been performed in the critical
section should be visible to all the threads running on other cores once the lock
is released. This will not happen in normal circumstances since architectures
and compilers tend to reorder instructions for performance reasons. Also, it is
possible that the instructions in the critical section are visible to other threads
before they observe the lock to be acquired. This is again another non-intuitive
consequence of reordering. Such reordering needs to be done in a disciplined
manner. Otherwise, it is not possible to correctly implement critical sections.

The Fence Instruction

Due to the aforementioned reasons, there is a need to insert a fence instruction
whose job is to basically ensure that all the writes that have been made before
the fence instruction (in program order) are visible to all the threads once the
fence instruction completes. Such fence instructions are required when we per-
form both lock and unlock operations. A fence is also required while acquiring
a lock because we need to ensure that no instruction in the critical section takes
effect until the fence associated with the lock operation has completed. The
critical section therefore needs to be encapsulated by fence instructions at both
ends. This will ensure that the critical section executes correctly on a multicore
machine. All the reads/writes are correctly visible to the rest of the threads.

Point 5.1.1

Fence instructions are expensive in terms of performance. Hence, we
need to minimize them. They are however required to ensure correct-
ness in multithreaded programs and to implement lock-unlock operations
correctly.

This is why most atomic instructions either additionally act as fence instruc-
tions or a separate fence instruction is added by the library code to lock/unlock
functions. Let us delve further and understand the theory behind reordering
and fence instructions.

Trivia 5.1.1

Fence instructions are also known as memory barriers.

5.1.3 Theory of Data Races

We have seen examples of data races and informally understand what they are.
Let us now study them more formally. A data race is defined as a concurrent
and conflicting access to a shared variable by at least two threads. Two ac-
cesses across threads are said to be conflicting if they access the same shared

© Smruti R. Sarangi 170

variable and one of them is a write. It is easy to visualize why this is a con-
flicting situation because clearly the order of the operations matters. If both
the operations are read operations, then for obvious reasons, the order does not
matter.

Defining concurrent accesses is slightly more difficult; it would require much
more theory. We will thus only provide a semi-formal definition here. Readers
are advised to read the textbook on Next-Gen Computer Architecture by your
author [Sarangi, 2023]. This topic is explained in great detail. In this book, we
will just provide high-level cursory details.

We need to first appreciate the notion of a happens-before relationship in
concurrent systems. Event a is said to happen before event b if in a given
execution, a leads to a chain of events that ultimately lead to b. Note that a
happens-before relationship primarily holds in the context of a given execution
of a program. In a different execution, a different happens-before relationship
may hold. If a program is written in such a way that there will always be
a happens-before relationship between two events regardless of the execution,
then we can make a general statement of the following form: there is always a
happens-before relationship between events a and b.

We can visualize a happens-before relationship in Figure 5.5, where we show
how two threads execute two instances of the count++ operation. After incre-
menting the count variable for the first time, the corresponding lock is released.
There is a happens-before relationship between the update to count and the
lock release operation. This makes intuitive sense given that the effects of a
critical section should be visible before the lock is released. No update should
be visible after the lock release. Next, there is a happens-before relationship
between this unlock operation and the subsequent lock operation (issued by
Thread 2). This is because atomic instructions with in-built fences are used to
perform lock-related operations, and such memory operations are sequentially
consistent with respect to each other on most architectures. Intuitively, the lock
acquisition by Thread 2 should appear to happen after the lock release initiated
by Thread 1. The final update to the count variable needs to appear to happen
after the lock acquisition (by Thread 2).

Given that the happens-before relationship respects transitivity, we can say
that there is a happens-before relationship between the first and second updates
to count. The writes to count are thus ordered.

The moment we do not have such happens-before relationships between ac-
cesses, they are deemed to be concurrent. Note that in our example, such
happens-before relationships are being enforced by the lock/unlock operations
and their inherent fences. Happens-before order: updates in the critical section
of Thread 1 → unlock operation in Thread 1 → lock operation in Thread 2
→ reads/writes in the second critical section (Thread 2). Encapsulating criti-
cal sections within lock-unlock pairs creates such happens-before relationships.
Otherwise, we have data races.

Such data races are clearly undesirable as we saw in the case of count++.
Hence, concurrent and conflicting accesses to the same shared variable should
not be there. With data races, it is possible that we may have hard-to-detect
bugs in the program. Also, data races have a much deeper significance in terms
of the correctness of the execution of parallel programs. At this point we are not
in a position to appreciate all of this. All that can be said is that data-race-free
programs have a lot of nice and useful properties, which are very important

171 © Smruti R. Sarangi

in ensuring the correctness of parallel programs. Hence, data races should be
avoided for a wide variety of reasons. Refer to the book by your author on
Advanced Computer Architecture [Sarangi, 2023] for a detailed explanation
of data races, and their implications and advantages. We shall discuss the
importance of data-race-free programs later on. Theorem 5.1.6 states that if a
parallel execution is data-race-free, then we can reason about it in terms of its
equivalent sequential execution.

Point 5.1.2

An astute reader may argue that there have to be data races on the lock
variable to acquire the lock itself. However, those use atomic instruc-
tions and happen in a very controlled manner; hence, they don’t pose
a correctness problem. This part of the code is heavily verified and is
provably correct. The same cannot be said about data races in regular
programs that involve regular variables.

Properly-Labeled Programs

Now, to avoid data races, it is important to create properly labeled programs.
In a properly labeled program, the same shared variable should be locked by
the same lock or the same set of locks. This will avoid concurrent accesses to
the same shared variable. For example, the situation shown in Figure 5.7 has a
data race on the variable C because it is not protected by the same lock in both
the cases. Hence, we may observe a data race because accesses to C are not
adequately protected. This is why it is important that we ensure that the same
variable is protected by the same lock (could also be a set of multiple locks).

Access loca�ons A, B,
and C

Access loca�ons D, E,
and C

Lock (X) Lock (Y)

Figure 5.7: A figure showing an execution with two critical sections. The first
is protected by lock X and the second is protected by lock Y . Address C is
common to both the critical sections. There may be a data race on address C.

5.1.4 Deadlocks

Using locks sadly does not come for free; they can lead to a situation known
as deadlocks. A deadlock is defined as a situation where one thread is waiting
on another thread, that thread is waiting on another thread, so on and so forth
– we have a cyclic wait situation. This basically means that in a deadlocked
situation, no thread can make any progress. In Figure 5.8, we show such a
situation with locks.

It shows that one thread holds lock X, and it tries to acquire lock Y . On the
other hand, the second thread holds lock Y and tries to acquire lock X. There

© Smruti R. Sarangi 172

Thread 1 Thread 2

Lock X

Lock Y

Lock Y

Lock X

Figure 5.8: A situation with deadlocks (two threads)

is a clear deadlock situation here. It is not possible for any thread to make
progress because they are waiting on each other. This is happening because we
are using locks and a thread cannot make any progress unless it acquires the
lock that it is waiting for. A code with locks may thus lead to such kind of
deadlocks that are characterized by circular waits. Let us elaborate further by
looking at the precise conditions that lead to a deadlock.

There are four conditions for a deadlock to happen. This is why if a deadlock
is supposed to be avoided or prevented, one of these conditions needs to be
prevented/avoided. The precise conditions are as follows:

1. Hold-and-wait: In this case, a thread holds on to a set of locks and waits
to acquire another lock. We can clearly see this happening in Figure 5.8,
where we are holding on to a lock and trying to grab one more lock.

2. No preemption: It basically means that a lock cannot be forcibly taken
away from a thread after it has acquired it. This follows from the literal
meaning of the word “preemption”, which basically means taking away a
resource from a thread that has already acquired it. In general, we do not
preempt locks. For instance, we are not taking away lock X from thread
1 to avoid a potential deadlock situation (see Figure 5.8).

3. Mutual exclusion: This is something that follows directly from the
common sense definition of a lock. It basically means that a lock cannot
be held by two threads at the same time.

4. Circular wait: As we can see in Figure 5.8, all the threads are waiting
on each other and there is a circular or cyclic wait. A cyclic wait ensures
that no thread can make any progress.

The Dining Philosopher’s Problem

In this context, the Dining Philosopher’s problem is very important. Refer to
Figure 5.9, which shows a group of philosophers sitting on a circular table. Each
philosopher has two forks on his left and right sides. He can only pick one fork
at a time. A philosopher needs both the forks to start his dinner. It is clear that
this scenario involves something that we have seen in locking. Picking a fork
basically means locking it and proceeding with both the forks (left and right

173 © Smruti R. Sarangi

Figure 5.9: The Dining Philosopher’s problem (source: Wikipedia, Benjamin
D. Eshram, licensed under CC-BY-SA 3.0)

ones) and starting to eat is the same as entering the critical section. This means
that both the forks have to be acquired.

It is very easy to see that a deadlock situation can form here. For instance,
every philosopher can pick up his left fork first. All the philosophers can pick
up their respective left forks at the same time and keep waiting for their right
forks to be put on the table. These have sadly been picked up from the table by
their respective neighbors. Clearly a circular wait situation has been created.
Let us look at the rest of the deadlock conditions, which are mutual exclusion,
non-preeemption and hold-and-wait, respectively. Clearly mutual exclusion will
always have to hold because a fork cannot be shared between neighbors at the
same point of time.

Preemption – forcibly taking away a fork from a philosopher – seems to be
difficult because its neighbor can also do the same. Designing a protocol around
this idea seems to be difficult. Let us try to relax hold-and-wait. The aim here
is to either grab both the forks together at the same time or grab none at all.
No philosopher will grab a single fork and wait for the other. The problem with
this scheme is that it is not possible to guarantee that both the forks can be
picked up together. This is not an atomic operation. Each philosopher still has
to grab the forks one after the other. Once he grabs one fork, he need not be
able to get access to the next fork. There is no guarantee of success, if the fork

© Smruti R. Sarangi 174

is kept back on the table and the philosopher decides to retry at a later point
of time.

Hence, the simplest way of dealing with this situation is to try to avoid the
circular wait condition. In this case, we would like to introduce the notion of
asymmetry, where we can change the rules for just one of the philosophers. Let
us say that the default algorithm is that each philosopher picks his left fork
first and then the right one. We change the rule for one of the philosophers: he
acquires his right fork first and then the left one.

It is possible to show that a circular wait cannot form. Let us number the
philosophers from 1 to n. Assume that the nth philosopher is the one that has
the special privilege of picking up the forks in the reverse order (first right and
then left). In this case, we need to show that a cyclic wait can never form.

Assume that a cyclic wait has formed. It means that a philosopher (other
than the last one) has picked up the left fork and is waiting for the right fork to
be put on the table. This is the case for philosophers 1 to n− 1. Consider what
is happening between philosophers and n− 1 and n. The (n− 1)th philosopher
picks its left fork and waits for the right one. The fact that it is waiting basically
means that the nth philosopher has picked it up. This is his left fork. It means
that he has also picked up his right fork because he picks up the forks in the
reverse order. Recall that he first picks up his right fork and then his left one.
This basically means that the nth philosopher has acquired both the forks and is
thus eating his food. He is not waiting, and therefore there is no deadlock. This
leads to a contradiction. Hence, a deadlock cannot form using this protocol,
where we deliberate introduce some degree of asymmetry.

Deadlock Prevention, Avoidance and Recovery

Deadlocks are clearly not desirable. Hence, as far as possible, we would like to
steer clear of them. There are several strategies here. The first is that we try
to prevent them such that they do not happen in the first place. This is like
taking a vaccine to prevent the disease from happening. To do this, we need to
ensure that at least one of the four deadlock conditions does not materialize.
For example, we can design a lock acquisition protocol such that it is never
possible to create a circular wait situation.

Consider the case when we know the set of locks a given operation will
acquire a priori. In this case, we can follow a simple 2-phase locking protocol.
In the first phase, we simply acquire all the locks in ascending order of their
addresses. Subsequently, in the second phase, we release all the locks. The key
assumption is that all the locks that will be acquired are known in advance. In
reality, this is not a very serious limitation because in many practical use cases,
this information is often known.

The advantage here is that we will not have deadlocks. This is because a
circular wait cannot happen. There is a fundamental asymmetry in the way
that we are acquiring locks in the sense that we are acquiring them in ascending
order of addresses.

Let us prove deadlock prevention by arriving at a contradiction. Assume
that there is a circular wait. Let us annotate each edge uv in the cycle with
the lock address A. In this case, Process Pu wants to acquire lock A that is
currently held by Pv. As we traverse this list of locks along the cycle, addresses
will continue to increase because a process always waits on a lock whose address

175 © Smruti R. Sarangi

is larger than the address of any lock that it currently holds. Continuing on
these lines, we observe that in a circular wait, the lock addresses shall keep
increasing. Given that there is a circular wait, there will be a process Px that is
waiting for lock A that is held by Py (Px → Py). Given the circular wait, assume
that Px holds lock A′, which Pz is waiting to acquire (Pz → Px). We have a
circular wait of the form Px → Py → . . .→ Pz → Px. Now, lock addresses need
to increase as we traverse the cycle. This is because a process always covets a
lock whose address is higher than the addresses of all the locks that it currently
holds (due to the two-phase locking protocol). We thus have A′ > A. Now, Px

holds A′, and it waits for A. This means that A > A′. Both cannot be true.
We thus have a contradiction. Hence, a circular wait is not possible.

The next approach is deadlock avoidance. This is more like taking a medicine
for a disease. In this case, before acquiring a lock, we check if a deadlock will
happen or not, and if there is a possibility of a deadlock, then we do not acquire
the lock. We throw an exception such that the user process that initiated the
lock acquisition process can catch it and take appropriate action.

The last approach is called deadlock recovery. Here, we run the system
optimistically. We have a deadlock detector that runs as a separate thread.
Whenever, we detect sustained inactivity in the system, the deadlock detector
looks at all the shared resources and tries to find cycles. A cycle may indicate a
deadlock (subject to the other three conditions). If such a deadlock is detected,
there is a need to break it. Often sledgehammer like approaches are used. This
means either killing processes or forcefully taking locks away from them.

Starvation and Livelocks

Along with deadlocks, there are two more important issues that need to be
discussed namely starvation and livelocks. Starvation means that a thread tries
to complete an operation such as acquire a lock but fails to do so for an indefinite
period. This means that it participates in the race to acquire the lock by
atomically trying to convert the value of a memory location from free to busy.
However, it loses all the time. There is no guarantee of success and thus it can
end up trying for an indefinite period. Therefore, it may have to wait forever
for the desired operation to complete.

This is clearly a very important problem, and it is thus necessary to write
elaborate software libraries using native atomic hardware primitives that prevent
starvation. The algorithm should be designed in such a way that no thread has
to wait infinitely for its operation to complete. Starvation freedom is indeed a
very desirable property because it indicates that within a finite (in some cases
bounded) amount of time, a thread completes its operation. In the case of a
lock, it either gets access to some resource or gets to execute the critical section.
Note that starvation freedom also implies deadlock freedom because it would
not allow processes to deadlock and wait forever. However, the converse is not
true. Deadlock freedom does not imply starvation freedom because starvation
is a much stronger condition.

The other condition is a livelock, where processes continuously take steps and
execute statements but do not make any tangible progress. This means that
even if processes continually change their state, they do not reach the final end
state – they continually cycle between interim states. Note that they are not in a
deadlock in the sense that they can still take some steps and keep changing their

© Smruti R. Sarangi 176

state. However, the states do not converge to the final state, which indicates
a desirable outcome. In older Ethernet networks, livelocks were quite common.
A single channel was shared between different machines. If two machines tried
to transmit together at the same time, then there could be a collision and the
machines had to back off for a random duration, and transmit again. This
process did not guarantee successful message transmission. The messages could
collide again and again. This is an example of a livelock because there is visible
progress in terms of internal states changing and messages being sent. However,
there is no successful message transmission.

Consider another quintessential example. Two people are trying to cross
each other in a narrow corridor. A person can either be on the left side or on
the right side of the corridor. So it is possible that both are on the left side,
and they see each other face to face. Hence, they cannot cross each other. Then
they decide to either stay there or move to the right. It is possible that both
of them move to the right side at the same point of time, and they are again
face to face. Again they cannot cross each other. This process can continue
indefinitely. In this case, the two people can keep moving from left to right and
back. However, they are not making any progress because they are not able to
cross each other. This situation is a livelock, where threads move in terms of
changing states, but nothing useful gets ultimately done.

Point 5.1.3

Starvation freedom ensures freedom from deadlocks and livelocks. How-
ever, freedom from deadlocks and livelocks does not guarantee starvation
freedom.

5.1.5 Pthreads and Synchronization Primitives

Let us now look at pthreads or Posix threads, which is the most popular way of
creating threads in Linux-like operating systems. Many other thread APIs use
pthreads as their base. The code for creating pthreads is shown in Listing 5.2.
We wish to execute the function foo in parallel.

Note the signature of foo. It takes a generic void * pointer as its sole
argument and also returns a void * pointer. The rationale behind this is quite
clear. We want pthreads to be a generic mechanism. It should be possible to
run any function concurrently on a separate thread. We are thus not sure about
its arguments and return value. Hence, it is a good idea to pass a pointer to
an argument or a structure (in case there are multiple arguments). Similarly,
it is a good idea to just return a generic void * pointer, which can point to
anything and can also be NULL. This design choice ensures that the function
executed by a pthread is generic in character. In the case of the foo function,
we extract the argument (thread id) and we simply print it. Subsequently, we
multiply the argument with 2 and return the product.

Listing 5.2: Code to create two pthreads and collect their return values

#include <stdio.h>

#include <pthread.h>

#include <stdlib.h>

#include <unistd.h>

177 © Smruti R. Sarangi

pthread_t tid [2];

int count;

void* foo(void *arg) {

/* get the argument: thread id */

int *ptr = (int *) arg;

printf("Thread %d \n", *ptr); /* print the thread id */

/* send a custom return value */

int *retval = (int *) malloc (sizeof(int));

*retval = (*ptr) * 2; /* return 2 * thread_id */

return retval;

}

int main(void) {

int errcode , i = 0; int *ptr;

/* Create two pthreads */

for (i=0; i < 2; i++) {

ptr = (int *) malloc (sizeof(int));

*ptr = i;

errcode = pthread_create (&(tid[i]), NULL ,

&foo , ptr);

if (errcode)

printf("Error in creating pthreads \n");

}

/* Wait for the two pthreads to finish and join */

int *result;

pthread_join(tid[0], (void **) &result);

printf ("For thread 0, %d was returned \n", *result);

pthread_join(tid[1], (void **) &result);

printf ("For thread 1, %d was returned \n", *result);

}

Let us now discuss the main function that creates two pthreads. The argu-
ments to the pthread create function are a pointer to the pthread structure, a
pointer to a pthread attribute structure that controls its behavior (NULL in this
example), the pointer to the function that needs to be executed and a pointer
to its sole argument. If the function takes multiple arguments, then we need to
put all of them in a structure and pass a pointer to that structure.

In our example, the return value of the foo function is a pointer to an
integer that is equal to 2 times the thread id. When a pthread function (like
foo) returns, akin to a signal handler, it returns to the address of a special
routine. This routine does the job of cleaning up the state and destroying the
thread. Once the thread finishes, the parent thread that spawned it can wait
for it to finish using the pthread join call.

This is similar to the wait call invoked by a parent process, when it waits
for a child to terminate in the regular fork-exec model. In the case of a regular
process, we collect the exit code of the child process. However, in the case of
pthreads, the pthread join call takes two arguments: the pthread, and the

© Smruti R. Sarangi 178

address of a pointer variable (&result). The value filled in the address (value
of result) is the pointer that the corresponding pthread function instance re-
turned. We can proceed to dereference the pointer result and extract the value
that the function wanted to return.

Given that we have now created a mechanism to create pthread functions
that can be made to run in parallel, let us implement a few concurrent algo-
rithms.

Trivia 5.1.2

To compile a piece of code that uses pthreads, we need to use the com-
mand gcc prog name -lpthread.

Incrementing a Shared Variable using Lock and Unlock Calls

Listing 5.3: Lock-unlock using pthreads

int count = 0;

pthread_mutex_t cntlock; /* the lock variable */

void* func(void *arg) {

pthread_mutex_lock (& cntlock); /* lock */

count ++;

pthread_mutex_unlock (& cntlock); /* unlock */

}

int main () {

retval = pthread_mutex_init (&cntlock , NULL);

...

...

printf ("The final value of count is %d \n", count);

}

Consider the code shown in Listing 5.3. A lock in pthreads is of type
pthread mutex t. It needs to be initialized using the pthread mutex init call.
The first argument is a pointer to the pthread mutex (lock), and the second
argument is a pointer to a pthread attributes structure. If it is NULL, then it
means that the lock will exhibit its default behavior.

The lock and unlock functions are indeed quite simple here. We can just use
the calls pthread mutex lock and pthread mutex unlock, respectively. All
the code between them comprises the critical section. In this case, we are just
incrementing the value of the variable count in the critical section.

Incrementing a Shared Variable without Using Locks

Listing 5.4: Lock-unlock using atomic fetch and add

#include <stdatomic.h>

atomic_int count = 0;

void * fetch_and_increment (void *arg) {

atomic_fetch_add (&count , 1);

}

179 © Smruti R. Sarangi

Next, let us use atomics that wrap hardware-level atomic instructions. Atom-
ics, in their current form, were originally defined in C++ 11. Most processors,
provide an atomic version of the fetch and add instruction that is guaranteed
to complete in a bounded amount of time. x86 processors provide such an in-
struction. All that needs to be done is to add the lock prefix in front of an add
instruction – it becomes an atomic add instruction.

The fetch and increment function makes a call to the atomic fetch add

instruction on x86 processors. This instruction appears to execute instanta-
neously and completes within a bounded amount of time.

This is a classic example of a non-blocking algorithm that does not use locks.
It also belongs to the class of lock-free algorithms. Such algorithms are clearly
way better than variants that use locks.

Let us look at another example that uses a different atomic primitive – the
compare-and-swap (CAS) instruction.

Incrementing a Shared Variable using the CAS Library Function

In C++, the atomic compare exchange strong method is normally used to im-
plement the classic compare and swap operation. It is typically referred to
as the CAS operation. The standard format of this method is as follows:
CAS(&val,&old,new). The logic is as follows. If the comparison is successful
(val==old), then val is set equal to new. Given that we are passing a pointer
to val, the value of val can be modified within this function. If they are not
equal (val ̸= old), then old is set equal to the value of val. The pseudocode
of this method is shown in Listing 5.5. Note that the entire method executes
atomically using x86’s cmpxchg instruction.

Listing 5.5: The operation of the CAS method in C-like code

bool CAS (int *valptr , int *oldptr , int new) {

if (* valptr == *oldptr) { /* equality */

valptr = new; / set the new value */

return true;

} else { /* not equal */

*oldptr = *valptr; /* old = val */

return false;

}

}

Let us now use the CAS method to increment count (code shown in List-
ing 5.6).

Listing 5.6: Lock-unlock using the compare and swap instruction

atomic_int count = 0;

#define CAS atomic_compare_exchange_strong

void* fetch_and_increment (void *arg) {

int oldval , newval;

do {

oldval = atomic_load (&count);

newval = oldval + 1;

printf ("old = %d, new = %d \n", oldval , newval);

} while (!CAS (&count , &oldval , newval));

© Smruti R. Sarangi 180

}

The fetch and increment function is meant to be called in parallel by mul-
tiple pthreads. We first load the value of the shared variable count into oldval,
next compute the incremented value newval, and then try to atomically set the
value of count to newval as long as its value is found to be equal to oldval.
This part is done atomically. If the CAS operation is not successful because
another thread was able to update the value at the same time, then false will
be returned. There is thus a need to keep iterating and trying again and again
until the CAS operation is successful. Note that there is no guaranteed termi-
nation in this algorithm. In theory, a thread can starve and keep losing the CAS
(getting a false) forever.

Now that we have looked at various methods of incrementing a simple count
variable, let us delve deeper into this. Let us understand the theory of concurrent
non-blocking algorithms.

5.1.6 Theory of Concurrent Programs

Let us consider all the examples of codes that do not use locks. As discussed
before, they are known as non-blocking algorithms. Clearly they are a better
choice than having locks if we only consider performance. However, as we have
discussed, such algorithms are associated with their fair share of problems. They
are hard to write and verify. However, sometimes this complexity is justified if
the resultant performance gains are significant.

Correctness Criteria

Let us now proceed to formally define what a concurrent program is and what
are its correctness guarantees. We can either have variants that use locks or
variants that do not use locks such as the examples that we saw earlier. Recall
that they used the compare-and-swap or fetch-and-add primitives. This class of
programs or algorithms are known as non-blocking programs (or algorithms). It
turns out that there are numerous types of non-blocking algorithms. They can
be classified into broadly three different classes based on the progress guarantees
that they make: obstruction-free, lock-free and wait-free. Before delving into
this, let us start with some basic terminology and definitions.

A concurrent algorithm has a set of well-defined operations that change the
global state – set of all the shared variables visible to all the threads. For
example, we can define a concurrent algorithm to operate on a shared global
queue. The operations can be enqueue and dequeue, respectively. Similarly, we
can define operations on a concurrent stack that execute concurrently. Each
such operation has a start and end time, respectively. These are distinct and
discrete points of time. The start of an operation is a point of time when the
corresponding method is invoked. The end of an operation is when the method
(function) returns. If it is a read or an operation like a read that does not modify
the state, then the method returns with a value. Otherwise, the method achieves
something similar to a write operation (change of state). The method in this
case does not return with a value, it instead returns with a value indicating the
status of the operation: success, failure, etc. In this case, we do not know when
the method actually takes effect. It can make changes to the underlying data

181 © Smruti R. Sarangi

structure (part of the global state) before the end of the method, or sometime
after it as well. This difference is quite fundamental.

Atomicity
If the method appears to take effect instantaneously at a unique point of time,
then it is said to be atomic. The key word over here is atomic. Regardless
of the way that a method actually executes, it should appear to any external
observer that it has executed atomically. This means that an external entity
cannot observe any intermediate state – it either perceives the method to have
fully executed or not started at all. For many readers, this may appear to be
non-intuitive. After all, how can a large method that may require hundreds
of instructions appear to execute in one instant? The answer is that the large
method is not executing in an infinitesimally small instant. Instead, it is “ap-
pearing” to execute in an instant. Both are different. Loosely speaking, it
should not be possible for any thread to observe the state created by a partially
executed method. This means that with every atomic method, we can associate
a distinct point of completion (execution). Before this point of time is reached,
it should appear to other threads that this method has never executed and af-
ter this point, it should appear to all the threads that the method has fully
completed. A parallel execution is said to be atomic if all the methods in it
appear to execute atomically. We need to understand that this is a theoretical
definition. The entire method is obviously not executing in entirety at the point
of completion.

Let us assume that we somehow know these completion points (may not be
the case in practice). If we can arrange all these completion points in ascending
order of physical time, then we can arrange all the methods sequentially (across
threads). If we think about it, this is a way of mapping a parallel execution
to a sequential execution, as we can see in Figure 5.10. Here, we are mapping
a parallel execution of a concurrent queue to a sequential execution. In the
sequential timeline, the methods are arranged in ascending order of their com-
pletion times. This mapped sequential execution is of great value because the
human mind finds it very easy to reason about sequential executions, whereas
it is very difficult to make sense of parallel executions. Let us say that the
sequential execution (shown at the bottom of the figure) is equivalent to the
parallel execution.

Legal Sequential Execution
If the equivalent sequential execution satisfies the semantics of the algorithm,
it is said to be legal. For example, in Figure 5.10, we show a set of enqueue and
dequeue operations that are issued by multiple threads. The parallel execution
is hard to reason about (prove or disprove correctness, either way); however,
the equivalent sequential execution can easily be checked to see if it follows
the semantics of a queue – it needs to show FIFO behavior. Atomicity and
the notion of a point of completion allow us to check a parallel algorithm for
correctness. But, we are not fully there yet. We need a few more definitions
and concepts in place.

The key question that needs to be answered is about the location of this
point of completion vis-á-vis the start and end points. If it always lies between
them, then we can always claim that before a method call ends, it is deemed
to have fully completed – its changes to the global state are visible to all the
threads. This is a very strong correctness criterion of a parallel execution. The

© Smruti R. Sarangi 182

enq: 3 deq: 3Thread 1

Thread 2

Thread 3

Hypothe�cal
sequen�al

order

enq: 1

enq: 2

deq: 1

deq: 4

enq: 4

enq: 5

deq: 2

{1} {3,1} {3} {} {2} {} {4} {5,4} {5}

Figure 5.10: A parallel execution and its equivalent sequential execution. Every
event has a distinct start time and end time. In this figure, we assume that
we know the completion time of each operation. We arrange all the events in
ascending order of their completion times in a hypothetical sequential order at
the bottom. Each point in the sequential order shows the contents of the queue
after the respective operation has completed. Note that the terminology enq: 3
means that we enqueue 3, and similarly deq: 4 means that we dequeue 4.

default assumption here is that the equivalent sequential execution is legal. This
correctness criteria is known as linearizability.

Linearizability
Linearizability is the de facto criterion used to prove the correctness of con-
current data structures that are of a non-blocking nature. If all the executions
corresponding to a concurrent algorithm are linearizable, then the algorithm
itself is said to satisfy linearizability. For example, the execution shown in Fig-
ure 5.10 is linearizable.

This notion of linearizability is summarized in Definition 5.1.2. Note that
the term “physical time” in the definition refers to real time that we read off
a wall clock. Later on, while discussing progress guarantees, we will see that
the notion of physical time has limited utility. We alternatively prefer to use
the notion of logical time instead, which is based on the order of operations.
Nevertheless, let us stick to physical time for the time being.

Definition 5.1.2 Linearizability

An execution is said to be linearizable if every method call is associated
with a distinct point of completion that is between its start and end
points (in terms of physical time). Moreover, the equivalent sequential
order is legal.

Next, let us address the last conundrum. Even if the completion times
are not known, which is often the case, as long as we can show that distinct
completion points appear to exist for each method (between its start and end),
the execution is deemed to be linearizable. Mere existence of completion points
is what needs to be shown. Whether the method actually completes at that
point or not is not important. This is why we keep using the word “appears”

183 © Smruti R. Sarangi

throughout the definitions.

Notion of Memory Models

CPU

Write
buffer

Write

L1 Cache

Delay

Figure 5.11: A CPU with a write buffer

Now consider the other case when the point of completion may be after the
end of a method. For obvious reasons, it cannot be before the start point of
a method. An example of such an execution, which is clearly atomic but not
linearizable, is a simple write operation in multicore processors (see Figure 5.11).
The write method returns when the processor has completed the write operation
and has written it to its write buffer. This is also when the write operation is
removed the pipeline. However, this does not mean that the write operation has
completed. It completes when it is visible to all the threads, which can happen
much later – when the write operation leaves the write buffer and is written to
a shared cache. This is thus a case when the completion time is beyond the end
time of the method. The word “beyond” is being used in the sense that it is
“after” the end time in terms of the real physical time.

We now enter a world of possibilities. Let us once again consider simple
read and write operations that are issued by cores in a multicore system. The
moment we consider non-linearizable executions, the completion time becomes
very important. The reason for preferring non-linearizable executions is that
a host of performance-enhancing optimizations in the compiler, processor and
memory system can be realized. One such example is the use of a write buffer, as
we have just seen. Most of these optimizations involve delaying and reordering
instructions. As a result, the completion time can be well beyond the end time,
especially for writes (operations that involve a state change). Hence, the more
relaxed we are in setting the completion time, higher is the performance.

The question that naturally arises is how do we guarantee the correctness of
algorithms in such settings? In the case of linearizability, it was easy to prove
correctness. We just had to show that for each method a point of completion
exists, and if we arrange these points in ascending order of completion times,
then the sequence is legal. Hence, for complex concurrent data structures such
as stacks and queues, linearizability is preferred. However, for simpler opera-
tions like memory reads and writes, linearizability is too expensive in terms of
performance. There is a need to wait for the write operations to fully complete,
which might take a lot of time.

© Smruti R. Sarangi 184

Hence, other models are used. These models basically define the set of
allowed outcomes of a parallel program. Specifically, a model defines what a
read can return, when writes take effect and the behavior of synchronization
operations. Such models are known as memory models or memory consistency
models. The word “consistency” arises from the fact that every model needs
to be consistent with specifications. Every multicore processor as of today
defines a memory model and concomitant specifications. A specification is like
a contract between hardware and software. It precisely lays down the rules
governing memory and synchronization operations. The hardware guarantees
certain orderings between memory operations. As long as software is written in
a manner that does not run afoul of the memory model, correctness guarantees
can be made.

Memory models typically confine themselves to reads, writes, atomic mem-
ory operations with built-in fences such as compare-and-swap and synchroniza-
tion operations (refer to Section 5.1.2). Often there is a need to decide if a
given parallel execution adheres to a given memory model or not. Answering
this question is beyond the scope of this book. The textbook on Next-Generation
Computer Architecture [Sarangi, 2023] by your author is the right point to start.

Definition 5.1.3 Memory Models

A memory model or a memory consistency model is a specification for a
multicore processor. It governs the behavior of reads, writes, atomic and
synchronization operations. Specifically, it specifies the ways in which a
core or the memory system can reorder memory operations and whether
operations are atomic or not. Moreover, it specifies the behavior of syn-
chronization operations and the additional orderings that they impose.
It determines the set of valid outcomes of a parallel program.

In this context, let us first describe a memory model that is considered to
be a gold standard in the world of memory consistency models. It is sequential
consistency (abbreviated as SC). It is perceived to be quite slow in practice
and thus not used. However, it plays a vital role in ensuring the correctness of
executions.

Sequential Consistency

Sequential consistency is slightly weaker than linearizability. This means that
it allows some outcomes that linearizability does not. It requires atomicity –
unique completion times for each operation that are globally respected. Along
with atomicity, SC mandates that in the equivalent sequential order of events,
methods invoked by the same thread appear in program order. The program
order is the order of instructions in the program that will be perceived by a
single-cycle processor, which will pick an instruction, execute it completely,
proceed to the next instruction, so on and so forth. SC is basically atomicity
+ intra-thread program order. Linearizability had an additional requirement,
which stated that the point of completion should be between the start time and
end time. This requirement is not there in SC.

Consider the following execution. Assume that x and y are global variables
that are initialized to 0. t1 and t2 are local variables. They are stored in

185 © Smruti R. Sarangi

registers (not shared across threads).

Thread 1 Thread 2
x = 1 y = 1

t1 = y t2 = x

Note that if we run this code many times on a multicore machine, we shall see
different outcomes. It is possible that Thread 1 executes first and completes both
of its instructions and then Thread 2 is scheduled on another core, or vice versa.
Their execution can also be interleaved. Regardless of the thread scheduling
policy, we will never observe the outcome t1 = t2 = 0 if the memory model is
SC or linearizability. The reason is straightforward. All SC and linearizable
executions respect the per-thread order of instructions. In this case, the first
instruction to complete will either be x = 1 or y = 1. Hence, at least one of t1
or t2 must be non-zero.

Definition 5.1.4 Sequential Consistency

A sequentially consistent memory model has two components: atomicity
and per-thread ordering. Atomicity means that every operation appears
to execute instantaneously at its completion point. Unlike linearizability,
this point of completion need not be between the start time and end
time. Next, consider operations A and B that are issued by the same
thread and A precedes B. They need to appear in the same order in the
equivalent sequential execution.

Weak Memory Models

On any real machine including x86 and ARMmachines, the outcome t1 = t2 = 0

will indeed be visible because the compiler can reorder instructions that access
different addresses and so can the hardware. This reordering is done to enhance
performance. For executing a single thread, reordering does not matter. It will
never change the final outcome. However, the moment shared variables and
multiple threads enter the picture, the world changes. t1 = t2 = 0 becomes a
valid outcome. This is because most modern out-of-order processors allow a
later read to a different address precede an earlier write operation. Write op-
erations typically have to wait till all the previous instructions in the pipeline
are confirmed to be on the correct path and there is no possibility of a branch
misprediction.

A modern memory model specifies a lot of rules with regard to which pairs of
instructions can be reordered and also by whom: the hardware or the compiler.
These rules can be quite complex. They are said to be weaker than SC because
they are much more flexible in terms of the reorderings that they allow. Many
also relax the requirement of atomicity – a method may be associated with
multiple completion times as perceived by different threads. All such memory
models are said to be weak memory models.

© Smruti R. Sarangi 186

Point 5.1.4

All linearizable executions are also sequentially consistent. All sequen-
tially consistent executions also satisfy the requirements of weak memory
models. Note that the converse is not true.

Fences, Memory Barriers and Relaxed Consistency

Recall that we had discussed fences (also referred to as memory barriers) in
Point 5.1.2 (Section 5.1.2). They can be understood better in the context of
the current discussion. They basically stop reordering. A fence ensures that all
the instructions before it – in the same thread and in program order – complete
before it completes. It also ensures that no instruction after it in program order
(in the same thread) appears to take effect (or complete) before it completes.

They are particularly important in the context of locks. This is because
there is a very important theorem in computer architecture, which basically
says that if all shared memory accesses are wrapped in critical sections and the
program is properly labeled – the same variable is always protected by the same
lock (or set of locks) – then the execution is sequentially consistent. This is true
regardless of the underlying memory model (refer to [Sarangi, 2023]). We can
now understand why creating critical sections is so important. It is because we
need not bother about the memory model or what the compiler or hardware do
in terms of reordering. All that we do is properly label the program.

Theorem 5.1.1 Data-Race-Free Programs have SC Executions

A data-race-free program has a sequentially consistent execution on all
machines. A program can be made data-race-free by properly labeling
it. All shared variables need to be encapsulated in critical sections and
a shared address should always be protected by the same lock (or same
set of locks).

A more nuanced definition is captured in the RC (relaxed consistency) mem-
ory model. It defines two types of fence operations: acquire and release. The
acquire operation corresponds to a lock acquire. It mandates the following: no
operation after it in program order can complete unless it has completed. This
makes sense. We first acquire the lock, and then we access shared variables in
the critical section. The rest of the threads should see the lock being acquired
first. The changes made in the critical section should succeed the lock acquisi-
tion event. Otherwise, it would be tantamount to disrespecting the semantics
of the lock. Note that an acquire is weaker than a full fence. A full fence also
specifies the global ordering of operations before the fence (in program order).
Similarly, the release operation corresponds to a lock release. As per RC, the
release operation can complete only if all the operations before it in program
order have fully completed. Again, this also makes sense because when we re-
lease the lock, we want the rest of the threads to see all the changes that have
been made in the critical section.

187 © Smruti R. Sarangi

5.1.7 Progress Guarantees

In any concurrent system, we typically do not rely on physical time. To specify
the properties of algorithms a wall clock is not used. Linearizability is the only
exception. For all other consistency models, it is only the perceived order of
operations that matters. We rely on a notion of causality between events where
an event can be anything starting from a basic read or write operation to a
more complex operation, such as an enqueue or dequeue operation on a queue.
If one event leads to another event, then we say that there is a causal order or a
happens-before order between them. A happens-before order either captures the
flow of information or on some other HW/SW artifact that makes one operation
wait for another to complete. In other words, we are looking at events logically
and the logical connections between them in terms of cause-effect relationships.
Furthermore, we are also assuming that between any two events, which could
also be two consecutive statements in a program, the delay in terms of physical
time could be indefinite. The reason for this is that there could be a context
switch in the middle or there could be other hardware/device induced delays
that could cause the process to get stalled for a very long time and get restored
much later. Hence, it is not a good idea to rely on any sort of physical or
absolute time when discussing the correctness of concurrent systems: parallel
programs in common parlance.

Instead of physical time, let us use the notion of an internal step for denoting
an event in a thread or a process. It is a basic action such as reading a variable,
writing to a variable or executing a basic instruction. Each of these can be
classified as an internal step, and we shall measure per-thread time only in
terms of such internal steps. Note that internal steps in one thread have no
relationship with the number of internal steps taken in another thread unless
there is a causal relationship of events across threads.

In general, threads are completely independent. For example, we cannot
say that if one thread executed n internal steps, the other thread would have
executed m internal steps where m is some function of n. Without explicit syn-
chronization, there should be no correlation between them. This is because we
have assumed that between any two internal steps, the delay can be arbitrarily
large. Hence, we are not making any assumptions about how long an internal
step is in terms of absolute time. Instead, we are only focusing on the number
of internal steps that a thread makes (executes), which again is unrelated to the
number of internal steps that other threads take in the same time duration.

Using this notion, it is very easy to define the progress guarantees of different
kinds of concurrent algorithms. Let us start with the simplest and the most
relaxed progress guarantee.

Obstruction Freedom

Obstruction freedom means that in an n-thread system, if we make any subset
of (n − 1) threads go to sleep, then the only thread that is active will be able
to complete its execution in a bounded number of internal steps. This auto-
matically means that we cannot use locks in an obstruction-free system. This
is because if the thread that has acquired the lock gets swapped out or goes to
sleep, no other thread can complete the operation – it will not get access to the
lock.

© Smruti R. Sarangi 188

Wait Freedom

Now, let us look at another progress guarantee, which is at the other end of
the spectrum. It is known as wait freedom. In this case, we avoid all forms
of starvation. Every thread completes its operation within a bounded number
of internal steps. So in this case, starvation is not possible. The code shown
in Listing 5.4 is an example of a wait-free algorithm because regardless of the
number of threads and the amount of contention, it completes within a bounded
number of internal steps. However, the code shown in Listing 5.6 is not a wait-
free algorithm. This is because there is no guarantee that the compare and
swap will be successful in a bounded number of attempts. Thus, we cannot
guarantee wait freedom. However, this code is obstruction-free because if any
set of (n−1) threads go to sleep, then the only thread that is active will succeed
in performing the CAS operation and ultimately complete the overall operation
in a bounded number of steps.

Lock Freedom

Given that we have now defined what an obstruction-free and a wait-free al-
gorithm is, we can now tackle the definition of lock freedom, which is slightly
more complicated. In this case, let us count the cumulative number of steps
that all the n threads in the system take. We have already mentioned that
there is no correlation between the time it takes to complete an internal step
across all the n threads. That remaining true, we can still take a system and
count the cumulative number of internal steps taken by all the threads together.
Lock freedom basically says that if this cumulative number is above a certain
threshold or bound, then we can say for sure that at least one of the operations
has completed successfully. Note that in this case, we are saying that at least
one thread will make progress and there can be no deadlocks.

All the threads also cannot get stuck in a livelock. However, there can be
starvation because we are taking a system-wide view and not a thread-specific
view here. As long as one thread makes progress by completing operations, we
do not care about the rest of the threads. This was not the case in wait-free
algorithms. The code shown in Listing 5.6 is lock-free, but it is not wait-free.
The reason is that the compare and exchange has to be successful for at least
one of the threads and that thread will successfully move on to complete the
increment operation. The rest of the threads will fail in that iteration. However,
this is not of a great concern here because at least one thread achieves success.

Relationships between the Progress Guarantees

It is important to note that every program that is wait-free is also lock-free.
This follows from the definition of lock freedom and wait freedom, respectively.
If we are saying that in less than k internal steps, every thread is guaranteed
to complete its operation, then in nk system-wide steps, at least one thread is
guaranteed to complete its operation. By the pigeonhole principle, at least one
thread must have taken k steps and completed its operation. Thus wait freedom
implies lock freedom.

Similarly, every program that is lock-free is also obstruction-free, which again
follows very easily from the definitions. Assume that the system as a whole
takes a certain number of steps (let’s say k). If n− 1 threads in the system are

189 © Smruti R. Sarangi

quiescent, then only one thread that is taking steps executes k steps. If k is
large enough, then the sole running thread will complete its execution. Hence,
the program is also obstruction-free.

Obstruc�on free

Lock free

Wait free

Figure 5.12: Venn diagram showing the relationship between different progress
guarantees

However, the converse is not true in the sense that it is possible to find a
lock-free algorithm that is not wait-free and an obstruction-free algorithm that is
not lock-free. This can be visualized in a Venn diagram as shown in Figure 5.12.
Note that all of these algorithms are non-blocking in character – they do not use
locks. They are thus broadly known as non-blocking algorithms, even though
they provide very different kinds of progress guarantees.

An astute reader may ask why not use wait-free algorithms every time be-
cause after all there are theoretical results that say that any algorithm can
be converted to a parallel wait-free variant (refer to the universal construction
in [Herlihy and Shavit, 2012]). The reason is that wait-free algorithms tend to
be very slow and are also very difficult to write and verify. Hence, in most prac-
tical cases, a lock-free implementation is much faster and is far easier to code
and verify. In general, obstruction freedom is too weak as a progress guarantee.
Thus, it is hard to find a practical system that uses an obstruction-free algo-
rithm. In most practical systems, lock-free algorithms are used, which optimally
trade off performance, correctness and complexity.

5.1.8 Semaphores

Let us now consider another synchronization primitive called a semaphore. We
can think of it as a generalization of a lock. It is a more flexible variant of a
lock, which admits more than two states. Recall that a lock has just two states:
locked and unlocked.

Listing 5.7: The sem wait operation

/* execute atomically */

if (count == 0)

insert_into_wait_queue(current_task);

else

© Smruti R. Sarangi 190

count --;

A semaphore maintains a multivalued count, which always needs to be pos-
itive. A semaphore can be acquired using the sem wait operation (see List-
ing 5.7). If the count is equal to 0, then it means that no process can acquire
the semaphore – the current task is put into a wait queue that can be a part of
the semaphore or implemented separately in the kernel.

However, if count is not equal to 0, then it is decremented by 1. This
essentially indicates that the semaphore has been acquired by a process. In this
case, multiple processes can acquire a semaphore. For example, if the count
is equal to 5, then 5 processes can acquire the semaphore. The semaphore
acquire operation is referred to as a wait operation or alternatively a (sem wait)
operation. It is basically like acquiring a lock. The only difference here is that we
have multiple states, which are captured in the multiple values that the variable
count can take. In fact, a lock can be thought of as a binary semaphore – count
is equal to 1.

Listing 5.8: The sem post operation

/* execute atomically */

if ((count == 0) && process_waiting ())

wake_from_wait_queue ();

else

count ++;

The other important function in the case of semaphores is the analog of
the unlock function, which is known as the post operation (sem post). It is
also referred to as the signal operation. The code for sem post or signaling
the semaphore is shown in Listing 5.8. In this function, if count is equal to 0,
and we are trying to post to the semaphore (sem post), the kernel picks one
process from the waiting queue of processes and activates it. The assumption
here is that the wait queue is not empty. The process that was woken up is
assumed to acquire the semaphore, but count still remains 0. If the wait queue
is empty, then count is simply incremented. The same increment operation is
done when count is non-zero. This basically means that a process is releasing
the semaphore, which makes it more available. This fact is recorded in the
incremented count variable.

We shall subsequently see that semaphores allow us to implement bounded
queues very easily.

5.1.9 Condition Variables

Listing 5.9: Condition variables in pthreads

/* Define the lock and a condition variable */

pthread_mutex_t mlock;

pthread_cond_t cond;

pthread_cond_init (&count , NULL);

/* wait on the condition variable */

pthread_mutex_lock (& mlock);

pthread_cond_wait (&cond , &mlock);

191 © Smruti R. Sarangi

pthread_mutex_unlock (&mlock);

/* signal the condition variable */

pthread_mutex_lock (&mlock);

pthread_cond_signal (&cond);

pthread_mutex_unlock (&mlock);

Semaphores require OS support. An OS routine is needed to make a process
wait in the wait queue and then wake a process up once there is a post operation
on the semaphore. Pthreads provide another solution in user space that are
known as condition variables.

Refer to Listing 5.9. We define a mutex lock mlock and a condition variable
cond. To wait on a condition (similar to sem wait), we need to first acquire the
mutex lock mlock. This is because a lock is required to update the state associ-
ated with the condition. Note that this state needs to be updated within a criti-
cal section. This critical section is protected by mlock. The pthread cond wait

function is used to wait on a condition variable. Note that this function takes
two inputs: the condition variable cond and the lock associated with it mlock.

Another thread can signal the condition variable (similar to sem post). This
needs to wake up one of the waiting threads. Again, we acquire the lock first.
The pthread cond signal function is used to signal the condition variable. A
waiting process immediately wakes up, if there is one.

If we wish to wake up all the waiting threads, then the pthread cond broadcast

function can be used.

Point 5.1.5

A condition variable is not a semaphore. A semaphore has a notion of
memory – it stores a count. The count can be incremented even if there
is no waiting thread. However, in the case of a condition variable, there
is a much stronger coupling. Whenever a pthread signal or broadcast
call is made, the threads that are waiting on the condition variable at
that exact point of time are woken up. Condition variables do not per se
have a notion of memory. They don’t maintain any counts. They simply
act as a rendezvous mechanism (meeting point) between signaling and
waiting threads. Hence, in this case, it is possible that a signal may be
made but at that point of time there is no waiting thread, and thus the
signal will be lost. This is known as the lost wakeup problem.

5.1.10 Reader-Writer Lock

Till now, we have not differentiated between read operations that do not change
the memory state and write operations that change the memory state. There is
a need to differentiate between them in some cases, if we need greater efficiency.

Clearly, a reader and writer cannot operate concurrently at the same point of
time without synchronization because of the possibility of data races. We thus
envision two specialized locks as a part of the locking mechanism: a read lock
and a write lock. The read lock allows multiple readers to operate in parallel
on a concurrent object. This leads to high-performance implementations by
enhancing read parallelism. Given that there are no concurrent writers, there

© Smruti R. Sarangi 192

is no possibility of a data race. We also need an exclusive write lock that
allows only one writer to execute operations on the object. No other reader or
writer are allowed to work on the queue concurrently. It just allows one writer
to change the state of the queue. This is a reader-writer lock: either allow
multiple concurrent readers or a single writer.

Listing 5.10: Code of the reader-writer lock

void get_write_lock (){

LOCK(__rwlock);

}

void release_write_lock (){

UNLOCK(__rwlock);

}

void get_read_lock (){

LOCK(__rdlock);

if (readers == 0) LOCK(__rwlock);

readers ++;

UNLOCK(__rdlock);

}

void release_read_lock (){

LOCK(__rdlock);

readers --;

if (readers == 0)

UNLOCK (__rwlock);

UNLOCK (__rdlock);

}

The code for the reader-writer lock is shown in Listing 5.10. We are assuming
two macros LOCK and UNLOCK. They take a lock (mutex) as their argument, and
invoke the methods lock and unlock, respectively. We use two instances of
locks: rwlock (for both readers and writers) and rdlock (only for readers).
The prefix signifies that these are internal locks within the high-level reader-
writer lock. These locks are meant for implementing the logic of the reader-
writer lock.

Let’s first look at the code of a writer. There are two methods that it
can invoke: get write lock and release write lock. In this case, we need a
global lock that needs to stop other readers and writers from progressing. This
is why in the function get write lock, we wait on the lock rwlock. If it is
acquired, it means that no other process is active in the critical section. For
releasing a write lock (release write lock), we just need to unlock rwlock.

The read lock, on the other hand, is slightly more complicated. Refer to
the function get read lock in Listing 5.10. We use another mutex lock called
rdlock. A reader waits to acquire it. The idea is to maintain a count of the

number of readers. Since there are concurrent updates to the readers variable,
it needs to be protected by the rdlock mutex. After acquiring rdlock, it
is possible that the lock acquiring process may find that a writer is active. We
need to explicitly check for this by checking if the number of readers, readers,
is equal to 0 or not. If it is equal to 0, then it means that other readers are not

193 © Smruti R. Sarangi

active – a writer could be active. Otherwise, it means that other readers are
active, and a writer cannot be active.

If readers = 0 we need to acquire rwlock to stop writers or wait for
the currently active writer to complete. The rest of the method is reason-
ably straightforward. We increment the number of readers and finally release
rdlock such that other readers can proceed.

Releasing the read lock is also simple. We subtract 1 from the number of
readers after acquiring rdlock. If the number of readers becomes equal to 0,
then there is no reason to hold the global rwlock. It needs to be released such
that writers can potentially get a chance to complete their operation.

A discerning reader at this point of time will clearly see that if readers are
active, then new readers can keep coming in and the waiting write operation
will never get a chance. This means that there is a possibility of starvation.
Because readers may never reach 0, rwlock will never be released by the
reader holding it. The locks themselves could be fair, but overall we cannot
guarantee fairness for writes. Hence, this version of the reader-writer lock’s
design needs improvement. Starvation-freedom is needed, especially for write
operations. Various solutions to this problem are proposed in reference [Herlihy
and Shavit, 2012].

5.1.11 Barriers and Phasers

Wait for all the threads to
reach the barrier

Then release all at once

Figure 5.13: Barriers

Wait for all the threads to reach Point 1
before allowing them to proceed past

Point 2

Then release all at once

Point 1

Point 2

Figure 5.14: Phasers

© Smruti R. Sarangi 194

Let us now discuss two more important synchronization primitives: barriers
and phasers. In general, in a parallel program, there is a need for a rendezvous
point. We want all the threads to reach this rendezvous point before any thread
is allowed to proceed beyond it. For example, in any map-reduce kind of com-
putation, we typically require such rendezvous points. Let’s say that we would
like to add all the elements in a large array in parallel.

We can split the array into n chunks, where n is the number of threads.
The strategy is to assign the ith chunk to the iththread (map phase). Each
thread can then add all the elements in its respective chunk, and then send the
computed partial sum to a pre-designated root thread. The root thread needs
to wait for all the threads to finish so that it can collect all the partial sums
and add them to produce the final result (reduce phase). This is a rendezvous
point insofar as all the threads are concerned because all of them need to reach
this point before they can proceed to do other work. Such a point arises very
commonly in a lot of scientific kernels that involve linear algebra.

Hence, it is very important to quickly realize such operations. Such opera-
tions are known as barriers. Note that this barrier is different from a memory
barrier (discussed earlier), which is a fence operation. They just happen to share
the same name (unfortunately so). We can psychologically think of a barrier as
a point that stops threads from progressing, unless all the threads that are a
part of the thread group associated with the barrier reach it (see Figure 5.13).
Almost all programming languages, especially parallel programming languages
provide support for barriers. In fact, supercomputers have special dedicated
hardware for barrier operations. They can be realized very quickly, often in less
than a few milliseconds.

There is a more flexible version of a barrier known as a phaser (see Fig-
ure 5.14). It is somewhat uncommon, but many languages such as Java define
them and in many cases they prove to be very useful. In this case, we define
two points in the code: Point 1 and Point 2. The rule is that no thread can
cross Point 2 unless all the threads have arrived at Point 1. Point 1 is a point
in the program, which in a certain sense precedes Point 2 or is before Point 2 in
program order. Often when we are pipelining computations, there is a need for
using phasers. We want some amount of work to be completed before some new
work can be assigned to all the threads. Essentially, we want all the threads to
complete the phase prior to Point 1, and enter the phase between Points 1 and
2, before a thread is allowed to enter the phase that succeeds Point 2.

5.2 Queues

Let us now see how to use all the synchronization primitives introduced in
Section 5.1.

One of the most important data structures in a complex software system
such as an OS kernel is a queue. All practical queues have a bounded size.
Hence, we shall only refer to fixed-sized queues in the subsequent discussion.
Typically, to communicate messages between different subsystems, queues are
used as opposed to direct function calls or writing entries to an array. Queues
provide the FIFO property, which also enforces an implicit notion of priority.
They naturally enable asynchronous interaction. The producer can just enqueue
an item in a queue and leave. The consumer can collect it much later. In a mul-

195 © Smruti R. Sarangi

tithreaded kernel, there are typically many producers and consumers. Hence, a
concurrent queue is a very important data structure in the kernel.

We can opt for a lock-free linearizable implementation, or use a version with
locks. The choice of the data structure depends on the degree of contention,
number of threads in the system and the desired simplicity of the implementa-
tion.

Producers Consumers

Figure 5.15: A bounded queue

A conceptual view of a concurrent queue is shown in Figure 5.15, where we
can observe multiple producers and consumers.

Let us start with outlining the conventions that we shall use in this section.
A bounded queue is implemented as a circular buffer. We use an array with
BUFSIZE entries and two pointers: head and tail. Entries are enqueued on
the tail side, whereas they are dequeued on the head side. After enqueuing
or dequeuing, we simply increment the head and tail pointers. This is an
increment with a wraparound (modulo BUFSIZE). We use the macro INC(x),
which is implemented as (x+1)%BUFSIZE. This modulo addition provides the
illusion of a circular buffer.

The convention we shall use is if tail = head, it means that the queue is
empty. Otherwise, if there are entries, we simply dequeue the current head. We
know that the queue is full, when we cannot add any other entry. This means
that INC(tail)==head. We cannot increment tail, because that would make
tail == head, which would also mean that the queue is empty. Hence, we stop
when the “queue full” condition has been reached. If the queue is not full, then
we add the new entry at the position of the current tail, and increment the
tail pointer. Note that the tail pointer does not point to the last entry in the
queue. It points to the first free entry in the buffer after the last entry in the
queue. This means that if a new entry is to be enqueued, it is added at the
tail position.

Finally, note that shared variables such as the head and tail pointers, and
the array, are typically declared as volatile variables in C and C++. They
are then not stored in registers but in the caches. Owing to cache coherence,
changes made on one core are quickly visible on other cores.

Point 5.2.1

We always dequeue the current head, and we always enqueue at the cur-
rent tail. The corresponding pointer is subsequently incremented (mod-
ule BUFSIZE). If tail = head, the queue is empty. If INC(tail) = head,
the queue is full. It is important to note that in this scheme, we do not
use all the entries in the array to store queue elements. At least one
element is kept empty. This helps us differentiate between queue empty
and full conditions.

© Smruti R. Sarangi 196

5.2.1 Wait-Free Queue

Listing 5.11 shows a queue that allows just one enqueuing thread and one de-
queuing thread. No other threads are allowed to use this queue and also a thread
cannot change its role. This means that the enqueuing thread cannot dequeue
and vice versa. We use the code in Listing 5.11 as a running example. Most of
the functions will remain the same across all the queue implementations.

Using this restriction, it turns out that we can easily create a wait-free queue.
There is no need to use any locks, and operations complete within bounded time.

Listing 5.11: A simple wait-free queue with one enqueuer and one dequeuer

#define BUFSIZE 10

#define INC(x) ((x+1)%BUFSIZE)

#define NUM 25

pthread_t tid [2]; /* has to be 2 here */

atomic_int queue[BUFSIZE];

atomic_int head=0, tail =0;

void nap(){

struct timespec rem;

int ms = rand() % 100;

struct timespec req = {0, ms * 1000 * 1000};

nanosleep (&req , &rem);

}

int enq (int val) {

int cur_head = atomic_load (&head);

int cur_tail = atomic_load (&tail);

int new_tail = INC(cur_tail);

/* check if the queue is full */

if (new_tail == cur_head)

return -1;

/* There are no other enqueuers */

atomic_store (& queue[cur_tail],val);

atomic_store (&tail , new_tail);

return 0; /* success */

}

int deq () {

int cur_head = atomic_load (&head);

int cur_tail = atomic_load (&tail);

int new_head = INC(cur_head);

/* check if the queue is empty */

if (cur_tail == cur_head)

return -1;

/* There are no other dequeuers */

int val = atomic_load (& queue[cur_head]);

atomic_store (&head , new_head);

197 © Smruti R. Sarangi

}

void* enqfunc (void *arg) {

int i, val;

int thread = *((int *) arg);

srand(thread);

for (i=0; i< NUM; i++){

val = rand()%10;

enq (val);

nap();

}

}

void* deqfunc (void *arg){

int i, val;

int thread = *((int *) arg);

srand(thread);

for (i=0; i< NUM; i++){

val = deq();

nap();

}

}

int main() {

int errcode , i = 0; int *ptr;

void* (*fptr) (void*);

for (i=0; i < 2; i++)

{

ptr = (int *) malloc (sizeof(int));

*ptr = i;

fptr = (i%2)? &enqfunc : &deqfunc;

errcode = pthread_create (&(tid[i]), NULL ,

fptr , ptr);

if (errcode)

printf("Error in creating pthreads \n");

}

pthread_join (tid[0], NULL);

pthread_join (tid[1], NULL);

}

The main function creates two threads. The odd-numbered thread enqueues
by calling enqfunc, and the even-numbered thread dequeues by calling deqfunc.
These functions invoke the enq and deq functions NUM times, respectively. Be-
tween iterations, the threads take a nap for a random duration.

The exact proof of wait freedom can be found in textbooks on this topic
such as the book by Herlihy and Shavit [Herlihy and Shavit, 2012]. It is easy
to see why this is the case. Given that there are no loops, we don’t have a
possibility of looping endlessly. Hence, the enqueue and dequeue operations will
complete in bounded time. The proof of linearizability and correctness needs

© Smruti R. Sarangi 198

more understanding and thus is beyond the scope of this book.
Note the use of atomics in the code. They are a staple of modern program-

ming languages such as C++ 20 and other recent languages. Along with atomic
load and store operations, the library provides many more functions such as
atomic fetch add, atomic flag test and set and atomic compare exchange strong.
Depending upon the architecture and the function arguments, their implemen-
tations come with different memory ordering guarantees (embed different kinds
of fences).

Other than the deliberate use of atomic variables and atomic read/write
functions, this piece of code is very similar to the implementation of a bounded
queue in a purely sequential system. There is no other major difference. The
logic is the same. A couple of points need to be made. The first is note that
in the enq function, we store the new entry first and then increment the tail

pointer. Similarly, in the deq function, we read the value stored at the head of
the queue first and then increment the head pointer. This is a standard pattern
in programming concurrent systems. The values are first read or updated. Just
reading the queue or writing to an empty entry does not change the state of
the queue globally. The changes are not visible to other threads because they
cannot see reads and access entries that are not between the head and tail

pointers. Hence, the first action can be considered to be a local action that has
no global visibility. After it has been executed, the state of the queue needs
to be changed, which is realized by modifying the values of the head and tail

pointers. Now the changes are globally visible. Other threads can see the results
of the enqueue and dequeue operations. Given that we are assuming that the
delay between consecutive instructions can be indefinite, it is always advisable
to do the local changes first and do the global changes at the end. Typically,
the global changes are the points of linearizability and thus all the changes to
the data structure should have been made before them. The role of the globally
visible actions is just to make those changes globally visible.

5.2.2 Queue with Mutexes

Let us now use the same basic template (in Listing 5.11) and create a generic
version that allows any number of concurrent enqueuers and dequeuers. It is a
blocking implementation. An enqueuer waits till there is at least one free entry
in the queue. Similarly, a dequeuer waits till there is at least one entry in the
queue. We shall opt for a version that uses mutexes (locks). Linux pthreads use
futexes that are advanced versions of mutexes, where threads first try to acquire
the lock using busy waiting and atomic instructions. If they are unsuccessful,
then after some time, they request the operating system to swap them out such
that other threads get a chance to execute. After all, spinlocks are a waste of
time, and thus it is a much better idea to let other threads execute including
the thread that currently holds the lock.

Listing 5.12: A queue with mutexes

#define LOCK(x) (pthread_mutex_lock (& x))

#define UNLOCK(x) (pthread_mutex_unlock (& x))

pthread_mutex_t qlock;

int enq (int val) {

199 © Smruti R. Sarangi

int status;

do {

LOCK(qlock);

if (INC(tail) == head) status = -1; /* full */

else {

queue[tail] = val;

tail = INC(tail);

status = 0;

}

UNLOCK(qlock);

} while (status == -1);

return status;

}

int deq () {

int val , status;

do {

LOCK (qlock);

if (tail == head) status = -1; /* empty */

else {

val = queue[head];

head = INC(head);

status = 0;

}

UNLOCK (qlock);

} while (status == -1);

return val;

}

int main() {

...

pthread_mutex_init (&qlock , NULL);

...

pthread_mutex_destroy (&qlock);

}

We define a pthread mutex qlock. It needs to be initialized using the
pthread mutex init call. The first argument is a pointer to the lock and the
second argument is a pointer to a pthread attributes structure (specifies the
behavior of the lock). In this case it is NULL because there are no additional
attributes. In the main function, after all the processing is done, the lock is
ultimately freed (destroyed).

We define two macros LOCK and UNLOCK that wrap the pthread functions
pthread mutex lock and pthread mutex unlock, respectively.

The code in the enq and deq functions is straightforward – it is just protected
by a lock. The code keeps looping until an entry is successfully enqueued or
dequeued.

5.2.3 Queue with Semaphores

Let us now implement a bounded queue with semaphores. The additional/mod-
ified code is shown in Listing 5.13.

© Smruti R. Sarangi 200

Listing 5.13: A queue with semaphores

#define LOCK(x) (sem_wait (& x))

#define UNLOCK(x) (sem_post (& x))

sem_t qlock;

...

int main() {

sem_init (&qlock , 0, 1);

...

sem_destroy (&qlock);

}

We initialize a semaphore using the sem init call. It takes as arguments
a pointer to the semaphore, whether it is shared between processes (1) or just
shared between different threads of a multithreaded process (0), and the initial
value of the count (1 in this case). Finally, the semaphore needs to be destroyed
using the call sem destroy.

We redefine the LOCK and UNLOCK macros, using the sem wait and sem post

calls, respectively. The rest of the code remains the same. Here, we are just
using semaphores as locks (binary semaphores). The code uses busy waiting,
which as we have argued is not desirable. We are not using the full power of
semaphores.

It is easy to see why a sem wait call is equivalent to a lock operation. If
the lock is free, then the value of the count in the semaphore is 1. It is simply
decremented and set to 0. This means that the lock has been acquired. However,
if the count was 0, then there is a need to wait for it to become 1.

Similarly, a sem post call is equivalent to an unlock. If there is a waiting
process/thread, it is woken up. It is provided access to the critical section. This
is like an unlock operation followed by a lock operation. However, if there is
no waiting process, then the count is incremented. This means that the lock is
freed. Subsequently, the equivalent lock can be locked.

Someone may want to argue that it is possible to have a count that is more
than 1. This is indeed possible if there are many back-to-back sem post calls.
However, the expectation is that the programmers will be disciplined and they
will not have patterns of this kind. Every call to the LOCK macro will be matched
by a call to the UNLOCK macro and vice versa. Hence, there is no possibility of
this happening.

Next, let us use the real power of semaphores. They are ideal for implement-
ing bounded queues.

5.2.4 Queue with Semaphores but No Busy Waiting

Listing 5.14 shows the code of one such queue that uses semaphores but does
not have busy waiting.

Listing 5.14: A queue with semaphores but does not have busy waiting

#define WAIT(x) (sem_wait (& x))

#define POST(x) (sem_post (& x))

sem_t qlock , empty , full;

201 © Smruti R. Sarangi

int enq (int val) {

WAIT(empty);

WAIT(qlock);

queue[tail] = val;

tail = INC(tail);

POST(qlock);

POST(full);

return 0; /* success */

}

int deq () {

WAIT(full);

WAIT(qlock);

int val = queue[head];

head = INC(head);

POST(qlock);

POST(empty);

return val;

}

int main() {

sem_init (&qlock , 0, 1);

sem_init (&empty , 0, BUFSIZE);

sem_init (&full , 0, 0);

...

sem_destroy (&qlock);

sem_destroy (&empty);

sem_destroy (&full);

}

We use three semaphores here. We still use qlock, which is needed to pro-
tect the shared variables. Additionally, we use the semaphore empty that is
initialized to BUFSIZE (maximum size of the queue) and the full semaphore
that is initialized to 0. These will be used for waking up threads that are wait-
ing. We define the WAIT and POST macros that wrap sem wait and sem post,
respectively.

Consider the enq function. We first wait on the empty semaphore. There
need to be free entries available. Initially, we have BUFSIZE free entries. Every
time a thread calls sem wait on the semaphore, it decrements the number of
free entries by 1 until the count reaches 0. After that the thread waits. Once
it is released, we can be sure that there is at least one free slot in the queue.
Otherwise the sem wait call would not have been successful. It was successful
because it was able to decrement the non-zero count. This can only happen if
there was at least one free entry. We can think of this entry getting reserved
for the current thread (in an implicit sense).

Subsequently, we enter the critical section that is protected by the binary
semaphore qlock. There is no need to perform any check on whether the queue

© Smruti R. Sarangi 202

is full or not. We know that it is not full because the thread successfully acquired
the empty semaphore. After releasing qlock, we signal the full semaphore.
This indicates that an entry has been added to the queue. In terms of semantics,
it has the reverse connotation as empty.

Let us now look at the deq function. It follows the reverse logic. We start
out by waiting on the full semaphore. There needs to at least be one entry in
the queue. This means that the count associated with full should be non-zero.
Once this semaphore has been acquired, we are sure that there is at least one
entry in the queue, and it will remain there until it is dequeued (property of
the semaphore). The critical section again need not have any checks regarding
whether the queue is empty or not. It needs to be protected by the qlock

binary semaphore to make the program data-race-free. Finally, we complete
the function by signaling the empty semaphore. The reason for this is that we
are removing an entry from the queue, or creating one additional free entry.
Waiting enqueuers will get signaled.

Note that there is no busy waiting. Threads either immediately acquire the
semaphore if the count is non-zero or are swapped out. They are put in a wait
queue inside the kernel. They thus do not monopolize CPU resources and more
useful work is done. We are also utilizing the natural strength of semaphores.

5.2.5 Reader-Writer Lock

Let us now add a new function in our queue, which is a peak function. It allows
us to read the value at the head of the queue without actually removing it.
This function turns out to be quite useful in many scenarios. It is very different
in character. As compared to the regular enqueue and dequeue functions, the
peak function is a read-only method that does not change the state of the queue.
Enqueue and dequeue operations, which actually change the state of the queue,
are akin to writes. It is thus a fit case for using a reader-writer lock.

In the peak function, we need to do the following. If head is equal to tail,
then we return -1 (the queue is empty). Otherwise, we return the contents of
the head of the queue. Note that read operations do not interfere with each
other; hence, they can execute concurrently (such as the peak function).

However, we cannot allow a parallel enqueue or dequeue – they are essentially
write operations. There will be a data race condition here, and thus some form
of synchronization will be required. Our aim is to allow multiple readers to
read (peak) together, but only allow a single writer to change the state of the
queue (enqueue or dequeue). Let us use the functions of the reader-writer lock
to create such a queue (see Section 5.1.10).

Listing 5.15 shows the additional/modified code for a queue with a reader-
writer lock. We reuse the code for the reader-writer lock that we had shown
in Listing 5.10. The pthreads library does provide a reader-writer lock facility
(pthread rwlock t) on some platforms, however, we prefer to use our own code.

The peak function uses the read lock. It acquires it using the get read lock

function. That is all that is required for it to execute correctly. Multiple readers
can execute concurrently. No writer can come in until there is a reader in the
system.

Listing 5.15: A queue with reader-writer locks

sem_t rwlock , read_lock , full , empty;

203 © Smruti R. Sarangi

int peak() {

/* This is a read function */

get_read_lock ();

int val = (head == tail)? -1 : queue[head];

release_read_lock ();

return val;

}

int enq (int val) {

WAIT(empty);

/* Get the write lock and perform the enqueue */

get_write_lock ();

queue[tail] = val;

tail = INC(tail);

release_write_lock ();

POST(full);

return 0; /* success */

}

int deq () {

int val;

WAIT(full);

/* Get the write lock and perform the dequeue */

get_write_lock ();

val = queue[head];

head = INC(head);

release_write_lock ();

POST(empty);

return val;

}

The code of the enq and deq functions remain more or less the same. We wait
and signal the same set of semaphores: empty and full. The only difference is
that we do not acquire a generic lock, but we acquire the write lock using the
get write lock function. This does not make a difference because there are no
other concurrent readers or writers.

The only difference is just that we are using a different set of locks for the
peak function and the enq/deq functions. There is a performance advantage
because we allow multiple readers to do their work in parallel.

© Smruti R. Sarangi 204

5.2.6 Linux Message Queues

Example 5.2.1

Use the Linux message queues to send a string from a sending process
to a receiving process.

Answer:

Listing 5.16: Sending a message

#include <stdio.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <string.h>

#define MAX_TEXT 512

struct msg_buffer {

long msg_type;

char msg_text[MAX_TEXT];

};

int main() {

// generate a unique key

key_t key = ftok("msgfile", 65);

// create the message queue

int msgid = msgget(key , 0666 | IPC_CREAT);

// populate the message buffer

struct msg_buffer message;

message.msg_type = 1;

strcpy(message.msg_text , "Hello from sender!");

// send the message

msgsnd(msgid , &message , sizeof(message.msg_text),

0);

printf("Sent: %s\n", message.msg_text);

return 0;

}

Listing 5.17: Receiving a message

#include <stdio.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#define MAX_TEXT 512

struct msg_buffer {

long msg_type;

205 © Smruti R. Sarangi

char msg_text[MAX_TEXT];

};

int main() {

// Use the same key as the sender

key_t key = ftok("msgfile", 65);

// get the message queue id

int msgid = msgget(key , 0666 | IPC_CREAT);

// receive a message of type 1

struct msg_buffer message;

msgrcv(msgid , &message , sizeof(message.msg_text),

1, 0);

printf("Received: %s\n", message.msg_text);

// destroy the message queue

msgctl(msgid , IPC_RMID , NULL);

return 0;

}

To use any Linux kernel IPC (inter-process communication) facility, it is
necessary to first create a unique key and then associate it with a message
queue. This is achieved in the first two statements of the main function of the
sending process.

Linux internally implements a queue of msg buffer structures. Eech such
structure has two arguments: a message type (long) and an array of charac-
ters(msg text). The msgsnd function sends a pointer to this message buffer
along with the size of the string contained in it to the message queue. This is
all that needs to be done to send a message.

The code of the message receiver is quite similar. Here also we obtain a key
and find the id of the corresponding message queue. Next, we use the msgrcv

function call. We pass a pointer to the message buffer and the type of the
message. The message queue logic in the kernel fills up the message buffer with
the contents of the earliest message that matches the type. Note that we are
passing a pointer to a stack variable (message), which is in user space. Finally,
the message queue can be destroyed by calling the msgctl function.

5.3 Concurrency within the Kernel

Let us now look at concurrency within the kernel. As we have discussed earlier,
we typically refer to kernel processes as kernel threads because they share their
address space with each other. Hence, concurrency per se is a very important is-
sue in the kernel code. Ensuring correctness, especially freedom from deadlocks,
livelocks, starvation and data races is of utmost importance.

Linux internally refers to a multicore processor as a symmetric multiproces-
sor (smp). The computing units typically have equal/similar access to memory

© Smruti R. Sarangi 206

and I/O devices. However, this is not strictly necessary. There can be NUMA
(non-uniform memory access) machines where the memory access time is not
constant. Different cores have different memory access latencies, and the latency
depends on the memory module being accessed.

5.3.1 Kernel-Level Locking: Spinlocks

We have two options: we can either use regular code with locks or we can
use lock-free data structures. As we have argued earlier, lock-free variants of
data structures are sometimes very useful. They are often high-performance
implementations owing to the fact that they do not use locks. It is not possible
to have deadlocks with lock-free algorithms. Even if a thread goes off to sleep
or is swapped out, there is no problem. The only shortcoming of lock-free code
is that it can sometimes lead to starvation. This is very rare in practice though.
We can always increase the priority of the thread that is supposedly starving.
On the flip side, for a large number of data structures, writing correct and
efficient lock-free code is very difficult, and writing wait-free code is even more
difficult. They are hard to write, verify and debug. Hence, a large part of the
kernel still uses regular spinlocks, which are busy-waiting locks. However, they
come with a twist.

They observe a few additional restrictions. Unlike regular mutexes that are
used in user space, the thread holding the spinlock is not allowed to go to sleep,
get migrated or get swapped out (preempted). This means that interrupts need
to be disabled in the critical section (protected by kernel spinlocks). This further
implies that these locks can also be used in the interrupt context (also known
as the atomic context in the kernel). A thread holding such a lock will complete
in a finite amount of time unless it is a part of a deadlock (discussed later). On
a multicore machine, it is possible that a thread may wait for the lock to be
released by a thread running on another core. Given that the lock holder cannot
block or sleep, this mechanism is effectively equivalent to a lock-free algorithm
in terms of performance. Needless to say, we are assuming that the lock holder
will complete the critical section in a finite amount of time and not rely on
operations such as I/O accesses that can take an indefinite amount of time or
require the thread to sleep. This will indeed be the case given our restrictions
on blocking interrupts and disallowing preemption.

If we were to allow context switching after a spinlock has been acquired, then
we may have a deadlock situation The new thread may have a higher priority.
To make matters worse, it may try to acquire the spinlock. Given that we have
busy waiting, it will continue to loop and wait for the lock to get freed. But the
lock may never get freed because the thread that is holding the lock may never
get a chance to run. The reason it may not get a chance to run is because it has
a lower priority than the thread that is waiting on the lock. Hence, kernel-level
spinlocks need these restrictions. A spinlock effectively locks the CPU. The
lock-holding thread does not migrate, nor does it allow any other thread to run
until it has finished executing the critical section and released the spinlock.

207 © Smruti R. Sarangi

Point 5.3.1

A spinlock is effectively a lock on the CPU because no other thread is
allowed to run on the CPU till it is released.

Enabling and Disabling Preemption

Enabling and disabling preemption is an operation that needs to be done very
frequently. Given the fact that it is now associated with spinlocks, which we
expect to use frequently in kernel code, efficiency is paramount. The expecta-
tion is that acquiring and releasing a spinlock should be a very fast operation.
Hence, enabling and disabling preemption on a core should also be a very fast
operation. This is indeed the case (refer to Listing 5.18). There is a macro
called preempt disable, which uses a logic similar to semaphores.

Listing 5.18: Code to enable and disable preemption
source : include/linux/preempt.h#L201

#define preempt_disable () \

do { \

preempt_count_inc (); \

barrier (); \

} while (0)

#define preempt_enable () \

do { \

barrier (); \

if (unlikely(preempt_count_dec_and_test ())) \

__preempt_schedule (); \

} while (0)

The key idea is as follows. A preemption count variable is maintained. If
the count is non-zero, then it means that preemption is not allowed. Whereas
if the count is 0, it means that preemption is allowed. If we want to disable
preemption, all that we have to do is increment the count and also insert a fence
operation, which is also known as a memory barrier. The reason for adding a
memory barrier is to ensure that the code in the critical section is not reordered
and brought before the write operation to the preemption count variable. Note
that this is not the same barrier that we discussed in the section on barriers
and phasers (Section 5.1.11). They just happen to share the same name. They
are synchronization operations, whereas the memory barrier is a fence, which
basically disables memory reordering. The preemption count is stored in a per-
CPU region of memory (accessible via the gs segment register). Accessing it is
a very fast operation and requires very few instructions (as we have seen before
in the case of the current pointer).

The code for enabling preemption is shown in Listing 5.18. In this case, we
do more or less the reverse. We have a fence operation to ensure that all the
pending memory operations (executed in the critical section) completely finish
and are visible to all the threads. After that, we decrement the preemption count
using an atomic operation. If the count reaches zero, it means that preemption
is allowed. It is necessary to call the schedule function to select the next task
that needs to execute on the core. An astute reader will figure out that this

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/preempt.h#L201

© Smruti R. Sarangi 208

operation is like a semaphore, where if preemption is disabled n times, it needs
to be enabled n times for the task running on the core to become preemptible.

Trivia 5.3.1

Assume that a task acquires n spinlocks one after the other. This means
that preemption is disabled n times. This fact needs to be recorded in the
value of the preemption count by incrementing it n times. Preemption
can only be enabled when all the spinlocks are released. Each spinlock
release operation decrements the preemption count. After decrementing
the count variable n times, it reverts to the value it used to have before
the task acquired the n locks. At this point of time if preemption was
allowed, then after acquiring and releasing all n locks, preemption will
be allowed again.

Spinlock: Kernel Code

Listing 5.19: Wrapper of a spinlock
source : include/linux/spinlock types raw.h#L14

typedef struct raw_spinlock {

arch_spinlock_t raw_lock;

#ifdef CONFIG_DEBUG_LOCK_ALLOC

struct lockdep_map dep_map;

#endif

} raw_spinlock_t;

The code for a spinlock is shown in Listing 5.19. We see that the spinlock
structure encapsulates an arch spinlock t lock and a dependency map (struct
lockdep map). The raw lock member is the actual spinlock. The dependency
map is used to check for deadlocks (we shall discuss this later).

Listing 5.20: Inner workings of a spinlock
source : include/asm− generic/spinlock.h#L33

void arch_spin_lock(arch_spinlock_t *lock) {

u32 val = atomic_fetch_add (1<<16, lock);

u16 ticket = val >> 16; /* upper 16 bits of lock */

if (ticket == (u16) val) /* Ticket id == ticket next in

line */

return;

atomic_cond_read_acquire(lock , ticket == (u16)VAL);

smp_mb (); /* barrier instruction */

}

Let us understand the design of the spinlock. Its code is shown in List-
ing 5.20. It is a classic ticket lock that has two components: a ticket, which
acts like a coupon, and the id of the next ticket that needs to be serviced
(next) (to-be-serviced) (refer to Figure 5.16). Every time a thread tries to ac-
quire a lock, it gets a new ticket. It is deemed to have acquired the lock when
ticket == next.

Consider a typical bank where we go to meet a teller. We first get a coupon,
which in this case is the ticket. Then we wait for our coupon/ticket number to

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/spinlock_types_raw.h#L14
https://elixir.bootlin.com/linux/v6.2.12/source/include/asm-generic/spinlock.h#L33

209 © Smruti R. Sarangi

ticket next

Figure 5.16: The lock variable with the ticket and next fields

be displayed. Once this happens, we can go to the counter at which a teller is
waiting for us. The idea here is quite similar.

If we think about it, we can easily conclude that this lock guarantees fairness
– starvation is not possible. The way that this lock is designed in practice is
quite interesting. Instead of using multiple fields, a single 32-bit unsigned integer
is used to store or rather pack both the ticket and the next fields. This is the
contents of the lock variable (pointed to by the lock pointer). We divide this
unsigned 32-bit integer into two smaller unsigned integers that are each 16 bits
wide. The upper 16 bits store the ticket id (ticket). The lower 16 bits store the
value of the next field.

When a thread arrives, it tries to get a ticket. It uses the atomic fetch-
and-add instruction to fetch the ticket and next fields atomically from the lock
variable. These two fields are stored in the internal variable val. In the fetch-
and-add atomic operation, the ticket part of the lock variable is also incre-
mented. This is achieved by adding 216 (1 ¡¡ 16) to the lock variable. Given
that the ticket is field is offset by 16 bits, this operation has the effect of incre-
menting the value of ticket in the lock variable. Note that this instruction has a
built-in memory fence as well (more about this later). Now, the original ticket
can be extracted quite easily by right shifting the value (val) returned by the
fetch-and-add instruction by 16 positions. This is done in the next line.

The next task is to extract the lower 16 bits (next field). This is the number
of the ticket that is the holder of the lock, which basically means that if the
current ticket is equal to these 16 bits, then we can go ahead and execute the
critical section. This is easy to do using a simple typecast operation. Here, the
type u16 refers to a 16-bit unsigned integer. Simply typecasting val to the type
u16 has the effect of retrieving the lower 16 bits as an unsigned integer. This
is all that we need to do. Next, we compare this value with the thread’s ticket,
which is also a 16-bit unsigned integer. If both are equal, then the spinlock has
effectively been acquired and the method can return.

Now, assume that they are not equal, which is the more common case.
Then there is a need to perform busy-waiting. This is where we call the macro
atomic cond read acquire, which requires two arguments: the lock value and
the condition that needs to be true. Note the unusual semantics of a C macro
that takes a variable and a condition as an argument. Up till now, we have
not seen such a pattern. This condition checks whether the current value of the
ticket in the lock variable is equal to the next field in the lock variable. It ends
up calling the macro smp cond load relaxed, which resolves to a macro whose
code is shown in Listing 5.21.

Listing 5.21: The code for the busy-wait loop
source : include/asm− generic/barrier.h#L248

#define smp_cond_load_relaxed(ptr , cond_expr) ({ \

typeof(ptr) __PTR = (ptr); \

https://elixir.bootlin.com/linux/v6.2.12/source/include/asm-generic/barrier.h#L248

© Smruti R. Sarangi 210

__unqual_scalar_typeof (*ptr) VAL; \

for (;;) { \

VAL = READ_ONCE (* __PTR); \

if (cond_expr) \

break; \

cpu_relax (); /* insert a delay*/ \

} \

(typeof (*ptr)) VAL; \

})

The inputs are a pointer to the lock variable and an expression that needs to
evaluate to true. Then we have an infinite loop where we dereference the pointer
and fetch the current value of the lock. Next, we evaluate the conditional
expression (ticket == (u16)VAL). If the conditional expression evaluates to
true, then it means that the lock has been acquired. We can then break from
the infinite loop and resume the rest of the execution. Note that we cannot
return from a macro because a macro is just a piece of code that is copy-pasted
by the preprocessor with appropriate argument substitutions.

In case the conditional expression evaluates to false, then of course, there
is a need to keep iterating. But along with that, we would not like to contend
for the lock all the time. This would lead to a lot of cache line bouncing across
cores, which is detrimental to performance. We are unnecessarily increasing the
memory and on-chip network traffic. It is a better idea to wait for some time
and try again. This is where the function cpu relax is used. It makes the
thread back off for some time.

Note that fairness is not guaranteed. However, in all practical situations, we
can expect that the lock will ultimately be acquired. Subsequently, there is a
need to execute a memory barrier (fence). Note that this is a generic pattern?
Whenever we acquire a lock, there is a need to insert a memory barrier after
it such that the state of the lock variable is globally visible before the updates
made in the critical section are visible. This ensures that changes made in the
critical section get reflected only after the lock has been acquired.

Listing 5.22: The code for unlocking a spinlock
source : include/asm− generic/spinlock.h#L63

void arch_spin_unlock(arch_spinlock_t *lock)

{

u16 *ptr = (u16 *)lock + IS_ENABLED(

CONFIG_CPU_BIG_ENDIAN);

u32 val = atomic_read(lock);

smp_store_release(ptr , (u16)val + 1); /* store

following release consistency semantics */

}

Let us now come to the unlock function. This is shown in Listing 5.22. It
is quite straightforward. The first task is to find the address of the next field.
This needs to be incremented to let the new owner of the lock know that it
can now proceed. There is a complication here. We need to see if the machine
is big endian or little endian. If it is a big endian machine, which basically
means that the lower 16 bits are actually stored in the higher addresses, then a
small correction to the address needs to be made. This logic is embedded in the
IS ENABLED (big endian) macro. It returns 1 for a big endian machine, which

https://elixir.bootlin.com/linux/v6.2.12/source/include/asm-generic/spinlock.h#L63

211 © Smruti R. Sarangi

means that the lock address is incremented by the size of a u16 number (=2
bytes).

Regardless of the endianness, at the end of this statement, the address of
the next field is stored in the ptr variable. Next, we read the lock variable and
extract the next field. The last line increments it by 1 and stores the result
in the address pointed to by ptr, Effectively, the next field in the lock gets
incremented. Now, if there is a thread whose ticket number is equal to the
contents of the next field, then it knows that it is the new owner of the lock. It
can proceed with completing the process of lock acquisition and start executing
the critical section.

Finally, note that the smp store release macro also includes a fence. This
ensures that all the writes made in the critical section are visible to the rest of
the threads after the lock has been released. This completes the unlock process.

Fast Path and Slow Path Approach

Listing 5.23: The code to try to acquire a spinlock (fast path)
source : include/asm− generic/spinlock.h#L53

static __always_inline bool arch_spin_trylock(

arch_spinlock_t *lock)

{

u32 old = atomic_read(lock);

if ((old >> 16) != (old & 0xffff))

return false;

return atomic_try_cmpxchg(lock , &old , old + (1<<16));

}

The fast path and slow path approach is a standard mechanism to speed up
the process of acquiring locks. In fact, it is a generic paradigm where there is
a fast path that is used when there is minimal contention for a shared resource
like a lock. In this path threads try to directly acquire the lock by modifying
the lock variable. They do not perform busy-waiting. If they are not successful,
which will happen if there is contention, then they revert to the slow path.

Listing 5.23 shows one such function in which we try to acquire the lock. If
we are not successful, then we return false. This further means that the system
automatically reverts to the slow path, which was shown in Listing 5.20.

In this case, we first read the value of the lock variable. Then we quickly
compare the value of the next field (old & 0xffff) with the ticket (old >>

16). If they are not the same, then we can return from the function returning
false. This basically means that we need to wait to acquire the lock. However, if
the values are equal, then an attempt should be made to acquire the lock. This
is where we attempt an atomic compare and exchange (last line). If the value of
the lock variable has not changed, then we try to set it to (old + (1 << 16)).
We are basically adding 1 to the upper 16 bits of the lock variable. This means
that we are incrementing the ticket number by 1, which is something that we
would have done anyway, had we followed the slow path (code in Listing 5.20).
We try this fast path code only once, or maybe a few times, and if we are not
successful in acquiring the lock, then there is a need to fall back to the regular
slow path code (arch spin lock).

https://elixir.bootlin.com/linux/v6.2.12/source/include/asm-generic/spinlock.h#L53

© Smruti R. Sarangi 212

Bear in mind that is a generic mechanism, and it can be used for many
other kinds of concurrent objects as well. The fast path captures the scenario
in which there is less contention and the slow path captures scenarios where the
contention is from moderate to high.

5.3.2 Kernel Mutexes

A spinlock is held by the CPU (conceptually), however, the kernel mutex is held
by a task. It is per se not tied to a CPU.

Listing 5.24: A kernel mutex
source : include/linux/mutex.h#L63

struct mutex {

atomic_long_t owner;

raw_spinlock_t wait_lock;

struct list_head wait_list;

#ifdef CONFIG_DEBUG_LOCK_ALLOC

struct lockdep_map dep_map;

#endif

};

The code of the kernel mutex is shown in Listing 5.24. Along with a spinlock
(wait lock), it contains a pointer to the owner of the mutex and a waiting list
of threads. Additionally, to prevent deadlocks it also has a pointer to a lock
dependency map. However, this field is optional – it depends on the compilation
parameters. Let us elaborate.

The owner field is a pointer to the task struct of the owner. An as-
tute reader may wonder why it is an atomic long t and not a task struct

*. Herein, lies a small and neat trick. We wish to provide a fast-path mech-
anism to acquire the lock. We would like the owner field to contain the value
of the task struct pointer of the lock-holding thread. However, we would also
like to pack a few additional bits to indicate the status of the lock. They can
indicate if the lock is acquired or not, if there are waiting threads, etc. We can
thus perform a compare and swap (CAS) on the owner field to quickly get access
to the lock. We try the fast path only once. This means that a thread compares
the value stored in owner with 0 and then try to sets it to the task struct of
the current thread. Some additional bits are also set to indicate the status of
the lock.

If the lock is currently acquired, we enter the slow path. In this case, the
threads waiting to acquire the lock are stored in wait list, which is protected
by the spinlock wait lock. This means that before enqueuing the current thread
in wait list, we need to acquire the spinlock wait lock first.

Listing 5.25: The mutex lock operation
source : kernel/locking/mutex.c#L281

void mutex_lock(struct mutex *lock)

{

might_sleep (); /* prints a stack trace if called in an

atomic context (sleeping not allowed) */

if (! __mutex_trylock_fast(lock)) /* cmpxchg on owner

*/

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/mutex.h#L63
https://elixir.bootlin.com/linux/v6.2.12/source/kernel/locking/mutex.c#L281

213 © Smruti R. Sarangi

__mutex_lock_slowpath(lock);

}

Listing 5.25 shows the code of the lock function (mutex lock) in some more
detail. Its only argument is a pointer to the mutex. First, there is a need to
check if this call is being made in the right context or not. If the call is made in
an atomic (also referred to as the interrupt) context in which the code cannot
be preempted, sleeping and blocking are not allowed. Hence, if the mutex lock
call has been made in this context, it is important to flag this event as an error
and also print the stack trace (the function call path leading to the current
function). Remedial action can be taken.

Assume that the check passes, and we are not in the atomic/interrupt con-
text, then we first make an attempt to acquire the mutex via the fast path. If
we are not successful, then we try to acquire the mutex via the slow path using
the function mutex lock slowpath.

The slow path is slightly tricky. Let us explain the main idea, then we will
look at its nuances. Broadly speaking, we first try to acquire the spinlock, and if
it is not possible then the kernel thread is added to the queue of waiting threads.
Then, it goes to sleep. In general, the task is locked in the UNINTERRUPTIBLE
state. This is because we don’t want to wake it up to process signals. Kernel
threads typically do not use signals. Hence, they have little to gain from being
in an INTERRUPTIBLE state. Now, when the lock is released, the lock is handed
over to a waiting thread if there is one.

Note that this is a kernel thread. Going to sleep does not mean going
to sleep immediately. It just means setting the status of the task to either
INTERRUPTIBLE or UNINTERRUPTIBLE. The task still runs. It needs to
subsequently invoke the scheduler such that it can find the most eligible task
to run on the core. Given the status of the current task is set to a sleep state,
the scheduler will not choose it for execution. After it is swapped out, its sleep
state begins.

The unlock process pretty much does the reverse. We first check if there are
waiting tasks in the wait list. If there are no waiting tasks, then the owner

field can directly be set to 0, and we can return. However, if there are waiting
tasks, then there is a need to hand over the lock to one of the waiting threads.

Race Conditions:
It is possible that there are race conditions. Let the lock-holding thread be
Tl. Consider a thread Tw, which is trying to acquire the lock. Consider the
following sequence of events.

1. Tw tries to acquire the lock in the fast path, it is not successful because
Tl has acquired it.

2. Next, Tw prepares to enter the slow path and get queued in the list of
waiting kernel tasks.

3. Tw gets delayed.

4. Tl releases the lock, checks the waiting queue of tasks, finds it to be empty
and exits.

5. Tw wakes up and inserts itself in the queue.

© Smruti R. Sarangi 214

6. There is no thread to wake it up. It remains in the queue forever.

This situation is indeed possible if we don’t take additional care. Such race
conditions are quite tricky.

Hence, we need to do much more processing. Let us look at the algorithm
to acquire the lock in the slow path. Let us list the steps again keeping the race
condition in mind.

1. Acquire wait lock (the spinlock)

2. Try the fast path again. Attempt to acquire the lock using a CAS opera-
tion. If successful, release wait lock and return.

3. Otherwise, insert the current task in wait list.

4. Set the state to a sleep state (such as INTERRUPTIBLE).

5. Release wait lock

We ensure that we attempt to take the lock again inside a critical section
protected by wait lock. If there is no success, then the task corresponding to
the current thread is enqueued in wait list and the spinlock is released. It is
important to do a check again because it is possible that the lock is free now.
It is true that the current thread had checked the lock variable earlier when it
was executing its fast path. However, between both these events a lot of time
could have elapsed.

Let us now consider the unlock algorithm. Here also, there is a need to be
aware of such subtle race conditions.

1. Acquire wait lock

2. Check if there is a waiting task in wait list.

3. Let T be the first such task if there is one, NULL otherwise.

4. If wait list is empty, set the lock variable (owner field) to 0 and return.

5. Otherwise, transfer the ownership of the mutex to T by setting the owner
field to T .

6. Release wait lock

7. Enable task T

Let us understand why race conditions are taken care of. Consider thread
Tw that was not successful in acquiring the mutex in the first path. In this case,
it enters the slow path. Note that it needs to check the lock variable (owner)
again inside the critical section protected by wait lock. If it is free, it will try
to set it using a CAS operation; otherwise, it means that another thread Ta

was successful. Ta is the new owner of the mutex. Even if it releases the mutex
immediately, it cannot simply exit. It will have to acquire wait lock and check
the queue of the waiting tasks.

Ta cannot acquire wait lock until Tw releases it. Tw will only release it
when it has enqueued itself in wait list. This means that when Ta acquires

215 © Smruti R. Sarangi

wait lock and enters the critical section, it is bound to find a non-empty list
of waiting tasks with Tw in it. At this point, Tw will be woken up. It is
thus not possible for the owner of the mutex to miss Tw. Hence, this design
is not vulnerable to such race conditions. If a thread has been enqueued, it is
guaranteed to be woken up by some other thread.

Other Kinds of Locks

Note that the kernel code can use many other kinds of locks. Their code is
available in the directory kernel/locking.

A notable example is a queue-based spin lock (MCS lock: qspinlock in
kernel code). An MCS lock is in general known to be a very scalable lock that
it is quite fast. It also minimizes cache line bouncing (movement of cache lines
containing the lock variable across cores). The idea is that we create a linked list
of nodes, where each node encapsulates a lock request. A lock request contains
a pointer to the task that needs to acquire the lock and a lock variable. In
addition to the linked list, there is a dedicated tail pointer that points to the
end of the linked list. The end of the linked list is the most recently added node.
The basic design is shown in Figure 5.17.

tail

Figure 5.17: The MCS lock

The idea is to add the current node (wrapper of the current task) to the
end of this list. Note that in this list, each node points to the node that was
added right after it. A lock acquisition has two steps: make the current tail
node point to the new node (containing the current task), and modify the
tail pointer to point to the new node. This group of two operations needs to
execute atomically – it needs to appear that both of the instructions executed
together at a single point of time, instantaneously. The lock variable in each
node indicates whether the lock is free or busy. Note that each node needs to
perform busy waiting on a lock variable that is stored in its own node. This
minimizes cache line bouncing.

When a node releases the MCS lock, it sets the lock variable of its successor
to free. The task pointed to by the successor node can then acquire the lock.

The MCS lock is a very classical lock and almost all texts on concurrent
systems discuss its design in great detail. Hence, we shall not delve further
(reference [Herlihy and Shavit, 2012]).

There are a few more variants of locks supported by the kernel such as the
osq lock (variant of the MCS lock) and the qrwlock (reader-writer lock that
gives priority to readers).

https://elixir.bootlin.com/linux/v6.2.12/source/kernel/locking

© Smruti R. Sarangi 216

5.3.3 Kernel Semaphores

Listing 5.26: The kernel semaphore
source : include/linux/semaphore.h#L15

struct semaphore {

raw_spinlock_t lock;

unsigned int count;

struct list_head wait_list;

};

The kernel code has its version of semaphores (see Listing 5.26). It uses a
spin lock (lock) to protect the semaphore variable count. Akin to user-level
semaphores, the kernel semaphore supports two methods that correspond to
wait and post, respectively. They are known as down (wait) and up (post/sig-
nal). The kernel semaphore functions in exactly the same manner as a user-level
semaphore. After acquiring the lock, the count variable is decremented. How-
ever, if the count variable is already zero, then it is not possible to decrement
it further and the current task needs to wait. This is the point at which it is
added to the list of waiting processes (wait list) and the task state is set to
UNINTERRUPTIBLE. Similar to the case of unlocking a spin lock, here also, if
the count becomes non-zero from zero, we pick a process from the wait list

and set its state to RUNNING. Given that all of this is happening within the
kernel, setting the task state is very easy. Needless to say, directly manipulating
the state of a task is not possible to do at the user level. We need a system call
for everything. However, in the kernel, we do not have such restrictions and
thus these mechanisms are much faster.

5.3.4 The Lockdep Mechanism

We need a kernel lock validator that verifies whether there is a possibility of a
deadlock or not. There is thus a need to have a deadlock avoidance mechanism
that can be triggered just before acquiring a lock. In case, there is a potential
of a deadlock, then the operation should either be stopped, delayed or allowed
to proceed with a warning.

The way to orchestrate this is as follows. Whenever a lock is acquired, a call
should be made to validate the lock acquire operation. There is a need to ensure
that there is no possibility of deadlocks. This is precisely what the Linux kernel
does. Refer to the function lock acquire in kernel/locking/lockdep.c [Mol-
nar, 2006]. Broadly speaking, the lockdep mechanism in the kernel is used to
implement such a functionality.

It starts with doing a few trivial checks. First, it verifies that the lock
depth is below a threshold. The lock depth is the number of locks that the
current task has already acquired. There is a need to limit the number of locks
that a thread is allowed to acquire at any point of time such that the overall
complexity of the kernel and the lock validation system remains within bounds.
Next, there is a need to validate the current set of lock acquisitions and check for
the possibility of deadlocks. All kinds of lock acquisitions need to be validated:
spinlocks, mutexes and reader-writer locks. The main aim is to avoid potential
deadlock-causing situations.

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/semaphore.h#L15
https://elixir.bootlin.com/linux/v6.2.12/source/kernel/locking/lockdep.c

217 © Smruti R. Sarangi

Four kinds of states are defined: softirq− safe, softirq− unsafe, hardirq− safe
and hardirq− unsafe. A softirq− safe state means that the lock was acquired
while executing a softirq. At that point, softirqs were disabled. However, it
is also possible to acquire a lock with the possibility of being preempted by a
softirq. For example, this can happen if interrupts are enabled. In this case, the
state of the lock acquisition will be softirq− unsafe. Hence, in the softirq− unsafe
state, the thread can get preempted by a softirq handler.

In any unsafe state, it is possible that the thread can get preempted and an
interrupt handler or softirq can run. This interrupt handler may try to acquire
the same lock. If it has a higher priority, then this is clearly a deadlock-forming
situation. This is because the high-priority handler will keep busy waiting. It
will never be successful because the thread that has acquired the lock has a
lower priority and will never get a chance to run. Such kind of a deadlock
happens because a lock was acquired in the wrong context. It was acquired
when interrupts or softirqs were enabled, which allowed higher priority entities
to preempt the current thread. A deadlock can happen if they also request the
same lock. This is a deadlock due to a context inconsistency.

Note that any softirq− unsafe state is hardirq− unsafe as well. This is be-
cause hard irq interrupt handlers have a higher priority as compared to softirq
handlers. We define the states hardirq− safe and hardirq− unsafe analogously.
These states will also be used to flag potential deadlock-causing situations.

We next validate the chain of lock acquire calls that have been made. We
check for trivial bugs in the code that may lead to deadlocks. This is easy to
detect. If there are two patterns of the form A→ B and B → A in the chain of
lock acquisitions, then it means that locks are not acquired in order. Whenever
this happens, there is the possibility of a deadlock, and thus this pattern should
be avoided. The lockdep mechanism can easily flag such risky patterns. This
pattern is known as a lock inversion.

Next, let us look at problems created by context inconsistency. Consider
all the lock acquisition operations for a given lock. Let us arrange them in
a sequence. It should not contain a hardirq− unsafe lock acquisition and sub-
sequently a hardirq− safe lock acquisition. An unsafe state allows an inter-
rupt handler to execute. The interrupt handler can subsequently vie for the
same lock. We don’t know if this will be the case. However, we can try to be
conservative and make a guess about whether there is a possibility of a dead-
lock. Our suspicion gets strong if the same lock is subsequently acquired in the
hardirq− safe state. This means that it is meant to be used in an environment
where interrupts are disabled. This means that most likely the lock cannot be
safely used when interrupt handlers can preempt the thread that has just ac-
quired the lock. Whenever a context inconsistency is detected, it means that a
lock is most likely not being used consistently, and a deadlock could form.

Quick Detection of Cycles

Let us now look at the general case in which we have cyclic dependences. We
need to create a global graph where each lock acquisition is a node, and if the
process holding lock A waits to acquire lock B, then there is an arrow from A to
B. If we have V nodes and E edges, then the time complexity of cycle detection
is O(V +E). This is quite slow. This needs to be done frequently – we need to
check for cycles before acquiring every lock.

© Smruti R. Sarangi 218

Lockdep uses a simple caching-based technique. Consider a chain of lock
acquisitions, where the lock acquire calls can possibly be made by different
threads. Given that the same kind of code sequences tend to repeat in the
kernel code, we can cache a full sequence of lock acquisition calls. If the entire
sequence is devoid of cycles, then we can deem the corresponding execution to
be deadlock free. Hence, the brilliant idea here is as follows.

chain hash

hash status

Acts as a cache for
chains of locks. No
need to
again and again.

find cycles

Figure 5.18: A hash table that stores an entry for every chain of lock acquisitions.

Instead of checking for a deadlock on every lock acquire, we check for dead-
locks once in a while. We consider a long sequence (chain) of locks and compute
a hash value for the entire chain. Subsequently, we create a graph out of the lock
acquisitions and check for cycles. The hash table stores the “deadlock status”
associated with such chains (see Figure 5.18). The key is the hash of the chain
and the value is a Boolean variable. If there is a circular wait in the graph, the
the value is 1, else it is 0.

This is a much faster mechanism for checking for deadlocks and the overheads
are quite small. Note that if no entry is found in the hash table, then we either
keep building the chain and try later, or we run a cycle detection algorithm
immediately. The status of the chain of lock acquisitions is stored in the hash
table after cycle detection.

5.3.5 The RCU (Read-Copy-Update) Mechanism

Managing concurrency in the kernel is a difficult problem. Let us now look at
this problem from the angle of implementing ultra-efficient reader-writer locks
and garbage collection [McKenney, 2003]. Let us introduce the RCU (read-copy-
update) mechanism and draw a parallel with reader-writer locks, even though
both are not strictly equivalent. Reader-writer locks can be thought of as the
closest cousin of RCU in the world of concurrency.

Point 5.3.2

• RCU is typically used to access objects that are part of an “en-
capsulating data structure”. A similar pattern was used to create
generic tree and linked list nodes.

• Instead of directly modifying a field in the object, we create a copy
of the object in a private memory region, make all the updates, and
then “publish the update”. This is achieved by modifying pointers
in the encapsulating data structure to point to the new copy of the
object.

219 © Smruti R. Sarangi

• It is possible that there are live references to the previous version
of the object, which are held by other threads. We need to wait
for all the threads to finish their reads. This is known as the grace
period. Reads are practically “zero overhead” operations. We do
not need to acquire locks and there is no waiting.

• Once the grace period has ended – all the readers are done reading –
the object can be safely reclaimed and the space that was allocated
to store it can be freed. RCU has a very fast mechanism for finding
out when all the readers are done reading an object. In fact, this
is the main challenge.

The process of allocating and freeing objects is the most interesting. Allo-
cation is per se quite straightforward – we can use the regular malloc call. The
object can then be used by multiple threads. However, freeing the object is rel-
atively more difficult. This is because threads may have references to it. They
may try to access the fields of the object after it has been freed. We thus need
to free the allocated object only when no thread is holding a valid reference
to it or is holding a reference but promises never to use it in the future. In
C, it is always possible to arrive at the old address of an object using pointer
arithmetic. However, let us not consider such tricky situations because RCU
requires some degree of disciplined programming.

One may be tempted to use conventional reference counting, which is rather
slow and complicated in a concurrent, multiprocessor setting. A thread needs
to register itself with an object, and then it needs to deregister itself once it
is done using it. Registration and deregistration increment and decrement the
reference count, respectively. Any deallocation can happen only when the ref-
erence count reaches zero. This is a complicated mechanism. The RCU mech-
anism [McKenney, 2007] is comparatively far simpler. Simple implementations
are fast implementations.

It needs to have the following features:

• There needs to be a way to deactivate pointers to a data structure such
that they cannot be accessed subsequently.

• Without maintaining reference counts, it should be possible to figure out
when an object (structure in C) can be safely freed.

• Once it is freed, its space can be reclaimed.

We shall primarily focus on the freeing part because it is the most difficult.
Consider the example of a linked list (see Figure 5.19).

In this case, even though we delete a node from the linked list, other threads
may still have references to it. The threads holding a reference to the node will
not be aware that the node has been removed from the linked list. Hence, after
deletion from the linked list we still cannot free the associated object.

Overview of the RCU Mechanism

The key idea in the RCU mechanism is to decouple the write(update), read and
memory reclamation steps (include/linux/rcupdate.h). Let us quickly look at
the basic RCU functions in Table 5.1. Their exact usage will be described later.

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/rcupdate.h

© Smruti R. Sarangi 220

Delete this node

Readers may be reading this

Synchronize
and reclaim
the space

Final state

Figure 5.19: Deleting a linked list node (using RCU)

Call Explanation Action
rcu read lock() Enter a read-side critical

section
Disable preemption

rcu read unlock() Exit a read-side critical
section

Enable preemption

synchronize rcu() Marks the end of the read-
ing phase

Wait until all readers fin-
ish

rcu assign pointer() Assign a value to an RCU-
protected pointer

Assignment + checks +
memory barrier

rcu dereference() Convert an RCU-
protected pointer to a
regular kernel pointer

Read → memory barrier

Table 5.1: Key RCU functions (include/linux/rcupdate.h)

We define a few novel concepts. We define a read-side critical section that
allows us to read an RCU-protected structure. However, unlike regular critical
sections, here we just disable and enable preemption, respectively. The claim
is that this is enough. It is also enough to find out when all the readers have
stopped reading. We shall prove this subsequently. This is the crux of the RCU
mechanism.

The main insight is that there is no need to maintain reference counts and
wait till they reach zero. This is difficult to scale in a concurrent setting.
Also waiting on a reference count requires busy waiting. We already know
the problems in busy waiting such as cache line bouncing and doing useless
work. This is precisely what we would like to avoid in the RCU mechanism.
The synchronize rcu call marks the end of the reading phase. It waits till all
the readers have finished.

Writing is slightly different here – we create a copy of an object, modify it,
and assign the new pointer to a field in the encapsulating data structure. Note
that a pointer is referred to as RCU protected, when it can be assigned and
dereferenced with special RCU-based checks (as we shall see later).

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/rcupdate.h

221 © Smruti R. Sarangi

Using the RCU Read Lock

Listing 5.27: Example code that traverses a list within an RCU read context
source : include/linux/rcupdate.h

rcu_read_lock ();

list_for_each_entry_rcu(p, head , list) {

t1 = p->a;

t2 = p->b;

}

rcu_read_unlock ();

Listing 5.27 shows an example of traversing a linked list within an RCU
context. We first acquire the RCU read lock using the rcu read lock call.
This is actually quite simple – we just disable preemption by incrementing a
per-CPU count stored in the pcpu hot structure (refer to the discussion in
Section 5.3.1). Then we iterate through the linked list and for each entry we
transfer its contents to two temporary variables. Instead of this dummy code,
we can have any other code snippet in its place. We are just showing a simple
example here. Finally, we release the read lock using the rcu read unlock call.
This does the reverse; it enables preemption by decrementing the same per-CPU
count.

If this per-CPU count is 0, it means that preemption is disabled. Recall that
if we disable preemption N times, then the count will become N . To re-enable
preemption, we need to enable it N times. The key point here is that just
enabling and disabling preemption is quite easy – all that we do is decrement or
increment a count (resp.). There is no cache line bouncing and all the memory
accesses are local to the CPU. This is very efficient in terms of performance.

Synchronizing the Readers

Listing 5.28: Replace an item in a list and then wait till all the readers finish

list_replace_rcu (&p->list , &q->list);

synchronize_rcu ();

kfree(p);

Listing 5.28 shows a piece of code that waits till all the readers complete. In
this case, one of the threads calls the list replace rcu function that replaces
an element in the list. It is possible that there are multiple readers who currently
have a reference to the old element (p->list) and are currently reading it. We
need to wait for all of them to finish the read operation. The only assumption
that can be made here is that all of them are accessing the list in an RCU
context – the code is wrapped between the RCU read lock and read unlock
calls.

The function synchronize rcu makes the thread wait for all the readers to
complete. Once, all the readers have completed, we can be sure that the old
pointer will not be read again. This is because the readers will check if the node
pointed to by the pointer is still a part of the linked list or not. This is not
enforced by RCU per se. Coders nevertheless have to observe such rules if they
want to use RCU correctly.

After this we can free the pointer p using the kfree call.

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/rcupdate.h

© Smruti R. Sarangi 222

Assigning an RCU-Protected Pointer

Listing 5.29: Assign an RCU-protected pointer
source : include/linux/rcupdate.h#L518

#define rcu_assign_pointer(p, v)

do { \

uintptr_t _r_a_p__v = (uintptr_t)(v); \

/* do some checking */ \

if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t

)NULL) \

WRITE_ONCE ((p), (typeof(p))(_r_a_p__v)); \

else \

smp_store_release (&p, RCU_INITIALIZER ((typeof(p))

_r_a_p__v)); \

} while (0)

Let us now look at the code for assigning a value to an RCU-protected
pointer in Listing 5.29. The macro is written in the classical kernel style with a
lot of underscores ,. But it is not hard to understand. The idea is to basically
perform the following operation p = v.

The first step is to change the type of the argument v to a pointer to an
unsigned integer. The result is stored in the variable r a p v. If it is a NULL
pointer or a built-in constant, then we can directly assign it to p. Consider the
regular case now.

The kernel defines a separate memory area for RCU-protected variables.
Whenever we assign a pointer to an RCU-protected pointer variable, we need
to ensure that the pointer points to the RCU-specific memory region. The
RCU INITIALIZER macro performs this check and does necessary typecasting.
The pointer in this case is r a p v.

Before assigning r a p v to p, we execute a memory barrier. This ensures
that all the memory operations performed by the thread before it are fully visible
to the rest of the threads. The assignment then happens at the very end. This
is after the RCU check (see if the pointed object lies within the RCU region or
not) and the memory barrier.

Listing 5.30: Implementation of the list replace rcu function
source : include/linux/rculist.h#L197

static inline void list_replace_rcu(struct list_head *old ,

struct list_head *new)

{

new ->next = old ->next;

new ->prev = old ->prev;

/* new ->prev ->next = new */

rcu_assign_pointer(list_next_rcu(new ->prev), new);

new ->next ->prev = new;

old ->prev = LIST_POISON2;

}

Let us now consider an example that uses the rcu assign pointer function
in the context of the list replace rcu function (see Listing 5.30). In a doubly-

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/rcupdate.h#L518
https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/rculist.h#L197

223 © Smruti R. Sarangi

linked list, we need to replace the old entry by new. We first start with setting
the next and prev pointers of new (make them the same as old). Note that at
this point, the new node is not added to the list.

It is added when the next pointer of new− > prev is set to new. This is the
key step that adds the new node to the list. We can think of this operation as the
point of linearizability. This pointer assignment is done using an RCU function
because we need to ensure proper memory ordering and visibility across cores.

Dereferencing a Pointer

Listing 5.31: Code to dereference an RCU pointer
source : include/linux/rcupdate.h#L459

#define __rcu_dereference_check(p, local , c, space) \

({ \

typeof (*p) *local = (typeof (*p) *__force) READ_ONCE(p);

\

rcu_check_sparse(p, space); \

((typeof (*p) __force __kernel *)(local)); \

})

Let us now look at the code to deference a pointer to an RCU-protected
variable (refer to Listing 5.31). The term “dereference” is actually a misnomer.
The code converts an RCU-protected pointer to a regular kernel pointer. The
reason is that the compiler and static code analysis tools incorporate a lot
of checks to ensure that an RCU-protected pointer is always used in the right
context. This means that it is used in functions that are meant to run exclusively
in the RCU context. The advantage of this is that we can seamlessly track the
readers and we will get to know exactly when there are no readers referencing an
object. If we are not disciplined, then the RCU mechanism will not work. We
cannot simply compute *p, where p is an RCU-protected pointer. This will make
the current process a reader, even though it is not being tracked. Hence, the
rcu dereference check function calls the function rcu dereference check,
which converts an RCU pointer to a regular kernel pointer. The regular kernel
pointer can be used to access the object that it is pointing to in a conventional
manner.

In Listing 5.31, we read the address stored in the pointer p and store it in
a variable called local, which is a regular pointer. We next perform a memory
check to ensure that p indeed points to a variable stored in the RCU region of the
kernel’s memory (rcu check parse). This means that p is an RCU-protected
pointer. The last line returns the local pointer by forcefully converting it to a
kernel pointer. All normal pointer-based operations can be performed on local.
No compile-time errors will be thrown. Also all kernel code checking tools will
allow such usage.

Note that the READ ONCE macro includes a compile-time barrier. This means
that the compiler cannot reorder the read operation. However, this does not
require a hardware memory barrier (fence). The idea here is to rely on some
of the memory orderings guaranteed by the underlying x86 hardware. This is
a standard pattern in the kernel code. Whenever there is no requirement for
adding a hardware-level fence operation, it is not added. x86 is not a very
weak memory model that allows all kinds of reorderings. It primarily reorders

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/rcupdate.h#L459

© Smruti R. Sarangi 224

writes and subsequent reads to different addresses. The rest of the orderings are
preserved. Sometimes this property can be used to eliminate the requirement
for fence operations. The caveat here is that the compiler should not do any
reordering, which in this case is being explicitly prevented.

Listing 5.32: Example that uses the RCU dereference operation
source : include/linux/rculist.h#L688

#define __hlist_for_each_rcu(pos , head) \

for (pos = rcu_dereference(hlist_first_rcu(head)); \

pos; \

pos = rcu_dereference(hlist_next_rcu(pos)))

Listing 5.32 shows an example of using rcu dereference. It shows a for
loop. The iteration starts at the head node that is dereferenced in an RCU
context. In every iteration, it proceeds to the next node on the list and finally
the iteration stops when the current node becomes NULL.

Correctness of the RCU-based Mechanism

Let us now prove the correctness of the RCU mechanism. Consider the classical
list replace algorithm, where we replace an element with another element. In
this case, Thread j (running on Core j) that removed a list element needs to
also free it. Before freeing it, Thread j needs to wait till all the readers that are
currently reading it complete their reads.

Given that we are not using atomic variables to maintain reference counts,
we need to prove how our simple preemption-based mechanisms can guarantee
the same. If there is a concurrent read, then it must have acquired the read
lock. Assume that this read operation is executing on Core i. On that core,
preemption is disabled because the read lock on Core i is currently acquired by
the reading thread.

All that Thread j needs to do is send an inter-processor interrupt to each core
and run a task on it. When preemption is disabled (within the RCU read-side
critical section), no task can run on the core. We need to wait for preemption
to be enabled again. Preemption will be re-enabled when Thread i leaves the
read-side critical section (calls the read unlock call). Subsequently, the small
task can run on Core i. The fact that this task is running means that the reader
has finished. Note that the assumption is that the next read operation on Core
i will not be able to see the element that was replaced because it is not there in
the list anymore.

Now, if we can run such tasks on every core (CPU in Linux), then it means
that all the readers have left the RCU read-side critical section. The code is
shown in Listing 5.33.

Listing 5.33: Code to run tasks on each CPU

foreach_cpu (cpu)

run_curr_task_on_cpu (cpu);

At this point the object can be freed, and its space can be reclaimed. This
method is simple and slow.

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/rculist.h#L688

225 © Smruti R. Sarangi

RCU in all its Glory

The basic scheme of running a task on each CPU is a slow and simple scheme,
which is quite inefficient in terms of performance. Let us consider more realistic
implementations. There are two implementations: tiny RCU and tree RCU
[Community,]. The former is for non-preemptible uniprocessors, and thus is
not very relevant as of today. The latter is the default implementation on
multicore processors. Let us look at its design.

Let us start out by defining the grace period, which is the time between
updating an object and reclaiming its space. The grace period should be large
enough for all the readers to finish their reads (refer to Figure 5.20).

Reader

Reader

Reader

Reader

Reader
Reclama�onRemoval

Figure 5.20: Removal and reclamation of an object (within the RCU context)

This figure shows a thread that first initiates the “removal” phase. This is
when the object is removed from its containing data structure. There could
be live references to it that are held by other threads, which are concurrently
reading it. We wait for all the readers to complete (grace period to end). After
releasing the RCU read lock, threads enter the quiescent state [McKenney, 2008].
They don’t read the object anymore. At the end of the grace period, all the
threads are in the quiescent state. Then we can free the object (reclamation).

Let us now understand when the grace period (from the point of view of a
thread) ends and the period of quiescence starts. One of the following conditions
needs to be satisfied.

1. When a thread blocks: If there is a restriction that blocking calls are not
allowed in an RCU read block, then if the thread blocks we can be sure
that it is in the quiescent state.

2. If there is a switch to user-mode execution, then we can be sure that the
kernel has finished executing its RCU read block.

3. If the kernel enters an idle loop, then also we can be sure that the read
block is over.

© Smruti R. Sarangi 226

4. Finally, if we switch the context to another kernel thread, then also we
can be sure that the quiescent state has been reached.

Whenever any of these conditions is true, we set a bit that indicates that
the CPU is out of the RCU read block – it is in the quiescent state. The reason
that this enables better performance is as follows. There is no need to send
costly inter-processor interrupts to each CPU and wait for a task to execute.
Instead, we infer quiescence based on the state of the execution of the thread.
The moment a thread leaves the read block, the CPU enters the quiescent state
and this fact is immediately recorded by setting a corresponding per-CPU bit.
Note the following: this action is off the critical path and there is no shared
counter.

Once all the CPUs enter a quiescent state, the grace period ends and the
object can be reclaimed. Hence, it is important to answer only one question
when a given CPU enters the quiescent state: Is this the last CPU to have
entered the quiescent state? If, the answer is “Yes”, then we can go forward
and declare that the grace period has ended. The object can then be reclaimed.
This is because we can be sure that no thread holds a valid reference to the
object (see the answer to Question 5.3.5).

Question 5.3.1

What if there are more threads than CPUs? It is possible that all of
them hold references to an object. Why are we maintaining RCU state
at the CPU level?

Answer: We assume that whenever a thread accesses an object that
is RCU-protected, it is accessed only within an RCU context (within a
read block). Furthermore, a check is also made within the read block to
ensure that it is a part of the encapsulating data structure. It cannot
access the object outside the RCU context. Now, once a thread enters an
RCU read block, it cannot be preempted until it has finished executing
the read block.
It is not possible for the thread to continue to hold a reference and use it.
This is because it can be used once again only within the RCU context,
and there it will be checked if the object is a part of its containing data
structure. If it has been removed, then the object’s reference has no
value.
For a similar reason, no other thread running on the CPU can access
the object once the object has been removed and the quiescent state has
been reached on the CPU. Even if another thread runs on the CPU, it
will not be able to access the same object because it will not find it in
the encapsulating data structure.
Because we do not allow multiple threads to preempt each other in an
RCU read block, maintaining state at the CPU level is sufficient. It
just ensures that the currently running thread has entered a period of
quiescence. Subsequent threads running on the CPU will not be able to
access the object that was removed anyway.

227 © Smruti R. Sarangi

Tree RCU

Let us now suggest an efficient method of managing the quiescent state of all
CPUs. The best way to do so is to maintain a tree. Trees have natural paral-
lelism; they avoid centralized state.

struct rcu state is used to maintain quiescence information across the
cores. Whenever the grace period ends (all the CPUs are quiescent at least
once), a callback function may be called. This will let the writer know that the
object can be safely reclaimed.

struct rcu_state

struct
rcu_node

struct
rcu_node

struct
rcu_node

struct
rcu_node

Register a callback
func�on.

Called when the
grace period ends.

per-CPUstruct
rcu_data

struct
rcu_data

struct
rcu_data

struct
rcu_data

struct
rcu_data

struct
rcu_data

Figure 5.21: Tree RCU

RCU basically needs to set a bit in a per-CPU data structure (struct
rcu data) to indicate the beginning of a quiescent period. This is fine for a
simplistic implementation. However, in practice there could be nested RCU
calls. This means that within an RCU read block, the kernel may try to enter
another RCU read block. In this case, the CPU enters the quiescent state when
the execution has moved past all the RCU read blocks and is currently not ex-
ecuting any code that is a part of an RCU read-side critical section. The CPU
could have been executing in an idle state or there could have been a context
switch. It is often necessary to distinguish between the reasons for entering a
period of quiescence. Hence, we need a more complex multibit mechanism that
indicates that the CPU is “quiescent” and the reason for entering the quiescent
state. Hence, in modern kernels a slightly more complex mechanism is used. It
is known as the dynticks mechanism that incorporates a bunch of counters. One
of those counters is checked to see if it is even or odd. If it is even, then it means
that the CPU is quiescent otherwise it means that it is not. However, there are
other pieces of information as well that we need to maintain such as the number
of grace periods that have elapsed, the nature of the quiescent state, scheduler
activations, interrupt processing and so on. For the sake of the discussion in this
section, let us assume that each rcu data structure (corresponding to a CPU)
stores just one bit – quiescent or not.

We can then organize this information in an augmented tree, and create a
tree of nodes. The internal nodes are of type struct rcu node as shown in
Figure 5.21. To find out if the entire system is quiescent or not, we just need to
check the value of the root of the tree. This makes this process very fast and
efficient.

© Smruti R. Sarangi 228

Preemptible RCU

Sadly, RCU stops preemption and migration when the control is in an RCU block
(read-side critical section). This can be detrimental to real-time programs as
they come with strict timing requirements and deadlines. In real-time versions
of Linux, there is a need to have a preemptible version of RCU where preemption
is allowed within an RCU read-side block. Even though doing this is a good
idea for real-time systems, it can lead to many complications.

In classical RCU, read-side critical sections had almost zero overhead. Even
on the write-side all that we had to do is read the current data structure, make a
copy, make the changes (update) and add it to the encapsulating data structure
(such as a linked list or a tree). The only challenge was to wait for all the
outstanding readers to complete, which has been solved very effectively.

Here, there are many new complications if we make critical sections pre-
emptible. If there is a context switch in the middle of a read block, then
the read-side critical section gets “artificially lengthened”. We can no more
use the earlier mechanisms for detecting quiescence. In this case, whenever
a process enters a read block, it needs to register itself, and then it needs to
deregister itself when it exits the read block. Registration and deregistration
can be implemented using counter increments and decrements, respectively. The
rcu read lock function needs to increment a counter and the rcu read unlock

function needs to decrement a counter. These counters are now a part of a pro-
cess’s context, not the CPU’s context (unlike classical RCU). This is because
we may have preemption and subsequent migration. It is also possible for two
concurrent threads to run on a CPU that access RCU-protected data struc-
tures. Note that this was prohibited earlier. We waited for a read block to
completely finish before running any other thread. In this case, two read blocks
can run concurrently (owing to preemption). Once preempted, threads can also
migrate to other CPUs. Hence, counters can no more be per-CPU counters.
State management thus becomes more complex. Summary: This mechanism
enables real-time execution and preemption at the cost of making RCU slower
and more complex.

5.4 Scheduling

Scheduling is one of the most important activities performed by the kernel. It
is a major determinant of the overall system’s responsiveness and performance.

5.4.1 Space of Scheduling Problems

Scheduling per se is an age-old problem. There are a lot of variants of the
basic scheduling problem. Almost all of them have the same basic structure,
which is as follows. We have a bunch of jobs that needs to be scheduled on a
set of cores. Each job has a start time (or arrival time) and a duration (time
it takes to execute). The task is to schedule the set of jobs on all the cores
while ensuring some degree of optimality at the same time. The definition of an
optimal schedule here is not very obvious because many criteria for optimality
exist. Also, for a single core we may use one criteria and a different one for a
multicore processor.

229 © Smruti R. Sarangi

Note that it is important to differentiate between a task and a job here. A
task is a process that owns resources, can get swapped out and can be migrated
across cores. It can spawn many jobs, where each job is a quantum of CPU
activity. For example, if there is a periodic task, it spawns a new job once every
period. Each such job is an independently schedulable entity. Hence, we shall
use the term “jobs” in this section. A task is a bigger entity that corresponds
to a process, which might create many jobs in its lifetime.

J1

3

J2

2

J3

4

J4

1

Figure 5.22: Example of a set of jobs that are waiting to be scheduled

Figure 5.22 shows an example where we have a bunch of jobs that need to
be scheduled. In this case, we assume that the time that a job needs to execute
(processing time) is known a priori (shown in the figure).

Objective Functions

Mean Completion Time
In single-core processors, we typically use the mean completion time as the
objective function that needs to be minimized (refer to Figure 5.23). The com-
pletion time of a job is the time it takes to complete. We can compute it by
subtracting its arrival time from its completion time. In this interval, it may get
preempted several times. Ultimately, when the job completes, the completion
time is recorded. The objective function here is to minimize the mean comple-
tion time across all the jobs. If the number of jobs is known (which it often is),
then this objective is the same as the total completion time.

The mean completion time determines the responsiveness of the system. If a
scheduling system delays a lot of jobs, it will have an adverse mean completion
time.

J1 J2 J3 J4

t1
t2

t3

t4

Figure 5.23: Mean completion time µ =
∑

i ti/n

Makespan

© Smruti R. Sarangi 230

Next, let us look at optimality criteria in the space of multicore scheduling.
The aim is to minimize the makespan. The makespan is the time duration
between the time at which scheduling starts and the time at which the last job
is completed. This is basically the time that is required to finish the entire set
of jobs on a parallel machine.

Issues with the Objective Functions
Let us now try to punch a set of holes into the definitions of the mean completion
time and makespan that we just provided. We are assuming that the time that
a job takes to execute is known. This is seldom the case in a practical real-life
application, unless it is a very controlled system like an embedded real-time
system.

Nevertheless, for theoretical and mathematical purposes, such assumptions
are made very frequently. In many cases, it is indeed possible to accurately esti-
mate the duration of the execution using prior history. Hence, this assumption
may not be that impractical all the time.

Preemption and Arrival Times

The next point to consider is whether the jobs are preemptible or not. If they
are, then the problem actually becomes quite simple most of the time. Whereas,
if they aren’t, then the problem often becomes far more complex. Many variants
of the scheduling problem with this restriction are NP-complete. The reasons
are obvious. For preemptible jobs, we can arbitrarily split them and execute the
remaining portion either later or on another core. This allows for much more
flexibility in job scheduling.

Along with preemptibility, we also need to look at the issue of arrival times.
Some simple models of scheduling assume that the arrival time is the same for
all the jobs. This means that all the jobs arrive at the same time, which we can
assume to be t = 0. In another model, we assume that the arrival times are not
the same for all the jobs. Here again, there are two types of problems. In one
case, the jobs that will arrive in the future are known. In the other case, we
have no idea – jobs may arrive unannounced at any point of time.

We can thus observe that the problem of scheduling is a very fertile ground
for proposing and solving optimization problems. We can have a lot of con-
straints, settings and objective functions.

To summarize, we have said that in any scheduling problem, we have a list
of jobs. Each job has an arrival time, which may either be equal to 0 or some
other time instant. Next, we typically assume that we know how long a job shall
take to execute. Then in terms of constraints, we can either have preemptible
jobs or we can have non-preemptible jobs. The latter means that the entire
job needs to execute in one go without any other intervening jobs. Given these
constraints, there are a couple of objective functions that we can minimize. One
would be to minimize the makespan, which is basically the time from the start
of scheduling till the time it takes for the last job to finish execution. Another
objective function is the average completion time, where the completion time is
again defined as the time at which a job completes minus the time at which it
arrived (measure of responsiveness).

For scheduling such a set of jobs, we have a lot of choices. We can use many
simple algorithms, which in some cases can also be proven to be optimal. Let

231 © Smruti R. Sarangi

us start with the random algorithm. It randomly picks a job and schedules
it on a free core. There is a lot of work that analyzes the performance of
such algorithms and many times such random choice-based algorithms in fact
perform reasonably well. However, in modern systems, it is advisable to take a
more serious approach. It is best to use algorithms that are provably optimal
or have been proven to be near-optimal either theoretically or empirically.

KSW Model

Let us now introduce a more formal way of thinking and introduce the Karger-
Stein-Wein (KSW) model [Karger et al., 1999]. It provides an abstract or generic
framework for all scheduling problems. It essentially divides the space of prob-
lems into large classes and finds commonalities between problems that belong
to the same class. Specifically, it requires three parameters: α, β and γ.

The first parameter α determines the machine environment. It specifies the
number of jobs and the processing time of each job. The second parameter
β specifies the constraints. For example, it specifies whether preemption is
allowed or not, whether the arrival times are the same or are different, whether
the jobs have dependencies between them or whether there are job deadlines.
A dependence between a pair of jobs can exist in the sense that we can specify
that job J1 needs to complete before J2. Note that in real-time systems, jobs
come with deadlines, which basically means that jobs have to finish before a
certain time. Deadlines are thus another type of constraint.

Finally, the last parameter γ is the optimality criterion. We have already
discussed the average mean completion time and makespan criteria. We can
also define a weighted completion time – a weighted mean of completion times.
Here a weight corresponds to a job’s priority. It is easy to observe that the
mean completion time metric is a special case of the weighted completion time
metric – all the weights are equal to 1. Now, let the completion time of job i be
Ci. The cumulative completion time can be equivalent to the mean completion
time if the number of jobs is a constant. We can represent this criterion as ΣCi.
The makespan is Cmax (maximum completion time of all jobs).

We can consequently have a lot of scheduling algorithms for every scheduling

problem, which can be represented using the 3-tuple α | β | γ as per the KSW

formulation.

The most popular scheduling algorithms are quite simple, and are also prov-
ably optimal in some scenarios. We shall also introduce a bunch of settings
where finding the optimal schedule is an NP-complete problem [Cormen et al.,
2009]. There are good approximation algorithms for solving such problems.

5.4.2 Single Core Scheduling

The Shortest Job First Algorithm

Let us define the problem 1 || ΣCj in the KSW model. We are assuming
that there is a single core. The objective function is to minimize the sum of
completion times (Cj). Note that minimizing the sum of completion times is
equivalent to minimizing the mean completion time because our assumption is
that the number of tasks is known a priori and is a constant.

© Smruti R. Sarangi 232

J4

1

J2

2

J1

3

J3

4

Figure 5.24: Shortest job first scheduling

The claim is that the SJF (shortest job first) algorithm is optimal in this
case (example shown in Figure 5.24). Let us outline a standard approach for
proving that a scheduling algorithm is optimal with respect to the criterion
that is defined in the KSW formulation. Here we are minimizing the mean
completion time.

Let the SJF algorithm be algorithm A. Assume that another algorithm A′ is
optimal. There must be a pair of jobs j and k such that j immediately precedes
k and the processing time (execution time) of j > k. This means pj > pk. Note
that such a pair of jobs will not exist in the schedule produced by algorithm
A. Assume pj started at time t. Let us exchange jobs j and k with the rest of
the schedule generated by A′ remaining the same. Let us assume that this new
schedule is produced by another algorithm A′′.

Next, let us evaluate the contribution to the cumulative completion time by
jobs j and k in the schedule generated by algorithm A′. It is (t+ pj)+ (t+ pj +
pk) = 2t + 2pj + pk. Let us evaluate the contribution of these two jobs in the
schedule produced by A′′. It is (t+ pk) + (t+ pj + pk) = 2t+ 2pk + pj . Given
that pj > pk, we can conclude that the schedule produced by algorithm A′ is
longer (larger cumulative completion time). This can never be the case because
we have assumed A′ to be optimal. We thus have a contradiction here because
A′′ appears to be better than A′, which violates our assumption. This leads to
a contradiction.

Hence, A′ or any algorithm that violates the SJF order cannot be optimal.
Thus, algorithm A (SJF) is optimal.

Weighted Jobs

Let us now define the problem where weights are associated with jobs. It will
be 1 || wjCj in the KSW formulation. If ∀j, wj = 1, we have the classical
unweighted formulation for which SJF is optimal.

For the weighted version, let us schedule jobs in descending order of (wj/pj).
Clearly, if all wj = 1, this algorithm is the same as SJF. We can use the same
exchange-based argument to prove that using (wj/pj) as the job priority yields
an optimal schedule.

EDF Algorithm

Let us next look at the EDF (Earliest Deadline First) algorithm. It is one of
the most popular algorithms in real-time systems. There are different flavors
of the EDF algorithm. Each one has a different problem formulation. In real-
time systems, typically versions of EDF with periodic tasks are considered. In
this section, let us consider a slightly different formulation where tasks are not
periodic. However, we assume that we can preempt tasks with zero overhead.

233 © Smruti R. Sarangi

Here, each job is associated with a distinct non-zero arrival time and dead-
line. Let us define the lateness as ⟨completion time⟩ - ⟨deadline⟩. The formu-
lation is as follows:

1 | ri, dli, pmtn | Lmax

We are still considering a single core machine. The constraints are on the
arrival time and deadline. ri represents the fact that job i is associated with
arrival time ri – it can start only after it has arrived (ri). Furthermore, it does
not matter if the information about a job’s arrival is known a priori or not.
In other words, jobs can thus arrive at any point of time (dynamically). The
dli constraint indicates that job i has deadline dli associated with it – it needs
to complete before it. Preemption is allowed (pmtn). We wish to minimize
maximum lateness (Lmax). This means that we would like to ensure that jobs
complete as soon as possible, with respect to their deadline. Note that in this
case, we care about the maximum value of the lateness, not the mean value.
This means that we don’t want any single job to be delayed significantly.

The algorithm schedules the job whose deadline is the earliest. Assume that
a job is executing, and a new job arrives that has an earlier deadline. Then the
currently running job is swapped out, and the new job that now has the earliest
deadline executes.

The proof is on similar lines and uses exchange-based arguments (refer to
[Mall, 2009]).

We shall revisit EDF in the context of real-time scheduling in Section 5.5.2.
There we will consider periodic tasks where the deadline is the same as the pe-
riod. We will be able to make stronger guarantees with respect to schedulability.

SRTF Algorithm

Let us continue our journey and consider another problem of a similar variety:
1 | ri, pmtn | ΣCi. Preemption is allowed and jobs can arrive at any point of
time. We aim to minimize the mean/cumulative completion time.

In this case, the most optimal algorithm is SRTF (shortest remaining time
first). For each job, we keep a record of the time that is left for it to finish its
execution. We sort this list in ascending order and choose the job that has the
shortest amount of time left. If a new job arrives, we compute its remaining time,
and if that number happens to be the lowest, then we preempt the currently
running job and execute the newly arrived job.

We can prove that this algorithm minimizes the mean (cumulative) comple-
tion time using a similar exchange-based argument.

Some NP-Completeness and Impossibility Results

There is a deep connection between preemption, arrival times and finding op-
timal schedules. In general, it is more difficult to design algorithms that do
not have preemptible tasks. If jobs are preemptible, things are typically eas-
ier. For those who are theoretically minded, they will quickly appreciate why
this is the case. It is possible to solve linear programming that is continuous
domain optimization in polynomial time. However, solving integer-linear pro-
gramming with integer constraints is NP-complete. This is because we have a

© Smruti R. Sarangi 234

combinatorial explosion. Something similar happens in the case of scheduling
problems.

However, preemption does not have an effect when all the jobs arrive at
t = 0 for some common problems. Specifically, the quality of the schedule is
not affected by whether preemption is allowed or not [Karger et al., 1999]. In
does not make any difference insofar as the following optimality criteria are
considered: ΣCi or Lmax. We have seen some of these problems. Consider
1 || σCj . In this case, SJF and SRTF produce the same schedule. Hence,
preemption does not matter. Next, consider 1 | pmtn, dli | Lmax. Here, EDF
will always produce the same schedule regardless of preemption. Hence, if all
the jobs arrive at t = 0, and we consequently have full information about all
the tasks, for such formulations preemption is not a virtue.

Next, let us discuss a few NP-complete problems in this space. Here, we
assume that jobs have distinct non-zero arrival times.

• 1 | ri | ΣCi: In this case, preemption is not allowed and jobs can arrive at
any point of time. There is much less flexibility in this problem setting.
This problem is provably NP-complete.

• 1 | ri | Lmax: This problem is similar to the former. Instead of the average
(cumulative) completion time, we have lateness as the objective function.

• 1 | ri, pmtn | ΣwiCi: This is a preemptible problem that is a variant
of 1 | ri, pmtn | ΣCi, which has an optimal solution – SRTF. The only
addition is the notion of the weighted completion time. It turns out that
for generic weights, this problem becomes NP-complete.

We thus observe that making a small change to the problem renders it NP-
complete. This is how sensitive these scheduling problems are.

Practical Considerations

All the scheduling problems that we have seen assume that the job execution
(processing) time is known. This may be the case in really well-characterized
and constrained environments. However, in most practical settings, the job
duration is not known.

CPU burst I/O burst I/O burstCPU burst

tn = 𝛼𝑡𝑛−1 + 𝛽𝑡𝑛−2 + 𝛾𝑡𝑛−3

Figure 5.25: CPU and I/O bursts

Figure 5.25 shows a typical scenario. Any task typically cycles between two
bursts of activity: a CPU-bound burst and an I/O burst. The task typically
does a fair amount of CPU-based computation, and then makes a system call.
This initiates a burst where the task waits for some I/O operation to complete.
We enter an I/O bound phase in which the task typically does not actively
execute. We can, in principle, treat each CPU-bound burst as a separate job.

235 © Smruti R. Sarangi

Each task thus yields a sequence of jobs that have their distinct arrival times.
The problem reduces to predicting the length of the next CPU burst.

We can use classical time-series methods to predict the length of the CPU
burst. We predict the length of the nth burst tn as a function of tn−1, tn−2 . . . tn−k.
For example, tn could be described by the following equation:

tn = αtn−1 + βtn−2 + γtn−3 (5.1)

Such approaches that are rooted in time series analysis often tend to work
and yield good results because the length of the CPU bursts have a degree of
temporal correlation. The recent past is a good predictor of the immediate
future. Using these predictions, the algorithms listed in the previous sections
such as EDF, SJF and SRTF can be used. At least some good solutions can be
realized.

Let us consider the case when we have a poor prediction accuracy. We can
rely on simple, classical and intuitive methods as we shall describe next.

Conventional Algorithms

We can always make a random choice, however, that is definitely not desirable
here. Something that is much more fair is a simple FIFO (first-in-first-out)
algorithm. To implement it, we just need a queue of jobs. It guarantees the
highest priority to the job that arrived the earliest. A problem with this ap-
proach is the “convoy effect”. A long-running job can delay a lot of smaller
jobs. They will get unnecessarily delayed. If we had scheduled them first, the
average completion time would have been much lower.

We can alternatively opt for round-robin scheduling. We schedule a job for
one time quantum. After that we preempt the job and run another job for one
time quantum, so on and so forth. This is at least fairer to the smaller jobs –
they complete sooner.

There is thus clearly a trade-off between the priority of a task and system-
level fairness. If we boost the priority of a task, it may be unfair to other tasks
(refer to Figure 5.26).

Priority

Fairness

Figure 5.26: Fairness vs priority

We have discussed the notion of priorities in Linux (in Section 3.1.6). If we
have a high-priority task running, we penalize other low-priority tasks. A need

© Smruti R. Sarangi 236

for fairness thus arises. Many other operating systems such as Windows use
other types of fairness metrics. For example, Windows boosts the priority of
foreground processes by 3×. This means that if we start interacting with an
application, its priority gets boosted.

Queue-based Scheduling

Mul�-level Feedback Queue

Queue: Level 1

Queue: Level 2

Queue: Level 3

Figure 5.27: Multi-level feedback queue

A standard method of scheduling tasks that have different priorities is to
use a multilevel feedback queue as shown in Figure 5.27. Different queues in
this composite queue are associated with different priorities. We start with the
highest-priority queue and start scheduling tasks using any of the algorithms
that we have studied. If empty cores are still left, then we move down the
priority order of queues: schedule tasks from the second-highest priority queue,
third-highest priority queue and so on. Again note that we can use a different
scheduling algorithm for each queue. They are independent in that sense.

Depending upon the nature of the task and for how long it has been waiting,
tasks can migrate between queues. To provide fairness, tasks in low-priority
queues can be moved to high-priority queues. If a background task suddenly
comes into the foreground and becomes interactive, its priority needs to be
boosted, and the task needs to be moved to a higher priority queue. On the
other hand, if a task stays in the high-priority queues for a long time, we can
demote it to ensure fairness. Such movements ensure both high performance
and fairness.

5.4.3 Multicore Scheduling

Let us now come to the issue of multicore scheduling. The big picture is shown
in Figure 5.28. We have a global queue of tasks that typically contains newly
created tasks or tasks that need to be migrated. A dispatcher module sends
the tasks to different per-CPU task queues. Theoretically, it is possible to
have different scheduling algorithms for different CPUs. However, this is not a
common pattern.

237 © Smruti R. Sarangi

CPU 1 CPU 2 CPU 3

Dispatcher

Figure 5.28: Multicore scheduling

Theoretical Results in Multicore Scheduling

The key objective function here is to minimize the makespan Cmax. This is
the maximum completion time across all cores – the time at which an ensemble
of jobs finishes. Preemptible variants are in general easier to schedule. This
is because such a problem is a continuous version of the scheduling problem
and is similar in principle to linear programming that has simple polynomial
time solutions. On the other hand, non-preemptive versions are far harder
to schedule and are often NP-complete. These problems are similar to the
knapsack, partition or bin packing problems (see [Cormen et al., 2009]), which
are quintessential NP-complete problems. A problem in NP (nondeterministic
polynomial time) can be verified in polynomial time if a solution is presented.
These are in general decision problems that have yes/no answers. Note that the
set of NP-complete problems are the hardest problems in NP. This means that if
we can solve them in polynomial time, then we have polynomial time solutions
for all the problems in NP.

Let us consider a simple version of the multicore scheduling problem: P |
pmtn | Cmax. Here, we have P processors and preemption is enabled. The
solution is to simply and evenly divide the work between the cores and schedule
the jobs. Given that every job can be split arbitrarily, scheduling in this manner

becomes quite simple. In this case, Cmax =
∑

Ci

n .

However, the problem P || Cmax where preemption is not enabled is NP-
complete. Jobs cannot be split, and this is the source of all our difficulties.

To prove the NP-completeness of such problems, there is a standard method.
We consider a problem that is known to be NP-complete. Next, we map every
instance of this known NP-complete problem to a corresponding instance of a
scheduling problem. The NP-complete problems that are typically chosen are
the bin packing and partition problems. Once we have mapped bin packing to
a scheduling problem, it is clear that if we can solve the scheduling problem in
polynomial time, then we can solve all instances of the bin packing problem in
polynomial time. Hence, the scheduling problem is harder than the bin packing
problem. If the bin packing problem is NP complete, then so is the scheduling
problem.

© Smruti R. Sarangi 238

Point 5.4.1

Bin Packing Problem: We have a finite number of bins, where each bin
has a fixed capacity S. There are n items. The size of the ith item is si.
We need to pack the items in bins without exceeding any bin’s capacity.
The objective is to minimize the number of bins and find a mapping
between items to bins such that we use the least number of bins.

Point 5.4.2

Set Partition Problem: Consider a set S of numbers. Find a subset
whose sum is equal to a given value T .

Both these classical NP-complete problems – bin packing and set partition
– assume that an item or set element cannot be split. Scheduling without
preemption has a similar character.

List Scheduling

Let us consider one of the most popular non-preemptive scheduling algorithms
in this space known as list scheduling. We maintain a list of ready jobs. They
are sorted in descending order according to some priority scheme. When a CPU
becomes free, it fetches the highest priority job from the list. In case, it is not
possible to execute it, then the CPU walks down the list and finds another job
to execute. The only condition here is that we cannot return without a job if the
list is non-empty. This means that there is no deliberate idling. If a CPU wants
to run something and the queue of jobs is non-empty, then the CPU cannot
remain idle. Moreover, all the machines are considered to be identical in terms
of computational power.

Let us take a deeper look at the different kinds of priorities that we can use.
We can order the jobs in descending order of arrival time or job processing time.
We can also consider dependencies between jobs. In this case, it is important to
find the longest path in the graph (jobs are nodes and dependency relationships
are edges). The longest path is known as the critical path. The critical path often
determines the overall makespan of the schedule assuming we have adequate
compute resources. This is why in almost all scheduling problems, a lot of
emphasis is placed on the critical path. We always prefer scheduling jobs on
the critical path as opposed to jobs off the critical path. We can also consider
attributes associated with nodes in this graph. For example, we can set the
priority to be the out-degree (number of outgoing edges). If a job as a high
out-degree, then it means that a lot of other jobs are dependent on it. Hence,
if this job is scheduled, many other jobs will get benefited – they will have one
less dependency.

It is possible to prove that list scheduling is near-optimal using theoretical
arguments [Graham, 1969]. Consider the problem P || Cmax. Let the makespan
(Cmax) produced by an optimal scheduling algorithm OPT have a length C∗.
Let us compute the ratio of the makespan produced by list scheduling and C∗.
Our claim is that regardless of the priority that is used, we are never worse off
by a factor of 2. This is assuming that there is no deliberate idling.

239 © Smruti R. Sarangi

Theorem 5.4.1 Makespan

Regardless of the priority scheme, Cmax/C
∗ ≤ 2− 1

m . Cmax is the length
of the makespan of the schedule produced by list scheduling. There are
m CPUs.

Proof: Let there be n jobs and m CPUs. Let the execution times of the jobs
be p1 . . . pn, and let job k (execution time pk) complete the last. Assume it
started at time t. Then Cmax = t+ pk.

Given that there is no idleness in list scheduling, we can conclude that till t
all the CPUs were 100% busy. This means that if we add all the work done by
all the CPUs till point t, it will be mt. This comprises the execution times of
a subset of jobs that does not include job k (one that completes the last). We
thus arrive at the following inequality.

∑
i ̸=k

pi ≥ mt

⇒
∑
i

pi − pk ≥ mt

⇒t ≤ 1

m

∑
i

pi −
pk
m

⇒t+ pk = Cmax ≤
∑

i pi
m
− pk

m
+ pk

⇒Cmax ≤
∑

i pi
m

+ pk

(
1− 1

m

)
(5.2)

Now, C∗ ≥ pk and C∗ ≥ mean(pi). These follow from the fact that jobs
cannot be split across CPUs (no preemption) and we wait for all the jobs to
complete. We thus have,

Cmax ≤
∑

i pi
m

+ pk

(
1− 1

m

)
≤ C∗ + C∗

(
1− 1

m

)
⇒ Cmax

C∗ ≤ 2− 1

m

(5.3)

Equation 5.3 shows that in list scheduling, a bound of 2 − 1/m is always
guaranteed with respect to the optimal makespan. Note that this value is in-
dependent of the number of jobs and the way in which we assign priorities as
long as we avoid deliberate CPU idling. Graham’s initial papers in this area
(see [Graham, 1969]) started a flood of research work in this area. People started
looking at all kinds of combinations of constraints, priorities and objective func-
tions in the scheduling area. We thus have a rich body of such results as of today
for many kinds of settings.

© Smruti R. Sarangi 240

An important member of this class is a list scheduling algorithm that is
known as LPT (longest processing time first). We assume that we know the
processing duration (execution time) of each job. We order them in descending
order of processing times. In this case, we can prove that the ratio is bounded
by

(
4
3 −

1
3m

)
.

5.4.4 Banker’s Algorithm

Let us now look at scheduling with deadlock avoidance. This basically means
that before acquiring a lock, we would like to check if a potential lock acquisition
may lead to a deadlock or not. If there is a possibility of a deadlock, then we
would like to back off. We have already seen a simpler version of this when
we discussed the lockdep map in Section 5.3.4. The Banker’s algorithm, which
we will introduce in this section, uses a more generalized form of the lockdep
map algorithm where we can have multiple copies of each resource. It is a very
classical algorithm in this space, and is easily implementable in the real-world.

The key insight is as follows. Finding circular waits in a graph is sufficient for
cases where we have a single copy of a resource, however, when we have multiple
copies of a resource, a circular wait is not well-defined. Refer to Figure 5.29. We
show a circular dependency across processes and resources. However, because
of multiple copies, a deadlock does not happen. Hence, the logic for detecting
deadlocks when we have multiple copies of resources is not as simple as finding
cycles in a graph. We need a different algorithm.

P1 P2 P3

A B
A AB B

CountResource

2A

2B

1. P1 releases A and B
2. P2 and P3 get them

Trying to lock

Acquired

Figure 5.29: A circular dependency between processes P2 and P3. There are
two resources: A and B (two copies each). P1 has locked (acquired) a unit of
resource A and a unit of resource B. P2 has locked a unit of resource B and
waits for a unit of resource A. P3 has locked a unit of resource A and waits for
a unit of resource B. There is a circular dependency between P2 and P3. P1
will ultimately release its resources and the deadlock between P2 and P3 will
break. Sufficient resources will be available. Due to the presence of multiple
copies, there is thus no deadlock situation. Every process ultimately gets the
resources that it needs.

241 © Smruti R. Sarangi

Data Structures

Let us look at the data structures used in the Banker’s algorithm (see Table 5.2).
There are n processes and m types of resources. The array avlbl stores the
number of copies that we are currently available for resource i.

Data structures and
their dimensions

Explanation

avlbl[m] avlbl[i] stores the number of free copies of
resource i

max[n][m] Process i can request at most max[i][j]

copies of resource j
acq[n][m] Process i has currently acquired acq[i][j]

copies of resource j
need[n][m] Process i may request need[i][j] copies of

resource j in the future (at max.). acq +

need = max

Table 5.2: Data structures in the Banker’s algorithm

Safety of States

The algorithm to find if a state is safe or not in the Banker’s algorithm is shown
in Algorithm 1. The basic philosophy is as follows. Given the requirements of
all the processes in terms of resources, we do a short hypothetical simulation
and see if we can find a schedule to satisfy the requests of all the processes.
If this appears to be possible, then we say that the system is in a safe state.
Otherwise, if we find that we are in a position where the requests of any subset
of processes cannot be satisfied, the state is said to be unsafe. There is a need
to wait till the state becomes safe again.

In Algorithm 1, we first initialize the cur cnt array and set it equal to avlbl
(counts of free resources). At the beginning, the request of no process is assumed
to be satisfied (serviced). Hence, we set the value of all the entries in the array
done to false.

Next, we need to find a process with id i such that it is not done yet (done[i]
== false) and its maximum requirements stored in the need[i] array are
element-wise less than cur cnt. Let us define some terminology here before
proceeding forward. need[][] is a 2-D array. need[i] is a 1-D array that cap-
tures the resource requirements for process i – it is the ith row in need[n][m]

(row-column format). For two 1-D arrays A and B of the same size, the ex-
pression A ≺ B means that ∀i, A[i] ≤ B[i] and ∃j, A[j] < B[j]. This means
that each element of A is less than or equal to the corresponding element of
B. Furthermore, there is at least one entry in A that is strictly less than the
corresponding entry in B. If both the arrays are element-wise identical, we write
A = B. Now, if either of the cases is true – A ≺ B or A = B – we write A ⪯ B.

Let us now come back to the expression need[i] ⪯ cur cnt. It means that
the maximum requirement of a process is less than or equal to the currently
available set of resources (for all resource types). In other words, the request of
process i can be satisfied.

© Smruti R. Sarangi 242

Algorithm 1 Algorithm to check for the safety of the system

1: initialize:
2: cur cnt ← avlbl

3: ∀i, done[i] ← false
4:

5: find:
6: if ∃i, (done[i] == false) && (need[i] ⪯ cur cnt) then
7: go to update
8: else
9: go to safety check

10: end if
11:

12: update:
13: ▷ Release all acquired resources because the request is assumed to be served
14: cur cnt ← cur cnt + acq[i]

15: done[i] ← true
16: go to find
17:

18: safety check:
19: if ∀i, done[i] == true then
20: return safe
21: else
22: return unsafe
23: end if

If no such process is found, we jump to the last step. It is the safety check
step. However, if we are able to find such a process with id i, then we assume
that it will be able to execute because enough resources are available. After
hypothetical execution, it will return all the resources that it currently holds
(i.e., acq[i]) back to the free pool of resources (cur cnt). Given that we were
able to satisfy the request for process i, we set done[i] equal to true. Its
resources are returned to the free pool of resources and thus acq[i] is added to
cur cnt. We continue repeating this process till we can satisfy as many requests
of processes as we can.

Let us now come to the last step, where we perform the safety check. If the
requests of all the processes are satisfied, then all the entries in the done array
will be equal to true. It means that we are in a safe state – the requests of all
the processes can be satisfied. Alternatively, all the requests that are currently
pending can be safely accommodated. Otherwise, we are in an unsafe state. It
basically means that we have more requirements as compared to the number of
free resources. This situation may induce a potential deadlock.

Point 5.4.3

Significance of the safe state: The safe state means that if every process
were to immediately request for the maximum number of resources that
it is entitled to request, then it will be possible to satisfy all of them.
However, if such a sequence cannot be found out, then the state is unsafe.

243 © Smruti R. Sarangi

There is another way to understand the unsafe state. If every process’s
request is more than the number of available resources, then we have a
deadlock. Assuming that each request is equal to the need of the process,
is a conservative worst case. However, if it does indicate that the largest
possible request can be accommodated for each process.
Note that the initial state when no request has been allocated should
ideally be a safe state. This means that it should be possible to satisfy
all requests. All of them should be less than the respective needs of each
process. This is a sanity check condition. However, once resources have
been allocated, the system may move towards an unsafe state. An unsafe
state can lead to a deadlock if requests are large enough.

Requesting for Resources

Algorithm 2 Algorithm to request for resources

1: initialize:
2: initialize the req[] array
3:

4: check:
5: if ¬ (reqi ⪯ need[i]) then
6: return false
7: else
8: if avlbl ≺ req then
9: wait()

10: end if
11: end if
12:

13: allocate:
14: avlbl ← avlbl - reqi
15: acq[i] ← acq[i] + reqi
16: need[i] ← need[i] - reqi
17: if state is unsafe then
18: Disallow the request and undo changes
19: else
20: return
21: end if

Let us now look at the resource request algorithm (Algorithm 2). We start
out with introducing a new array called reqi, which holds process i’s require-
ments. For example, if reqi[j] is equal to k, it means that process i needs k
copies of resource j. We need to check if this is a valid request or not. This
is a key part of the deadlock avoidance algorithm. If we can pre-certify every
request, then we will never enter a deadlocked state.

Consider the check phase. Ideally reqi ⪯ need[i], which basically means
that a process is requesting for resources that it is entitled to. If this is not the
case, then at least one entry in reqi is strictly greater than the corresponding
entry in need[i]. The current requirement is clearly more than what was de-

© Smruti R. Sarangi 244

clared a priori (stored in the need[i] array). Such requests cannot be satisfied.
Therefore, we need to return false.

Assume this is not the case. If avlbl ≺ req, then it means that we need
to wait for resource availability, which may happen in the future. In this case,
we are clearly not exceeding pre-declared thresholds, as we were doing in the
former case.

Finally, assume that we have enough available resources. The key question is
whether we should allocate the requested resources or not. The answer depends
on whether we arrive at a safe state or not. To check this, let us make a dummy
allocation (allocate step). The first step is to subtract reqi from avlbl. This
basically means that we satisfy the request for process i (hypothetically). The
resources that it requires are not free anymore. This fact is represented by
adding reqi to acq[i], which basically means that the said resources have been
acquired. We then proceed to subtract reqi from need[i]. This is because at
all points of time, the following invariant needs to hold: max = acq+ need.

Example 5.4.1

Consider a system with two processes P1 and P2. The sizes of the arrays
are as follows.

avlbl =
[
1 1

]
acq =

[
0 0
0 0

]
need =

[
1 1
1 1

]
Assume that P1 puts forth a request

[
1 0

]
. The state becomes:

acq =

[
1 0
0 0

]
This state is safe because maximum-sized requests of P1 and P2 can be
satisfied. Now, assume that P2 issues a request

[
0 1

]
. If this request

were to be granted then, the state will become

avlbl =
[
0 0

]
acq =

[
1 0
0 1

]
This is an unsafe state. No resource is available and the needs of both the
processes are not satisfied. Hence, the request

[
0 1

]
should be denied

because it leads to an unsafe state.

After this dummy allocation, we check if the state is safe or not by invoking
the algorithm to check for state safety (Algorithm 1). If the state is not safe,
then it means that the current resource allocation request should not be allowed
– it may lead to a deadlock.

Algorithm for Finding Deadlocks

Let us now look at the deadlock detection algorithm (Algorithm 3). We intro-
duce a new reqs[n][m] array that stores resource requests for all the processes.
For example, reqs[i] stores all the resource requests for process i. It is equiv-
alent to reqi. We start with the same sequence of initialization steps. We first
set cur cnt to avlbl. Next, for all the processes that have not acquired any

245 © Smruti R. Sarangi

Algorithm 3 Algorithm for finding deadlocks

1: initialize:
2: cur cnt ← avlbl

3: for ∀i do
4: if acq[i] ̸= 0 then
5: done[i] ← false
6: else
7: done[i] ← true
8: end if
9: end for

10:

11: find:
12: if ∃i, (done[i] == false) && reqs[i] ⪯ cur cnt then
13: go to update
14: else
15: go to deadlock check
16: end if
17:

18: update:
19: cur cnt ← cur cnt + acq[i]

20: done[i] ← true
21: go to find
22:

23: deadlock check:
24: if ∀i, done[i] == true then
25: return No Deadlock
26: else
27: return Deadlock
28: end if

© Smruti R. Sarangi 246

resource, we set done[i] to false– they cannot be part of a deadlock because
the hold-and-wait condition is not valid for them. For the rest of the processes,
we set done[i] to true.

Point 5.4.4

Algorithms 3 and 1 are quite similar. The deadlock detection algo-
rithm (Algorithm 3) considers a realistic case, where the requests are
pre-specified in the reqs array. It detects if the current state has a
deadlock or not. Algorithm 1 uses the same logic; however, it assumes
the worst case. It assumes that the largest possible set of resources is
requested (equal to need).

Next, we find an i such that it is not done yet and reqs[i] ⪯ cur cnt. Note
that the major difference between this algorithm and the algorithm to check
whether a state is safe or not (Algorithm 1) is the use of the reqs array here,
as opposed to the need array in Algorithm 1. need represents the maximum
number of additional requests a process can request for. Whereas, reqs points
to the current set of requests. We have the following relationship between them:
reqs ⪯ need.

Let us now understand the expression reqs[i] ⪯ cur cnt. This basically
means that for some process i, we can satisfy its request at the current point of
time. We subsequently move to update, where we assume that i’s request has
been satisfied (albeit hypothetically). Therefore, similar to the safety checking
algorithm, we return the resources that i has acquired. We thus add acq[i] to
cur cnt. The process is marked as done (done[i]← true). We go back to the
find step and keep iterating till we can satisfy the requests of as many processes
as possible. When this is not possible anymore, we jump to deadlock check.

Now, if done[i] == true for all processes, then it means that we were able to
satisfy the requests of all the processes. Therefore, there cannot be a deadlock.
However, if this is not the case, then it means that there is a dependency
between processes because of the resources that they are holding. This indicates
a potential deadlock situation.

There are several ways of avoiding a deadlock if this algorithm indicates that
a deadlock may form. The first is that before every resource/lock acquisition
we check the request using Algorithm 2. We do not acquire the resource if we
are entering an unsafe state. If the algorithm is more optimistic, and we have
entered an unsafe state already, then we perform a deadlock check, especially
when the system does not appear to make any progress. We kill one of the
processes involved in the deadlock and release its resources. We can choose one
of the processes that has been waiting for a long time or has a very low priority.

5.4.5 Scheduling in the Linux Kernel

The entry point to the scheduling subsystem in the Linux kernel is the schedule
function (refer to Listing 5.34).

The first task is to finish pending work for the current process. It is possible
that the current process is going to sleep. In this case, if there is some pending
work and that needs to be assigned to worker threads or some I/O tasks need
to be created, then this is the time to do so. The kernel has a set of threads

247 © Smruti R. Sarangi

known as kworker threads. They perform the bulk of the kernel’s low-priority
work. This function wakes up worker threads and assigns them some work. This
is especially important if the current task is going to get blocked. It will also
creates work items to finish all pending I/O.

Next, the internal version of the schedule function is called within a code
region where preemption is disabled. This allows the schedule function to
execute unhindered and also avoids a bunch of correctness problems associated
with accessing concurrent data structures. After the schedule function re-
turns, we update the status of worker threads (sched update worker). This
function performs simple bookkeeping. For example, if a worker thread is se-
lected to run on the CPU, then this function helps the scheduler account for the
fact that it is doing work related to workqueues. Its fairness policies use this
information.

Listing 5.34: The schedule function
source : kernel/sched/core.c#L6681

Also refer to [de Olivera, 2018]

void schedule(void)

{

struct task_struct *tsk = current;

/* Dispatch work to other kernel threads */

sched_submit_work(tsk);

do {

preempt_disable ();

__schedule(SM_NONE); /* scheduling work */

sched_preempt_enable_no_resched ();

} while (need_resched ());

/* Update the status of worker threads */

sched_update_worker(tsk);

}

There are several ways in which the schedule function can be called. If
a task makes a blocking call to a mutex or semaphore, then there is a pos-
sibility that it may not acquire the mutex/semaphore. In this case, the task
needs to be put to sleep. The state will be set to either INTERRUPTIBLE or
UNINTERRUPTIBLE. Since the current task is going to sleep, there is a need
to invoke the schedule function such that another task can execute.

The second case is when a process returns after processing an interrupt or
system call. The kernel checks the TIF NEED RESCHED flag. If it is set to true,
then it means that there are waiting tasks and there is a need to schedule them.
Similarly, if there is a timer interrupt, there may be a need to swap the current
task out and bring a new task in (preemption). Again we need to call the
schedule to pick a new task to execute on the current core. It is important
to note that the scheduler is not called on every timer interrupt. We shall see
later that it is called only when the current task has exceeded its execution time
quota.

Every CPU has a runqueue where tasks are added. This is the main data
structure that manages all the tasks that are supposed to run on a CPU. The
apex data structure here is the runqueue (struct rq) (see kernel/sched/sched.h).

https://elixir.bootlin.com/linux/v6.2.12/source/kernel/sched/core.c#L6681
https://elixir.bootlin.com/linux/v6.2.12/source/kernel/sched/sched.h

© Smruti R. Sarangi 248

Linux defines different kinds of schedulers (refer to Table 5.3). Each sched-
uler uses a different algorithm to pick the next task that needs to run on a
core. The internal schedule function is a wrapper function on the individual
scheduler-specific function. There are many types of runqueues – one for each
type of scheduler.

Scheduling Classes

Let us introduce the notion of scheduling classes. A scheduling class represents
a scheduler that manages its own set of jobs and picks the most eligible job for
subsequent execution on a CPU. Linux defines a strict hierarchy of scheduling
classes. This means that if there is a pending job in a higher scheduling class,
then we schedule it first before scheduling a job in a lower scheduling class.

The classes are as follows in descending order of priority.

Stop Task This is the highest priority task. It stops everything and executes.
For example, if there is a kernel panic or a new CPU is added, then
tasks in this scheduling class are run. This facility should only be used in
emergency situations.

DL This is the deadline scheduling class that is used for real-time tasks. Every
task is associated with a deadline. Typically, audio and video encoders
create tasks in this class. This is because they need to finish their work
in a bounded amount of time. For example, for 60-Hz video, the deadline
is 16.66 ms.

RT These are regular real-time threads that are used for a host of tasks. There
are two ways to schedule such threads: FIFO (first-in-first-out) and RR
(round-robin).

Fair This is the default scheduler that the current version of the kernel (v6.2)
uses for regular tasks. It ensures a high degree of fairness among tasks
where even the lowest priority task gets some CPU time.

Idle This scheduler runs the idle process, which runs when there is nothing
to run. It simply puts the CPU into an idle low-power state and sleeps.
Having an idle process is a good idea for bookkeeping and also makes
the design of the scheduler simple. There is always one task that can be
preempted.

There is clearly no fairness across classes. This means that it is possible
for DL tasks to completely monopolize the CPU and even stop real-time tasks
from running. Then the system will become unstable and will crash. It is up
to the user to ensure that this does not happen. This means that sufficient
computational bandwidth needs to be kept free for regular and real-time tasks
such that they can execute. The same holds for real-time tasks as well – they
should not monopolize the CPU resources. There is some degree of fairness
within a class; however, it is the job of the user to ensure that there is a notion
of fairness across classes (system-wide).

Each of these schedulers is defined by a struct sched class object. This
is a generic structure that simply defines a set of function pointers (see List-
ing 5.35). Each scheduler defines its own functions and initializes a structure of

249 © Smruti R. Sarangi

type struct sched class. Each function pointer in sched class is assigned
a pointer to a function that implements some functionality of the scheduling
class.

This is the closest that we can get to a truly object-oriented implementation.
Given that we are not using an object-oriented language in the kernel and using
C instead of C++, we do not have access to classical object-oriented primitives
such as inheritance and polymorphism. Hence, we need to create something
in C that mimics the same behavior. This is achieved by defining a generic
sched class structure that contains a set of function pointers. The function
pointers point to relevant functions defined by the specific scheduler. They can
also be changed at runtime.

For example, if we are implementing a deadline scheduler, then all the func-
tions shown in Listing 5.35 point to the corresponding functions defined for the
deadline scheduler. This is a flexible mechanism. We can create a bespoke
scheduler that uses a different algorithm.

Listing 5.35: List of important functions in struct sched class

source : kernel/sched/sched.h#L2170

/* Enqueue and dequeue in the runqueue */

void (* enqueue_task) (struct rq *rq, struct task_struct *p,

int flags);

void (* dequeue_task) (struct rq *rq, struct task_struct *p,

int flags);

/* Key scheduling function */

struct task_struct * (* pick_task)(struct rq *rq);

struct task_struct * (* pick_next_task)(struct rq *rq);

/* Migrate the task and update the current task */

void (* migrate_task_rq)(struct task_struct *p, int new_cpu);

void (* update_curr)(struct rq *rq);

In Listing 5.35, we observe that most of the functions have the same broad
pattern. The key argument is the runqueue struct rq that is associated with
each CPU. It contains all the task struct s scheduled to run on a given CPU. In
any scheduling operation, it is mandatory to provide a pointer to the runqueue
such that the scheduler can find a task among all the tasks in the runqueue
to execute on the core. We can additionally perform several operations on
the runqueue such as enqueueing or dequeueing a task – enqueue task and
dequeue task – respectively.

The most important functions in any scheduler are the functions pick task

and pick next task – they select the next task to execute. These functions
are scheduler specific. Each type of scheduler maintains its own data structures
and has its own internal notion of priorities and fairness.

The pick task function is the fast path that finds the highest priority task
(all tasks are assumed to be independent), whereas the pick next task function
is on the slow path. The slow path incorporates some additional functionality,
which can be explained as follows. Linux has the notion of control groups
(cgroups). These are groups of processes that share scheduling resources. Linux
ensures fairness across processes and cgroups. In addition, it ensures fairness
across processes in a cgroup. cgroups further can be grouped into hierarchies.

https://elixir.bootlin.com/linux/v6.2.12/source/kernel/sched/sched.h#L2170

© Smruti R. Sarangi 250

A cgroup can act as a parent and have several child cgroups as its children.
The pick next task function ensures fairness while also considering cgroup
information.

Let us consider a few more important functions. migrate task rq mi-
grates the task to another CPU; it performs the crucial job of load balancing.
update curr performs some bookkeeping for the current task; it updates its
runtime statistics. There are many other functions in this class such as func-
tions to yield the CPU, check for preemptibility, set CPU affinities and change
priorities.

These scheduling classes are defined in the kernel/sched directory. Each
scheduling class has an associated scheduler, which is defined in a separate C
file (see Table 5.3).

Scheduler File
Stop task scheduler stop task.c
Deadline scheduler deadline.c
Real-time scheduler rt.c
Completely fair scheduler (CFS) cfs.c
Idle idle.c

Table 5.3: List of schedulers in Linux

The runqueue

Let us now take a deeper look at a runqueue (struct rq) in Listing 5.36. The
entire runqueue is protected by a single spinlock lock. It is used to lock all key
operations on the runqueue. Such a global lock that protects all the operations
on a data structure is known as a monitor lock.

The next few fields are basic CPU statistics. The field nr running is the
number of runnable processes in the runqueue. nr switches is the number of
process switches recorded on the CPU and the field cpu is the CPU number.

The runqueue is actually a container of individual scheduler-specific run-
queues. It contains three fields that point to runqueues of different schedulers:
cfs, rt and dl. They correspond to the runqueues for the CFS, real-time
and deadline schedulers, respectively. We assume that in any system, at the
minimum we will have three kinds of tasks: regular tasks (handled by CFS),
real-time tasks and tasks that have a deadline associated with them. These
scheduler types are hardwired into the logic of the runqueue.

It holds pointers to the current task (curr), the idle task (idle) and the
mm struct of the last user process that ran on the CPU (prev mm). The task
that is chosen to execute is stored in task struct *core pick.

Listing 5.36: The runqueue
source : kernel/sched/sched.h#L954

struct rq {

/* Lock protecting all operations */

raw_spinlock_t __lock;

/* Basic CPU stats */

https://elixir.bootlin.com/linux/v6.2.12/source/kernel/sched
https://elixir.bootlin.com/linux/v6.2.12/source/kernel/sched/sched.h#L954

251 © Smruti R. Sarangi

unsigned int nr_running;

u64 nr_switches;

int cpu;

/* One runqueue for each scheduling class */

struct cfs_rq cfs;

struct rt_rq rt;

struct dl_rq dl;

/* Pointers to the current task , idle task and the mm\

_struct */

struct task_struct *curr;

struct task_struct *idle;

struct mm_struct *prev_mm;

/* The task selected for running */

struct task_struct *core_pick;

};

Picking the Next Task

Let us consider the slow path. The schedule function calls pick next task,
which invokes the internal function pick next task. As we have discussed,
this is a standard pattern in the Linux kernel. The functions starting with “ ”
are functions internal to a file.

We iterate through the classes and choose the highest priority class that has a
queued job. We run the scheduling algorithm for the corresponding sched class

and find the task that needs to execute. In the case of regular processes, we
run the CFS scheduler to pick the next task. Subsequently, we effect a context
switch.

Scheduling algorithms typically have a similar structure. They heavily rely
on the execution statistics of tasks. For example, they may rely on the dura-
tion of the current task’s execution, number of migrations and context switches
recorded in the recent past. This information is used to achieve a balance be-
tween high performance and fairness. Let us focus on the information that is
used by popular Linux schedulers.

Scheduling-Related Statistics and Metadata

Listing 5.37: Scheduling-related fields in the task struct

source : include/linux/sched.h#L788

/* Scheduling statistics */

struct sched_entity se;

struct sched_rt_entity rt;

struct sched_dl_entity dl;

const struct sched_class *sched_class;

/* Preferred CPU */

struct rb_node core_node;

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/sched.h#L788

© Smruti R. Sarangi 252

/* Identifies a set of group of tasks that can safely

execute on

the same core. This is from a security standpoint */

unsigned long core_cookie;

Let us now look at some scheduling-related statistics (see Listing 5.37) stored
in the task struct structure. There are different types of sched entity classes
(one for each scheduler type) that store this information. For example, for CFS
scheduling, the sched entity structure contains relevant information such as
the time at which execution started, cumulative execution time, the virtual run-
time (relevant to CFS scheduling), the number of migrations, etc. Based on the
scheduling class (field: sched class), the appropriate sched entity is chosen.
Clearly, different scheduling classes rely on different kinds of information. Let
us now look at some important pieces of metadata.

The core node and core cookie fields in task struct are important fields
that have crucial performance and security implications. Specifically, core node

points to the core that is the “home core” of the process. This means that by
default the process is scheduled on the core associated with core node, and all
of its memory is allocated in close proximity to core node. This is particularly
important on a NUMA (non-uniform memory access) machine, where the notion
of the proximity of memory modules to a node exists.

The core cookie uniquely identifies a set of tasks. All of them can be
scheduled on the same core (or group of cores) one after the other. They are
deemed to be mutually safe. This means that they are somehow related to
each other and are not guaranteed to mount attacks each other. If we schedule
unrelated tasks on the same core, then it is possible that one task may use
architectural side-channels to steal secrets from another task running on the
same core. Hence, there is a need to restrict this set using the notion of a core
cookie.

5.4.6 Completely Fair Scheduling (CFS)

The CFS scheduler is the default scheduler for regular processes (in kernel
v6.2). It ensures that every process gets at least one execution time quan-
tum in a scheduling period. There is no starvation. As discussed earlier, the
sched entity class maintains all scheduling-related information for CFS tasks
(refer to Listing 5.38). Let us now look at it in some more detail.

struct sched entity

Listing 5.38: struct sched entity

source : include/linux/sched.h#L547

struct sched_entity {

struct load_weight load; /* for load balancing */

struct rb_node run_node;

/* statistics */

u64 exec_start;

u64 sum_exec_runtime;

u64 vruntime;

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/sched.h#L547

253 © Smruti R. Sarangi

u64 prev_sum_exec_runtime;

u64 nr_migrations;

struct sched_avg avg;

/* runqueue */

struct cfs_rq *cfs_rq;

};

The CFS scheduler manages multiple cores. It maintains per-CPU data
structures and tracks the load on each CPU. It migrates tasks as and when
there is a large imbalance between CPUs.

Let us now focus on the per-CPU information that it stores. The tasks in a
CFS runqueue are arranged as a red-black (RB) tree sorted by their vruntime
(corresponding to a CPU). The virtual runtime (vruntime) is the key innovation
in CFS schedulers. It can be explained as follows. For every process, we keep a
count of the amount of time that it has executed for. Let’s say a high-priority
task executes for 10 ms. Then instead of counting 10 ms, we actually count 5
ms. 10 ms in this case is the actual runtime and 5 ms is the virtual runtime
(vruntime). Similarly, if a low-priority process executes for 10 ms, we count
20 ms – its vruntime is larger than its actual execution time. Now, when we
use vruntime as a basis for comparison and choose the task with the lowest
vruntime, then it is obvious that high-priority tasks get a better deal. Their
vruntime increases more sluggishly than low-priority tasks. This is in line with
our original intention where our aim was to give more CPU time to higher
priority tasks. We arrange all the tasks in a red-black tree. Similar to the
way that we add nodes in a linked list by having a member of type struct

list head, we do the same here. To make a node a part of a red-black tree, we
include a member of type struct rb node in it. The mechanism of accessing
the red-black tree and getting a pointer to the encapsulating structure is the
same as that used in lists and hlists.

The rest of the fields in struct sched entity contain various types of run-
time statistics such as the total execution time, total vruntime, last time the
task was executed, etc. It also contains a pointer to the encapsulating CFS
runqueue.

Notion of vruntimes

Listing 5.39: weight as a function of the nice value
source : kernel/sched/core.c#L11338

const int sched_prio_to_weight [40] = {

/* -20 */ 88761, 71755, 56483, 46273, 36291,

/* -15 */ 29154, 23254, 18705, 14949, 11916,

/* -10 */ 9548, 7620, 6100, 4904, 3906,

/* -5 */ 3121, 2501, 1991, 1586, 1277,

/* 0 */ 1024, 820, 655, 526, 423,

/* 5 */ 335, 272, 215, 172, 137,

/* 10 */ 110, 87, 70, 56, 45,

/* 15 */ 36, 29, 23, 18, 15,

};

https://elixir.bootlin.com/linux/v6.2.12/source/kernel/sched/core.c#L11338

© Smruti R. Sarangi 254

The increment in vruntime δvruntime is proportional to the actual runtime
δ of the last interval. The relationship is shown in Equation 5.4. The scaling
factor is equal to the weight associated with the nice value of 0 divided by the
weight associated with the real nice value. Refer to Section 3.1.7, where we
discussed the meaning of nice values. In this case, we clearly expect the ratio to
be less than 1 for high-priority tasks and be more than 1 for low-priority tasks.

δvruntime = δ × weight(nice = 0)

weight(nice)
(5.4)

Listing 5.39 shows the mapping between nice values and weights. The nice
value is 1024 for the nice value 0, which is the default. For every increase in the
nice value by 1, the weight reduces by roughly 1.25×. For example, if the nice
value is 5, the weight is 335. δvruntime = 3.06δ. Clearly, we have an exponential
decrease in the weight as we increase the nice value. For a nice value of n,
the weight is roughly 1024/(1.25)n. The highest priority user task has a weight
equal to 88761 (86.7×). This means that it gets significantly more runtime as
compared to a task that has the default priority.

Scheduling Periods and Slices

However, this is not enough. We need to ensure that in a scheduling period
(long duration of time), every task gets at least one chance to execute. This is
more or less ensured with virtual runtimes. However, there is a need to ensure
this directly and provide a stricter notion of fairness. We wish to give every
process a chance to execute at least once in a scheduling period.

Before we proceed further, let us provide some background. Consider the
following variables.

sysctl sched latency (SP) The scheduling period in which all
tasks run at least once.

sched nr latency (N) Maximum number of runnable tasks
that can be considered in a schedul-
ing period for execution.

sysctl sched min granularity (G) Minimum amount of time that a
task runs in a scheduling period

Let us use the three mnemonics SP , N and G for the sake of readability.
Refer to the code snippet shown in Listing 5.40. If the number of runnable tasks
is more than N (limit on the number of runnable tasks that can be considered in
a scheduling period SP), then it means that the system is swamped with tasks.
We clearly have more tasks than what we can run. This is a crisis situation,
and we are looking at a rather unlikely situation. The only option in this case is
to increase the scheduling period by multiplying nr running with G (minimum
task execution time).

Let us consider the else part, which is the more likely case. In this case, we
set the scheduling period as SP .

Listing 5.40: Implementation of scheduling quanta in CFS
source : kernel/sched/fair.c#L725

u64 __sched_period(unsigned long nr_running)

https://elixir.bootlin.com/linux/v6.2.12/source/kernel/sched/fair.c#L725

255 © Smruti R. Sarangi

{

if (unlikely(nr_running > sched_nr_latency))

return nr_running * sysctl_sched_min_granularity;

else

return sysctl_sched_latency;

}

Once the scheduling period has been set, we set the scheduling slice for
each task as shown in Equation 5.5 (assuming we have the normal case where
nr running ≤ N).

slicei = SP × weight(taski)∑
j weight(taskj)

(5.5)

We basically partition the scheduling period based on the weights of the
constituent tasks. Clearly, high-priority tasks get larger scheduling slices. How-
ever, if we have the highly unlikely case where nr running > N, then each slice
is equal to G.

CFS Scheduling

The scheduling algorithm works as follows. We find the task with the least
vruntime in the red-black tree. We allow it to run until it exhausts its schedul-
ing slice. This logic for this part is shown in Listing 5.41. At this point, if
the CFS queue has more than one runnable task, then there may be a need for
scheduling. We compute the time for which the current task has already exe-
cuted and store the result in ran. If slice > ran, then we execute the task for
delta = slice− ran time units by setting a high-resolution timer accordingly.
Otherwise, there is a need to invoke the scheduler. This is because the current
task has exhausted its allocated scheduling slice.

Listing 5.41: hrtick start fair

source : kernel/sched/fair.c#L6012

if (rq->cfs.h_nr_running > 1) {

/* There is more than one task */

/* Fetch the size of the slice */

u64 slice = sched_slice(cfs_rq , se);

u64 ran = se ->sum_exec_runtime - se ->

prev_sum_exec_runtime;

s64 delta = slice - ran; /* time left */

if (delta < 0) { /* exhausted its time slice */

if (task_current(rq, p))

resched_curr(rq); /* invoke the scheduler */

return;

}

/* Set an alarm and execute the rest of the slice */

hrtick_start(rq, delta);

}

https://elixir.bootlin.com/linux/v6.2.12/source/kernel/sched/fair.c#L6012

© Smruti R. Sarangi 256

Equivalence to Round-Robin Execution

Let us now look at the insights behind the design of the CFS scheduler. Let us
start with a simple example shown in Figure 5.30.

T1 T2 T3 T4

T1 T2 T3 T4

T1 T2 T3 T4

T1 T2 T3 T4

T1 T2 T3 T4
Figure 5.30: Effective round-robin execution in CFS scheduling

Consider a system with four tasks: T1, T2, T3 and T4. Initially, their cu-
mulative execution time is zero. Assume that they have the same priority. If
they are run using the CFS scheduler, then T1 will run for the duration of its
scheduling slice. After that T2 will run, so on and so forth. Once all of them
complete their slices, T1 will run again and complete its second slice. It is very
easy to observe that we are following a round-robin model of execution, which
is a fair execution if all the tasks have the same priorities.

Now, consider the case when the priorities of the tasks are different. They
will not have such an execution pattern. It will be quite different. The reason is
that at every point, we choose the task that has the least vruntime. Let us now
prove that in terms of vruntime, the CFS schedule is a round-robin schedule.
Consider the normal case, when we are not overwhelmed with tasks.

We have the following relationships between different variables for task T .
Assume that the actual time of execution δ is equal to the slice. This means
that the task completes its slice.

257 © Smruti R. Sarangi

slice ∝ weight(T) (by Eqn.5.5)

δvruntime ∝
slice

weight(T)
(by Eqn.5.4)

⇒ δvruntime = constant

(5.6)

This means that the increase in the vruntime after executing a scheduling
slice is a constant, which is not dependent on the priority of the task. This
means that if we change the y-axis of Figure 5.30, then we are effectively still
doing round-robin scheduling. Instead of using physical time, we are using the
vruntime.

Some Important Caveats

Every user has an incentive to increase its execution time by fair or unfair means.
They will thus try to game the scheduler. We need to ensure that this does not
happen. This means that we need to make special considerations for new tasks,
tasks waking up after a long sleep duration and tasks getting migrated from
other cores. They will start with a zero vruntime and shall continue to have the
minimum vruntime for a long time. This has to be prevented – it is unfair for
existing tasks. Also, when tasks move from a heavily-loaded CPU to a lightly-
loaded CPU, they should not have an unfair advantage. They will be coming
in with a low vruntime. The following safeguards are in place.

1. The cfs rq maintains a variable called min vruntime (lowest vruntime of
all processes).

2. Let se be the sched entity of the new task that is being restored, mi-
grated or created.

3. If an old task is being restored after a long duration or a new task is being
added, then we set se− > vruntime+ = cfs rq− > min vruntime. This
ensures that the vruntime of the new task is at least min vruntime. Some
degree of a level playing field is being maintained.

4. Moreover, existing tasks have a fair chance of getting scheduled. The
vruntime of a new task is at least equal to the minimum and thus it will
not continue to enjoy an advantage for a long time.

5. Always ensure that all vruntimes monotonically increase (in the cfs rq

and sched entity structures). This is happening by construction and due
to the earlier steps.

6. When a child process is created, it inherits the vruntime of the parent.
This means that we cannot game the scheduler by creating child processes.
No child process enjoys an unfair advantage.

7. Upon a task migration or block/unblock, cfs rq− > vruntime is sub-
tracted from the vruntime of the task. This ensures that its vruntime is
a relative value with respect to the minimum in the queue. Subsequently,
if it is blocked, it continues to retain this value. When it wakes up, its

© Smruti R. Sarangi 258

instantaneous vruntime is this offset added to the minimum vruntime at
the time of waking up. If it is migrated to another core, then its vruntime
on the destination core is the sum of this offset and min vruntime of the
rq of the destination core. This strategy ensures that if a task has just fin-
ished executing its scheduling slice, it will not get an unfair advantage if it
migrates to another core. Otherwise, there is an incentive to continuously
keep migrating.

8. Treat a group of processes (in a cgroup) as a single schedulable entity
with a single vruntime. This means that processes cannot monopolize
CPU time by spawning new processes within a cgroup.

Calculating the CPU Load

Computing the load average on a CPU is important for taking task migration-
related decisions. We can also use this information to modulate the CPU’s
voltage and frequency. The load average needs to give more weightage to recent
activity as opposed to activity in the past.

We divide the timeline into 1 ms intervals. If a jiffy is 1 ms, then we are
essentially breaking the timeline into jiffies. Let such intervals be numbered
p0, p1, p2 Let ui denote the fraction of time in pi, in which a runnable task
executed.

The load average is computed in Equation 5.7.

loadavg = u0 + u1 × y + u2 × y2 + . . . (5.7)

This is a time-series sun with a decay term y. The decaying rate is quite
slow. y32 = 0.5, or in other words y = 2−

1
32 . This is known as per-entity load

tracking (PELT, kernel/sched/pelt.c), where the number of intervals for which
we compute the load average is a configurable parameter.

5.4.7 Deadline and Real-Time Scheduling

Deadline Scheduler

The deadline scheduling algorithm is implemented in the pick next task dl

function. We maintain a red-black tree. The task with the earliest deadline
is selected. Recall that the earliest deadline first (EDF) algorithm minimizes
the lateness Lmax. We have similar structures as sched entity here. The
analogous structure in every task struct is sched dl entity – these structures
are arranged in ascending order according to their corresponding deadlines.

Real-Time Scheduler

The real-time scheduler has one queue for every real-time priority. In addition,
we have a bit vector – one bit for each real-time priority. The bit is set if the
corresponding queue has a schedulable job. The scheduler finds the highest-
priority non-empty queue. It starts picking tasks from that queue. If there is a
single task, then that task executes. Because the scheduler offers no mechanism
to balance workloads across real-time priorities, the overall scheme is inherently
unfair.

https://elixir.bootlin.com/linux/v6.2.12/source/kernel/sched/pelt.c

259 © Smruti R. Sarangi

However, for tasks having the same real-time priority, there are two op-
tions: FIFO and round-robin (RR). In the real-time FIFO option, we break ties
between two equal-priority tasks based on when they arrived (first-in first-out
order). In the round-robin (RR) algorithm, we check if a task has exceeded its
allocated time slice. If it has, we put it at the end of the queue (associated
with the real-time priority). We find the next task in this queue and mark it
for execution.

5.5 Real-Time Systems

Up till now we have only looked at regular systems. They have jobs with differ-
ent priorities. We defined regular user-level priorities and real-time priorities.
The latter are for real-time jobs? With real-time priorities, we are guaranteed
to schedule real-time jobs before regular priority jobs. This is as far as we can
go in a general-purpose Linux system that is not specifically tailored for running
mission critical real-time applications. Sadly, regular versions of linux are not
fit for use in mission critical systems such as missiles, rockets, defense equip-
ment and medical devices. This is because large parts of the kernel are not
preemptible, high-priority tasks can be blocked for a long time by low-priority
tasks and the scheduling algorithms do not make strict guarantees regarding
adherence to deadlines. Hence, there is a need to specifically look at real-time
kernels that are designed ground up. They are specifically designed to execute
jobs with real-time constraints, where each job is associated with a deadline.

5.5.1 Types of Real-Time Systems

In this context, we can define three kinds of real-time systems. ① Soft real-
time systems are supported by generic versions of Linux. In this case, jobs are
associated with a deadline. Such tasks are often periodic and they spawn a
separate job instance in each period. They can be scheduled using the real-time
or deadline schedulers. With a high probability, we can guarantee adherence to
deadlines. Especially with deadline scheduling, tasks can mostly finish before
their deadline if the deadline is reasonably chosen (as we shall see later). Note
that once in a while, deadlines can be violated even while using such scheduling
classes because the basic kernel does not provide stronger guarantees. This
can be modeled by a utility function. The user derives a utility, which is a
function of the job completion time. In the case of a soft real-time system, the
utility is non-zero even when the job overshoots its deadline. Note that the
utility in such cases is lower than the utility of jobs that complete in a timely
fashion. The utility is typically a decreasing function of time after the deadline is
missed. Typically, audio and video processing applications fall in this category.
Occasionally missing a deadline will lead to some kind of distortion, but that
level of distortion is often acceptable.

② Then we have firm real-time systems. In this case, if the task is delayed
beyond its deadline, then it is virtually of no use. In other words, the utility
is zero. However, this does not lead to system failure. An example of this is
an ATM machine, where if there is a delay, the machine times out and releases
the debit card. The utility is zero given that it clearly reduces the perception
of the bank in the eyes of the public. The point to note is that it does not

© Smruti R. Sarangi 260

lead to system failure. Another example is a flight reservation system where it
is important to coordinate across various systems and finally issue the ticket.
These systems include the credit card company, the bank that has issued it, the
airline, the travel portal and the client application that has been used to book
the ticket. There can be long delays in this process and if the delay exceeds a
certain time bound, the ticket is often not booked. In this case, the utility is
clearly zero post the deadline, and there are negative consequences in terms of
perception. But there is no system failure.

③ A hard real-time system has very strict deadlines. If a task misses its
deadline, not only is the utility zero, it also leads to catastrophic consequences
that include complete system failure. Mission critical systems such as rockets,
for instance, fall in this category. There are other important use cases that can
be classified as hard real-time systems such as medical devices like pacemakers,
airline collision avoidance systems and nuclear plant control systems.

For both hard and firm real-time systems, we need to redesign operating sys-
tems as well as the hardware, so that we can guarantee that the tasks complete
within their deadlines. We also need a solid theoretical framework to guarantee
that if real-time tasks are compliant with certain constraints, then it is possible
to theoretically prove that the set of spawned jobs are schedulable (all their
constituent jobs are schedulable). This means it is possible to find a real-time
schedule, where no job misses its deadline.

Often in such systems, the set of tasks are known a priori, and they are also
very well characterized. For example, most of these systems consider periodic
tasks, where the deadline is equal to the period. If the period is let’s say 3
seconds, then a new job is created once every 3 seconds, and it is expected to
also complete within that time interval, which is basically before the next job
in the periodic task is created.

An important problem that is studied in the real-time systems literature is
that if a system has a set of periodic tasks, can they be run without missing a
deadline? In other words, are a set of periodic tasks schedulable?

5.5.2 EDF Scheduling

Consider the case of uniprocessor scheduling. We have already looked at the
Earliest Deadline First [Mall, 2009] or EDF algorithm in Section5.4.2. The main
aim was to minimize Lmax. Lmax is defined as the maximum lateness. Recall
that lateness was defined as the time between a job’s completion time and the
deadline. Clearly, we want Lmax ≤ 0. This would mean that the set of tasks is
schedulable – tasks complete before the deadline.

We had looked at tasks that are aperiodic and can arrive at any point of
time in Section 5.4.2. Preemption was enabled. Now, we will look at periodic
tasks, where the deadline of any job is equal to its period. This is a different
version of the formulation. Here also preemption is enabled.

Let us now look at some theoretical results. Let the duration of a task in
a periodic real-time job be di and its period be Pi. As mentioned earlier, the
deadline is the same as the period. Let us define the utility as follows. The
utility is the sum of di/Pi for all the periodic real time jobs in the system. It
turns out that if the utility U ≤ 1, then all the periodic jobs are schedulable by
EDF, otherwise they are not schedulable using any algorithm. This is arguably
one of the most important results in uniprocessor real-time systems. It is used

261 © Smruti R. Sarangi

heavily, and is very simple to implement. All that we need to do is store tasks in
a priority queue, and order tasks by their deadline. Finding a feasible schedule
is also very easy in this case.

The proof follows the broad approach that was outlined in Section 5.4.2 (for
shortest job first scheduling). We use a task- swapping-based argument to show
that the EDF algorithm indeed produces feasible schedules if there is one.

Point 5.5.1

If the total utilization (
∑

i
di

Pi
≤ 1), it is always possible to find a feasible

schedule using the EDF algorithm.

Now, if U > 1, it is clear that we need to do more work than what we can do
in a given period of time. This is obviously not possible. Hence, if the utilization
exceeds 1, a feasible schedule simply cannot be generated by any algorithm. To
summarize, the greatness of the EDF algorithm is that it generates a feasible
schedule if there is one.

EDF in a certain sense uses dynamic priorities. This means that if a new
task arrives when an existing task is executing, the new task can preempt the
existing task if its deadline is earlier. This essentially means that the priorities
in the system tend to vary over time, i.e., based on the proximity of the deadline.
This requires continuous bookkeeping.

5.5.3 RMS Scheduling

Let us consider a static priority system where all the priorities are decided at
the beginning. It is assumed that all the periodic tasks that will execute on a
system are known a priori. They are very well characterized in terms of their
maximum execution time and period. This is almost always the case in hard
real-time systems, where the degree of unpredictability is quite low. In such
cases, the job priority and the task priority are the same. Note that this was
not the case in EDF. If a periodic task spawned multiple jobs, then all of them
could have had different priorities. In fact, the priority of a job could have
varied across its lifetime.

Liu-Layland Bound

In this context, let us introduce the RMS scheduling algorithm [Mall, 2009].
RMS stands for Rate Monotonic Scheduling, where the priority is inversely
proportional to the period of the task. RMS is also a preemptive algorithm.
The priorities are known beforehand, and there is no dynamic computation of
priorities.

In this case also, the total utilization U of the system is used to determine
schedulability. Let n be the number of periodic tasks in the system. It is

possible to show that if U ≤ n
(
2

1
n − 1

)
, then the set of jobs is schedulable.

This is known as the Liu-Layland bound. When n is equal to 2, Umax = 0.83
(maximum possible utilization as per the Liu-Layland bound). When n = ∞,
Umax = 0.69 (natural logarithm of 2). This bound was originally proposed in
1973. It is quite conservative, and it turns out that we can do better. This is a
sufficient condition for schedulability, but it is not necessary. This means that

© Smruti R. Sarangi 262

we can still schedule jobs in some cases when the utilization is greater than the
Liu-Layland bound. Let us point out some insights before we move to a less
conservative result. It can be shown that the worst case occurs from the point of
view of schedulability, when all the tasks start at the same time (are in phase).

Definition 5.5.1

Liu-Layland Bound The Liu-Layland bound states that when U ≤
n
(
2

1
n − 1

)
, the set of periodic tasks are always schedulable.

Lehoczky’s Test

The Lehoczky’s test [Lehoczky, 1990] proposed a tighter bound. It is also a
schedulability test. It can guarantee schedulability for larger values of utilization
and includes necessary conditions as well. We check whether every task is
meeting its first deadline or not for the worst case (all tasks are in phase, i.e.,
start at the same time). If this is happening, then we decide that the system is
schedulable. Summary: If the utilization exceeds the Liu-Layland bound, the
system may still be schedulable as long as it passes the Lehoczky’s test.

Let us describe the mathematical details of the Lehoczky’s test. We arrange
all the periodic jobs in descending order of their RMS priority. Then we compute
Equation 5.8.

Wi(t) =

i∑
j=1

dj

⌈
t

Pj

⌉
Qi(t) =

Wi(t)

t
Qi = min

{0<t≤Pi}
Qi(t)

Q = max
{1≤i≤n}

Qi

Q ≤ 1 All tasks are schedulable

(5.8)

We consider a time interval t, and find the number of periods of task j that
are contained within it (fully or partially). Then we multiply the number of such
periods with the execution time of each spawned job of task j. This is the total
CPU load for task j in the time period t. If we aggregate the loads for the first
i tasks in the system (arranged in descending order of RMS priority), we get
the cumulative CPU load Wi(t). Let us subsequently compute Qi(t) = Wi(t)/t.
It is the mean load of the first i tasks computed over the time interval t.

Next, let us minimize this quantity over a time interval of Pi (period of task
i). This means that we find the smallest value of Qi(t) within this duration.
Let this quantity be Qi, which is equal to Qi(t

∗). If Qi ≤ 1, then the ith

task is schedulable. It is easy to intuitively see why this is the case. We start
at the worst case point (all the tasks are in phase). Subsequently, at t∗, the
value of Qi(t) is minimized. It can be proven that this point determines the
schedulability of the ith task (in terms of priority). Hence, we can claim that
the ith task is schedulable if Qi(t

∗) ≤ 1. If the value of Qi(t) is always greater
than 1 in the time interval Pi, then the ith task is not schedulable.

263 © Smruti R. Sarangi

Next, let us define Q = max(Qi). If Q ≤ 1, then it means that ∀i : Qi ≤ 1.
Hence, all tasks are schedulable. It turns out that this is both a necessary and
sufficient condition. For obvious reasons, it is not as elegant and easy to compute
as the Liu-Layland bound. Nevertheless, this is a more exact expression and is
often used to assess schedules.

5.5.4 DMS Scheduling

A key restriction of RMS is the fact that the deadline needs to be equal to the
period. Let us now relax this restriction and allow di to be less than Pi. We
need to use the Deadline Monotonic Scheduling (DMS) algorithm in this case.
Here also we consider a preemptive algorithm with statically defined priorities.

Let the priority of a task be inversely proportional to its deadline (relative
to the arrival of the corresponding job). In this case, we need to consider both
the duration of a task di, and the interference Ii caused by other higher priority
tasks. We need to thus ensure that Ii + di ≤ Di. This will ensure that the
task completes before its deadline. However, this is not enough for the entire
system. We need to use this basic primitive to design an algorithm that looks
at the schedulability of the entire system.

Let us first quantify the interference as a function of the interval of time in
consideration. It is similar to the expression computed in the Lehoczky’s test.

Ii(t) =

i−1∑
j=1

⌈
t

Pj

⌉
× dj (5.9)

The DMS algorithm is shown in Algorithm 4, which shows the schedulability
test for the ith task.

Algorithm 4 The DMS algorithm (schedulability test for the ith task)

1: for task τi do
2: t ←

∑i
j=1 dj

3: cont ← true
4: while cont do
5: if t > Di then return false
6: end if
7: if Ii(t) + di ≤ t then
8: cont ← false
9: else

10: t ← Ii(t) + di
11: end if
12: end while
13: end for

We first compute the value of the variable t. It is initialized as the sum of
the task execution times of the first i tasks. Recall that these tasks are arranged
in descending order of priority. The variable t thus captures the time that is
required to execute each of the i tasks once. Next, we initialize cont to true,
and enter the first iteration of the while loop.

Given the value of t, we compute the interference using Equation 5.9. It is
basically the time that higher priority tasks execute within the first t units of

© Smruti R. Sarangi 264

time. Next, we compute the sum of the interference and the execution time of
task i and check if it is less than or equal to t. If this check is successful, it
means that the ith task can be scheduled. There is sufficient slack in the overall
schedule. We then set cont to false. There is no need to keep iterating.

However, if the check fails, it does not mean that the ith task is not schedu-
lable. We need to give it a few additional chances. We consider a longer interval
of time and check for schedulability again. Note that we enter the else part only
when Ii(t) + di > t. We subsequently set the new value of t to be equal to the
sum of the interference (Ii(t)) and the execution time of the ith task (di). We
basically set t← Ii(t) + di.

Before proceeding to the next iteration, it is necessary to perform a sanity
check. We need to check if t exceeds the deadline Di or not. If it exceeds the
deadline, clearly the ith task is not schedulable. We return false. If the deadline
has not been exceeded, then we can proceed to the next iteration and repeat
the same set of steps.

Given the fact that in every iteration we increase t, we will either find task
i to be schedulable or t will ultimately exceed Di.

5.5.5 Priority Inheritance Protocol (PIP)

Priority Inversion

Along with scheduling, the other important problem in real-time systems is
resource allocation. Some key issues center around deadlocks, fairness and per-
formance guarantees. We have already looked at deadlocks due to improper
lock acquisition in Section 5.3.4. We will look at more such issues in the next
few sections.

Let us recapitulate. The key idea is that if a low-priority task holds a
resource, then it stops a high-priority task that is interested in acquiring the
same resource from making any progress. This can in fact lead to a deadlock
when both the tasks are confined to the same CPU as we have seen earlier
(context inconsistency). The high-priority task will continue to busy-wait. It
will not release the CPU for the low-priority task to run. This is a deadlock,
which the lockdep mechanism tries to detect and subsequently correct.

However, there are clear fairness and performance concerns here as well even
if we allow the tasks to run on different CPUs. A low-priority task can block
a high-priority task. This phenomenon is known as priority inversion, which
effectively breaks the notion of real-time priorities. Therefore, all real-time
operating systems try to avoid such a situation.

Definition 5.5.2 Priority Inversion

Priority inversion is a phenomenon where a low-priority task blocks a
high-priority task because the former holds a resource that the latter is
interested in.

Let us first consider a simple setting where there are two tasks in the system.
The low-priority task happens to lock a resource first. When the high-priority
task tries to access the resource, it blocks. However, in this case, the blocking
time is predictable – it is the time that the low-priority task will take to finish

265 © Smruti R. Sarangi

using the resource. After that the high-priority task is guaranteed to run. This
represents a simple case and is an example of bounded priority inversion.

Let us next consider a more complicated case. Assume that a high-priority
task is blocked by a low-priority task. This low-priority task got preempted by
a medium priority task. This medium-priority task has ended up blocking the
high-priority task unbeknownst to it. If such medium-priority tasks continue to
run, the low-priority task may remain blocked for a very long time. Here, the
biggest loser is the high-priority task because the time for which it will remain
blocked is not known and is dependent on the behavior of many other tasks.
Hence, this scenario is known as unbounded priority inversion.

Next, assume that a task needs access to k resources, which it needs to
acquire sequentially (one after the other). It may undergo priority inversion
(bounded or unbounded) while trying to acquire each of these k resources. The
total amount of time that the high-priority task spends in the blocked state may
be prohibitive. This situation needs to be prevented. Assume that these are
nested locks – the task acquires resources without releasing previously held re-
sources. A crucial question we need to answer when we introduce our protocols
is whether after acquiring a resource, a task gets blocked while acquiring subse-
quent resources. If it gets blocked, we shall refer to this phenomenon as second
blocking.

We can also have chain blocking, where a task T1 is blocked by another task
T2, and T2 is blocked by another task T3. Here, we are assuming that the reason
for blocking is a resource conflict. For example, T1 needs to lock a resource that
is currently held by T2, so on and so forth. Note that this can lead to deadlocks
as well.

To summarize, the main issues that arise out of priority inversion related
phenomena are unbounded priority inversion, second blocking and chain block-
ing. Coupled with known issues like deadlocks, we need to design protocols such
that all three scenarios are prevented by design.

Definition 5.5.3 Unbounded Priority Inversion and Chain Blocking

When a high-priority task is blocked for an unbounded amount of time
because the low-priority task that holds the resource is continuously
preempted, this phenomenon is known as unbounded priority inversion.
Next, assume a task that needs to acquire many resources. If after
acquiring the first resource, it waits to acquire any subsequent resource,
then this phenomenon is known as second blocking.
If task T1 is blocked by T2, which in turn is blocked by T3, then we have
chain blocking.

Let us make a set of crucial assumptions here (refer to Point 5.5.2).

Point 5.5.2

• Let the pric function denote the current priority of a task. For
example, pric(T) is the instantaneous priority of task T . Let its
original priority be denoted by the expression prio(T). Note that
pric(T) can change over time. Let us assume that the initial pri-

© Smruti R. Sarangi 266

orities assigned to tasks are fully comparable – no two priorities
are equal. This can easily be accomplished by breaking ties (same
priority numbers) using task numbers.

• Assume a uniprocessor system.

The Priority Inheritance Protocol (PIP)

The simplest protocol in this space is known as the priority inheritance protocol
(PIP), which is supported in current Linux versions. The key idea is to raise the
priority of the resource-holding task temporarily, even though it may be a low-
priority task. It is set to a value that is equal to the priority of the high-priority
resource-requesting task. This is done to ensure that the resource-holding task
can finish quickly and release the resource, regardless of its original priority. It
is said to inherit the priority of the resource-requesting task.

Let us explain priority inheritance in some more detail. There are two cases
here. Let the priority of the resource-holding task Thld be phld and the priority
of the resource-requesting task Treq be preq. If phld < preq, we temporarily raise
the priority of Thld to preq. However, if phld > preq, nothing needs to be done.
Note that this is a temporary action. Once the contended resource is released,
the priority of Thld reverts to phld. Now, it is possible that phld may not be
the original priority of Thld because this itself may be a boosted priority that
Thld may have inherited because it held some other resource. We will not be
concerned about that and just revert the priority to the value that existed just
before the resource was acquired, which is phld in this case.

Note that a task can inherit priorities from different tasks in the interval of
time in which it holds a resource. Every time a task is blocked because it cannot
access a resource, it tries to make the resource-holding task inherit its priority
if there is a case of inversion.

Let us explain with an example. Assume that the real-time priority of the
low-priority task Tlow is 5. The priority of a medium-priority task Tmed is 10,
and the priority of the high-priority task Thigh is 15. These are all real-time
priorities: higher the number, greater the priority. Now assume that Tlow is the
first to acquire the resource. Next, Tmed tries to acquire the resource. Due to
priority inheritance, the priority of Tlow now becomes 10. Next, Thigh tries to
acquire the resource. The priority of Tlow ends up getting boosted again. It is
now set to 15. After releasing the resource, the priority of Tlow reverts back to
5.

This is a very effective idea, and it is simple to implement. This is why many
versions of Linux support the PIP protocol. Sadly, the PIP protocol suffers from
deadlocks and chain blocking. It only offers a solution for unbounded priority
inversion. Let us explain.

In this context, we shall specifically define two types of blocking: resource
blocking and inheritance blocking. Resource blocking happens when one task
is trying to acquire a resource that is held by another task. In some cases, a
resource acquisition request may be denied because the priority of the requesting
task is not high enough. All such cases qualify as resource blocking. Inheritance
blocking means that the current task cannot execute on the CPU because other
tasks have boosted their priority.

267 © Smruti R. Sarangi

Issues with the PIP Protocol

Let the low-priority task be Tlow and the high-priority task be Thigh. Assume
Tlow has acquired resource R1, it is preempted by Thigh, Thigh acquires R2 and
then tries to acquire R1. It then blocks. Tlow resumes and tries to acquire R2.
We have a deadlock.

In this case, unbounded priority inversion is not possible. This is because
the low-priority task that holds the resource does not remain “low priority”
anymore once a high-priority task waits for it to complete. In this case, the
priority of Tlow is boosted. It is thus not possible for any medium-priority task
to preempt Tlow and indefinitely block Thigh in the process.

Sadly, second blocking is possible. Once a resource has been acquired, ac-
quiring any subsequent resource requires the task to wait for another task to
release it. Assume two resources R1 and R2. R1 is held by T1 and R2 is held
by T2. A third task T3 can try to acquire R1 and then R2 in order. It will get
blocked both the times.

Point 5.5.3

Deadlocks, chain blocking and second blocking are the major issues in
the PIP protocol.

5.5.6 Highest Locker Protocol (HLP)

Let us now try to implement a better protocol called the Highest Locker Protocol
(HLP) that solves some of the aforementioned problems. Assume that some facts
are known a priori such as the resources that a task may acquire. Moreover, let
us define a ceil(resource) function, which is defined as the priority of the highest
priority task that can possibly acquire a resource (some time in the future).

The Algorithm

Once a task acquires a resource, we raise its priority to ceil(resource) + 1, if
this value is higher than the task’s existing priority. This may be perceived to
be unfair. In this case, we are raising the priority to an absolute maximum,
which is more than the original priority of any high-priority task that covets the
resource. Essentially, this is priority inheritance on steroids !!!

Akin to the PIP protocol, unbounded priority inversion is not possible be-
cause no medium-priority task can block the resource-holding task. In fact, any
priority inheritance or priority boosting protocol will avoid unbounded priority
inversion because the priority of the resource-holder becomes at least as large as
the resource-requester. The resource holder thus cannot be preempted by any
intermediate-priority process.

Resource Blocking

Theorem 5.5.1 No resource blocking in the HLP protocol

There is no resource blocking in the HLP protocol.

© Smruti R. Sarangi 268

Proof: Assume that there is resource blocking. Consider the first such instance
in the system. Let T1 get blocked while trying to acquire R at tblock. This is
because R has been acquired by T2 already.

The question is why is T2 not running at tblock? Consider the time instant
at which T2 just finished acquiring R. At that point of time (t0), either T1 had
not started or the following relationship was true: pric(T2) > pric(T1). If T1

had not started, then it would have not gotten a chance to execute. This is
because prio(T1) ≤ ceil(R) < pric(T2). This means that T2 will not allow T1 to
start executing unless it gets blocked, which will not happen before tblock.

Consider the case: pric(T2) > pric(T1) at t0. T2 could not have been blocked
before tblock. The question in this case is how did T1 get a chance to run when
T2 was alive? This is possible if a high-priority task preempted T2. That is
the only way in which T1 could have acquired a high priority via the priority
inheritance mechanism. This would require the high-priority task to get blocked
to allow T1 to acquire its priority. This is not possible because no task can get
blocked before tblock. Hence, it is not possible for T1 to have run before T2

finished. We thus have a contradiction here.

Lemma 1

There are no deadlocks in the HLP protocol.

Proof: Deadlocks happen because a task holds on to one resource, and tries to
acquire another resource unsuccessfully (hold-and-wait condition). Given that
there is no resource blocking in HLP (Lemma 5.5.1), this condition will never
be realized. Given that the hold-and-wait condition is one of the necessary con-
ditions for a deadlock, a deadlock will never form.

Lemma 2

Chain blocking is not possible in the HLP protocol.

Proof: Consider a dependence chain T1 → T2 → T3. Consider task T2 that has
already started running and acquired a resource. It cannot get resource-blocked
(see Lemma 5.5.1). Hence, the T2 → T3 dependency will not be there. Hence,
chain blocking is not possible in the HLP protocol.

Lemma 3

Freedom from chain blocking implies deadlock freedom.

Proof: A deadlock implies that there is a circular wait of the form T1 → T2 →
. . .→ T1. This means that there is a chain blocking pattern in the system. We
can thus say that a deadlock implies chain blocking. Alternatively, we can state
the contrapositive, “freedom from chain blocking implies deadlock freedom”.

269 © Smruti R. Sarangi

Inheritance Blocking

This protocol however does create an additional issue of inheritance blocking.
Assume that the priority of task T is 5 and the resource ceiling is 25. In
this case, once T acquires the resource, its priority becomes 26. This is very
high because 25 is a hypothetical maximum that may get realized very rarely.
Because of this action, all the high-priority tasks with priorities between 6 and
25 get preempted. The sad part is that there may be no other process that is
interested in acquiring the resource regardless of its priority. We still end up
stopping a lot of processes from executing.

Point 5.5.4

Inheritance blocking is the major issue in the HLP protocol. HLP does
not suffer from resource blocking, chain blocking, second blocking, dead-
locks and unbounded priority inversion.

5.5.7 Priority Ceiling Protocol (PCP)

Let us next look at the Priority Ceiling Protocol (PCP), which tries to rectify
some issues with the HLP protocol. Here also every resource has a resource
ceiling. However, the key twist here is that we may not allocate a resource to a
task, even if it is free. This may sound inefficient, but it will help us guarantee
many important properties.

In PCP, the current system ceiling or CSC is defined as the maximum of
all the ceilings of all the resources that are currently acquired by some task in
the system. PCP has a “resource grant clause” and “inheritance clause”. The
latter changes the priority of the task.

Resource Grant and Inheritance Clauses

Let us outline the two basic rules that determine the behavior of the PCP
protocol. The resource grant clause specifies the set of rules that the OS or
resource manager follows to grant a resource to a task.

Resource Grant Clause For task T to acquire a resource R any of the two
conditions must be true.

1. The original priority of T is greater than the CSC.

2. T holds a resource that set the current system ceiling.

Inheritance Clause The task holding a resource inherits the priority of the
blocked task, if its priority is lower. This is the same as the priority
inheritance protocol.

Let us understand the resource grant clause in some further detail. Let us
call a resource that has set the CSC a critical resource. This means that when
it was acquired the value of the system-wide CSC increased. It was set to a new
value. If a task T owns a critical resource, then the resource grant clause allows
it to acquire additional resources at will. There are two cases that arise after
the resource has been acquired. Either the existing critical resource continues to

© Smruti R. Sarangi 270

remain critical or the new resource that is going to be acquired becomes critical.
In both cases, T continues to own the critical resource.

In the other sub-clause, a task can acquire a resource if its original priority is
greater than the CSC. This clause is beneficial when the task has not acquired
any resources yet. Otherwise, its priority would not have been greater than the
CSC.

Lemma 4

The moment a task whose original priority is greater than the CSC ac-
quires a resource, it sets the CSC and that resource becomes critical.

The inheritance clause is similar to the inheritance mechanism of the PIP
protocol.

Properties of the PCP Protocol

Given that this protocol has priority inheritance (similar to PIP), unbounded
priority inversion is not possible. Let us next look at deadlocks and chain
blocking.

Let us first prove that second blocking is not possible. This means that
it is not possible for a task to acquire a resource and wait to acquire another
resource.

Lemma 5

Assume task T acquires resource R at time t because its original priority
is higher than the CSC. Let the set S denote the set of all the tasks that
have already acquired resources before t. If it is guaranteed that T will
not block, then it is not possible for any future task to be interested in
a resource acquired by a task in S.

Proof: T will continue to execute after acquiring R until it is preempted by a
higher priority process TH . Note that TH has to be a fresh process. It cannot
be a process that was in the system before. This is because no event happened
to increase its priority.

Now TH cannot be interested in any resource acquired by a task in S. This
is because CSC(t−) ≥ prio(TH). We know that pric(T) > CSC(t−). Hence,
pric(T) > prio(TH), which will not allow TH to preempt T . There is a contra-
diction here.

We can extend the argument to prove that if TH is preempted by another
higher priority process, then it too cannot covet any resource acquired by tasks
in S.

Theorem 5.5.2 PCP does not suffer from second blocking

If a task acquires one resource, it will not get blocked while acquiring
any other resource. Alternatively, second blocking is not possible in the
PCP protocol.

271 © Smruti R. Sarangi

Proof: Assume that the protocol runs for some time without second block-
ing. Then at time tblock the first instance of second blocking is recorded. This
happens when task T1 that started out with acquiring R1, gets blocked while
trying to acquire R2. This is because R2 has already been acquired by T2. Let
the time at which T1 acquired R1 be t1.

Case: I T2 acquired R2 before t1: In this case, the system ceiling is set
to at least ceil(R2). This means that CSC(t1) ≥ ceil(R2). Given that T1 is
interested in R2, prio(T1) ≤ ceil(R2) ≤ CSC(t1). T1’s original priority is not
more than CSC. It could not have acquired R1 at t1. Note that at this point of
time it did not have a resource that had set the system ceiling.

Case: II T2 acquired R2 after t1: At t1, T1 acquires R1. ∴ CSC(t1) ≥
ceil(R1). Given that T2 acquired R2, prio(T2) > CSC(t1) ≥ ceil(R1) ≥
prio(T1). Note that T2 cannot get blocked until tblock. The only way that
T1 can start executing is if its priority is somehow increased. This can only
happen via priority inheritance. This means that some ultra-high-priority task
TH needs to block on some resource acquired by T1. This will happen only if TH

arrives after T2 has acquired R2. Using the results in Lemma 5, we can prove
that no such task TH can covet any resource acquired in the system by existing
tasks. Hence, it is clear that T1 will not get a chance to execute and thus it will
not be able to block on R1.

We thus arrive at a contradiction. Hence, we prove that second blocking is
not possible in the PCP protocol.

Lemma 6

If there is no second blocking, it means that there is no chain blocking.

Proof: In chain blocking, we have a situation like this: T1 → T2 → T3. Clearly,
in this case, T2 has acquired the resource that T1 wants to lock first, and then it
is waiting on T3 to release its resource. This is a case of second blocking. This
means that chain blocking implies second blocking.

The contrapositive is that no second blocking implies no chain blocking.

This means that the PCP protocol does not have chain blocking. Using the
results of Lemma 3, we can say that PCP does not suffer from deadlocks.

Next, note that in the PCP protocol we do not elevate the priority to very
high levels, as we did in the HLP protocol. The priority inheritance mechanism
is the same as the PIP protocol. Hence, we can conclude that inheritance
blocking is far more controlled.

Point 5.5.5

The PCP protocol does not suffer from deadlocks, second blocking, chain
blocking and unbounded priority inversion. The problem of inheritance
blocking is also significantly controlled.

© Smruti R. Sarangi 272

5.6 Summary and Further Reading

5.6.1 Summary

Summary 5.6.1

1. A data race is defined as a pair of conflicting and concurrent ac-
cesses to a single global shared variable.

(a) Two accesses are said to be conflicting if one of them is a
write.

(b) Two accesses are concurrent if there is no path between them
that has a synchronization operation.

2. To eliminate data races and consequent non-intuitive behavior, it
is important to properly label programs. This is done by encap-
sulating shared variable accesses with lock/unlock operations such
that every shared variable is protected by the same lock.

3. Locks enforce mutual exclusion – it is not possible for two threads
to execute a critical section at the same point of time.

4. They introduce an additional problem of deadlocks that form when
four conditions are met:

Hold and wait A process holds a few locks and is waiting to ac-
quire a few more locks.

No preemption This basically means that locks and their cor-
responding resources cannot be forcefully taken away from
processes.

Mutual exclusion A lock cannot be concurrently acquired by
two processes.

Circular wait The processes wait on each other. There is a cyclic
wait: A→ B → C → . . . A.

5. Atomic operations can be used to perform read-modify-write oper-
ations such as atomic increment. They appear to complete instan-
taneously.

6. Atomic operations are expensive in terms of performance. Sadly,
using regular reads and writes instead of them is tricky. Compilers
and processors tend to reorder memory operations. A memory
consistency model specifies the valid outcomes of a parallel program
based on the allowed reorderings.

7. A sequentially consistent (SC) memory consistency model implies
atomicity and per-thread ordering. Atomicity means that every op-
eration appears to complete instantaneously. Per-thread ordering
means that all the memory operations issued by the same thread
appear to complete in the order in which they are issued.

273 © Smruti R. Sarangi

8. All memory consistency models have fence instructions that enforce
an ordering. Most atomic instructions are are also synchronizing
instructions (with in-built) fences. Lock and unlock primitives use
them.

9. If a program is properly labeled and lock/unlock operations have
synchronization instructions, then it can be proven that a data-
race-free program always produces sequentially consistent execu-
tions.

10. There are three kinds of non-blocking algorithms that use atomic
operations instead of locks.

Wait-free Every operation completes within a bounded number
of internal steps.

Lock-free If all the threads in the system complete a certain num-
ber of cumulative internal steps, at least one of the threads is
guaranteed to complete its operation.

Obstruction-free If the rest of the threads go to sleep, then the
sole running thread is guaranteed to complete its operation
within a bounded number of internal steps.

11. Semaphores are a generalized version of locks. To acquire a
semaphore, the internal count variable needs to be decremented.
If the count is zero, then the thread waits for it to be non-zero.

12. Reader-writer locks allow either multiple readers or a single writer.

13. Queues are integral to most kernel data structures. If there is a
single producer and single consumer, then it is easy to write a wait-
free queue. Generic versions that allow multiple producers and
consumers require locks and semaphores to enforce the correctness
of concurrent executions. Semaphores are naturally suitable for
implementing bounded queues.

14. The kernel defines a spinlock that acts as a lock on the CPU. It
requires busy waiting and can be used in an interrupt context.

15. Spinlocks are used to create kernel mutexes that can be used in all
kernel contexts. They have a fast path where the mutex can be
directly acquired using a compare-and-swap (CAS) primitive. If it
cannot be acquired using the fast path, then there is a slow path
in which the process is added to a queue of waiting processes.

16. The RCU (read-copy-update) mechanism is integral to the Linux
kernel. It allows readers to concurrently access data without ac-
quiring locks. Writes always make updates to a new copy of data
and ultimately replace the old copy with the new copy. Once all
the readers who were accessing the old copy have completed their
execution, the old copy is garbage collected.

© Smruti R. Sarangi 274

17. The KSW model defines a space of scheduling problems.

(a) Shortest jobs first (SJF) is the most optimal algorithm for
1 || Cj .

(b) A weighted version of the problem has an optimal solution if
the priority is set to wj/pj (weight divided by the execution
time).

(c) The EDF algorithm produces the most optimal schedule for
the problem 1 | ri, dli, pmtn|Lmax. It minimizes the lateness
when preemption is enabled and jobs can arrive anytime.

(d) The SRTF (shortest remaining time first) produces the most
optimal schedule for 1 | ri, pmtn |

∑
Ci.

(e) A lot of variants of the scheduling problem are NP-complete.

18. In the space of multicore scheduling, list scheduling is a popular
algorithm that schedules tasks across the cores in descending order
of priority subject to the fact that there is no deliberate idling. It
is possible to prove that the ratio between Cmax produced by list
scheduling and the optimal value of Cmax is bounded by 2− 1/m,
in a system with m CPUs. The bound can be improved to 4

3 −
1

3m ,
if we arrange jobs in descending order of execution times.

19. The Banker’s algorithm is used to avoid and detect deadlocks in
systems with multiple copies of resources.

20. The Linux kernel has different scheduling classes. It always runs
tasks in a higher scheduling class before scanning queues of a lower
scheduling class.

Stop This is the highest priority class. For example, if there is a
kernel panic or a new CPU is added, tasks in this class are
created.

Deadline Uses the EDF scheduler to implement tasks that have
explicit deadlines.

Real Time Can use FIFO or round-robin scheduling to schedule
real-time tasks.

CFS The Completely Fair Scheduler (CFS) is used to schedule
regular non-real-time tasks. It uses the notion of the virtual
runtime (vruntime) that is a function of the actual runtime
and the task’s priority. The aim is to ensure that every task
gets at least one chance to execute in a scheduling period, and
all the tasks accumulate the same vruntime in a scheduling
period.

Idle This is a task that runs when there are no active tasks that are
runnable. It is mainly used for accounting and bookkeeping
purposes. In most cases, it simply puts the CPU to sleep until
it is woken up by an interrupt.

275 © Smruti R. Sarangi

21. We typically consider periodic tasks in real-time scheduling.

(a) EDF produces feasible schedules as long as the utilization is
less than or equal to 1. It uses dynamic priorities that keep
getting recomputed based on the arrival of new tasks and their
associated deadlines.

(b) RMS (Rate Monotonic Scheduling) uses static priorities that
do not change throughout the execution.

i. The Liu-Layland bound is a sufficient condition for
schedulability. It says that the system is schedulable if
the utilization U ≤ n(2

1
n − 1), where there are n tasks in

the system. If n→∞, U tends to 0.69 (ln(2)).

ii. The Lehoczky’s test produces tighter bounds and includes
some necessary conditions as well.

(c) In both RMS and EDF, the deadline is the same as the period.
However, in the general case, the deadline could be smaller
than the period. In this case, Deadline Monotonic Scheduling
(DMS) is used where the priority is inversely proportional to
the deadline (relative to the job arrival time).

22. The priority inheritance protocol ensures that there is no un-
bounded priority inversion. This is ensuring by temporarily as-
signing the priority of the higher priority blocked thread to the
lower priority thread that has blocked it. When the resource is
released, the priority reverts back to the process’s priority that ex-
isted before the resource was acquired. This protocol can lead to
deadlocks and chain blocking (repeated blocking).

23. The Highest Locker Protocol (HLP) uses the notion of a ceiling of
a resource, which is the highest priority of any task that may access
the resource at some point in the future. Whenever, a resource R is
acquired, the priority of the process is set to max(pri, ceil(R)+1),
where pri is the current priority and ceil is the resource ceiling
function. This ensures that the lock-holding process executes at a
very high priority. This protocol successfully avoids chain blocking
and deadlocks. However, it introduces a new problem of inheritance
blocking, where the priority becomes so high that intermediate
priority processes do not get a chance.

24. The Priority Ceiling Protocol (PCP) solves all the aforementioned
problems including inheritance blocking by defining a system ceil-
ing (CSC), which is the highest resource ceiling of any resource
that has currently been acquired by any process in the system. A
process can only acquire a resource if it has either set the current
CSC or its priority is greater than the current CSC. This means
that even if a resource is free, a process may not be allowed to
acquire it. This is an altruistic choice; however, it produces good
outcomes at the level of the entire system. No priority is boosted to

© Smruti R. Sarangi 276

a very high value (as in the HLP protocol) and thus intermediate
priority processes get a fair chance to execute.

5.6.2 Further Reading

The first part of this chapter introduced the idea of multiprocessor synchroniza-
tion. The book titled, “The Art of Multiprocessor Programming” by Herlihy
and Shavit [Herlihy and Shavit, 2012] introduces all these concepts quite well es-
pecially lock-free and wait-free algorithms. The other important reference is the
book by M. Ben-Ari [Ben-Ari, 2006] on principles of concurrent and distributed
programming. It provides many theoretical results in the area of concurrent
programming including all the relevant mathematical results.

For scheduling algorithms, the paper by Karger, Cliff and Joel [Karger et al.,
1999] is a very comprehensive reference. It introduces a large number of schedul-
ing problems for both uniprocessors and multiprocessors. A lot of algorithms
have polynomial-time solutions, whereas a lot of variants are NP-complete. Sim-
ilarly, for real-time algorithm, there are a lot of excellent books in this area:
Mall [Mall, 2009], Krishna and Shin [Krishna and Shin, 2017] and Jane Liu [Liu,
2002]. The survey paper by Davis et al. [Davis and Burns, 2011] specifically lists
major hard real-time scheduling algorithms (circa 2011).

Readers can refer to many recent research papers in the area of schedul-
ing: evaluation of the Linux scheduler [Lozi et al., 2016], user-space schedul-
ing [Humphries et al., 2021] and operating system noise [de Oliveira et al.,
2022].

Exercises

Ex. 1 — What are the four necessary conditions for a deadlock? Briefly ex-
plain each condition.

Ex. 2 — Assume a system with many short jobs with deterministic execution
times. Which scheduler should be used?

Ex. 3 — Design a concurrent stack using the compare-and-set(CAS) primi-
tive. Use a linked list as a baseline data structure to store the stack (do not use
array).

int CAS (int *location , int old_value , int value) {

if (* location == old_value) {

*location = value;

return 1;

} else return 0;

}

277 © Smruti R. Sarangi

Do not use any locks (in any form). In your algorithm, there can be starvation;
however, no deadlocks. Provide the code for the push and pop methods. They
need to execute atomically. Note that in any real system there can be arbitrary
delays between consecutive instructions.

Ex. 4 — Explain why spinlocks are not appropriate for single-processor sys-
tems yet are often used in multiprocessor systems.

Ex. 5 — Propose a solution to the Dining Philosopher’s problem that is starvation-
free?

Ex. 6 — Solve the Dining Philosopher’s Problem using only semaphores. Use
three states for each philosopher: THINKING, HUNGRY and EATING.

Ex. 7 — Acquiring a mutex is a complex process. We have a fast path and
different variants of slow paths. Why do we need so many paths? Explain with
examples.

Ex. 8 — Consider the kernel mutex. It has an owner field and a waiting queue.
A process is added to the waiting queue only if the owner field is populated
(mutex is busy). Otherwise, it can become the owner and grab the mutex.
However, it is possible that the process saw that the owner field is populated,
added itself to the waiting queue but by that time the owner field became empty
– the previous mutex owner left without informing the current process. There
is thus no process to wake it up now, and it may wait forever. Assume that
there is no dedicated thread to wake processes up. The current owner wakes up
one waiting process when it releases the mutex (if there is one).

Sadly, because of such race conditions, processes may wait forever. Design a
kernel-based mutex that does not have this problem. Consider all race condi-
tions. Assume that there can be indefinite delays between instructions. Try
to use atomic instructions and avoid large global locks. Assume that task ids
require 40 bits.

Ex. 9 — The Linux kernel has a policy that a process cannot hold a spinlock
while attempting to acquire a semaphore. Explain why this policy is in place.

Ex. 10 — Why are semaphores stronger synchronization primitives than con-
dition variables and similar user-space synchronization mechanisms?

Ex. 11 — Explain the spin lock mechanism in the Linux kernel (based on
ticket locks). In the case of a multithreaded program, how does the spin lock
mechanism create an order for acquiring the lock? Do we avoid starvation?

Ex. 12 — What will it take to implement linearizability at the hardware level?
How will OS code get easier if the hardware provides linearizability? Explain
with examples and justify your answer.

Ex. 13 — Why are memory barriers present in the code of the lock and
unlock functions?

Ex. 14 — Write a fair version of the reader-writer lock.

Ex. 15 — What is the lost wakeup problem? Explain from a theoretical per-

© Smruti R. Sarangi 278

spective with examples.

Ex. 16 — Does the Banker’s algorithm prevent starvation? Justify your an-
swer.

Ex. 17 — We wish to reduce the amount of jitter (non-determinism in exe-
cution). Jitter arises due to interrupts, variable execution times of system calls
and the kernel opportunistically scheduling its own work when it is invoked.
This makes the same program take different amounts of time when it is run
with the same inputs. How can we create an OS that reduces the amount of
jitter? What are the trade-offs?

* Ex. 18 — Implementing lottery scheduling as follows. Assign lottery tickets
(unsigned integers) to processes. Whenever a scheduling decision needs to be
made, a lottery ticket is chosen at random, and the process holding that ticket
gets the CPU. Describe how such a scheduler can ensure that higher-priority
threads receive more attention from the CPU than lower-priority threads, yet
not severely compromise on fairness.

Ex. 19 — Is it guaranteed that we will resume the process that invoked a
system call after the system call is serviced? Why or why not? What factors
should we consider?

Ex. 20 — Prove that no reader can be alive when synchronize rcu returns.
Create diagrams with happens-before edges, and prove that such a situation is
not possible. Show a proof by contradiction.

Ex. 21 — Show the pseudocode for registering and deregistering readers, and
the synchronize rcu function.

Ex. 22 — How is preemption enabled and disabled?

Ex. 23 — Why is it advisable to use RCU macros like rcu assign pointer

and rcu dereferencecheck? Why cannot we read or write to the memory
locations directly using simple assignment statements?

Ex. 24 — Consider the following code snippet.

struct foo {

int a;

int b;

int c;

};

struct foo *gp = NULL;

/* . . . */

struct foo *p = kmalloc(sizeof(struct foo), GFP_KERNEL);

/* kernel malloc */

p->a = 1;

p->b = 2;

p->c = 3;

Write the code to set gp to p.

279 © Smruti R. Sarangi

Ex. 25 — Correct the following piece of code in the context of the RCU mech-
anism.

p = gp;

if (p != NULL) {

myfunc (p->a, p->b, p->c);

}

Ex. 26 — Users working on a laptop or desktop typically interact with a few
tasks via graphical interfaces. These could be games, web browsers or media
players. Sometimes it is necessary to boost their priority for a better user
experience. Suggest how this can be done.

Ex. 27 — How can we modify the CFS scheduling policy to fairly allocate
processing time among all users instead of processes? Assume that we have a
single CPU and all the users have the same priority (they have an equal right
to the CPU regardless of the processes that they spawn). Each user may spawn
multiple processes, where each process will have its individual CFS priority
between 100 and 139. Do not consider the real-time or deadline scheduling
policies.

Ex. 28 — How does the Linux kernel respond if the current task has exceeded
its allotted time slice?

Ex. 29 — The process priorities vary exponentially with the nice values. Why
is this the case? Explain in the context of a mix of compute and I/O-bound
jobs where the nice values change over time.

* Ex. 30 — Given a mixture of interactive, I/O-intensive and long-running
processes whose execution time is not known a priori, design a scheduling al-
gorithm for a single CPU that optimizes the completion time as well as the re-
sponsiveness of interactive jobs. The algorithm (and associated data structures)
should take into account the diversity of jobs and the fact that new jobs and
high-priority jobs need quick service, whereas low-priority long-running batch
jobs can be delayed (read deprioritized).

* Ex. 31 — Prove that (1 | ri | Lmax) is NP-complete.

** Ex. 32 — Prove that the competitive ratio is bounded by (43 −
1

3m) if we
schedule processes in descending order of processing times.

** Ex. 33 — Prove that any algorithm that uses list scheduling will have a
competitive ratio (Clist/C

∗), which is less than or equal to (2 − 1/m). There
are m processors, C is the makespan and C∗ is the optimal makespan.

Ex. 34 — For a system with periodic and preemptive jobs, what is the uti-
lization bound (maximum value of U till which the system remains schedulable)
for EDF?

Ex. 35 — Prove that in PCP algorithm, once the first resource is acquired,
there can be no more priority inversions (provide a very short proof).

© Smruti R. Sarangi 280

Chapter 6
The Memory System

The operating system is a resource manager at its core. In the previous chapter,
we focused on scheduling and synchronization. The CPU was the resource,
which was being managed. We shall focus on managing physical and virtual
memory in this chapter. Both of them are legitimate resources. The virtual
memory is a complex entity, which is split between a user process and the
kernel. We shall study in this chapter that the kernel virtual memory space is
further split into many different regions. The physical memory is also a large
and complex entity that comprises the memory modules, the swap space and
parts that interact with DMA engines and I/O devices.

Recall the discussion in Chapter 2. We had argued that the most important
functionality provided by the virtual memory subsystem in the kernel is isolating
different processes. The virtual memory mechanism ensures that no process can
access the memory space of any other process without proper authorization. We
shall see in this chapter that apart from correctness concerns, there are other
issues with regards to efficiency and proper TLB management. Up till now we
have been considering the TLB to just be a simple cache that stores frequently
used mappings. The only TLB manipulation instructions that we were aware of
were adding entries to the TLB and flushing all its entries, especially when the
page table is reloaded. In this chapter, we shall look at a more nuanced picture.
It is possible to pin entries, annotate entries with the process id and selectively
flush entries. All of these facilities are needed for performance efficiency.

When it comes to managing physical memory, page replacement algorithms
are arguably the most important determinants of performance. Hence, we need
to ensure that the page replacement algorithm is as good as possible. The aim
is to minimize page faults. Finding candidate pages for replacement requires
maintaining a lot of data structures and doing a lot of bookkeeping. There is
clearly a need to move a lot of this work off the critical path. There is a lot
of theoretical work in this space. Different algorithms have been proven to be
optimal under different types of constraints. Such algorithms are typically quite
simple. They are sadly not potent enough to be used in a large and complex
system such as the Linux kernel.

There is a need to design a bespoke algorithm that has low overheads, is
efficient and handles all kinds of special cases. In the current version of the

281

© Smruti R. Sarangi 282

Linux kernel, we typically manage single pages, folios that contain N pages
where N is a power of 2, and huge pages (a single page is either 2 MB or 1 GB).
Furthermore, pages can be regular memory pages or could be memory-mapped
pages that are backed up by I/O devices. Some pages can be written to by
the CPUs and also enable DMA access. Therefore, any page management and
replacement algorithm needs to keep all these things in mind. In this context,
we will introduce the multi-generation MGLRU algorithm. Its basic philosophy
is quite simple yet it is powerful enough to handle realistic scenarios.

In the context of page replacement, the issue of reverse mapping also becomes
important. For a given physical page, it is necessary to maintain a list of all
the virtual pages that map to it. For each virtual page, we need to maintain a
pointer to its page table and task struct. If the physical page is evicted from
main memory, then the mappings corresponding to all the virtual pages need
to be changed. We need to record the fact that the mapped physical page is no
more in physical memory. Things get further complicated if a process is forked.
This means that a physical page has more sharers. Furthermore, it is possible
that the parent and child processes can get forked several times subsequently.
There is thus a need to manage a large number of sharers per physical page.
Their copy-on-write status needs to be tracked.

Managing kernel memory is equally challenging. It is quite different from
allocating memory in the user space. There is a need to create bespoke mecha-
nisms in the kernel for managing its memory. We cannot allow kernel processes
to allocate arbitrary amounts of memory or have very large data structures
whose sizes are not known or not bounded – this will create a lot of problems in
kernel memory management. There is a need to manage kernel memory more
deterministically. It is thus not a good idea to allocate objects in the kernel the
same way that we do in user space where regions do not have strict bounds in
terms of size. There are also no requirements for the regions to be contiguous.
It is wiser to follow an intelligent version of a simple base-limit scheme. In this
context, we shall discuss several memory allocation and management schemes.

Organization of this Chapter

Memory	System

Heuristics

Virtual	MemoryPage	Management

Base-limit	scheme

Classical	schemes

Working	set	management

Memory	map

Page	table

Pages	and	folios

Zones

Reverse	mapping

MGLRU	replacement	scheme

Thrashing

Kernel	Memory	Allocation

Buddy	allocator

SLAB	allocator

SLUB	allocator

Figure 6.1: Organization of this chapter

283 © Smruti R. Sarangi

Figure 6.1 shows the organization of this chapter.

We shall start with a section on memory management heuristics. Here,
we will discuss classical memory management schemes such as the base-limit
scheme. They are not used in modern kernels. However, a lot of contemporary
schemes draw inspiration from them. Hence, appreciating them is a worthwhile
exercise.

Next, we shall take an in-depth look at virtual memory. The kernel’s memory
map is large and quite elaborate. There are a lot of dedicated regions for storing
diverse types of information. The page table is also quite complex. It uses
intricate bitwise operations to speed up page walking.

Note that paging the entire memory breaks the notion of contiguity of phys-
ical memory addresses. Sometimes, there is a need to create contiguous regions
in the physical memory space for effective management, prefetching and effective
metadata management. On similar lines, it is a wise idea to partition physi-
cal memory into zones. Each zone is specialized for different kind of memory
accesses.

Subsequently, we shall look at page management. We shall look at the issues
related to replacement and reverse mapping together. Reverse mapping will be
discussed first and then the MGLRU algorithm will be introduced. A problem
that can arise is thrashing, which can crash the entire system.

Finally, we shall look at memory allocation in the kernel. We shall discuss
all the three popular memory allocators: buddy allocator, the Slab and Slub
allocators.

6.1 Traditional Heuristics for Page Allocation

6.1.1 Base-Limit Scheme

Let us consider traditional heuristics for memory management. We need to go
back to the era when virtual memory did not exist. Consider systems that do
not have virtual memory such as small embedded devices. Clearly there is a
need to isolate process address spaces. This is achieved with the help of two
registers namely base and limit. As we can see in Figure 6.2, the memory for
a process is allocated contiguously. The starting address is stored in the base
register and after that the size of the memory that the process can access is
stored in the limit register. Any address issued by the processor is translated
to the physical address by adding it to the base register. If the issued address is
A, then the address sent to the memory system is base+A. It is checked to see
if it is less than limit or not. If it is less than limit, then the address is deemed
to be correct. Otherwise, the memory address is declared to be out of bounds.

We can visualize the memory space as a sequence of contiguously allocated
regions (see Figure 6.2). There are holes between allocated regions. If a new
process is created, then its memory requirement needs to be known a priori.
The memory needs to be allocated within one of the holes. Let us say that a
process requires 100 KB and the size of a hole is 150 KB, then we are leaving
50 KB free. By following this process, we basically create a new hole that is 50
KB long. This phenomenon of having holes between regions and not using that
space is known as external fragmentation. On the other hand, leaving space
empty within a page in a regular virtual memory system is known as internal

© Smruti R. Sarangi 284

fragmentation.

Definition 6.1.1 Fragmentation

Internal Fragmentation It refers to the phenomenon of leaving mem-
ory space empty within pages in a virtual memory system. The
wastage per page is limited to 4 KB per page.

External Fragmentation It is relevant in the context of a base-limit
addressing system where space in the memory system is kept empty
in the form of holes.

Allocated region Base
LimitHole

Figure 6.2: Memory allocation with base and limit registers

Let us proceed with the assumption that we are precisely aware of the max-
imum amount of memory that a new process requires. We need to select an
appropriate hole for allocating memory. Clearly the size of the hole needs to
be more than the amount of requested memory. There could be multiple such
holes, and we need to choose one of them. Our choice really matters because it
determines the efficiency of the entire process. It is indeed possible that later
on we may not be able to satisfy requests primarily because we will not have
holes of adequate size left. Hence, designing a proper heuristic in this space
is important in anticipation of the future. There are several heuristics in this
space.

Assume that we need R bytes for a new process.

Best Fit Choose the smallest hole that is just about larger than R.

Worst Fit Choose the largest hole.

Next Fit Start searching from the last allocation that was made and move
towards higher addresses (with wraparounds).

First Fit Choose the first available hole

These heuristics perform very differently for different kinds of workloads.
For some workloads, they perform really well whereas for many other workloads
their performance is quite below par. It is also possible to prove that they are
optimal in some cases assuming some simple distribution of memory request
sizes in the future.

The fact still remains that in general we do not know how much memory
a process requires. Hence, assessing or declaring the amount of memory that
a process requires upfront is quite difficult. Any such estimate is bound to be
quite conservative. Note that this information is not there with the compiler

285 © Smruti R. Sarangi

or even the user. In today’s complex programs, the amount of memory that is
going to be used is a very complicated function of the input, and it is thus not
possible to predict it beforehand. As a result, these schemes are seldom used as
of today. They are nevertheless relevant for very small embedded devices that
cannot afford virtual memory. However, by and large, the base-limit scheme is
consigned to the museum of virtual memory schemes.

6.1.2 Classical Schemes to Manage Virtual Memory

Managing memory in a system that uses virtual memory is relatively straight-
forward. To keep track of free frames (physical pages) in memory, we can use
a bit vector – one bit for each frame. Next, to find the first free frame, we can
accelerate the process using an augmented tree (see Appendix C). In log(N)
time, we can find the first free frame and allocate it to a process. Even freeing
frames is quite easy in such a system that uses a bit vector and an augmented
tree.

The most important problem in this space is finding the page that needs
to be replaced in case the memory is full. This has a very important effect
on the overall performance because it affects the page fault rate. Page faults
necessitate expensive reads to the underlying storage device: hard disk or flash
drive. This process requires millions of cycles. Hence, page faults are regarded
as one of the biggest performance killers in modern systems.

The Stack Distance

To understand the philosophy behind replacement algorithms, let us understand
the notion of stack distance (refer to Figure 6.3). We conceptually organize all
the physical pages (frames) that have been accessed till a given point of time in
a stack. Whenever a page is accessed, it is placed at the top of the stack. If it
was already present in the stack at a different location, it is removed from there.
The distance between the top of the stack and the point in the stack where the
page was found is known as the stack distance.

Assume that a page is accessed twice. The second time the stack distance is
0 because the page is now at the stack top.

Definition 6.1.2 Stack Distance

We maintain a stack of all the pages that have ever been accessed. When-
ever a page is accessed, we record the distance between the stack top and
the point at which the page was found in the stack. This is known as
the stack distance. Then we move the page to the top of the stack. If a
page is being accessed for the first time, then it is simply placed at the
top of the stack. The stack distance is not recorded.
The stack distance distribution is a standard tool used to evaluate tempo-
ral locality in computer systems ranging from caches to paging systems.

The stack distance typically has a distribution that is similar to the one
shown in Figure 6.4. Note that we have deliberately not shown the units of the
x and y axes because the aim is to just show the shape of the curve and not
focus on specific values. We observe a classic heavy-tailed distribution where

© Smruti R. Sarangi 286

Figure 6.3: Notion of the stack distance

small values are relatively infrequent. Then there is a peak followed by a very
heavy tail. The tail basically refers to the fact that we have non-trivially large
probabilities when we consider rather high values of the stack distance.

This curve can be interpreted as follows. Low values of the stack distance
are relatively rare. This is because we typically tend to access multiple streams
of data simultaneously. We are definitely accessing data as well as instructions.
This makes it two streams, but we could be accessing other streams as well. For
instance, we could be accessing multiple arrays or multiple structures stored
in memory in the same window of time. This is why consecutive accesses to
the same page, or the same region, are somewhat infrequent. Hence, extremely
low values of the stack distance are rarely seen. However, given that most
programs have a substantial amount of temporal locality, we see a peak in the
stack distance curve in the low to low-medium range of values – they are very
frequent. This means that if an address is accessed, the probability that it will
be accessed after k accesses to other addresses, is high if k is relatively small.
Almost all computer systems take advantage of such a pattern because the stack
distance curve roughly looks similar for cache accesses, page accesses, hard disk
regions, etc.

The heavy tail arises because programs tend to make a lot of random ac-
cesses, tend to change phases and also tend to access a lot of infrequently used
data. As a result, large stack distances are often seen. This explains the heavy
tail in the representative plot shown in Figure 6.4. There are a lot of distri-
butions that have heavy tails. Most of the time, researchers model this curve
using the log-normal distribution. This is because it has a heavy tail as well as
it is easy to analyze mathematically.

Let us understand the significance of the stack distance. It is a measure of
temporal locality. Lower the average stack distance, higher the temporal local-
ity. It basically means that we keep accessing the same pages over and over
again in the same window of time. Similarly, higher the stack distance, lower
the temporal locality. This means that we tend to re-access the same page af-
ter a long period of time. Such patterns are unlikely to benefit from standard

287 © Smruti R. Sarangi

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8

Representa�ve plot

P
ro

b
ab

ili
ty

Stack distance

Figure 6.4: Representative plot of the stack distance

architectural optimizations like caching. As discussed earlier, the log-normal
distribution is typically used to model the stack distance curve because it cap-
tures the fact that very low stack distances are rare, then there is a strong peak
and finally there is a heavy tail. This is easy to interpret and also easy to use as
a theoretical tool. Furthermore, we can use it to perform some straightforward
mathematical analyses as well as also realize practical algorithms that rely on
some form of caching or some other mechanism to leverage temporal locality.

Stack-based Algorithms

Let us now define the notion of a stack-based algorithm. It refers to a family of
algorithms that use a conceptual stack to store pages. It is not a pure LIFO
structure. However, it does have similarities with conventional stacks, hence, it
is named that way. It is important to underscore the fact that an actual stack
is not maintained.

The idea is to conceptually organize all the physical pages in memory as a
stack. The page at the stack top has the least replacement priority. Whereas,
the page at the bottom of the stack has the highest replacement priority. Assume
that the size of the memory is n pages. Let Sn be the set of pages in a memory
with n frames. The stack property states that Sn ⊆ Sn+1 for all values of n ≥ 1.
This means that if we add an additional frame, and create a larger memory, we
are guaranteed to store all the pages that are stored in a smaller memory at
any point of time. The assumption here is that the page access sequence is the
same for both the memories.

Point 6.1.1

Let Sn be the set of pages in a memory with n frames. The stack property
states that Sn ⊆ Sn+1 for all values of n ≥ 1.

© Smruti R. Sarangi 288

The stack property can easily be ensured if the two memories follow the stack
property at the beginning of the execution and adhere to some rules throughout
the execution. Consider a replacement decision. Either both the memories
make the same replacement decision or some page is evicted in Sn+1 that is not
present in Sn. Consider two memories Mn and Mn+1. Let the set of pages
in Mn be Sn and the set of pages in Mn+1 be Sn+1. Assume that the stack
property holds till a certain point. Consider the first point at which the stack
property fails to hold. Given that the stack property was followed up till now, it
is not possible for the following to happen for the current access: there was a hit
in Sn and miss in Sn+1. If there was a hit in both the memories, then there is no
need for an eviction. Hence, this cannot be a point of divergence. This means
that there must have been a miss in Sn. Let the current page accessed be p.
Clearly, p /∈ Sn. This means that page q ∈ Sn had to be evicted to make space
for p. Hence, we have the following relationship: Sn = Sold

n + p − q. Now, we
know that Sn ̸⊆ Sn+1. This means that there was an eviction in Sn+1. Assume
page r was evicted. r ∈ Sn and r /∈ Sn+1. This is where the stack property is
being violated. By definition r ̸= q. We also have Sn+1 = Sold

n+1 + p− r. Given
that the stack property held up till now q ∈ Sn+1.

Let us look at the different choices made. Mn chose to retain r and evict q,
whereas Mn+1 chose to retain q and discard r. Assume some function F was
used to determine the suitability of a page for eviction: higher the value, higher
the need for eviction. ForMn, F(r) < F(q), and forMn+1, F(q) < F(r). This
means that the function F is dependent on the size of the memory. It is not
global or universal.

As an example, consider the “least recently used” (LRU) algorithm. F is
inversely proportional to the last-accessed time. The higher it is, higher the
possibility of eviction. It is clear that this function is not dependent on the size
of the memory. It is independent of the memory size. Hence, the stack property
will not be violated. Let us refer to this function as the page cost function.

Optimal Page Replacement Algorithm

Similar to scheduling, we have an optimal algorithm for page replacement. Here
the objective function is to minimize the number of page faults or conversely
maximize the page hit rate in memory. The ideas are quite similar. Like the
case with optimal scheduling, we need to make some hypothetical assumptions
that are not realistic. Recall that we had done so in scheduling too, where we
had assumed that we knew the exact execution duration of each job.

We start out with ordering all the pages in memory in ascending order of
their “next use” time. This is how we organize our hypothetical stack. The
moment a page is accessed, its new location is determined based on when it will
be used next. Then for replacement, we choose that candidate page in memory
that is going to be used or accessed the farthest in the future (bottom of the
stack). The page cost function is the time of next access. This is independent
of the memory size and thus the stack property is being followed.

It turns out that this algorithm is optimal. The proof technique is quite
similar to what we had used to prove that a scheduling algorithm is optimal.
We can use a contradiction-based technique and use exchange-based arguments
to prove optimality, which in this case is the lowest page fault rate.

We shall see that there are many other algorithms that are also stack-based

289 © Smruti R. Sarangi

All of them have interesting properties in the sense that they avoid a certain kind
of anomalous behavior (discussed later when we discuss the FIFO replacement
algorithm). It is easy to see that the page fault rate can never increase if we
increase the size of the memory in a stack-based algorithm.

Least Recently Used (LRU) Algorithm

In the LRU algorithm, we conceptually tag each page in memory with the last
time that it was accessed and choose that page for replacement that has the
earliest access time. We assume that the past is a good predictor of the future
– if a page has not been accessed in the recent past, then it is quite unlikely
that it will be accessed in the near future.

This algorithm is stack-based. The priority is inversely proportional to the
last-accessed time. Whenever we access a page, it is moved to the top of the
stack. Recall that when we discussed stack distance, we had used such a scheme.
It was nothing but an implementation of the Least Recently Used (LRU) re-
placement algorithm.

Let us now come to the issue of storing timestamps. We cannot add extra
fields to main memory or the TLB to store additional timestamps – this will
increase their storage overheads substantially and require hardware changes.
We also cannot burden every memory access with computing and storing a
timestamp. Furthermore, to find the least timestamp of a page in memory, we
need to maintain either a stack or a priority queue. The stack maintains the
relative order and thus needs to be updated on every access. A priority queue,
on the other hand, requires O(log(N)) time for finding and updating entries.
Hence, this scheme in its purest sense is impractical.

We can always store the timestamp in each page table entry. This will
somewhat reduce the storage overheads in performance-critical structures like
the TLB. The problem is that the page table is not accessed on every memory
access. Hence, we will not be able to accurately maintain timestamps.

Hence, we need to make approximations such that this algorithm can be
made practical. We don’t want to set or compute bits on every memory access.
Maintaining and updating LRU information needs to be an infrequent operation.

Practical LRU
Let us leverage the page protection bits that are a part of the page table
as well as the TLB. These bits are needed to enforce access permissions. For
example, if we are not allowed to write to a page, then its write access bit is
set to 0. Our idea is to leverage these protection bits to add an estimate of
the last access time to each page table entry. Let us start with marking all the
pages as “not accessible”. We set their access bits to 0. This idea may sound
non-intuitive at the moment. But we will quickly see that this is one of the
most efficient mechanisms of tracking page accesses and computing last-used
information. Hence, this mechanism, even though it may sound convoluted, is
actually quite popular and useful.

When we access a page, the hardware may find its access bit set to 0. This
will lead to a page fault because of inadequate permissions. An exception han-
dler will run, and it will figure out that the access bit was deliberately set to
0 such that an access can be tracked. Then it will set the access bit to 1 such
that subsequent accesses go through seamlessly. However, the time at which the

© Smruti R. Sarangi 290

access bit was converted from 0 to 1 can be recorded, and this information can
be used to assist in the process of finding the LRU replacement candidate.

Given that the hardware does not provide any other way of efficiently record-
ing the last-access information, this is the best that can be done. It is true that
we are introducing deliberate page faults. However, these are soft page faults,
where the page is there but the current task does not have the permission to
access it. Such page faults are handled quickly. The kernel realizes that the
access bits were deliberately set to 0 to track accesses. It sets them back to 1.

An astute reader may argue that over time all the access bits will get set to
1. This is correct, hence, there is a need to periodically reset all the access bits
to 0. While finding a candidate for replacement, if an access bit is still 0, then
it means that after it was reset the last time, the page has not been accessed.
Therefore, we can conclude that this page has not been recently accessed and
can possibly be replaced. This is a coarse-grained approach of tracking access
information. It is however a very fast algorithm and does not burden every
memory access.

We can do something slightly smarter subject to the computational band-
width that we have. We can look at the timestamp stored along with each page
table entry. If the access bit is equal to 0, then we can look at the timestamp.
Recall that the timestamp corresponds to the time when the page’s access bit
last transitioned from 0 to 1. This means that the page was accessed and there
was a soft page fault. Later on this access bit was again reset to 0 because
of periodic clearing. We can use that timestamp as a proxy for the recency of
the page access. Smaller the timestamp, higher the eviction probability. This
approximate scheme may look appealing, however, in practice its accuracy is
questionable and thus is not used in real-world implementations. Instead, the
WS-Clock family of approximations of the LRU scheme are used.

WS-Clock Algorithm

Access bit = 0Access bit = 1

Figure 6.5: The WS-Clock algorithm

Let us now propose a more practical approximation of the LRU algorithm.
The WS-Clock page replacement algorithm is shown in Figure 6.5. Here WS
stands for “working set”, which we shall discuss later in Section 6.1.3.

Every physical page in memory is associated with an access bit. It is stored
in the corresponding page table entry. A pointer like the minute hand of a clock
points to a physical page; it is meant to move through all the physical pages
one after the other (in the list of pages) until it wraps around.

291 © Smruti R. Sarangi

If the access bit of the page pointed to by the pointer is equal to 1 (recently
used), then it is set to 0 (unused) when the pointer traverses it. There is no need
to periodically scan all the pages and set their access bits to 0. This will take a
lot of time. Instead, in this algorithm, once there is a need for replacement we
traverse the list of physical pages from the last position. We check the access
bit and if it is set to 1, we reset it to 0. This means that if the page is recently
used, we mark it as unused. However, if the access bit is equal to 0, then we
select that page for replacement. For the time being, the pointer stops at that
page. Next time the pointer starts from the same page and keeps traversing the
list of pages towards the end until it wraps around at the end.

This algorithm can approximately find the pages that are not recently used
and select one of them for eviction. It turns out that we can do better if we
differentiate between unmodified and modified pages in systems where the swap
space is inclusive – every page in memory has a copy in the swap space, which
could possibly be stale. The swap space in this case acts as a lower-level cache.

WS-Clock Second Chance Algorithm

Let us now look at a slightly improved version of the algorithm that uses 2-bit
state subject to the caveats that we have mentioned. The 2 bits are the access
bit and the modified bit. The latter bit is set when we write to a word in the
page. The corresponding state table is shown in Table 6.1.

⟨ Access bit,
Modified bit ⟩

New State Action

⟨0, 0⟩ ⟨0, 0⟩ Go ahead and replace
⟨0, 1⟩ ⟨0, 0⟩ Schedule a write-back, move forward.
⟨1, 0⟩ ⟨0, 0⟩ Move forward
⟨1, 1⟩ ⟨1, 0⟩ Frequently used frame; move forward.

Schedule a write-back.

Table 6.1: State-action table in the WS-Clock second chance algorithm

If both the bits are equal to 0, then they remain so, and we go ahead and
select that page as a candidate for replacement. On the other hand if they are
equal to ⟨0, 1⟩, which means that the page has been modified and after that its
access bit has been set to 0, then we perform a write-back and move forward.
The final state in this case is set to ⟨00⟩ because the data is not deemed to be
modified anymore since it is written back to memory. Note that every modified
page in this case has to be written back to the swap space whereas unmodified
pages can be seamlessly evicted given that the swap space has a copy. As a
result, unmodified pages are prioritized for eviction.

Next, let us consider the combination ⟨1, 0⟩. Here, the access bit is 1, so we
set it to 0. The resulting combination of bits is now ⟨0, 0⟩; we move forward.

Finally, if the combination of these 2 bits is ⟨1, 1⟩, then we perform the
write-back, and reset the new state to ⟨1, 0⟩. This means that it is clearly a
frequently used page that gets written to, and thus it should not be evicted or
downgraded – the access bit should not be set to 0. It deserves a second chance.

This is per se a simple algorithm, which takes the differing overheads of

© Smruti R. Sarangi 292

reads and writes into account. For writes, it gives a page a second chance in a
certain sense.

We need to understand that such LRU-approximating algorithms are quite
heavy. They introduce artificial page access faults. Of course, they are not
as onerous as full-blown page faults because they do not fetch data from the
underlying storage device that takes millions of cycles. Here, we only need
to perform some bookkeeping and change the page access permissions. This
is much faster than fetching the entire page from the hard disk or NVM drive.
Such soft page faults still lead to an exception and require time to service. There
is some degree of complexity involved in this mechanism. But at least we are
able to approximate LRU to some extent.

FIFO Algorithm

The queue-based FIFO (first-in first-out) algorithm is one of the most popular
algorithms in this space, and it is quite easy to implement because it does not
require any last-usage tracking or access bit tracking. It is easy to implement
primarily because all that we need to do is that we need to have a simple
priority queue in memory that stores all the physical pages based on when
they were brought into memory. The page that was brought in the earliest is
the replacement candidate. There is no run time overhead in maintaining or
updating this information. We do not spend any time in setting and resetting
access bits or in servicing page access faults. Note that this algorithm is not
stack based, and it does not follow the stack property. The cost function is the
reciprocal of the time at which the physical page was last added to the memory.
This is clearly dependent on the size of the memory. For memories of different
sizes, pages can keep getting evicted and coming in. The last time it entered
the memory is not a global metric. This violates the stack priority. This is not
a good thing as we shall see shortly.

Even though this algorithm is simple, it suffers from a very interesting
anomaly known as the Belady’s Anomaly [Belady et al., 1969] owing to the
fact that the stack property is not followed. Let us understand it better by
looking at the two examples shown in Figures6.6 and 6.7. In Figure 6.6, we
show an access sequence of physical page ids (shown in square boxes). The
memory can fit only four frames. If there is a page fault, we mark the entry
with a cross otherwise we mark the box corresponding to the access with a tick.
The numbers at the bottom represent the contents of the FIFO queue after
considering the current access. After each access, the FIFO queue is updated.

If the memory is full, then one of the physical pages (frames) in memory
needs to be removed. It is the page that is at the head of the FIFO queue –
the earliest page that was brought into memory. The reader should take some
time and understand how this algorithm works and mentally simulate it. She
needs to understand and appreciate how the FIFO information is maintained
and why this algorithm is not stack based.

In this particular example shown in Figure 6.6, we see that we have a total
of 10 page faults. Surprisingly, if we reduce the number of physical frames in
memory to 3 (see Figure 6.7), we have a very counter-intuitive result. We would
ideally expect the number of page faults to increase because the memory size is
smaller. However, we observe an anomalous result. We have 9 page faults (one
page fault less than the larger memory with 4 frames) !!!

293 © Smruti R. Sarangi

Consider the FIFO page
replacement algorithm

Access
sequence

1 2 3 4 1 2 5 1 2 3 4 5

1 2
1

3
2
1

4
3
2
1

4
3
2
1

4
3
2
1

5
4
3
2

1
5
4
3

2
1
5
4

3
2
1
5

4
3
2
1

5
4
3
2

4 frames

10 faults

Figure 6.6: FIFO algorithm with memory capacity equal to 4 frames

Consider the FIFO page
replacement algorithm

Access
sequence

1 2 3 4 1 2 5 1 2 3 4 5

1 2
1

3
2
1

4
3
2

1
4
3

2
1
4

5
2
1

5
2
1

5
2
1

3
5
2

4
3
5

4
3
5

3 frames

9 faults

Figure 6.7: FIFO algorithm with memory capacity equal to 3 frames

The reader needs to go through this example in great detail. She needs to
understand the reasons behind this anomaly. These anomalies are only seen in
algorithms that are not stack-based. Recall that in a stack-based algorithm, we
have the stack property – at all points of time the set of pages in a larger memory
is a superset of the pages that we would have in a smaller memory. Hence, we
cannot observe such an anomaly. Now, we may be tempted to believe that this
anomaly is actually limited to small discrepancies. This means that if we reduce
the size of the memory, maybe the size of the anomaly is quite small (limited
to a very few pages).

However, this presumption is sadly not true. It was shown in a classic paper
by Fornai et al. [Fornai and Iványi, 2010a, Fornai and Iványi, 2010b] that a
sequence always exists that can make the discrepancy arbitrarily large. In other
words, it is unbounded. This is why the Belady’s anomaly renders many of these
non-stack-based algorithms completely ineffective. They perform very badly in
the worst case. One may argue that such “bad” cases are pathological and rare.
But in reality, such bad cases do occur to a limited extent. This significantly
reduces the performance of the system because page faults are associated with

© Smruti R. Sarangi 294

massive overheads.

Point 6.1.2

Let us now summarize our discussion. A pure stack-based algorithm does
not suffer from the Belady’s anomaly. In line with this philosophy, we
introduced the WS-Clock and the WS-Clock Second Chance algorithms
that approximate LRU. The FIFO replacement algorithm is in compari-
son much easier to implement. However, it exhibits the classic Belady’s
anomaly. The worst case performance of FIFO can be arbitrarily low.

6.1.3 The Notion of the Working Set

Let us now come to the notion of a “working set”. Loosely speaking, it is the set
of pages that a program accesses in a short duration or small window of time.
It pretty much keeps on repeatedly accessing pages within the working set. In
a sense, it remains confined to all the pages within the working set in a small
window of time. Of course, this is an informal definition. Proposing a formal
definition is somewhat difficult because we need to quantify how short a time
duration we need to consider.

#pages in memory

Pa
ge

fa
u

lt
 r

at
e

Working set size

Figure 6.8: Page fault rate versus the working set size

There is a different way of answering this question. It is scientifically more
reasonable. Consider the graph shown in Figure 6.8. The x axis is the number
of pages that we have in memory and the y axis is the page fault rate. We
typically observe that the page fault rate is initially very high. It continues to
reduce very sluggishly until a certain point and after that there is a sudden dip
– the page fault rate reduces substantially. It continues to be low beyond this
point of sharp reduction. More or less all real-world programs show a similar
behavior even though the shape of the curve tends to vary across them.

We can define the point of sharp page fault reduction as the working set size
of the program. If we have more pages than this threshold (working set), the
page fault rate will be low. Otherwise, it will be very high. Note that this is
typical behavior that has been observed empirically.

The notion of the working set can be construed as the set of pages that a
program tends to access repeatedly within a small window of time. It suffers
a lot in terms of performance if the size of the memory that is allocated to it

295 © Smruti R. Sarangi

in terms of the number of pages is less than the size of the working set. Even
though Figure 6.8 is a representative figure, it is widely accepted that almost
all real-world programs show a similar behavior and that is why the notion of
the working set is reasonably well-defined using such arguments. The slope of
the line in the vicinity of the working set size can be steep for some benchmarks
and can be relatively less steep for others, however, this effect is nonetheless
always visible to some extent.

6.1.4 Shared- Memory-Based Inter-Process Communica-
tion

Example 6.1.1

Create a shared memory channel between two processes. Send a message
from a writer process to a reader process.

Answer: Here is the code for the writer process.

Listing 6.1: Writer process

#include <stdio.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <string.h>

#include <unistd.h>

#define SHM_SIZE 1024 // shared memory size (in bytes)

int main() {

// create a unique key for the shared mem. segment

key_t key = ftok("shmfile", 59);

// Create the segment and get a handle to it

int shmid = shmget(key , SHM_SIZE , 0666| IPC_CREAT);

// attach the segment to a string pointer

char *str = (char *) shmat(shmid , NULL , 0);

// Write to the shared memory segment

strcpy(str , "Message from the writer.");

printf("Writer wrote: %s\n", str);

shmdt(str); // detach from shared memory

return 0;

}

After running the writer, it is necessary to run the reader process.

Listing 6.2: Reader process

#include <stdio.h>

#include <sys/ipc.h>

#include <sys/shm.h>

© Smruti R. Sarangi 296

#include <unistd.h>

#define SHM_SIZE 1024

int main() {

// Use the same unique key as the writer

key_t key = ftok("shmfile", 59);

// Get the segment corresponding to the key

int shmid = shmget(key , SHM_SIZE , 0666);

// attach the shared memory segment

char *str = (char *) shmat(shmid , NULL , 0);

// Read the shared memory segment

printf("Reader read: %s\n", str);

shmdt(str); // detach from shared memory

// destroy the shared memory segment

shmctl(shmid , IPC_RMID , NULL);

return 0;

}

The ftok library call takes the name of a file and an integer id. The key is
a unique combination of these two arguments. This is done such that different
processes can generate the same key, as long as the “id” is the same.

Next, there is a need to create the shared memory segment, if the process is
the first writer. Typical read/write permissions are assigned in our example to
the user, group and the world (more in Chapter 8). Next, the reader and writer
need to attach a string pointer with the shared memory region. This creates the
relevant mappings in the page table. The virtual address corresponding to the
string variable str points to the shared memory segment. This further means
that any read and write operation on bytes within the string happens directly
on shared memory. The other process can immediately see the values written by
write operations because of the way the physical page is mapped in the virtual
address space of both processes (reader and writer).

In our example, the writer uses the strcpy function and the reader reads the
str pointer directly. Any read/write operation can be used. Because of the way
the mapping is created, any time a virtual address in the array str is accessed,
the access will directly go to the shared physical page. This mechanism can
thus allow many processes to access the same physical page concurrently.

After the shared memory operations have finished there is a need to detach
the segment. This does the reverse. It unmaps the shared memory segment.
The corresponding virtual address does not point to the shared page anymore.
The reader process in our example, subsequently destroys the shared memory
segment such that it is not usable anymore.

297 © Smruti R. Sarangi

6.2 Virtual and Physical Address Spaces

The most important concepts in this space are the design of the overall virtual
memory space, the page table and associated structures. We will begin with
a short discussion on Linux page tables and then move on to discuss the way
in which metadata associated with a single physical page is stored (in struct

page). The kernel also has the notion of folios, which are basically a set of pages
that have contiguous addresses in both the physical and virtual address spaces.
They are a recent addition to the kernel (v5.18) and are expected to grow in
terms of popularity, usage and importance.

6.2.1 The Virtual Memory Map

User space 64 PB

Direct mapped region 32 PB

Memory-mapped I/O 12.5 PB

Per-CPU area 0.5 TB

Kernel code + modules 512 MB + 1520 MB

Holes

Figure 6.9: The overall virtual memory map (kernel + user)
source : Documentation/x86/x8664/mm.rst

Let us first understand the overall virtual memory map (user + kernel). In
Linux, the virtual address space is partitioned between all the kernel threads
and a user process. There is no overlap between the user and kernel virtual
address spaces because they have to be strictly separated. Let us consider the
case of a 57-bit virtual addressing system. The total virtual memory size is 128
PB (257 bytes). We partition the virtual memory space into two parts: 64 PB
for the user process and 64 PB for kernel threads.

The user space virtual memory is further partitioned into different sections
such as the text, stack and heap (see Section 2.2). In this chapter, let us look

https://elixir.bootlin.com/linux/v6.2.12/source/Documentation/x86/x86_64/mm.rst

© Smruti R. Sarangi 298

at the way the kernel virtual memory is partitioned (refer to Figure 6.9). Note
that the figure is not drawn to scale – we have only shown some important
regions. The data shown in the figure is by no means exhaustive. Refer to the
documentation (cited in the figure’s caption) for a more detailed list of kernel
memory regions.

Note the 32 PB direct-mapped region. In this region, the virtual and physical
addresses are either the same or are linearly related (depending upon the version
and architecture), which basically means that we can access physical memory
directly. This is always required because the kernel needs to work with real
physical addresses sometime, especially while dealing with external entities such
as I/O devices, the DMA controller and the booting subsystem. It is also used
to store the page tables. Page tables should not be stored in virtual memory
because we can have page faults while accessing them. Hence, they need to be
accessed directly.

This memory is also useful whenever we want to create a large set of buffers
that are shared with I/O devices, or we want to create a cache of structures of
a known size. Essentially, this entire region can be used for any custom purpose
especially when contiguity of physical memory addresses is required and page
faults are not allowed.

Next, we have a memory-mapped I/O region that stores all the pages that
are mapped to I/O devices for the purpose of memory-mapped I/O. Another
important region in the kernel’s virtual memory address space is the per-CPU
area, which we have seen to play a very important role in storing information
related to the current task, part of the context and preemption-related flags.

The core kernel code per se is quite small. We only reserve 512 MB for the
kernel code. It is important to note that a large part of the overall kernel code
comprises driver code. This code is loaded on demand based on the devices
that are plugged to the machine. All of this code is actually present in modules
(1520 MB reserved in the virtual address space) that are loaded or unloaded
dynamically. Modules used to have more or less unfettered access to the kernel’s
data structures, however off late this is changing.

In general, modules are typically used to implement device drivers, file sys-
tems, and cryptographic protocols/mechanisms. They help keep the core kernel
code small, modular and clean. Of course, security is a big concern while load-
ing kernel modules and thus module-specific safeguards are increasingly getting
more sophisticated – they ensure that modules have limited access to only the
functionalities that they need. With novel module signing methods, we can
ensure that only trusted modules are loaded. 1520 MB is a representative figure
for the size reserved for storing module-related code and data in kernel v6.2.
Note that this is not a standardized number, it can vary across Linux versions
and is also configurable.

6.2.2 The Page Table

Figure 6.10 shows the mm struct structure that we have seen before. It specif-
ically highlights a single field, which stores the page table (pgd t *pgd). The
page table is also known as the page directory in Linux. There are two virtual
memory address sizes that are commonly supported: 48 bits and 57 bits. We
have chosen to describe the 57-bit address in Figure 6.10. We observe that there
are five levels in a page table. The highest level of the page table is known as the

299 © Smruti R. Sarangi

struct mm_struct {
….
pgd_t *pgd;
…

};

Pointer to the page table. The CR3
register is set to this value. Type: u64

P4D
40-48

PUD
31-39

PMD
22-30

PTE
13-21

Page
1-12

PGD
57-49

CR3 register points to the PGD
of the current process

Figure 6.10: The high-level organization of the page table (57-bit address)

page directory (PGD). Its starting address is stored in the CR3 MSR (model
specific register). CR3 stores the starting address of the page table (highest
level) and is specific to a given process. This means that when the process
changes, the contents of the CR3 register also need to change. It needs to point
to the page table of the new process. There is a need to also flush the TLB if
the contents of the CR3 register change. This is very expensive. Hence, various
kinds of optimizations have been proposed, which we shall discuss later.

We have already seen in Chapter 3 that the contents of the CR3 register
do not change when we make a process-to-kernel transition or in some cases
in a kernel-to-process transition as well. Here the term process refers to a user
process. The main reason for this is that changing the virtual memory context
is associated with a lot of performance overheads and thus there is a need to
minimize such events as much as possible, and all kernel threads share their
virtual address space.

The page directory is indexed using the top 9 bits of the virtual address
(bits 49-57). Then we have four more levels. For each level, the next 9 bits
(towards the LSB) are used to address the corresponding table. The reason
that we have a five-level page table here is because we have 57 virtual address
bits and thus there is a need to have more page table levels. Our aim is to
reduce the memory footprint of page tables as much as possible and properly
leverage the sparsity in the virtual address space. The details of all of these
tables are shown in Table 6.2. We observe that the leaf-level entry is the page
table entry, which contains the mapping between the virtual page number and
the page frame number (or the number of the physical page) along with some
page protection information.

Page Table Entry

Each page table entry also contains permission bits (see Table 6.3). This in-
formation is also kept in the TLB such that the hardware can check if a given
operation is allowed or not without consulting the page table. For example, if
we are not allowed to execute code within the page, then execute permissions
will not be given. This is very important from a security perspective. Similarly,

© Smruti R. Sarangi 300

Acronym Full form
PGD Page Global Directory
P4D Fourth level page table
PUD Page Upper Directory
PMD Page Middle Directory
PTE Page Table Entry

Table 6.2: All the constituent tables of a 5-level page table
source : arch/x86/include/asm/pgtabletypes.h

for code pages, write access is typically turned off – this ensures that viruses or
malware cannot modify the code of the program and cannot hijack the control
flow. Finally, we also need a bit to indicate whether the page can be accessed
or not. Recall that we had used such bits to track the usage information for
the purposes of LRU-based replacement. They can be used to induce soft page
faults.

Acronym Full form
PROT READ Read permission
PROT WRITE Write permission
PROT EXEC Execute permission
PROT SEM Can be used for atomic ops
PROT NONE Page cannot be accessed

Table 6.3: Page protection bits (pgprot t)
source : include/uapi/asm− generic/mman− common.h

Walking the Page Table

Listing 6.3: The follow pte function (assume the entry exists)
source : mm/memory.c#L5350

int follow_pte(struct mm_struct *mm , unsigned long address ,

pte_t **ptepp , spinlock_t **ptlp) {

pgd_t *pgd;

p4d_t *p4d;

pud_t *pud;

pmd_t *pmd;

pte_t *ptep;

pgd = pgd_offset(mm , address);

p4d = p4d_offset(pgd , address);

pud = pud_offset(p4d , address);

pmd = pmd_offset(pud , address);

ptep = pte_offset_map_lock(mm, pmd , address , ptlp);

*ptepp = ptep;

return 0;

https://elixir.bootlin.com/linux/v6.2.12/source/arch/x86/include/asm/pgtable_types.h
https://elixir.bootlin.com/linux/v6.2.12/source/include/uapi/asm-generic/mman-common.h
https://elixir.bootlin.com/linux/v6.2.12/source/mm/memory.c#L5350

301 © Smruti R. Sarangi

}

Listing 6.3 shows the code for traversing the page table (follow pte func-
tion) assuming that an entry exists. We first walk the top-level page directory,
and find a pointer to the next level table. Next, we traverse this table, find a
pointer to the next level, so on and so forth. Finally, we find the pointer to the
page table entry. However, in this case, we also pass a pointer to a spinlock.
The page table entry is locked prior to returning a pointer to it. This allows us
to make changes to the page table entry. It needs to be subsequently unlocked
after it has been accessed.

Let us now delve slightly deeper into the code that traverses the PMD table.
A representative example for traversing the PMD table is shown in Listing 6.4.
We will start with a PUD table entry that contains a pointer to a PMD table.
We need to find the index of the PMD entry using the function pmd index and
add it to the base address of the PMD table. This gives us a pointer to an entry
in the PMD table.

Listing 6.4: Accessing the page table at the PMD level
source : include/linux/pgtable.h#L109

/* include/linux/pgtable.h */

pmd_t *pmd_offset(pud_t *pud , unsigned long address) {

return pud_pgtable (*pud) + pmd_index(address);

}

/* right shift by 21 positions and AND with 511 (512 -1) */

unsigned long pmd_index(unsigned long address) {

return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);

}

/* arch/x86/include/asm/pgtable.h */

/* Align the address to a page boundary (only keep the bits

in the range 13 -52),

add this to PAGE_OFFSET and return */

pmd_t *pud_pgtable(pud_t pud) {

return (pmd_t *) __va(pud_val(pud) & pud_pfn_mask(pud));

}

/* arch/x86/include/asm/page.h */

/* virtual address = physical address + PAGE_OFFSET (start

of direct -mapped memory) */

#define __va(x) ((void *)((unsigned long)(x)+PAGE_OFFSET))

First consider the pmd index inline function that takes the virtual address
as input. We need to next extract bits 22-30. This is achieved by shifting the
address to the right by 21 positions and then extracting the bottom 9 bits (using
a bitwise AND operation). The function returns the entry number in the PMD
table. This is multiplied with the size of a PMD entry and then added to the
base address of the PMD page table that is obtained using the pud pgtable

function.
Let us now look at the pud pgtable function. It relies on the va inline

function that takes a physical address as input and returns the virtual address.
The reverse is done by the pa inline function (or macro). In va(x), we

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/pgtable.h#L109

© Smruti R. Sarangi 302

simply add the argument x to an address called PAGE OFFSET. This is not the
offset within a page, as the name may suggest. It is an offset into a memory
region where the page table entries are stored. These entries are stored in
the direct-mapped region of kernel memory. The PAGE OFFSET variable points
to some point within this region (depending upon the architecture). We are
realizing a linear conversion between a physical and virtual address.

The inline pud pgtable function invokes the va function with an argument
that is constructed as follows. pud valpud returns the bits corresponding to the
physical address of the PMD table. We compute a bitwise AND between this
value and a constant that has all 1s between bit positions 13 and 52 (rest 0s).
The reason is that the maximum physical address size is assumed to be 252

bytes in Linux. Furthermore, we are aligning the address with a page boundary,
hence, the first 12 bits (offset within the page) are set to 0. The last reason
is that in the physical address stored in each entry, bits 1-12 are used to store
some other metadata information as well. All of this needs to be removed prior
to the access.

This physical address is then converted to a virtual address using the va

function. The output of the pud pgtable function thus returns the virtual
address of the starting address of the PMD page table. We then add the offset
of the PMD entry to this address and find the virtual address of the PMD entry.

6.2.3 Pages and Folios

Let us now discuss pages and folios in more detail. For every physical page
(frame), we store a data structure called the page structure (struct page). It
is important to store some metadata in this structure such as the nature of the
page, whether it is anonymous or not, whether it is a memory-mapped page and
if it is usable for DMA operations. Note that a page in memory can actually
represent many kinds of data: regular data, I/O data, atomic variables, etc. We
thus need an elaborate page structure.

As discussed earlier, a folio is a set of pages that has contiguous addresses in
both the physical and virtual address spaces. They can reduce the translation
overhead significantly and make it easier to interface with I/O devices and DMA
controllers.

struct page

struct page is defined in include/linux/mm types.h. It is a fairly complex
data structure that extensively relies on unions. Recall that a union in C is a
data type that can store multiple types of data in the same memory location.
It is a good data type to use if we want it to store many types of data, where
only one type is used at a time.

The page structure begins with a set of flags that indicate the status of the
page. They indicate whether the page is locked, modified, in the process of being
written back, active, already referenced or reserved for special purposes. Then
there is a union whose size can vary from 20 to 40 bytes depending upon the
configuration. We can store a bunch of things such as a pointer to the address
space (in the case of I/O devices), a pointer to a pool of pages, or a page
map (to map DMA pages or pages linked to an I/O device). Then we have a
reference count, which indicates the number of entities that are currently holding

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/mm_types.h

303 © Smruti R. Sarangi

a reference of the page. This includes regular processes, kernel components or
even external devices such as DMA controllers.

We need to ensure that before a page is recycled (returned to the pool of
pages), its reference count is equal to zero. Furthermore, it is important to
note that the page structure is ubiquitously used and that too for numerous
purposes, hence it needs to have a very flexible structure. This is where using
a union with a large number of options for storing diverse types of data turns
out to be very useful.

Folios

Let us now discuss folios [Corbet, 2022,Corbet, 2021]. A folio is a generalization
of a page. It is a compound or aggregate page that contains multiple pages. The
number of pages needs to be a power of 2. The pages are contiguously allocated
in both the physical and virtual memory spaces. The reason that folios were
introduced is because memories are very large as of today, and it is very difficult
to handle the millions of pages that they contain. The sheer translation overhead
and overhead for maintaining page-related metadata and information is quite
prohibitive. Hence, a need was felt to group consecutive pages into larger units
called folios. Specifically, a folio points to the first page in a group of pages
(compound page). Additionally, it stores the number of pages that are a part
of it.

The earliest avatars of folios were meant to be a contiguous set of virtual
pages, where the folio per se was identified by a pointer to the head page (first
page). It was a single entity insofar as the rest of the kernel code was concerned.
This in itself is a very useful concept because we are grouping contiguous virtual
memory pages based on some notion of application-level access patterns.

If the first page of the folio is accessed, then in all likelihood the rest of the
pages will also be accessed very soon given that modern programs have a lot
of spatial locality. Hence, it makes a lot of sense to prefetch these pages to
memory in anticipation of them being used in the near future. However, over
the years the thinking has somewhat changed even though folios are still in
the process of being fully integrated into the kernel. Now most interpretations
try to also achieve contiguity in the physical address space as well. This has a
lot of advantages with respect to I/O, DMA accesses and reduced translation
overheads. Let us discuss another angle.

Almost all server-class machines as of today have support for huge pages,
which have sizes ranging from 2 MB (21 address bits) to 1 GB (30 address bits)
1. They reduce the pressure on the TLB and page tables, and also increase
the TLB hit rate as well. We maintain a single entry for the entire huge page.
Consider a 1 GB huge page. It can store 218 4 KB pages. If we store a single
mapping for it, then we are basically reducing the number of entries that we
need to have in the TLB and page table substantially. Of course, this requires
hardware support and also may sometimes be perceived to be wasteful in terms
of memory. It can lead to internal fragmentation. However, in today’s day and
age we have a lot of physical memory. For many applications this is a very
useful facility and the entire 1 GB region can be represented by a set of folios –
this simplifies its management significantly.

1Please relate the numbers 21 and 30 to the structure of the page table. It will be clear
why these numbers were chosen. They naturally fall at table boundaries.

© Smruti R. Sarangi 304

Furthermore, I/O and DMA devices do not use address translation. They
need to access physical memory directly, and thus they benefit by having a
large amount of physical memory allocated to them. It becomes very easy to
transfer a huge amount of data directly to/from physical memory if they have
a large contiguous allocation. Additionally, from the point of view of software,
it also becomes much easier to interface with I/O devices and DMA controllers
because this entire memory region can be mapped to a folio. The concept of a
folio along with a concomitant hardware mechanism such as huge pages enables
us to perform such optimizations quite easily. We thus see that the folio as a
multifaceted mechanism that enables prefetching and efficient management of
I/O and DMA device spaces.

Given that a folio is perceived to be a single entity, all usage and replacement-
related information (LRU stats) are maintained at the folio level. It basically
acts like a single page. It has its own permission bits as well as copy-on-write
status. Whenever a process is forked, the entire folio acts as a single unit like
a page and is copied in totality when there is a write to any constituent page.
LRU information and references are also tracked at the folio level.

Mapping the struct page to the Page Frame Number (and vice versa)

Let us now discuss how to map a page or folio structure to a page frame number
(pfn). There are several simple mapping mechanisms. Listing 6.5 shows the code
for extracting the pfn from a page table entry (pte pfn macro). We simply right
shift the address by 12 positions (PAGE SHIFT).

Listing 6.5: Converting the page frame number to the struct page and vice
versa
source : include/asm− generic/memory model.h#L39

#define pte_pfn(x) phys_to_pfn(x.pte)

#define phys_to_pfn(p) ((p) >> PAGE_SHIFT)

#define __pfn_to_page(pfn) \

({ unsigned long __pfn = (pfn); \

struct mem_section *__sec = __pfn_to_section(__pfn); \

__section_mem_map_addr(__sec) + __pfn; \

})

The next macro pfn to page has several variants. A simpler avatar of
this macro simply assumes a linear array of page structures. There are n such
structures, where n is the number of frames in memory. The code in Listing 6.5
shows a more complex variant where we divide this array into a bunch of sec-
tions. We figure out the section number from the pfn (page frame number), and
every section has a section-specific array. We find the base address of this array
and add the page frame number to it to find the starting address of the corre-
sponding struct page. The need for having sections will be discussed when we
introduce zones in physical memory (in Section 6.2.5).

https://elixir.bootlin.com/linux/v6.2.12/source/include/asm-generic/memory_model.h#L39

305 © Smruti R. Sarangi

Point 6.2.1

It may appear that if there are N frames in memory, then each
section needs to store N struct pages. This is not true. It
would be wasteful in terms of space. Let us thus explain Linux’s
sparse memory mapping mechanism that uses the notion of bi-
ased pointers. The function section mem map addr does not ex-
actly return the base address of the section. Let us assume that
it returns address A (unit is struct page *). We actually return
A = base address − starting page frame number. For example, if
starting page frame number is 32 and the pfn is 36, then we are actu-
ally adding 4 to the base address of the section.

6.2.4 Managing the TLB

TLB Design

Let us now look at TLB-specific optimizations. Note that it is important to
manage the TLB well primarily because TLB misses are expensive. We need
to perform expensive page walks either in software or hardware. In either case,
the overheads are quite high. This is why in modern processors, the TLB is
a heavily optimized structure and a lot of effort is spent in minimizing TLB
misses. The TLB also lies on the critical path of address translation and is thus
a very latency-sensitive component. Hence, it is necessary to create a scheme
that leverages both software and hardware to efficiently manage the TLB.

A TLB is designed like a cache (typically with 4 to 16-way associativity). A
modern TLB has multiple levels: an i-TLB for instructions, a d-TLB for data
and then a shared L2 TLB. In some processors it is possible to configure the
associativity, however in most high-performance implementations, the associa-
tivity cannot be modified. Each entry of the TLB corresponds to a virtual page
number; it stores the number of the physical frame/page and also contains some
metadata that includes the page protection bits.

Let us consider a baseline implementation. The TLB maintains the map-
pings corresponding to a virtual address space. This is why when we load a new
user process, we change the virtual address space by changing the base address
of the page table that is stored in the CR3 register. There is also a need to
flush the TLB because the entries in the TLB now correspond to the previous
user process. This is very expensive because this increases the TLB miss rate
significantly for both the new process as well as for the process that is being
swapped out (when it runs again).

There is clearly a need to optimize this process such that we do not have to
flush the entire TLB – we can minimize the number of misses. TLBs in Intel
processors already provide features where we can mark some entries as global(G)
and ensure that they are not flushed. For instance, the entries corresponding
to the kernel’s virtual address space can be marked as global – they will then
not get flushed. Recall that the virtual address space is partitioned between the
user address space and the kernel address space based on the value of the MSB
bit (48th or 57th bit). The kernel’s address space remains the same across user
processes and thus there is no need to flush its entries from the TLB. Keeping
such concerns in mind, Intel provides the invlpg instruction that can be used

© Smruti R. Sarangi 306

to selectively invalidate entries in the TLB without flushing all of it. This is
clearly one positive step in effective TLB management – only flush those entries
that will either cause a correctness problem or will not be required in the near
future.

We can do more. The main reason for flushing the TLB in whole or in part
is because a mapping may not remain valid once we change the user process.
By splitting the virtual address space between user processes and the kernel,
we were able to avoid TLB flushes when we switch to the kernel primarily
because we use a different non-overlapping set of virtual addresses. Hence, we
can maintain the mappings of the user process that got interrupted – there is
no issue. Again while exiting the kernel, if we are returning to the same user
process, which is most often the case, then also there is no need to flush the TLB
because we are not loading a new virtual address space. The mappings that were
already there in the TLB can be reused. Note that there is a possibility that the
kernel may have evicted some mappings of the user process, however we expect
a lot of them to be still there, and they can be reused. This will consequently
reduce the TLB miss rate once the user process starts to run again. This is
the main advantage that we gain by partitioning the overall 48 or 57-bit virtual
address space – it avoids costly TLB flushes (one while moving from the user
process to the kernel and while switching back).

Now assume the more general case where we are switching to a new user
process. In this case, the existing mappings for the user process that is being
swapped out cannot be reused, and they have to be removed. It turns out that
we can do something intelligent here ,. If we can annotate each TLB entry with
the process ID, then we do not have to flush the TLB. Instead, we can make
the process ID a part of the memory access and use only those mappings in the
TLB that belong to the current process. This is breaking a key abstraction in
OS design – we are blurring the separating line between software and hardware.
We have always viewed process IDs as pure software-level concepts, but now
we want to make them visible to the hardware. We are breaking the long-held
abstraction that software and hardware should be as independent of each other
as possible. However, if we do not do this, then our TLB miss rates will be very
high because every time the user process changes, its entries have to be flushed
from the TLB. Hence, we need to find some kind of middle ground here.

ASIDs

Intel x86 processors have the notion of the processor context ID (PCID), which
in software parlance is also known as the address space ID (ASID). We can take
some important user-level processes that are running on a CPU and assign them
a PCID each. Then their corresponding TLB entries will be tagged/annotated
with the PCID. Furthermore, every memory access will now be annotated with
the PCID (conceptually). Only those TLB entries will be considered that match
the given PCID. Intel CPUs typically provide 212 (=4096) PCIDs. One of them
is reserved, hence practically 4095 PCIDs can be supported. There is no separate
register for it. Instead, the top 12 bits of the CR3 register are used to store the
current PCID.

Now let us come to the Linux kernel. It supports the generic notion of ASIDs
(address space IDs), which are meant to be architecture independent. Note that
it is possible that an architecture does not even provide ASIDs.

307 © Smruti R. Sarangi

In the specific case of Intel x86-64 architectures, an ASID is the same as a
PCID. This is how we align a software concept (ASID) with a hardware concept
(PCID). Given that the Linux kernel needs to run on a variety of machines and
all of them may not have support for so many PCIDs, it needs to be slightly
more conservative, and it needs to find a common denominator across all the
architectures that it is meant to run on. For the current kernel (v6.2), the
developers decided support only 6 ASIDs, which they deemed to be enough.
This means that out of 4095, only 6 PCIDs on an Intel CPU are used. From
a performance perspective, the kernel developers found this to be a reasonable
choice.

This feature is leveraged as follows. Intel provides the INVPCID instruction
that can be used to invalidate all the entries having a given PCID. This instruc-
tion needs to be used when the task finally terminates. Note that there is no
need to flush the TLB or remove entries when there is a user process switch
with the PCID mechanism.

Lazy TLB Mode

Let us now consider the case of multithreaded processes that run multiple
threads across different cores. They share the same virtual address space, and
it is important that if any TLB modification is made on one core, then the
modification is sent to the rest of the cores to ensure program consistency and
correctness. For instance, if a certain mapping is invalidated/removed, then
it needs to be removed from the page table, and it also needs to be removed
from the rest of the TLBs (on the rest of the cores). This requires us to send
many inter-processor interrupts (IPIs) to the rest of the cores such that they
can run the appropriate kernel handler and remove the TLB entry. As we would
have realized by now, this is an expensive operation. It may interrupt a lot of
high-priority tasks.

Consider a CPU that is currently executing another process. Given that
it is not affected by the invalidation of the mapping, it need not invalidate it
immediately. Instead, we can set the CPU state to the “lazy TLB mode”.

Point 6.2.2

Note that kernel threads do not have separate page tables. A common
kernel page table is appended to all user-level page tables. At a high
level, there is a pointer to the kernel page table from every user-level
page table. Recall that the kernel and user virtual addresses only differ
in their highest bit (MSB bit), and thus a pointer to the kernel-level page
table needs to be there at the highest level of the five-level composite
page table.

Let us now do a case-by-case analysis. Assume that the kernel in the course
of execution tries to access the invalidated page – this will create a correctness
issue if the mapping is still there. Note that since we are in the lazy TLB mode,
the mapping is still valid in the TLB of the CPU on which the kernel thread is
executing. Hence, in theory, the kernel may access the user-level page that is
not valid at the moment. This operation should not be allowed.

Note that access to user-level pages does not happen arbitrarily. Instead,

© Smruti R. Sarangi 308

such accesses happen via functions with well-defined entry points in the kernel.
Some examples of such functions are copy from user and copy to user. At
these points, special checks can be made to find out if the pages that the kernel
is trying to access are currently valid or not. If they are not valid because
another core has invalidated them, then an exception needs to be thrown.

Next, assume that the kernel switches to another user process. In this case,
either we flush all the pages of the previous user process (solves the problem) or if
we are using ASIDs, then the pages remain but the current task’s ASID/PCID
changes. There is thus no correctness issue. Now consider shared memory-
based inter-process communication that involves the invalidated page. This
happens through well-defined entry points. Here checks can be carried out –
the invalidated page will thus not be accessed.

Finally, assume that the kernel switches back to a thread that belongs to
the same multithreaded user-level process. In this case, prior to doing so, the
kernel checks if the CPU is in the lazy TLB mode and if any TLB invalidations
have been deferred. If this is the case, then all such deferred invalidations
are completed immediately prior to switching out from the kernel mode. This
finishes the work.

The sum total of this discussion is that to maintain TLB consistency, we do
not have to do it in mission mode. There is no need to immediately interrupt all
the other threads running on the other CPUs and invalidate some of their TLB
entries. Instead, this can be done lazily and opportunistically, as and when there
is sufficient computational bandwidth available – critical high-priority processes
need not be interrupted for this purpose.

6.2.5 Partitioning Physical Memory

NUMA Machines

Let us now look at partitioning physical memory. The kernel typically does not
treat all the physical memory or the physical address space as a flat space, even
though this may be the case in many simple embedded architectures. However,
in a large server-class processor, this is often not the case, especially when we
have multiple chips on the motherboard. In such a nonuniform memory access
(NUMA) machine, where we have multiple chips and computing units on the
motherboard, some memory chips are closer than the others to a given CPU.
Clearly the main memory latency is not the same and there is a notion of
memory that is close to the CPU versus memory that is far away in terms of
the access latency. There is thus a non-uniformity in the main memory access
latency, which is something that the OS needs to leverage for guaranteeing good
performance.

Refer to Figure 6.11 that shows a NUMA machine where multiple chips
(group of CPUs) are connected over a shared interconnect. They are typically
organized into clusters of chips/CPUs and there is a notion of local memory
within a cluster, which is much faster than remote memory (present in another
cluster). We would thus like to keep all the data and code that is accessed within
a cluster to remain within the local memory. We need to minimize the number
of remote memory accesses as far as possible. This needs to be explicitly done to
guarantee the locality of data and ensure a lower average memory access time.
In the parlance of NUMA machines, each cluster of CPUs or chips is known as

309 © Smruti R. Sarangi

Shared interconnect

Node

Figure 6.11: NUMA machine

a node. All the computing units (e.g. cores) within a node have roughly the
same access latency to local memory as well as remote memory. We need to
thus organize the physical address space hierarchically.

Zones

Given that the physical address space is not flat, there is a need to partition
it. Linux refers to each partition as a zone [Rapoport, 2019]. The aim is to
partition the set of physical pages (frames) in the physical address space into
different non-overlapping sets.

Each such set is referred to as a zone. They are treated separately and dif-
ferently. This concept can easily be extended to also encompass frames that
are stored on different kinds of memory devices. We need to understand that
in modern systems, we may have memories of different types. For instance,
we could have regular DRAM memory, flash/NVMe drives, plug-and-play USB
memory, and so on. This is an extension of the NUMA concept where we have
different kinds of physical memories, and they clearly have different characteris-
tics with respect to the latency, throughput and power consumption. Hence, it
makes a lot of sense to partition the frames across the devices and assign each
group of frames (within a memory device) to a zone. Each zone can then be
managed efficiently and appropriately (according to the device that it is associ-
ated with). Memory-mapped I/O and pages reserved for communicating with
the DMA controller can also be brought within the ambit of such zones.

Listing 6.6 shows the details of the enumeration type zone type. It lists the
different types of zones that are normally supported in a regular kernel.

The first is ZONE DMA, which is a memory area that is reserved for physical
pages that are meant to be accessed by the DMA controller. It is a good idea to
partition the memory and create an exclusive region for the DMA controller. It
can then access all the pages within its zone freely, and we can ensure that data
in this zone is not cached. Otherwise, we will have a complex sequence of cache
evictions to maintain consistency with the DMA device. Hence, partitioning the
set of physical frames helps us clearly mark a part of the memory that needs to
remain uncached as is normally the case with DMA pages. This makes DMA
operations fast and reduces the number of cache invalidations and writebacks
substantially.

Next, we have ZONE NORMAL, which is for regular kernel and user pages.

© Smruti R. Sarangi 310

Sometimes we may have a peculiar situation where the size of the physical
memory actually exceeds the total size of the virtual address space. This can
happen on some older processors and also on some embedded systems that use
16-bit addressing. In such special cases, we would like to have a separate zone
of the physical memory that keeps all the pages that are currently not mapped
to virtual addresses. This zone is known as ZONE HIGHMEM.

User data pages, anonymous pages (stack and heap), regions of memory used
by large applications, and regions created to handle large file-based applications
can all benefit from placing their pages in contiguous zones of physical memory.
For example, if we want to design a database’s data structures, then it is a good
idea to create a large folio of pages that are contiguous in physical memory. The
database code can lay out its data structures accordingly. Contiguity in physical
addresses ensures better prefetching performance. A hardware prefetcher can
predict the next frame very accurately. The other benefit is a natural alignment
with huge pages, which leads to reduced TLB miss rates and miss penalties. To
create such large contiguous regions in physical memory, pages have to be freely
movable – they cannot be pinned to physical addresses. If they are movable, then
pages can dynamically be consolidated at runtime and large holes – contiguous
regions of free pages – can be created. These holes can be used for subsequent
allocations. It is possible for one process to play spoilsport by pinning a page.
Most often these are kernel processes. These actions militate against the creation
of large contiguous physical memory regions. Hence, it is a good idea to group
all movable pages and assign them to a separate zone where no page can be
pinned. Linux defines such a special zone called ZONE MOVABLE that comprises
pages that can be easily moved or reclaimed by the kernel.

The next zone pertains to novel memory devices that cannot be directly man-
aged by conventional memory management mechanisms. This includes parts of
the physical address space stored on nonvolatile memory devices (NVMs), mem-
ory on graphics cards, Intel’s Optane memory (persistent memory) and other
novel memory devices. A dedicated zone called ZONE DEVICE is thus created
to encompass all these physical pages that are stored on a device that is not
conventional DRAM.

Such unconventional devices have many peculiar features. For example, they
can be removed at any point of time without prior notice. This means that no
copy of pages stored in this zone should be kept in regular DRAM – they will
become inconsistent. Page caching is therefore not allowed. This zone also
allows DMA controllers to directly access device memory. The CPU need not
be involved in such DMA transfers. If a page is in ZONE DEVICE, we can safely
assume that the device that hosts the pages will manage them.

It plays an important role while managing nonvolatile memory (NVM) de-
vices. All its constituent frames are mapped to this zone and there is a notion of
isolation between device pages and regular memory pages. The key idea here is
that device pages need to be treated differently in comparison to regular pages
stored on DRAM because of device-specific idiosyncrasies.

Point 6.2.3

NVM devices are increasingly being used to enhance the capacity of
the total available memory. We need to bear in mind that nonvolatile

311 © Smruti R. Sarangi

memory devices are in terms of performance between hard disks and
regular DRAM memory. The latency of a hard disk is in milliseconds,
whereas the latency of nonvolatile memory is typically in microseconds
or in the 100s of nanoseconds range. The DRAM memory on the other
hand has a sub 100-ns latency. The advantage of nonvolatile memories
is that even if the power is switched off, the contents still remain in the
device (persistence). The other advantage is that it also doubles up as a
storage device and there is no need to actually pay the penalty of page
faults when a new process starts or the system boots up. Given the
increasing use of nonvolatile memory in laptops, desktops and server-
class processors, it was incumbent upon Linux developers to create a
device-specific zone.

Listing 6.6: The list of zones
source : include/linux/mmzone.h#L610

enum zone_type {

/* Physical pages that are only accessible via the DMA

controller */

ZONE_DMA ,

/* Normal pages */

ZONE_NORMAL ,

/* Useful in systems where the physical memory exceeds

the size of max virtual memory.

We can store the additional frames here */

#ifdef CONFIG_HIGHMEM

ZONE_HIGHMEM ,

#endif

/* It is assumed that these pages are freely movable and

reclaimable */

ZONE_MOVABLE ,

/* These frames are stored in novel memory devices like

NVM devices. */

#ifdef CONFIG_ZONE_DEVICE

ZONE_DEVICE ,

#endif

/* Dummy value indicating the number of zones */

__MAX_NR_ZONES

};

Sections

Recall that in Listing 6.5, we had talked about converting page frame numbers
to page structures and vice versa. We had discussed the details of a simple linear
layout of page structures and then a more complicated hierarchical layout that
divides the zones into sections.

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/mmzone.h#L610

© Smruti R. Sarangi 312

It is necessary to take a second look at this concept now (refer to Figure 6.12).
To manage all the memory and that too efficiently, it is necessary to sometimes
divide it into sections and create a 2-level hierarchical structure. The first
reason is that we can efficiently manage the list of free frames within a section
because we use smaller data structures. Second, sometimes zones can be non-
contiguous. It is thus a good idea to break a non-contiguous zone into a set of
sections, where each section is a contiguous chunk of physical memory. Finally,
sometimes there may be intra-zone heterogeneity in the sense that the latencies
of different memory regions within a zone may be slightly different in terms of
performance or some part of the zone may be considered to be volatile, especially
if the device tends to be frequently removed.

Given such intra-zone heterogeneity, it is a good idea to partition a zone
into sections such that different sections can be treated differently by the kernel
and respective memory management routines. Next, recall that the code in
Listing 6.5 showed that each section has its mem map that stores the mapping
between page frame numbers (pfns) and struct pages. This map is used to
convert a pfn to a struct page.

PFN struct page

one-to-one
Zone

sec�ons

mem_sec�on
There is a mem_map for each
sec�on that stores this mapping

Figure 6.12: Zones and sections

Detailed Structure of a Zone

Now, let us look at the structure of a zone (struct zone) shown in Listing 6.7.
Each zone is associated with a NUMA node (node field), whose details are stored
in the pglist data structure.

Each zone has a starting page frame number and an ending page frame
number. The starting page frame number is stored in zone start pfn. The
field spanned pages is used to compute the last page frame number of the
zone. It is important to note that it does not represent the size of the zone. The
number of pages in the zone is instead stored in a separate field present pages.
In the case of spanned pages, we use it as follows. The ending page frame
number is zone start pfn + spanned pages - 1. If the zone is contiguous
then present pages is equal to spanned pages, otherwise they are different.

The field managed pages refers to the pages that are actively managed by
the kernel. This is needed because there may be a lot of pages that are a part
of the zone, but the kernel is currently not taking any cognizance of them and
in a sense is not managing them.

Next, we store the name of the zone and also have a hierarchical list of free
regions within a zone (free area[]). free area[] is used by the buddy allo-
cator (see Section 6.4.1) to allocate contiguous memory regions in the physical

313 © Smruti R. Sarangi

address space.

Listing 6.7: struct zone

source : include/linux/mmzone.h#L705

struct zone {

int node; /* NUMA node */

/* Details of the NUMA node */

struct pglist_data *zone_pgdat;

/* zone_end_pfn = zone_start_pfn + spanned_pages - 1 */

unsigned long zone_start_pfn;

atomic_long_t managed_pages;

unsigned long spanned_pages;

unsigned long present_pages;

/* Name of the zone */

const char *name;

/* List of the free areas in the zone (managed by the

buddy allocator) */

struct free_area free_area[MAX_ORDER];

}

Details of a NUMA Node

Let us now look at the details of a NUMA node (see Listing 6.8). struct

pglist data stores the relevant details. A NUMA node is identified by its node
ID (node id). Each node can contain several zones. These are stored in the
array node zones. We can have one zone of each type at the most. The number
of populated zones in a node is given by the nr zones variable.

On the other hand, node zonelists contains references to zones in all the
nodes. This structure contains global information across the system. In general,
the convention is that the first zone in each zone list belongs to the current node.
The present and spanned pages retain the same meanings.

We would like to specifically point out two more important fields. The first
is a pointer to a special kernel process kswapd. It is a background process, also
known as a daemon, that finds infrequently used pages and migrates them to
the swap space. This frees up much-needed memory space. Additionally, on a
NUMA machine, it migrates pages across NUMA nodes based on their access
patterns. This is a rather low-priority process that runs in the background but
nevertheless does a very important job. It frees up memory and balances the
used memory across NUMA nodes.

The field lruvec refers to LRU-related information that is very useful for
finding the pages that have been infrequently used in the recent past. This is
discussed in great detail in Section 6.3.2.

Listing 6.8: struct pglist data

source : include/linux/mmzone.h#L1121

typedef struct pglist_data {

/* NUMA node id */

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/mmzone.h#L705
https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/mmzone.h#L1121

© Smruti R. Sarangi 314

int node_id;

/* Hierarchical organization of zones */

struct zone node_zones[MAX_NR_ZONES];

struct zonelist node_zonelists[MAX_ZONELISTS];

int nr_zones;

/* #pages owned by the NUMA node (node_id) */

unsigned long node_present_pages;

unsigned long node_spanned_pages;

/* Pointer to the page swapping daemon */

struct task_struct *kswapd;

/* LRU state information */

struct lruvec __lruvec;

} pg_data_t;

6.3 Page Management

Let us start with describing the necessary background for understanding the
page management data structures in the kernel. First, we need to understand
Bloom filters as described in Section C.6.1 of Appendix C. The other basic
concept is reverse mapping, which we shall cover in this section. Then we shall
move on to describe the MGLRU (multi-generation LRU) page replacement
algorithm that Linux uses.

Note that this section will use Bloom filters heavily and thus reading it from
the appendix is essential. It is a probabilistic data structure that is used to test
for set membership. It answers the basic query, “Is x an element of set S?” It
allows false positives but never allows false negatives. Gradually, as more items
are added to the Bloom filter, the probability of false positives increases, hence
after a point there is a need to reset it – clear all its entries.

6.3.1 Reverse Mapping

The most important piece of background that we need to introduce is the con-
cept of reverse mapping. Here, we map physical pages to virtual pages. It
could be a one-to-many mapping. In a virtual memory system, it is necessary
to have such a reverse mapping because if a physical page is moved or swapped
out, then the corresponding page tables of all the processes that have an entry
pointing to it need to be updated. For example, if a physical page P is mapped
in two processes A and B, and P is swapped out, then there is a need to use
this mechanism. We need to somehow remember the fact that two processes –
A and B – use the physical page P . Once, P is swapped out or its protection
bits are changed, we need to first find all the processes that have a mapping
for it. In this case, they would be A and B. Next, we need to access the page
tables of A and B and make the appropriate changes.

In this context, note that there is a fair amount of physical page sharing
in Linux even when shared memory is not used. This is because processes are
created by making fork calls. Each such call begins with sharing all the pages in

315 © Smruti R. Sarangi

COW (copy-on-write) mode. Unless a later exec call loads a fresh set of pages,
a fair amount of residual page sharing still remains.

Before we start, let us refresh our memory. Recall the core concept of a vma
region (struct vm area struct) introduced in Section 3.1.10. It points to a
contiguous region of virtual memory. It stores the starting and ending virtual
addresses, type of the region, etc. Page sharing between processes happens at
the granularity of these vma regions. We shall see that a vma region makes it
easier to manage sharing. Specifically, we can have two kinds of vma regions or
pages: anonymous pages and file-backed pages. Anonymous pages correspond
to data that is generated in the course of execution. Stack and heap pages are
anonymous pages. File-backed pages correspond to memory-mapped files. They
are typically stored and managed by a page cache.

Let us discuss the reverse mapping problem for anonymous pages. For file-
backed pages, solving this problem is easier to solve. Here, we use a centralized
structure that maintains a tree of vmas that are mapped to bytes in the file.
Given a physical address, we can map it to a fixed file offset. Then, we can use
that information to find the vmas that may contain the physical address. The
general problem for anonymous pages is much harder.

Background of the Problem

Given a physical page, we need to find the processes that have mappings for it.
Given the physical address, we have already seen how to map it to a struct

page in Section 6.2.3. A straightforward solution appears to be that we store
a list of processes (task structs) within each struct page. This is a bad
idea because there is no limit on the number of processes that can map to a
page. We thus need to store the list of processes in a linked list. However, it is
possible that a lot of space is wasted because numerous pages may be shared in
an identical manner. We will end up creating many copies of the same linked
list.

Moreover, many a time there is a requirement to apply a common policy to
a group of pages. For example, we may want all the pages to have a given access
permission. Given that we are proposing to treat each page independently, this
is bound to be quite difficult. We thus have two problems at hand.

Mapping Problem For every page, we need to have a linked list of virtual
pages.

Policy Problem It should be easy to set a common policy for a group of pages.

Let us propose a solution to the Policy Problem. We will then introduce a
few tricks and the Mapping Problem will get solved on its own !!!

Let us not have a linked list associated with each struct page. This is not
a scalable solution. This will create a need to go and change the attributes of
every virtual page one by one, in case we want to apply a certain access policy
to a large memory region. Let us instead focus on the Policy Problem. We can
add a pointer to a vma (vm area structure) in each struct page. Accessing
the vma that contains a page is thus quite easy. The common policy and access
permissions can be stored in the associated vma.

This may appear to be a good solution on cursory examination. However,
it is quite problematic. A physical page may map to multiple vmas across

© Smruti R. Sarangi 316

processes. Hence, having just a single pointer does not help. Also, vmas tend
to get split and merged quite frequently. This can happen due to changing
the access permissions of memory regions (due to allocation or deallocation),
moving groups of pages between different regions of a program or enforcing
different policies for different regions within a vma. Examples of the last category
include different policies with regard to prefetching, swapping priorities and
making pages part of huge pages. vmas can also get copied in the case of fork
operations. This will create a one-to-many mapping between physical pages
and vmas. Given the fluid nature of vmas, it is not advisable to directly add
a pointer to a vma in each struct page. If there is a change, then we need to
walk through the page structures corresponding to all the constituent pages of
a vma and make changes. This will take O(N) time. We desire a solution that
takes O(1) time.

Notion of the anon vma

In all such cases, we leverage a standard pattern namely virtualization. The
idea is to virtualize a vma by adding another data structure in the middle.
This is a standard technique that we have used in many other places as well.
The designers of Linux introduced the anon vma structure that introduces an
additional level of indirection. Each physical page now points to an anon vma,
which is nothing but a dummy stub. The anon vma is accessible via the mapping
field (see Figure 6.13) in a struct page. Now a group of physical pages can
point to the same anon vma. The anon vma, in turn, can point to a set of vmas.
The idea here is that a group of pages are shared across a set of processes –
each with its own vma. Policies can be enforced by each process independently.
It can record the policy in its private vma.

struct page anon_vma
mapping
field

struct page
map

ping

fiel
d

Figure 6.13: Pages pointing to an anon vma

Each anon vma is thus associated with a set of vmas. This is easily under-
stood given that when a process is forked, an additional vma is created in the
child process for each vma in the parent process. They are identical. Now both
the vmas – one that corresponds to the parent and one that corresponds to the
child – are associated with the same set of pages. This basically means that
an anon vma that represents a subset of these pages is now associated with two
vmas across two processes (the parent and the child). The relationship is as fol-

lows: 2 vma ↔ 1 anon vma (refer to Figure 6.14(a)). The advantage of adding
a new level of indirection in terms of the anon vma is that no page needs to
change its mapping. We only need to tweak the mapping between an anon vma

and vmas of processes. New processes may start via forking and old processes
may terminate. All of these changes can be easily taken care of at this level.

317 © Smruti R. Sarangi

Given that the number of vmas is far lower than the number of pages, this is
going to be very fast.

Now, consider another case, which is more complicated. Consider a case
where a parent process has forked a child process. In this case, they have their
separate vmas that point to the same anon vma. This is the one that the shared
pages also point to. Now, assume a situation where the child process writes to
a page that is shared with the parent. This means that a new copy of the page
has to be created for the child due to the copy-on-write (CoW) mechanism.
This new page needs to point to an anon vma, which clearly cannot be the one
that the previously shared page was pointing to. This is because the new page
is in the private address space of the child process. Hence, it needs to point
to a new anon vma that corresponds to pages exclusive to the child. There is
an important question that needs to be answered here. What happens to the
child’s vma? Assume it had 1024 pages, and the write access was made to the
500th page. Do we then split it into three parts: 0-499, 500, 501-1023? The
first and last chunks of pages are unmodified up till now. However, we made a
modification in the middle, i.e., to the 500th page. This page is now pointing to
a different anon vma.

anon_vma

vma

vma

vma

anon_vma

anon_vma

(a) (b)

Figure 6.14: (a) Many-to-one mapping (b) One-to-many mapping

Splitting the vma is not a good idea. This is because a lot of pages in a
vma may see write accesses when they are in a copy-on-write (COW) mode. We
cannot keep on splitting the vma into smaller and smaller chunks. This is a lot of
work and will prohibitively increase the number of vma structures that need to
be maintained. Hence, as usual, the best solution is to do nothing, i.e., not split
the vma. Instead, we maintain the vma of the child process, as it is, but assume
that all the pages in its range may not be mapped to the same anon vma. Some
may point to the parent process’s anon vma and some may point to the child pro-
cess’s anon vma. We thus have the following relationship: 1 vma ↔ 2 anon vma .
Recall that we had earlier shown a case where we had the following relationship:
2 vma ↔ 1 anon vma (refer to Figure 6.14(b)).

Let us now summarize our learnings.

Point 6.3.1

This is what we have understood about the relationship between a vma

and anon vma.

• For a given virtual address region, every process has its own private
vma. It is stored in the maple tree of mm struct.

© Smruti R. Sarangi 318

• A physical page points to only a single anon vma. The anon vma

acts as a stub.

• Multiple vma structures across processes need to point to a single
anon vma owing to the fork operation.

• A copy-on-write operation causes a page to change its anon vma.
However, the vma structures should be kept intact in the interest
of time. The page now points to an anon vma corresponding to the
process’s private pages.

• vma regions can be dynamically split or merged depending on user
actions such as changing the policies or access permissions with
respect to a set of memory addresses.

• Summary: There is a many-to-many relationship between vma and
anon vma structures.

anon_vma

vma

vma

anon_vma

vma

Figure 6.15: Example of a many-to-many mapping

We thus observe that a complex relationship between the anon vma and vma

has developed by this point (refer to Figure 6.15 for an example). Maintaining
this information and minimizing runtime updates to such structures is not easy.
There is a classical time and space trade-off here. If we want to minimize time,
we should increase space. Moreover, we desire a data structure that captures the
dynamic nature of the situation. The events of interest that we have identified
up till now are as follows: a fork operation, a write to a COW page, splitting
or merging a vma and killing a process.

Let us outline our requirements using a few one-line principles.

1. Every anon vma should know which vma structures it is associated with.

2. Every vma should know which anon vma structures it is associated with.

3. The question that we need to answer now is whether these two structures
should directly point to each other or is another intermediate structure
required? In other words, is another additional level of indirection between
vma and anon vma required?

We shall show the C code of an anon vma after we describe another structure
known as the anon vma chain, which is an intermediate structure.

319 © Smruti R. Sarangi

anon vma chain

The question that we need to answer here is whether we should have an array
of vma pointers in each anon vma and an array of anon vma pointers in each vma

to implement a many-to-many mapping? This seems to be the most straight-
forward solution. The kernel developers did think about this, but they found
scalability problems [Corbet, 2010].

Consider a linked list of vma structures. This linked list can be reasonably
large if there is a lot of sharing, especially in enterprise-scale applications. To
make updates to a vma, there is a need to lock sections of the linked list along
with the vma structure. If there are concurrent updates to vma structures, then
scalability is limited. It is not possible to make many concurrent modifications.

This is where another level of indirection between the vma and anon vma will
help. The Linux developers thus proposed a simple data structure that embodies
the connection between a vma and anon vma. It is called an anon vma chain.

It is designed as shown in Listing 6.9 (pictorially represented in Figure 6.16).

Listing 6.9: anon vma chain

source : include/linux/rmap.h#L82

struct anon_vma_chain {

struct vm_area_struct *vma; /* pointer to a vma */

struct anon_vma *anon_vma; /* pointer to an anon_vma

*/

struct list_head same_vma; /* pointer to other

anon_vma_chains corresponding to the same task */

struct rb_node rb; /* pointer to a node in

the red -black tree */

};

vma anon_vmaavc

Figure 6.16: The relationship between vma, anon vma and anon vma chain

(avc). A dashed arrow indicates that anon vma does not hold a direct pointer
to the avc, but holds a reference to a red-black tree that in turn has a pointer
to the avc. This is a secondary detail. For all practical purposes, an anon vma

has a pointer to each avc that points to it.

We can think of the anon vma chain (avc) structure as a link between a
vma and an anon vma. We had aptly referred to it as a level of indirection. An
advantage of this structure is that we can create a logical separation between
a vma and anon vma. Processes can work on the vma without worrying about
its connections with anon vmas. Adding connections is quite easy now. We
just need to add a new anon vma chain node to a linked list that is maintained
by each vma. These avc nodes store pointers to anon vmas that are possibly
associated with pages that map to the address encompassed by the vma.

Let us now get into the specifics. Each vma has an avc as its member. It is
a part of a linked list of avcs. Each avc has a member called same vma that

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/rmap.h#L82

© Smruti R. Sarangi 320

links it to other nodes of a doubly linked list of avcs (refer to Figure 6.17). All
of these avcs correspond to the same vma.

Point 6.3.2

A virtual memory region in a task is represented by the vma structure.
The physical pages that map to this virtual memory region may have
been allocated by different processes such as the current process and
ancestor processes. They thus point to different anon vmas. However,
there is a need to link all of them together and associate them with
the current vma. This is achieved effectively by creating a link structure
called an anon vma chain (abbreviated as avc).

Figure 6.17: anon vma chain nodes connected together as a list (all correspond-
ing to the same vma)

anon vma

Now, let us look at the code for the anon vma in Listing 6.10.

Listing 6.10: anon vma

source : include/linux/rmap.h#L31

struct anon_vma {

struct anon_vma *root;

struct anon_vma *parent;

struct rb_root_cached rb_root; /* interval tree of

avcs */

}

We don’t actually store any state. It is indeed a dummy node. We just
store pointers to other data structures. All that we want is that all the pages in
a virtual memory region that were allocated by the same process point to the
same anon vma. Now, given an anon vma, we need to quickly access all the vma
structures that may contain a mapping to any page that points to it (across
processes). Then we need to solve the reverse mapping problem. This has two
steps. ① We first locate the vma that may contain a mapping to the physical

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/rmap.h#L31

321 © Smruti R. Sarangi

page. ② Next, we find the virtual page within the vma that is mapped to the
given physical page. Let us solve problem ① first.

Before we proceed to understand the code, we need to appreciate that Linux
relies a lot on storing data implicitly. Recall the design of the linked list. A
structure just stores a generic linked list node. It then traverses the linked
list and use a macro to reach the first byte of the encapsulating structure of a
linked list node. Hence, we need to always proceed bearing in mind that all the
information may not be visible to us.

The problem is as follows. Given a struct page, we find its associated
anon vma. Each physical page points to a single anon vma. From the anon vma,
we need to reach all the vmas (across processes) that possibly map the page. To
facilitate this, every anon vma points to the root of a red-black tree via its mem-
ber rb root. Each node of this tree is an anon vma chain node (anon vma chain-
>rb). The red-black tree can quickly be used to find all the vma structures that
contain a page. Additionally, we organize all the anon vma structures as a tree,
where each node points to a parent anon vma and the root of the tree.

Let us explain with an example. Consider a process where all its pages are
mapped to its anon vma node. These pages were private to it. Now it got
forked. Then in the child process, a new avc will be created to point to the
anon vma of the parent. This means that at this point of time, the red-black
tree corresponding to the parent has two avcs: one belongs to the parent and
one belongs to the child. Furthermore, the child process will have its anon vma.
Given that it arose out of the parent, a parent pointer is added to the anon vma

of the parent.
We shall look at more extensive examples later.

Revisiting the vma

Let us revisit the vm area struct (vma) structure that stores information re-
garding a virtual memory region. We have been referring to its short form vma

all along. It needs to now be linked with all the additional data structures that
we have just created.

As we have discussed, a vma is not directly pointed to by pages. The pages
instead point to an anon vma that is associated with a vma. This means that
each vma needs to have at least one dedicated anon vma associated with it and
an anon vma chain node that connects them both. Figure 6.18 reflects this
relationship.

For storing both these fields of information, the vma has two fields (refer to
Listing 6.11).

Listing 6.11: anon vma chain

source : include/linux/mm types.h#L567

struct vm_area_struct {

...

struct list_head anon_vma_chain;

struct anon_vma *anon_vma;

...

}

The private anon vma is named anon vma and the list of anon vma chain

nodes is represented by its namesake anon vma chain.

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/mm_types.h#L567

© Smruti R. Sarangi 322

vma

anon_vma

avc

Figure 6.18: Updated relationship between vma, anon vma and avc

As we have discussed, it is possible that because of fork operations, many
other vma structures (across child processes) are associated with the same anon vma

via avcs. This is the anon vma that is associated with the vma of the parent
process. Figure 6.19 shows an example where the parent process’s anon vma is
associated with multiple vmas across child processes via avcs.

vma

anon_vma

avc

avc
avc

Parent
process

Child1
Child 2

Red-black tree

Figure 6.19: Example of a scenario with multiple processes where the parent
anon vma is associated with multiple child vmas.

Explanation with Examples: fork and copy-on-write

vma

anon_vma

avc vma

anon_vma

avc

avc

Parent process Child process

Red-black tree

Figure 6.20: Reverse map structures after a fork operation

Let us now consider the case of a fork operation. The reverse map (rmap)

323 © Smruti R. Sarangi

structures are shown in Figure 6.20 for both the parent and child processes. The
parent process has one vma and an associated anon vma. The fork operation
starts out by creating a copy of all the rmap structures of the parent. The child
thus gets an avc that links its vma to the parent’s anon vma. This ensures that
all shared pages point to the same anon vma and the structure is accessible from
both the child and parent processes.

The child process also gets its own private anon vma that is pointed to by
its vma. This is for pages that are exclusive to it and not shared with its parent
process.

Given a page frame number, we can locate its associated struct page, and
then using its mapping field, we can retrieve a pointer to the anon vma. The
next problem is to locate all the avcs that point to the anon vma. As discussed
before, every anon vma points to a red-black tree that stores the set of avcs

that point to it.
The child process has two avcs. They are connected to each other and the

child process’s vma using a doubly linked list.

vma

anon_vma

avc vma

anon_vma

avc

avc

Parent process Child process

Red-black tree

page

Figure 6.21: A page pointing to the parent’s anon vma

Let us now consider the case of a shared page that points to the anon vma

of the parent process (refer to Figure 6.21). After a fork operation, this page is
stored in copy-on-write (COW) mode. Assume that the child process writes to
the page. In this case, a new copy of the page needs to be made and attached
to the child process. This is shown in Figure 6.22.

The new page now points to the private anon vma of the child process. It is
now the exclusive property of the child process.

Next, assume that the child process is forked. In this case, the rmap struc-
tures are replicated, and the new grandchild process is also given its private
vma and anon vma (refer to Figure 6.23). In this case, we create two new avcs

for the grandchild. One avc points to the anon vma of the child process and
the other avc points to the anon vma of the original parent process. The figure
shows two red-black trees: one corresponds to the parent process’s anon vma

and the other corresponds to the child process’s anon vma. The avcs of each
process are also nicely linked using a doubly linked list, which also includes its
vma.

After repeated fork operations, it is possible that a lot of avcs and anon vmas

© Smruti R. Sarangi 324

vma

anon_vma

avc vma

anon_vma

avc

avc

Parent process Child process

Red-black tree

old
page

new
page

Figure 6.22: A new page pointing to the child’s anon vma

vma

anon_vma

avc vma

anon_vma

avc

avc

Parent process Child process

Red-black tree

vma

anon_vma

avc

avc

Grandchild process avc

Figure 6.23: The structure of the rmap structures after a second fork operation
(fork of the child)

get created. This can lead to a storage space blowup. Modern kernels optimize
this. Consider the anon vma (+ associated avc) that is created for a child process
such that pages that are exclusive to the child can point to it. In some cases,
instead of doing this, an existing anon vma along with its avc can be reused.
This introduces an additional level of complexity; however, the space savings
justify this design decision to some extent. This is quite complex. Hence, this
is out of the scope of the book.

Notion of the Index

We have not solved the Mapping Problem completely. After locating a vma, we
need to find the virtual page that maps to the physical page. We cannot afford

325 © Smruti R. Sarangi

to do a linear search, which would entail checking the page table of every virtual
page in the vma. There needs to be a solution that runs in constant time.

Consider the first time that a physical page is allocated and mapped to a
virtual page. Let the virtual page be a part of vma v. Assume that v contains N
pages, and the ith page in v is mapped. We term i as the index of the physical
page. This is stored in the associated struct page.

Next, if there is a need for reverse mapping, the physical page frame number
p will be presented to vma v. Its associated struct page is retrieved and index
i is used to compute the virtual address vaddr. The formula for computing
vaddr is as follows.

vaddr = v.start addr + i << 12 (6.1)

Every vma has a starting virtual address. Subsequently, the vma corresponds
to a range of contiguous virtual addresses. The ith page is an offset from the
starting address of the vma. The starting address is v.start addr. We need to
multiply i with the page size, 4 KB. This is the same as left-shifting i by 12
positions. Once, we have computed the virtual address, we can access its page
table entry. If its page frame number is p, we have a match.

We can use the same logic while accessing vmas of child processes. They
would be created by forking the parent. Hence, the child vma will have the same
size as the parent vma. Even if the starting virtual address of the child vma is
different, it does not matter. Equation 6.1 can still be used. Sometimes a vma

can grow or shrink. This can happen to the vma of the parent process or the
vma of the child process. Assume that a vma started out with containing 100
pages. Let us number them 0 . . . 99. It later gets shrunk and contains only the
virtual pages 50-70. In this case, the numbers 50 and 70 are stored in the vma

data structure. When it is presented with index i, we need to first check if it
is between 50 and 70. If it is not between them, we can conclude that the vma

does not contain any mapping for the page. Otherwise, we compute the virtual
address using the following equation.

vaddr = v.start addr + (i− 50) << 12 (6.2)

If bookkeeping is done correctly, then the virtual address can easily be found
out from the index in θ(1) time.

6.3.2 The MGLRU Algorithm for Page Replacement

Key Design Decisions

Let us first understand the key decisions that are made while designing a page
replacement algorithm. The first objective is to leverage temporal and spatial
locality, wherever it exists. Moreover, we need to ensure that the algorithm for
finding pages to evict executes as quickly as possible. In this regard, a typical
approach that is employed in most modern systems is the slow-path-fast-path
method. We can create a fast method to satisfy most of the requests. In a small
minority of the cases, there would be a need to use the much slower path.

The aim is to always create a design using simple heuristics that generalizes
well. This is because, a general-purpose operating system needs to run many

© Smruti R. Sarangi 326

kinds of workloads, those that exist today and the ones that will be created in
the foreseeable future.

The MG-LRU algorithm is a sophisticated variant of the WS-Clock Second
Chance Algorithm that we studied in Section 6.1.2. “MG” stands for “multi-
generation”. Its key features are as follows:

• The algorithm divides pages into different generations based on the recency
of the last access. If a page is accessed, there is a fast algorithm to upgrade
it to the latest generation.

• The algorithm reclaims pages in the background by swapping them out to
the disk. It swaps pages that belong to the oldest generations.

• It ages the pages very intelligently.

• It is tailored to running large workloads and integrates well with the notion
of folios. Recall that a folio is a compound page. It contains multiple pages
that are contiguous in both the virtual and physical address spaces.

Key Data Structures

struct lruvec

Listing 6.12: struct lruvec

source : include/linux/mmzone.h#L508

struct lruvec {

/* contains the physical memory layout of the NUMA

node */

struct pglist_data *pgdat;

/* Number of refaults */

unsigned long refaults [ANON_AND_FILE];

/* LRU state */

struct lru_gen_struct lrugen;

struct lru_gen_mm_state mm_state;

};

Linux uses the lruvec structure to store metadata. Its code is shown in
Listing 6.12. The first field is a pointer to a pglist data structure that stores
the details of the zones in the current NUMA node (discussed in Sections 6.2.5
and 6.2.5).

Next, we store the number of refaults for anonymous and file-backed pages. A
refault is a page access after it has been evicted. We clearly need to minimize the
number of refaults. If it is high, it means that the page replacement and eviction
algorithms are suboptimal – they evict pages that have a high probability of
being accessed in the near future.

The next two fields lrugen and mm state store important LRU-related state.
lrugen is of type lru gen struct (shown in Listing 6.13). mm state is of type
lru gen mm state (shown in Listing 6.14).

struct lru gen struct

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/mmzone.h#L508

327 © Smruti R. Sarangi

Listing 6.13: struct lru gen struct

source : include/linux/mmzone.h#L407

struct lru_gen_struct {

/* sequence numbers */

unsigned long max_seq;

unsigned long min_seq[ANON_AND_FILE];

/* When was a generation created */

unsigned long timestamps[MAX_NR_GENS];

/* 3D array of lists */

struct list_head lists[MAX_NR_GENS][ANON_AND_FILE][

MAX_NR_ZONES];

};

The crux of the MGLRU algorithm is the concept of a generation. Every
generation is a sequence number. Higher the sequence number, more recent
is the generation. max seq is the largest sequence number. It corresponds
to the latest generation. There are two types of minimum sequence numbers.
We maintain minimum sequence numbers for file-backed pages and anonymous
pages, respectively. Hence, we have a 2-element array min seq.

The moment a page is accessed, it is promoted to a higher generation. It is
obvious that we need to evict pages from the earliest generation (one with the
minimum sequence number). Once all the pages in the earliest generation have
been evicted, the minimum sequence number can be incremented. We would
not like to evict pages in a newly-created generation. This is why there is a
need to store the time at which a generation was created. This is stored in
the timestamps array. No page should be evicted if its generation was created
recently (less than a certain threshold time).

lists is a 3D array of linked lists. It is indexed by the generation number,
type of page (anonymous or file) and zone number. Each entry in this 3D array
is a linked list whose elements are struct pages. The idea is to link all the
pages of the same type that belong to the same generation in a single linked
list. We can traverse these lists to find pages to evict.

struct lru gen mm state

Listing 6.14: struct lru gen mm state

source : include/linux/mmzone.h#L444

struct lru_gen_mm_state {

unsigned long seq;

/* Number of page walkers */

int nr_walkers;

/* head and tail pointers in the linked list */

struct list_head *head;

struct list_head *tail;

/* array of Bloom filters */

unsigned long *filters[NR_BLOOM_FILTERS];

};

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/mmzone.h#L407
https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/mmzone.h#L444

© Smruti R. Sarangi 328

Let us next discuss the code of lru gen mm state (see Listing 6.14). This
structure stores the current state of a page walk – a traversal of all the pages
to find pages that should be evicted and written to secondary storage (swapped
out). At one point, multiple threads may be performing page walks (stored in
the nr walkers variable).

The field seq is the current sequence number that is being considered in
the page walk process. Recall that each sequence number corresponds to a
generation. The head and tail pointers point to consecutive elements of a
linked list of mm struct structures. In a typical page walk, we traverse all the
pages that satisfy certain criteria of a given process, then we move to the next
process (its mm struct), and so on. This process is easily realized by storing a
linked list of mm struct structures. The tail pointer points to the mm struct

structure that was just processed (pages traversed). The head pointer points to
the mm struct that needs to be processed.

Finally, we use an array of Bloom filters to speed up the page walk process
(we shall see later). Whenever, the word Bloom filter comes up, the only thing
that one should have in mind is that in a Bloom filter a false negative is not
possible, but a false positive is possible.

Page Access Tracking

Now that we have introduced the data structures used in the MGLRU algorithm,
let us look at the missing piece. Prior to using the data structures, we need to
have some basic information stored in each page table entry. We need to know
if it has been recently accessed or not.

Listing 6.15: Tracking page accesses
source : arch/x86/include/asm/pgtable.h#L330

pte_t pte_mkold(pte_t pte)

{

return pte_clear_flags(pte , _PAGE_ACCESSED);

}

A standard approach is to have a “recently accessed bit” in each page table
entry. Periodically, all such bits are set to zero. Next, whenever a page is
accessed, the corresponding bit is set to 1. Ideally, if hardware support is
available, this can be done automatically. This would entail making the entire
page table accessible to hardware. As of 2024, some x86 processors have this
facility. They can automatically set this flag. A simple scan of the page table
can yield the list of pages that have been recently accessed (after the last time
that the bits were cleared). If hardware support is not available, then there is a
need to mark the pages as inaccessible. This will lead to a soft page fault, when
the page is subsequently accessed. This is not a full-scale (hard) page fault,
where the contents of the page need to be read from an external storage device.
It is instead, a soft page fault, where after recording the fact that there was a
page fault, its access permissions are changed – the page is made accessible once
again. We basically deliberately induce fake page faults to record page accesses.
Recall that we had done something similar in Section 2.2.3 and Section 6.1.2,
when we had created a practical implementation of the LRU algorithm.

https://elixir.bootlin.com/linux/v6.2.12/source/arch/x86/include/asm/pgtable.h#L330

329 © Smruti R. Sarangi

Regardless of the method used, once a page is accessed, the corresponding
bit is set either automatically by hardware or by the fake page fault mechanism.
Periodically, this bit needs to be cleared. This basically means that a page
needs to be marked as “not accessed” or unused (refer to Listing 6.15). Such
unused pages can subsequently be marked for eviction. We shall subsequently
learn that we periodically or on-demand scan all the pages, mark them unused
if required, and then ultimately evict them in due course of time.

Shrinking the Memory Footprint

Let us now discuss the situations when the LRU structures will be used to evict
pages or reclaim (replace) pages.

The kernel maintains a dynamic count of the number of pages that are in
main memory for each zone. It has an idea of the page pressure at all points of
time. Whenever, there are too many pages in memory, there is a need to evict
pages from memory and create space. There are two methods of dynamically
shrinking the memory footprint of zones in main memory. There is a passive
process and an active process.

The passive process uses a kernel daemon kswapd. Its job is to run peri-
odically, age pages and evict them. The basic idea is to compact the memory
footprint of different zones in main memory. All the zones are typically shrunk
by different degrees. It makes a call to the function evict folios that performs
the role of eviction. This function can also be called directly by other kernel
subsystems, especially if they feel that there are too many pages in memory.
This comprises the active process of evicting pages.

At this point of time, it is important to introduce the term page reclamation.
It is not the same as eviction – it is a more general term. Let us consider the
regular case first. A physical page in main memory is used to store data and is
mapped to a virtual page. In this case, reclamation simply means eviction. Let
us consider a few specialized cases next. The kernel acquires a set of pages and
creates page buffers that are used to store data. In this case, a page can simply
be released from the buffers and made accessible for general use. This is an
example of reclamation that does not require eviction. Another case arises when
we use file-backed pages. A section of a file is mapped to the physical address
space and the corresponding data is stored in memory. In this case, we can
dynamically shrink the part of the file that is mapped to physical memory and
release file-backed pages for general use. This is an example of page reclamation
where there is no eviction.

Shrinking the memory footprint thus involves a variety of mechanisms. We
can have plain old-fashioned eviction, or we can reclaim pages from specialized
page buffers. The sizes of the latter can be adjusted dynamically to release
pages and make them available to other processes.

Point 6.3.3

A page is said to be young if its recently accessed and its access bit is 1.
Otherwise, it is said to be old.

© Smruti R. Sarangi 330

The Need to Age

Let us understand the aging process in the MGLRU algorithm. As we have
discussed earlier, the sequence number indicates the generation. The smaller is
the sequence number (generation), the earlier is the generation.

The youngest generation number is lrugen->max seq. The oldest generation
numbers are lrugen->min seq[ANON] (anonymous pages) and lrugen->min seq[FILE]

(file-backed pages), respectively. Note that we are differentiating between them
because we wish to treat them differently. Next, we find the number of genera-
tions that are currently alive for a given type of pages.

First, assume that we are considering ANON pages and its minimum sequence
number is min seq. This means that the number of generations currently in
use is max seq - min seq + 1. If the number of sequence numbers is less than
a threshold MIN NR GENS, then we have too few active generations. We need
to increase the number of sequence numbers in use such that we have enough
generations in the system. If that does not happen, we will have too few gen-
erations and the information that we hold will be very coarse-grained. Hence,
in this case, we increment max seq by 1. It is important to note that by in-
crementing max seq we are automatically increasing the distance between an
existing sequence number (generation) and the current value of max seq. This
automatically ages the current pages by 1 generation. In fact, this is a neat trick
for aging all pages without actually modifying their data !!! All that matters is
the relative motion between the current sequence number and max seq – instead
of decrementing the former, we increment the latter.

Conversely, we also need to have a maximum cap on the number of gen-
erations we maintain. Let us name the upper threshold MAX NR GENS. Clearly
MAX NR GENS > MIN NR GENS. If it is very large, then it means that the genera-
tion information is too fine-grained, and thus it is of limited use.

Listing 6.16: The aging algorithm
source : mm/vmscan.c#L4468

1 /* There are too few generations. Aging is required */

2 if (min_seq + MIN_NR_GENS > max_seq) return true;

3

4 ...

5

6 /* There are too many generations. Aging is not required */

7 if (min_seq + MIN_NR_GENS < max_seq) return false;

8

9 /* Come here only if min_seq + MIN_NR_GENS == max_seq */

10 /* The aging logic */

11 if (max_gen_pages * MIN_NR_GENS > total)

12 return true;

13 if (min_gen_pages * (MIN_NR_GENS + 2) < total)

14 return true;

15

16 /* default */

17 return false;

Let us first understand, whether we need to run aging or not in the first
place. The logic is shown in Listing 6.16. The aim is to maintain the following
relationship: min seq+ MIN NR GENS == max seq. This means that we wish to

https://elixir.bootlin.com/linux/v6.2.12/source/mm/vmscan.c#L4468

331 © Smruti R. Sarangi

ideally maintain MIN NR GENS+1 sequence numbers (generations). The check in
Line 2 checks if there are too few generations. Then, definitely there is a need
to run the aging algorithm. On similar lines, if the check in Line 7 is true, then
it means that there are too many generations. There is no need to run the aging
algorithm.

Next, let us consider the corner case when there is equality. First, let us de-
fine what it means for a page to be max gen pages or min gen pages2. A page is
said to be max gen pages if its associated sequence number is equal to max seq.
This means that it belongs to the latest generation. On similar lines, a page is
said to be min gen pages if its sequence number follows this relationship: seq
+ MIN NR GENS == max seq. Given that we would ideally like to maintain the
number of generations at MIN NR GENS+1, we track two important pieces of infor-
mation – the number of max gen pages and min gen pages pages, respectively.
The important thing to keep in mind is that (| max gen pages | + | min gen pages |)
is not equal to the number of pages in the system. They represent two ends of
the range of sequence numbers.

The first check max gen pages× MIN NR GENS > total ensures that if there
are too many max gen pages pages, there is a need to run aging. The rea-
son is obvious. We want to maintain a balance between max gen pages and
min gen pages pages. Let us consider the next inequality: min gen pages× (MIN NR GENS+ 2) < total.
This clearly says that if the number of min gen pages pages is lower than what
is expected (too few), then also we need to age to distribute the rest of the pages
better across generations. An astute reader may notice that here that we add an
offset of 2, whereas we did not add such an offset in the case of max gen pages

pages. There is an interesting explanation here, which will help us appreciate
the nuances involved in designing practical systems.

Trivia 6.3.1

As mentioned before, we wish to ideally maintain only MIN NR GENS+1

generations. However, we also want to be conservative with aging. We
don’t want to do aging frequently. This is because aging does two things.
The first is that we increment max seq, which is a simple operation.
Subsequently, there is a need to scan pages and start promoting a few
to newer generations. This process also marks used pages as unused.
Hence, the subsequent scanning process finds pages to evict and ends up
increasing evictions. It is alright if the number of max gen pages pages
is slightly more than total/MIN NRGENS+ 1, which is the ideal value.
Over time some of them will get marked as unused. We do not want to
run aging very frequently. Hence, the multiplier is set to MIN NR GENS. In
the case of min gen pages pages, the safety margin works in the reverse
direction. We can allow the number of min gen pages pages to be as
low as total / (MIN NR GENS + 2). This is because, we do not want
to age too frequently, and in this case aging will cause min gen pages

pages to get evicted. We would also like to reduce unnecessary eviction.
Hence, we set the safety margin differently in this case.

2Note that the names of the variables are young and old (resp.) in code. They have been
renamed to avoid confusion with the terms “young” and “old” in the text.

© Smruti R. Sarangi 332

The Aging Process

Let us now understand the aging process in detail. We walk through all the
page tables and find pages to age. This involves a walk through all the page
tables of processes that are currently alive (mm struct structures). It is possible
to accelerate this process. Let us consider a PMD (page middle directory) that
contains a set of 512 page table entries. We can skip it altogether if its page
tables have not been accessed. The entire PMD can be marked to be unaccessed,
in this case. A Bloom filter is used for this purpose.

A Bloom filter stores a set of PMD addresses. If a PMD address is found
in the Bloom filter, then it most likely contains young pages (recently
accessed), or there is a false positive. The PMD is said to be young in this case.
In the case of a false positive, it means that the PMD predominantly contains
unaccessed pages – it was falsely flagged as recently accessed (or young). The
PMD is actually not young. To eliminate this possibility, there is therefore a
need to scan all the PMD’s constituent pages and check if the pages were recently
accessed or not. The young/old status of the PMD can then be accurately
determined. This entails extra work. However, if a PMD address is not found,
then it means that it predominantly contains old pages for sure (the PMD is
old). Given that Bloom filters do not produce false negatives, we can skip such
PMDs with certainty because they are old.

For the rest of the young pages, we clear the accessed bit and set the gener-
ation of the page or folio to max seq. Automatically, the rest of the pages get
aged.

Overview of the Eviction Algorithm

Let us look at the algorithm to evict folios (evict folios function). This
algorithm is invoked when there is a need to reduce the pressure on physical
memory. It could be that we are trying to start new processes or allocate more
memory to existing processes, and we find that there is not enough space in
physical memory. It could also be that a process is trying to access a large
file and a large part of the file needs to be mapped to memory (discussed in
Chapter 7), and there is no memory space. In this case, it is important to
create some space in memory by evicting a few folios that have aged. This is
where the notion of having multiple generations is useful – we simply evict the
earliest generation.

Any eviction algorithm takes the LRU state (struct lruvec) as input and
a factor called swappiness. The factor swappiness determines the priority of
the eviction algorithm. If this integer factor is close to 1, then it means that the
algorithm gives priority to evicting file-backed pages. On the other hand, if it is
closer to its maximum value 200, then it means that evicting anonymous pages
has the highest priority. We shall continue to see this conflict between evicting
anonymous and file-backed pages throughout this discussion. We always need
to make a choice between the two.

Let us thus answer this question first and look at the relevant part of the
kernel code. If no value for the swappiness is specified and, it is equal to 0, then
we choose to evict file-backed pages. This is the default setting in this code.
The rationale is as follows. In the case of anonymous pages, it is necessary to
allocate a page in the swap space and write it back upon an eviction. However,

333 © Smruti R. Sarangi

a file-backed page has a natural home on the storage device (the hard disk or
SSD in most cases). There is no need for additional swap space management.
Hence, in many cases, we may prefer to evict file-backed pages especially if we
are not reading important file-backed data.

This is one argument, however, there is another reverse argument that says
that evicting anonymous pages should have a higher priority. The rationale here
is that file-backed pages are often code pages (backed by the program’s binary
file and DLLs) or important pages that contain data that the program requires.
On the other hand, anonymous pages may sometimes not contain valid data
especially if it corresponds to parts of the heap or stack that do not have data
that is currently in use (it may very well be invalid because the stack has been
rolled back).

Both the arguments are correct in different settings. Hence, Linux pro-
vides both the options. If nothing is specified, then the first argument holds –
file-backed pages. However, if there is more information and the value of the
swappiness variable is in the range 1-200, then we have tunable priorities.

Kernel Code
In the context of this discussion, let us look at the relevant kernel code in
Listing 6.17. If swappiness is 0, then we choose the default option and decide to
evict file-backed pages. Otherwise, we compare the minimum sequence numbers
for both the types: file and anon. If anonymous pages have a lower generation,
then it means that they are more aged, and thus should be evicted. However,
if the reverse is the case – file-backed pages have a lower generation (sequence
number) – then we don’t evict them outright. We are slightly biased towards
them.

Listing 6.17: The algorithm that chooses the type of the pages/folios to evict
source : mm/vmscan.c#L4974

1 if (! swappiness) /* default */

2 type = LRU_GEN_FILE;

3 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])

4 type = LRU_GEN_ANON;

5 else if (swappiness == 1)

6 type = LRU_GEN_FILE;

7 else if (swappiness == 200)

8 type = LRU_GEN_ANON;

9 else if (!(sc ->gfp_mask & __GFP_IO)) /* I/O operations are

involved */

10 type = LRU_GEN_FILE;

11 else

12 type = get_type_to_scan(lruvec , swappiness , &tier);

Next, we look at the value of the swappiness. If it is 1 (minimum value),
then file-backed pages are evicted. Conversely, if it is 200, then anonymous
pages are evicted. These are extrema of the spectrum.

Next, we check if I/O operations will be required if we swap a page out such
as writing to the disk; we check whether the flag GFP IO is true or not (GFP
stands for Get Free Pages). In general, we require them, where I/O operations
are required to write the evicted page to swap space. However, in some contexts
such as atomic contexts, we would like to disallow this because evicting anony-
mous pages when I/O operations are underway can cause correctness problems.

https://elixir.bootlin.com/linux/v6.2.12/source/mm/vmscan.c#L4974

© Smruti R. Sarangi 334

In this case, we should evict file-backed pages. Given that they are already
backed up, eviction is a more seamless process.

If none of these conditions hold, it is necessary to find the type using a more
elaborate algorithm. We thus invoke the get type to scan function (scan pages
for eviction).

Finding the Type of Pages to Evict

We use a control- theory-inspired algorithm to balance the eviction of file-backed
and anonymous pages. We define the ctrl pos structure that contains the
following pieces of information: the total number of page faults, the number of
refaults and a quantity called the gain. A refault is an access to an evicted
page, which is not a desirable thing. We would ideally want the refault rate to
be as close to zero as possible, which means that we would not like an evicted
page to be accessed again (not in the near future at least).

Next, we define two variables namely sp (set point) and pv (process variable).
The goal of any such algorithm inspired by control theory is to set the process
variable equal to the set point (a pre-determined state of the system). We shall
stick to this generic terminology because such an algorithm is valuable in many
scenarios, not just in finding the type of pages to evict. It tries to bring two
quantities closer in the real world. Hence, we would like to explain it in general
terms.

The parameter gain plays an important role here. It sets the aggressiveness
of the system in determining the output. The output divided by the gain is
the normalized output. Across systems, typically there is a need to equalize
this. This means that if the gain is high, we can afford a higher output and vice
versa. Let us explain. For anonymous pages, gain is defined as the swappiness
(higher it is, more are the evicted anonymous pages) and for file-backed pages,
it is 200-swappiness. gain indirectly is a measure of the effort invested in
trying to evict a given type of pages. If it approaches 200, then we wish to only
evict anon pages, and if it approaches 1, we wish to only evict file pages. The
refault rate divided by the gain is the mean refault rate achieved per unit effort.
We would like this to be equal for file and anon pages.

Next, we initialize the sp and pv variables. The set point is set equal to
the eviction statistics ⟨ # refaults, #evictions, gain ⟩ of anon pages that are
clean (not accessed after the stats were reset). The process variable is set to
the eviction statistics of clean file pages. We need to now compare sp and pv.
Note that we are treating sp (anon) as the reference point here and trying to
ensure that “in some sense” pv approaches pv (file) approaches sp. This will
balance both of them, and we will be equally fair to both of them.

Point 6.3.4

In any control-theoretic algorithm, our main aim is to bring pv as close
to sp as possible. In this case also we wish to do so and in the process
ensure that both file and anon pages are treated fairly.

Let us do a case-by-case analysis and understand the rationale behind what
Linux does. First, we should avoid making decisions based on the absolute
number of file or anon refaults because the refault rate might be high, but the

335 © Smruti R. Sarangi

total number of evictions could also be high. Hence, it is a wiser idea to actually
look at the ratio (#refaults)/(#evictions) separately for file and anon pages.
Let us refer to this ratio as the normalized refault rate. We should then compute
a ratio of the ratios, or in other words a ratio of the normalized refault rates.
This makes somewhat more sense, because we are normalizing the number of
refaults with the total number of evictions. If this ratio of ratios (file/anon) is
relatively low, then clearly the normalized refault rate for file pages is low, and
thus it can be increased further by evicting a few file pages, and vice versa.
This will enhance fairness.

Note that we have not taken the swappiness into account yet. It determines
the gain for file and anon pages. As discussed before, the refault rate or
normalized refault rate divided by the gain is a measure of how much the mean
refault rate could be affected per unit effort. We would like this to be the same
for file and anon pages. This means that the system is not over or under-
responsive.

pv.refaulted

pv.total× pv.gain
≤ sp.refaulted

sp.total× sp.gain
(6.3)

This rationale is captured in Equation 6.3. If the normalized refault rate of
pv divided by its gain is less than the corresponding quantity of the set point,
then we modify the pv. In other words, we choose pages to evict from the pv
class (file class).

pv.refaulted

pv.total× pv.gain
≤ (sp.refaulted+ α)

(sp.total+ β)× sp.gain
(6.4)

Equation 6.3 is an ideal equation. In practice, Linux adds a couple of con-
stants to the numerator and the denominator to incorporate practical considera-
tions and maximize the performance of real workloads. Hence, the exact version
of the formula implemented in the Linux kernel v6.2 is shown in Equation 6.4.
The designers of Linux set α = 1 and β = 64. Note that these constants are
based on experimental results, and it is hard to explain them logically.

There is another small trick. If the absolute value of the file refaults is
low < 64, then MGLRU chooses to evict file-backed pages. The reason is that
most likely the application either does not access a file or the file accessed is
very small. On the other hand, every application shall have a large amount of
anonymous memory comprising stack and heap sections. Even if it is a small
application, the code to initialize it is sizable. Hence, it is good idea to evict
anon pages only if the file refault rate is above a certain threshold.

Now, we clearly have a winner. If the inequality in Equation 6.4 is true,
then pv is chosen (file), else sp is chosen (anon).

Scan the Folios

We iterate through all the zones that need to be shrunk. In each zone, we
scan all its constituent folios. The idea is to scan all the folios with the least
sequence number of the type of pages that need to be evicted. The structure
lrugen maintains such a list (see Listing 6.13).

Given a folio, we check whether it can be evicted or not. If the folio is
pinned, is in the process of being written back, was recently accessed or there is
a possibility of a race condition, then it is best to skip it. The folio should not

© Smruti R. Sarangi 336

be evicted at least till these conditions are true. The end result of this process
is the number and list of folios that can possibly be evicted.

There is a question of fairness here. Assume that our algorithm selects anon
folios to be evicted. It is true that they are all from the lowest generation.
However, it would be unfair to evict all of them. Some of them may have
been accessed a lot in the past. There is thus a need for doing some degree
of filtration here and identifying those folios for eviction that appear to be
“genuine” candidates. There is a need to split a generation into multiple tiers
where different tiers can be treated differently.

Tiers
Let us now delve into the notion of tiers. Let us count the number of references
to folios. A reference in this case is approximately counted, where the count is
incremented when there is a page fault (hard or soft), or we find the page has
been accessed on a page table scan. This reference count is indicative of the
frequency of accesses to pages within the folio. The tier is set to ⌈log(refs+1)⌉,
where refs is the number of references to the folio. Folios in lower tiers are in-
frequently referenced, while folios in higher tiers are more frequently referenced.
We would ideally like to evict folios in lower tiers. Folios in higher tiers may be
more useful. Recall that in Equation 6.4, we were comparing the statistics for
clean pages. They are in tier 0.

Assume that the type of pages chosen for eviction is T , and the other type
(not chosen for eviction) is T ′. The choice was made based on statistics for
tier 0. Let us now do a tier-wise analysis, and compare their normalized refault
rates by taking the gain into account tier-wise. We shall use Equation 6.4. We
will compare the normalized refault rates of all the tiers of T with tier 0 of T ′.

We may find that till a certain tier k, folios of type T need to be evicted
because their normalized refault rate divided by the gain is comparatively lower.
Given Equation 6.4 and the way in which we chose type T , we know that this
holds for tier 0 for sure. Let this property hold till tier k. Now, for tier k + 1
(≥ 1), the reverse is the case. It means that folios of type T ′ need to be evicted
as per the logic in Equation 6.4. If no such k exists, then nothing needs to be
done. Let us consider the case, when we find such a value of k.

�er 0 �er 1 �er 2 �er 3 �er 4Type chosen for
eviction (FILE/
ANON)

�er 0 �er 1 �er 2 �er 3 �er 4Other type

>> > <

Lower normalized
refault rate

Tier at which the
normalized refault

Increment the
genera�ons of
folios in these
�ers when

they are
scanned

rate is higher

Figure 6.24: The notion of tiers

In this case, the folios in tiers [0, k] of type T should be considered for eviction
as long as they are not pinned, being written back, involved in race conditions,

337 © Smruti R. Sarangi

etc. However, the folios in tiers k + 1 and beyond, should be given a second
chance because they have seen more references and have a comparatively higher
refault rate. If we compare tier-specific statistics, it is clear that by Equation 6.4
they should remain in memory. Instead of doing the same computation for the
rest of the folios in other tiers, we can simply assume that they also need to be
kept in memory for the time being. This is done in the interest of time and there
is a high probability of this being a good decision. Note that higher-numbered
tiers see an exponential number of more references. Hence, we increment the
generations of all folios in the range [k+1,MAX TIERS]. They do not belong
to the oldest generation anymore. They enjoy a second chance. Once a folio is
promoted to a new generation, we can clear its reference count. The philosophy
here is that the folio gained because of its high reference count once. Let it
not benefit once again. Let it start afresh after getting promoted to the higher
generation. This is depicted pictorially in Figure 6.24.

Eviction of a Folio

Now, we finally have a list of folios that can be evicted. Note that some folios
did get rescued and were given a second chance.

The process of eviction can now be started folio after folio. Sometimes it is
necessary to insert short delays in this process, particularly if there are high-
priority tasks that need to access storage devices or some pages in the folio are
being swapped out. This is not a one-shot process, it is punctuated with periods
of activity initiated by other processes.

Once a folio starts getting evicted, we can do some additional bookkeeping.
We can scan proximate (nearby) virtual addresses. The idea here is that pro-
grams tend to exhibit spatial locality. If one folio was found to be old, then
pages in the same vicinity should also be scrutinized. We may find many more
candidates that can possibly be evicted in the near future. For such candidate
pages, we can mark them to be old (clear the accessed bit) and also record
the PMD (Page Middle Directory) entries that comprise mostly of young pages.
These can be added to a Bloom filter, which will prove to be very useful later
in the page walk process. We can also slightly reorganize the folios here. If a
folio is very large, it can be split to several smaller folios.

Point 6.3.5

Such additional bookkeeping actions that are piggybacked on regular
operations like a folio eviction are a common pattern in modern operating
systems. Instead of operating on large data structures like the page table
in one go, it is much better to slightly burden each operation with a small
amount of additional bookkeeping work. For example, folio eviction is
not on the critical path most of the time, and thus we can afford to do
some extra work.

Once the extra work of bookkeeping is done, the folio can be written back
to the storage device. This would involve clearing its kernel state, freeing all
the buffers that were storing its data (like the page cache for file-backed pages),
flushing the relevant entries in the TLB and finally writing the folio back.

© Smruti R. Sarangi 338

The Process of Looking Around

In the previous subsection, we had mentioned that while evicting a folio, the
MGLRU algorithm also looks at nearby pages and marks them to be old. Let us
look at this process in some more detail (refer to the function lru gen look around

in the kernel code).

First, note that this function can be invoked in many different ways. We
have already seen one, which is at the time of evicting a folio. However, it
can also be invoked by the kernel daemon kswapd, which is a kernel process
that runs periodically; it tries to age and evict pages. Its job is to run in the
background as a low-priority process and clear pages from memory that are
unlikely to be used in the near future. Its job is to walk through the page
tables of processes, mark young pages as old (inspired by the clock-based page
replacement algorithms) and increment the generation of young entries. Note
that this process only considers young (recently accessed) pages. Old entries are
skipped. A fast and performance-efficient way of doing this is as follows.

We enter PMD addresses (2nd lowest level of the page table) in a Bloom filter
if they predominantly contain young pages. Now, we know that in a Bloom filter,
there is no chance of a false negative. This means that if it says that a given
PMD address is not there, it is not there for sure. Subsequently, when we walk
the page table, we query the Bloom filter to check if it has a given PMD address.
If the answer is in the negative, then we know that it is correct, and it is not
there because it contains mostly old pages. Given that there is no possibility of
an error, we can confidently skip scanning all the constituent page table entries
that are covered by the PMD entry. This will save us a lot of time.

Let us consider the other case, when we find a PMD address in the Bloom
filter. It is most likely dominated by young pages. The reason we use the term
“most likely” because Bloom filters can lead to false positive outcomes. We scan
the pages in the PMD region – either all or a subset of them at a time based
on performance considerations. This process of looking around marks young
folios as old on the lines of classic clock-based page replacement algorithms.
Moreover, note that when a folio is marked, all its constituent pages are also
marked. At this point, we can do some additional things. If we find a PMD
region to comprise mostly of young pages, then the PMD address can be added
to the Bloom filter. Furthermore, young folios in this region can be promoted to
the latest generation – their generation/sequence number can be set to max seq.
This is because they are themselves young, and they also lie in a region that
mostly comprises young pages. We can use spatial and temporal locality based
arguments to justify this choice.

6.3.3 Thrashing

Your author is pretty sure that everybody is guilty of the following performance
crime. The user boots the machine and tries to check her email. She finds
it to be very slow because the system is booting up and all the pages of the
email client are not in memory. She grows impatient, and tries to start the web
browser as well. Even that is slow. She grows even more impatient and tries to
write a document using MS Word. Things just keep getting slower. Ultimately,
she gives up and waits. After a minute or two, all the applications come up and
the system stabilizes. Sometimes if she is unlucky, the system crashes.

339 © Smruti R. Sarangi

What exactly is happening here? Let us look at it from the point of view of
paging. Loading the pages for the first time into memory from a storage device
such as a hard disk or even a flash drive takes time. Storage is several orders of
magnitude slower than main memory. During this time, if another application
is started, its pages also start getting loaded. This reduces the bandwidth of
the storage device and both applications get slowed down. However, this is
not the only problem. If these are large programs, whose working set (refer to
Section 6.1.3) is close to the size of main memory, then they need to evict each
other’s pages. As a result, when we start a new application, it evicts pages
of the applications that are already running. Then, when there is a context
switch, existing applications stall because crucial pages from their working set
were evicted. They suffer from page faults. Their pages are then fetched from
memory. However, this has the same effect again. These pages displace the
pages of other applications. This cycle continues. This phenomenon is known
as thrashing. A system goes into thrashing when there are too many applications
running at the same time and most of them require a large amount of memory.
They end up evicting pages from each other’s working sets, which just increases
the page fault rate without any beneficial outcome.

It turns out that things can get even worse. The performance counters
detect that there is low CPU activity. This is because most of the time is
going in servicing page faults. As a result, the scheduler tries to schedule even
more applications to increase the CPU load. This increases the thrashing even
further. This can lead to a vicious cycle, which is why thrashing needs to be
detected and avoided at all costs.

Linux has a pretty direct solution to stop thrashing. It tries to keep the
working set of an application in memory. This means that once a page is
brought in, it is not evicted very easily. The page that is brought in (upon
a page fault) is most likely a part of the working set. Hence, it makes little
sense to evict it. The MGLRU algorithm already ensures this to some extent.
A page that is brought into main memory has the latest generation. It takes
time for it to age and be a part of the oldest generation and become eligible for
eviction. However, when there are a lot of applications, the code in Listing 6.16
can trigger the aging process relatively quickly because we will just have a lot
of max gen pages pages. This is not a bad thing when there is no thrashing.
We are basically weeding out min gen pages pages. However, when thrashing
sets in, such mechanisms can behave in erratic ways.

There is thus a need for a master control. The eviction algorithm simply
does not allow a page to be evicted if it was brought into memory in the last N
ms. In most practical implementations, N = 1000. This means that every page
is kept in memory for at least 1 second. This ensures that evicting pages in the
working set of any process is difficult. Thrashing can be effectively prevented
in this manner.

However, there is one problem here. Assume that an application is trying
to execute, but its pages cannot be loaded to memory because of the aforemen-
tioned rule. In this case, it may wait in the runqueue for a long time. This will
make it unresponsive. To prevent this, Linux simply denies it permission to run
and terminates it with an “Out of Memory” (OOM) error. It has a dedicated
utility called the OOM killer whose job is to terminate such applications. This
is a form of admission control where we limit the number of processes. Along
with persisting working set pages in memory for a longer duration, terminating

© Smruti R. Sarangi 340

new processes effectively prevents thrashing.

Definition 6.3.1 Thrashing

Thrashing refers to a phenomenon where we run too many applications
and all their working sets do not fit in memory. They thus end up evicting
pages from each other’s working sets on a continual basis and most of the
time their execution is stalled. The scheduler may sense that the CPU
load is low and further schedule more processes, which exacerbates the
problem. This vicious cycle has the potential to continue and ultimately
bring down the system.

6.4 Kernel Memory Allocation

Let us now discuss kernel memory allocation, which is quite different from mem-
ory allocation schemes in the user space. We have solved almost all user-level
problems using virtual memory and paging. We further added some structure
to the user-level virtual address space. Recall that every user process has a
virtual memory map where the virtual address is divided into multiple sections
such as the stack, heap, text section, etc.

We had also discussed the organization of the kernel’s virtual address space
in Section 6.2.1. Here we saw many regions that are either not “paged”, or where
the address translation is a simple linear function. This implies that contiguity
in the virtual address implies contiguity in the physical address space as well.
We had argued that this is indeed a very desirable feature especially when we are
communicating with external I/O devices, DMA controllers and managing the
memory space associated with kernel-specific structures. Having some control
over the physical memory space was deemed to be a good thing.

On the flip side, this will take us back to the bad old days of managing a
large chunk of contiguous memory without the assistance of paging-based sys-
tems that totally delink the virtual and physical address spaces, respectively.
We may again start seeing a fair amount of external fragmentation. Notwith-
standing this concern, we also realize that in paging systems, there is often a
need to allocate a large chunk of contiguous physical addresses. This is quite
beneficial because prefetching-related optimizations are possible. In either case,
we are looking at the same problem, which is maintaining a large chunk of con-
tiguous memory while avoiding the obvious pitfalls: management of holes and
uncontrolled external fragmentation

Recall that we had discussed the base-limit scheme in Section 6.1.1. It was
solving a similar problem, albeit ineffectively. We had come across the problem
of holes, and it was very difficult to plug holes or solve the issues surrounding
external fragmentation. We had proposed a bunch of heuristics such as first-fit,
next-fit and so on, however we could not come up with a very effective method
of managing the memory this way. It turns out that if we have a bit more
of regularity in the memory accesses, then we can use many other ingenious
mechanisms to manage the memory better without resorting to conventional
paging. We will discuss several such mechanisms in this section.

341 © Smruti R. Sarangi

6.4.1 Buddy Allocator

Let us start with discussing one of the most popular mechanisms for kernel mem-
ory allocation namely buddy allocation. It is often used for managing physical
memory, however as we have discussed such schemes are useful for managing any
kind of contiguous memory including the virtual address space. Hence, without
looking at the specific use case, let us look at the properties of the allocator
where the assumption is that the addresses are contiguous (most often physical,
sometimes virtual).

128 KB

64 KB 64 KB

32 KB32 KB

Allocate 20 KB

128 KB

64 KB 64 KB

32 KB32 KB

Allocated 20 KB

After some time

Full

Figure 6.25: Buddy allocation

The concept of a buddy is shown in Figure 6.25. Let us explain the key idea
informally first. Consider a region of memory whose size in bytes or kilobytes is
a power of 2. For example, in Figure 6.25, we consider a 128 KB region. Assume
that we need to make an allocation of 20 KB. We split the 128 KB region into
two regions that are 64 KB each. They are said to be the buddies of each other.
Then we split the left 64 KB region into two 32 KB regions, which are again
buddies of each other. Now we can clearly see that 20 KB is between two powers
of two: 16 KB and 32 KB. Hence, we take the leftmost 32 KB region and out
of that we allocate 20 KB to the current request. We basically split a large free
region into two equal-sized smaller regions until the request lies between the
region size and the region size divided by two. We are basically overlaying a
binary tree on top of a linear array of pages.

If we traverse the leaves of this buddy tree from left to right, then they
essentially form a partition of the single large region. An allocation can only be
made at the leaves. If the request size is less than half the size of a leaf node
that is unallocated, then we split it into two equal-sized regions (contiguous in
memory), and continue to do so until we can just about fit the request. Note
that throughout this process, the size of each subregion is still a power of 2.

Now assume that after some time, we get a request for a 64 KB block of
memory. Then as shown in the second part of Figure 6.25, we allocate the
remaining 64 KB region (right child of the parent) to the request.

Let us now free the 20 KB region that was allocated earlier (see Figure 6.26).
In this case, we will have two 32 KB regions that are free and next to each other
(they are siblings in the tree). There is no reason to have two free regions at the
same level. Instead, we can get rid of them and just keep the parent, whose size
is 64 KB. We are essentially merging free regions (holes) and creating a larger
free region. In other words, we can say that if both the children of a parent
node are free (unallocated), they should be removed, and we should only have
the parent node that coalesces the full region. The parent now becomes a leaf.

© Smruti R. Sarangi 342

128 KB

64 KB 64 KB

page buddy

Figure 6.26: Freeing the 20 KB region allocated earlier

Let us now look at the implementation. We refer to the region represented
by each node in the buddy tree as a block. Its minimum granularity of storage
is one page.

Implementation

We start by revisiting the free area array in struct zone (refer to Section 6.2.5).
We shall define the order of a node in the buddy tree. The order of a leaf node
that corresponds to the smallest possible region – one page – is 0. Its parent
has order 1. The order keeps increasing by 1 till we reach the root. Let us
now represent the tree as an array of lists: one list per order. All the free (un-
allocated) nodes of the tree (of the same order) are stored one after the other
(left to right) in an order-specific list. A node represents an aggregate page,
which stores a block of memory depending upon the order. Thus, we can say
that each linked list is a list of compound pages, where each compound page is
actually an aggregate page that may point to N contiguous 4 KB pages, where
N is a power of 2. Note that each such compound page needs to be completely
unallocated for it to be a part of the list.

The buddy tree is thus represented by an array of linked lists – struct

free area free area[MAX ORDER]. Refer to Listing 6.18, where each struct

free area is a linked list of free nodes (of the same order). The root’s order
is MAX ORDER - 1. In each free area structure, the member nr free refers to
the number of free blocks.

There is a subtle twist involved here. We actually have multiple linked
lists – one for each migration type. The Linux kernel classifies pages based on
their migration type: it is based on whether they can move, once they have
been allocated. One class of pages cannot move after allocation, then there are
pages that can freely move around physical memory, there are pages that can be
reclaimed and there are pages reserved for specific purposes. These are different
examples of migration types. We maintain separate lists for different migration
types. It is as if their memory is managed separately.

Listing 6.18: struct free area

source : include/linux/mmzone.h#L105

struct zone {

...

struct free_area free_area[MAX_ORDER];

...

}

struct free_area {

/* unmovable , movable , reclaimable , ...*/

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/mmzone.h#L105

343 © Smruti R. Sarangi

struct list_head free_list[MIGRATE_TYPES];

unsigned long nr_free;

};

The take-home point is that a binary tree is represented as an array of lists
– one list for each order. Each node in a linked list is an aggregate or compound
page. The buddy tree is an integral part of a zone – it is its default memory
allocator.

zone

list of type 0

list of type 1
list of type 2

free_area

free_area

free_area

List of buddy blocks

Figure 6.27: Buddies within a zone. The type refers to the migration type

We can visualize this organization in Figure 6.27, where we see that a zone
has a pointer to a single free area (for a given order), and this free area struc-
ture has pointers to many lists depending on the type of the page migration that
is allowed. Each list contains a list of free blocks (aggregate pages). Effectively,
we are maintaining multiple buddy trees – one for each page reclamation type.

An astute reader may ask how the buddy tree is being created – there are
after all no parent or child pointers. This is implicit. We will soon show that
parent-child relationships can be figured out with simple pointer arithmetic.
There is a no need to store pointers. Keep reading.

Kernel Code for Allocating/Freeing Blocks

Block Allocation
Listing 6.19 shows the relevant kernel code for allocating a block. Here, we
traverse a list that holds free areas. The aim is to find the first available
block for memory allocation. We start with a simple for loop that traverses the
tree from a given order to the highest (towards the root). At each level, we
find a relevant free area (area). For a given migration type, we try to get a
pointer to a block (stored as an aggregate page). If a block is not found, which
basically means that either there is no free block or the size of the request is
more than the size of the block, then we continue iterating and increase the
order. This basically means that we go towards the root. However, if a block
of appropriate size is found, then we delete it from the free list by calling the
del page from free list function and return it.

Listing 6.19: Traversing the list of free area s in the function
rmqueue smallest

source : mm/page alloc.c#L2554

for (current_order = order; current_order < MAX_ORDER; ++

current_order) {

area = &(zone ->free_area[current_order]);

page = get_page_from_free_area(area , migratetype);

https://elixir.bootlin.com/linux/v6.2.12/source/mm/page_alloc.c#L2554

© Smruti R. Sarangi 344

if (!page)

continue;

/* block found */

del_page_from_free_list(page , zone , current_order);

...

return page;

}

Freeing a Block
Listing 6.20 shows the code for freeing an aggregate page (block in the buddy
system). In this case, we start from the block that we want to free and keep
proceeding towards the root. Given a page, we find the page frame number of the
buddy. If the buddy is not free then the find buddy page pfn function returns
NULL. Then, we exit the for loop and go to label done merging. Nothing more
needs to be done. If this is not the case, we delete the buddy and coalesce the
page with the buddy.

Let us explain this mathematically. Assume that pages with frame numbers
A and B are buddies of each other. Let the order be ϕ. Without loss of
generality, let us assume that A < B. Then we can say that B = A+2ϕ, where
ϕ = 0 for the lowest level (the unit here is pages). Now, if we want to combine
A and B and create one single block that is twice the block size of A and B,
then it needs to start at A and its size needs to be 2ϕ+1 pages.

Let us now remove the restriction that A < B. Let us just assume that
they are just buddies of each other. We then have A = B ⊕ 2ϕ. Here ⊕
stands for the XOR operator. Now, if we coalesce A and B, the aggregate page
corresponding to the parent node needs to have its starting pfn (page frame
number) at min(A,B). This is the same as A&B, where & stands for the
logical AND operation. This is because they vary at a single bit: the (ϕ+ 1)th

bit (LSB is bit number 1). If we compute a logical AND, then this bit gets set to
0, and we get the minimum of the two pfns. Let us now compute min(A,B)−A.
It can either be 0 or −2ϕ, where the order is ϕ.

We implement exactly the same logic in Listing 6.20, where A and B are the
buddy pfn and pfn, respectively. The combined pfn represents the minimum:
starting address of the new aggregate page. The expression combined pfn -

pfn is the same as min(A,B) − A. If A < B, it is equal to 0, which means
that the aggregate page (corresp. to the parent) starts at struct page* page.
However, if A > B, then it starts at page minus an offset. The offset should
be equal to A − B multiplied by the size of struct page. In this case A − B
is equal to pfn - combined pfn. The reason that this offset gets multiplied
with struct page is because when we do pointer arithmetic in C, any constant
that gets added or subtracted to a pointer automatically gets multiplied by the
size of the structure (or data type) that the pointer is pointing to. In this case,
the pointer is pointing to date of type struct page. Hence, the negative offset
combined pfn - pfn also gets multiplied with sizeof(struct page). This is
the starting address of the aggregate page (corresponding to the parent node).

Listing 6.20: Code for freeing a page
source : mm/page alloc.c#L1092

void __free_one_page(struct page *page , unsigned long pfn ,

https://elixir.bootlin.com/linux/v6.2.12/source/mm/page_alloc.c#L1092

345 © Smruti R. Sarangi

struct zone *zone , unsigned int order , ...)

{

while (order < MAX_ORDER - 1) {

buddy = find_buddy_page_pfn(page , pfn , order , &

buddy_pfn);

if (! buddy)

goto done_merging;

del_page_from_free_list(buddy , zone , order);

....

combined_pfn = buddy_pfn & pfn;

page = page + (combined_pfn - pfn);

pfn = combined_pfn;

order ++;

}

done_merging:

/* set the order of the new page */

set_buddy_order(page , order);

add_to_free_list(page , zone , order , migratetype);

}

The pointer arithmetic can be complex. We request the reader to manually
work out a small example.

Once we combine a page and its buddy, we increment the order and try to
combine the parent with its buddy, so on and so forth. This process continues
until we are successful. Otherwise, we break from the loop and reach the label
done merging. Here we set the order of the merged (coalesced) page and add it
to the free list at the corresponding order. This completes the process of freeing
a node in the buddy tree.

Point 6.4.1

The buddy system overlays a possibly unbalanced binary tree over a lin-
ear array of pages. Each node of the tree corresponds to a set of contigu-
ous pages (the number is a power of 2). The range of pages represented
by a node is equally split between its children (left-half and right-half).
This process continues recursively. The allocations are always made at
the leaf nodes that are also constrained to have a capacity of N pages,
where N is a power of 2. It is never the case that two children of the
same node are free (unallocated). In this case, we need to delete them
and make the parent a leaf node. Whenever an allocation is made at a
leaf node, the allocated memory always exceeds 50% of the capacity of
that node (otherwise we would have split that node). Note that there is
a corner case here. We may want to allocate just 10 bytes. In this case,
the leaf node has to contain just a single page.

6.4.2 Slab Allocator

Now that we have seen the buddy allocator, which is a generic allocator that
manages contiguous sections of the kernel memory quite effectively, let us move
to allocators for a single class of objects. Recall that we had discussed object
pools (kmem cache s) in Section 3.1.12. If we were to create such a pool of

© Smruti R. Sarangi 346

objects, then we need to find a way of managing contiguous memory for storing
a large number of objects that have exactly the same size. For such use cases,
the slab allocator is quite useful. In fact, it is often used along with the buddy
allocator. We can use the buddy allocator as the high-level allocator to manage
the overall address space. It can do a high-level allocation and give a contiguous
region to the slab allocator, which it can then manage on its own. It can use
this memory region for creating its pool of objects (of a single type) and storing
other associated data structures.

Let us now discuss the slab allocator in detail. As of kernel v6.2, it is the
most popular allocator, and it has managed to make the earlier slob allocator
obsolete. We will discuss the slab allocator and then a more optimized version
of it – the Slub allocator.

The high-level diagram of the allocator is shown in Figure 6.28. The key
concept here is that of a slab. It is a generic storage region that can store a set
of objects of the same type. Assume that it can store k objects. Then the size
of the memory region for storing objects is k×sizeof(object). A pointer to this
region that stores objects is stored in the member s mem of struct slab.

It is important to note that all these objects in this set of k objects may not
actually be allocated and be active. It is just that space is reserved for them.
Some of these objects may be allocated whereas the rest may be unallocated (or
free). We can maintain a bit vector with k bits, where the ith bit is set if the
ith object has been allocated and some task is using it. A slab uses a freelist

to store the indexes of free objects. Every slab has a pointer to a slab cache
(kmem cache) that contains additional slabs.

Note that all of these entities such as a slab and slab cache are specific to
only one object type. We need to define separate slabs and slab caches for each
type of object that we want to store in a pool.

kmem_cacheslab

slab_cache

freelist : array of free
object indexes

array_cache

entry[] � recently freed objectsctor: object
constructor func�on
kmem_cache_node*

node [NUMA_NODES]

kmem_cache_node

full

par�al

free

array_cache

slabslabslab

slabslabslab

slabslabslab

s_mem

One cache for an object type

memory_region

object

object

object

per cpu

full

slabslabslab

per cpu

Figure 6.28: The slab allocator
mm/slab.h

The slab cache has a per-CPU array of free objects (array cache). These

https://elixir.bootlin.com/linux/v6.2.12/source/mm/slab.h

347 © Smruti R. Sarangi

are recently freed objects, which can be quickly reused. This is a very fast way
of allocating an object without accessing other data structures to find which
object is free. Every object in this array is associated with a slab. Sadly, when
such an object is allocated or freed, the state in its encapsulating slab needs to
also be changed. We will see later that this particular overhead is not there in
the Slub allocator.

Now, if there is a high demand for objects, then we may run out of free
objects in the per-CPU array cache. In such a case, we need to find a slab
that has a free object available.

It is very important to appreciate the relationship between a slab and the
slab cache (kmem cache) at this point of time. The slab cache is a system-wide
pool whose job is to provide a free object and also take back an object after
it has been used (added back to the pool). A slab on the other hand is just a
storage area for storing a set of k objects: both active and inactive.

The slab cache maintains three kinds of slab lists – full, partial and free –
for each NUMA node. The full list contains only slabs that do not have any
free object. The partial list contains a set of partially full slabs and the free list
contains a set of slabs that do not have a single allocated object. The algorithm
is to first find a partially full slab. Then in that slab, it is possible to find an
object that has not been allocated yet. The state of the object can then be
initialized using an initialization function whose pointer must be provided by
the user of the slab cache. The object is now ready for use.

However, if there are no partially full slabs, then one of the empty slabs
needs to be taken and converted to a partially full slab by allocating an object
within it.

We follow the reverse process when returning an object to the slab cache.
Specifically, we add it to the array cache, and set the state of the slab that
the object is a part of. This can easily be found out by looking at the address
of the object and then doing a little bit of pointer math to find the nearest
slab boundary. If the slab was full, then now it is partially full. It needs to be
removed from the full list and added to the partially full list. If this was the
only allocated object in a partially full slab, then the slab is empty now.

We assume that a dedicated region in the kernel’s memory map is used to
store the slabs. Clearly all the slabs have to be in a contiguous region of the
memory such that we can do simple pointer arithmetic to find the encapsulating
slab. The memory region corresponding to the slabs and the slab cache can be
allocated in bulk using the high-level buddy allocator.

This is a nice, flexible and rather elaborate way of managing physical memory
for storing objects of only a particular type. A criticism of this approach is that
there are too many lists, and we frequently need to move slabs from one list to
the other.

6.4.3 Slub Allocator

The Slub allocator is comparatively simpler; it relies heavily on pointer arith-
metic. Its structure is shown in Figure 6.29.

We reuse the same slab structure that was used in the slab allocator. We
specifically make use of the inuse field to find the number of objects that are
currently being used and the freelist. Note that we have compressed the slab

© Smruti R. Sarangi 348

slab

slab_cache

inuse: #objects

freelist: list of free objects

kmem_cache

uint object_size

ctor: object constructor
func�on

kmem_cache_node *
node [NUMA_NODES]

par�al

kmem_cache_node

slabslabslab

kmem_cache_cpu
*cpu_slab

per cpu

void ** freelist: pointer
to free objects

struct slab *slab

kmem_cache_cpu

slab

object
usage

counters 1. Return empty
slabs to the
memory system.

2. Forget about full
slabs.

Figure 6.29: The Slub allocator

part in Figure 6.29 and just summarized it. This is because it has been shown
in its full glory in Figure 6.28.

Here also every slab has a pointer to the slab cache (kmem cache). However,
the slab cache is architected differently. Every CPU in this case is given a private
slab that is stored in its per-CPU region. We do not have a separate set of free
objects for quick allocation. It is necessary to prioritize regularity for achieving
better performance. Instead of having an array of recently-freed objects, a slab
is the basic/atomic unit here. From the point of view of memory space usage
and sheer simplicity, this is a good idea.

There are performance benefits because there is more per-CPU space, and it
is quite easy to manage it. Recall that in the case of the slab allocator, we had to
also go and modify the state of the slabs that encapsulated the allocated objects.
Here we maintain state at only one place, and we never separate an object from
its slab. All the changes are confined to a slab and there is no need to go and
make changes at different places. We just deal in terms of slabs and assign them
to the CPUs and slab caches at will. Given that a slab is never split into its
constituent objects, their high-level management is quite straightforward.

If the per-CPU slab becomes full, all that we need to do in this case is simply
forget about it and find a new free slab to assign to the CPU. In this case, we
do not maintain a list of completely empty and full slabs. We just forget about
them. We only maintain a list of partially full slabs, and query this list of
partially full slabs, when we do not find enough objects in the per-CPU slab.
The algorithm is the same. We find a partially full slab and allocate a free
object. If the partially full slab becomes full, then we remove it from the list
and forget about it. This makes the slab cache much smaller and more memory
efficient. Let us now see where pointer math is used.

We need to do a good job without maintaining a list of full and empty slabs.
If an object is deallocated, we need to return it back to the pool. From the
object’s address, we can figure out that it was part of a slab. This is because
slabs are stored in a dedicated memory region. Hence, the address is sufficient

349 © Smruti R. Sarangi

to figure out that the object is a part of a slab, and we can also find the starting
address of the slab by computing the nearest “slab boundary”. We can also
figure out that the object is a part of a full slab because the slab is not present
in the slab cache. Now that the object is being returned to the pool, a full slab
becomes partially full. We can then add it to the list of partially full slabs in
the slab cache.

Similarly, we do not maintain a list of empty slabs because there is no reason
to do so. These empty slabs are returned to the buddy allocator such that they
can be used for other purposes. Whenever there is a need for more slabs, they
can be fetched on demand from the high-level buddy allocator. Subsequently, it
can be used for object allocation. This will make it partially full, and it can be
added to the slab cache. This keeps things nice, fast and simple – we maintain
far less state.

6.5 Summary and Further Reading

6.5.1 Summary

Summary 6.5.1

1. Managing the available memory is a very important problem in
operating systems design.

2. In the old days when there was no virtual memory, the base-limit
scheme was used. The CPU-generated address is added to the
contents of the base register. If it is less than the contents of the
limit register, then it is a valid address. This translated address is
sent to the memory system.

3. The stack distance is normally used to quantify temporal locality.
All the accessed pages are organized as a stack. Whenever there
is a fresh access, the distance of the page in the stack from the
top of the stack is the stack distance. It is subsequently removed
from its current location and pushed to the stack (becomes the
new stack top). The distribution of the stack distance is typically
a heavy-tailed distribution.

4. The stack property is followed by all stack-based page replacement
algorithms. Stack property: For the same access sequence and
replacement scheme, a larger memory always includes all the pages
that are contained in a smaller memory, at all points of time. This
ensures that the page fault rate either stays the same or increases
monotonically as we increase the size of the memory.

5. The cost function of a page determines its replacement priority. In
the case of the optimal algorithm (OPT), it is equal to the time at
which the page will subsequently be accessed. This is not known
in a practical setting. It can be proven with an exchange-based
argument that such an algorithm is optimal in terms of minimizing
the page fault rate.

© Smruti R. Sarangi 350

6. The LRU (least-recently used) algorithm uses the reciprocal of the
last-accessed time as the cost function. Both LRU and OPT follow
the stack property.

7. The FIFO algorithm uses the following cost function: it is the
reciprocal of the time at which a page was added to the memory
the last time. This is dependent on the size of the memory. It
is not memory-dependent. Due to such a cost function, it does
not follow the stack property. This leads to the Belady’s anomaly.
There are access sequences for which a smaller memory can have
a significantly lower page fault rate than a larger memory.

8. It is hard to implement LRU in practice. Hence, access tracking
is typically done by inducing soft page faults. The WS-Clock and
Second Chance algorithms use such a mechanism. If a page has
been recently accessed, it is marked as not-accessed and not con-
sidered for eviction.

9. The working set is the set of pages that a process accesses in a short
duration of time. If the working set does not fit in memory, the
page fault rate will be high. It will be much lower if the working
set fits in memory.

10. The kernel uses a 48 or 57-bit virtual address. Half of this is
reserved for user processes. The rest half is reserved for the kernel.
32 PB is a direct-mapped region where the physical address is a
linear function of the virtual address.

11. Linux uses a 5-level page table.

12. Each page table entry stores permission bits.

13. Linux stores all page-related metadata in a struct page. It has
generalized the notion of pages to folios. A folio contains N pages
where N is a power of 2. It is contiguously allocated in the virtual
and physical address spaces.

14. Flushing the TLB has serious performance implications because
page walks are expensive. On Intel x86 machines, the notion of
PCIDs is supported. It can be mapped to a pid in Linux. This
allows the kernel to selectively flush pages belonging to a certain
process. There is no requirement to flush the TLB if the executing
userspace process changes.

15. The physical memory space is divided into zones. Each zone indi-
cates the type of access. Some zones are meant to be accessed by
the DMA controller, some are movable pages and some are allo-
cated to nonvolatile devices.

16. Reverse mapping is an important element of the virtual memory
subsystem. It maps a physical page to all the virtual pages that
map to it.

351 © Smruti R. Sarangi

17. The task is to map a physical page to all the vmas that have a
page that maps to it. This is achieved by creating the following
structure.

(a) Every physical page points to an anon vma, which is just a
stub.

(b) For a given virtual memory region, each vma is associated with
an anon vma and an anon vma chain (avc), which connects
both of them.

(c) Because a task can get forked, it is possible for multiple vmas
across processes to be associated with the same anon vma (of
the parent process). Each such connection requires a dedi-
cated avc.

(d) Due to a copy-on-write, there can be multiple anon vmas as-
sociated with the same vma. Again each connection is estab-
lished through a dedicated avc.

(e) All the avcs of a given task are connected to each other using
a doubly-linked list.

(f) All the avcs that link all the vmas associated with a single
anon vma are organized as a red-black tree.

(g) Using this red-black tree, it is possible to access all the vmas.
physical page → anon vma → all the vmas

(h) Every physical page maintains its index in the vma in which it
was originally allocated. This index is used to map a physical
page to a virtual page in a vma in θ(1) time.

18. The MGLRU algorithm divides pages into generations. Every gen-
eration has a sequence number. The earliest generation has the
lowest sequence generation and the newest generation has the high-
est sequence number.

(a) Automatically incrementing the current generation ages all
the pages.

(b) There are complex rules for deciding when to increment the
sequence number. The general idea is to try to balance the
number of pages across generations.

(c) The kernel tries to shrink zones by evicting and reclaiming
pages both proactively (using kswapd) and on-demand.

(d) The pages in the earliest generation are targeted for eviction
and reclamation. Deciding between whether to evict a file
(file-backed) or anon page (heap, stack, etc.) is a difficult
decision. Various factors need to be taken into account such
as the swappiness variable that indicates the preference and
the normalized refault rate.

© Smruti R. Sarangi 352

19. Thrashing refers to a phenomenon where the working set does not
fit in memory; this leads to a high page fault rate; there is low
CPU activity; the scheduler brings in more processes, which further
increases the page fault rate. Ultimately, either processes are killed
or the system crashes.

20. The buddy allocator is the default kernel memory allocator. It
organizes a contiguous physical address space as a tree of regions,
where the number of pages in each region is a power of 2. The leaves
of the tree are either allocated to kernel threads or are empty. If
there are two unallocated sibling leaves, then they are coalesced
and removed. Their parent becomes a leaf with twice the memory.

21. For fixed-size objects, the Slab and Slub allocators are used. They
divide memory into fixed-size slabs. This makes it easy to allocate
objects and manage the memory space. Every slab has a bit vec-
tor, where the ith bit indicates that the ith object in the slab is
allocated. The Slab allocator maintains a pool of objects, which
has a list of full, partially-full and empty slabs. The Slub allocator
is more efficient. It maintains only a list of partially-full slabs. It
heavily relies on pointer arithmetic.

6.5.2 Further Reading

The most comprehensive resource in the area of memory managers in the Linux
kernel is the book by Stoakes [Stoakes, 2025]. It explains all the Linux mem-
ory subsystems in great detail (on the lines of our discussion in this chapter).
Another reference in this area is the book by Raghu Bharadwaj [Bharadwaj,
2017]. It explains the entire kernel code including the memory management
system. One of the best academic references that exhaustively characterizes the
behavior of kernel from version 2.6 till 4.0 is the paper by Huang [Huang et al.,
2016]. Some research papers of interest are as follows: huge page support [Ar-
cangeli, 2010], stress testing the memory subsystem of the kernel [Taylor, 2011]
and virtual-memory assisted database buffer management [Leis et al., 2023].

Exercises

Ex. 1 — Why do FIFO systems suffer from the Belady’s anomaly?

Ex. 2 — Is implementing theoretical LRU practical? Justify your answer.

Ex. 3 — How do we practically implement LRU?

Ex. 4 — Let us say that we want to switch between user-mode processes with-

353 © Smruti R. Sarangi

out flushing the TLB or splitting the virtual address space among user processes.
How can we achieve this with minimal hardware support?

* Ex. 5 — We often transfer data between user programs and the kernel. For
example, if we want to write to a device, we first store our data in a character
array, and transfer a pointer to the array to the kernel. In a simple implemen-
tation, the kernel first copies data from the user space to the kernel space, and
then proceeds to write the data to the device. Instead of having two copies of the
same data, can we have a single copy? This will lead to a more high-performance
implementation. How do we do it, without compromising on security?
Now, consider the reverse problem, where we need to read a device. Here also,
the kernel first reads data from the device, and then transfers data to the user’s
memory space. How do we optimize this, and manage with only a single copy
of data?

Ex. 6 — Prove the optimality of the optimal page replacement algorithm.

Ex. 7 — Show that the optimal page replacement algorithm is based on a
stack-like property. Will it be susceptible to the Belady’s anomaly then? For
the second part, use the answer to the first part of the question.

Ex. 8 — Consider a computer system with a 64-bit logical address and an
8-KB page size. The system supports up to 1 GB of physical memory. How
many entries are there in a single-level page table and an inverted page table?

Ex. 9 — When and how is the MRU page replacement policy better than the
LRU page replacement policy?

Ex. 10 — What is the reason for setting the page size to 4 KB? What happens
if the page size is higher or lower? List the pros and cons.

Ex. 11 — Consider a memory that can hold only 3 frames. We have a choice
of two page-replacement algorithms: LRU and LFU.

a)Show a page access sequence where LRU is better than LFU?

b)Show a page access sequence where LFU is better than LRU?

Explain the insights as well.

Ex. 12 — What are the pros and cons of prefetching pages?

Ex. 13 — What are the causes of thrashing? How can we prevent it?

Ex. 14 — What is the page walking process used for in the MG-LRU algo-
rithm? Answer in the context of the lru gen mm state structure.

Ex. 15 — How is a Bloom filter used to reduce the overhead of page walking?

Ex. 16 — What is the need to deliberately mark actively used pages as “non-
accessible”?

Ex. 17 — What is the swappiness variable used for, and how is it normally
interpreted? When would you prefer evicting FILE pages as opposed to ANON
pages, and vice versa? Explain with use cases.

© Smruti R. Sarangi 354

Ex. 18 — Let us say that you want to “page” the page table. In general, the
page table is stored in memory, and it is not removed or swapped out – it is
basically pinned to memory at a pre-specified set of addresses. However, now let
us assume that we are using a lot of storage space to store page tables, and we
would like to page the page tables such that parts of them, that are not being
used very frequently, can be swapped out. Use concepts from folios, extents and
inodes to create such a swappable page table.

Ex. 19 — How is reverse mapping done for ANON and FILE pages?

Ex. 20 — How many anon vma structures is an anon vma chain connected
to?

Ex. 21 — Why do we need separate anon vma chain structures for shared
COW pages and private pages?

Ex. 22 — Given a page, what is the algorithm for finding the pfn number of
its buddy page, and the pfn number of its parent?

Ex. 23 — What are the possible advantages of handing over full slabs to the
baseline memory allocation system in the SLUB allocator?

Ex. 24 — Compare the pros and cons of all the kernel-level memory alloca-
tors.

Chapter 7
The I/O System, Storage Devices
and Device Drivers

There are three key functions of an OS: process manager, memory manager and
device manager. We have already discussed the role of the OS for the former
two functionalities in earlier chapters. Let us now delve in to the role of the
OS when it comes to managing devices, especially storage devices. We have
seen in Chapter 1 that most of the kernel code is actually driver code. As a
matter of fact, most low-level programmers who work with the kernel are device
driver writers. They write drivers for new devices and issue bug fixes for older
drivers. Core kernel developers who work on the scheduler or memory system
are comparatively fewer. These are relatively stable parts of the kernel code that
do not see frequent changes. However, a large number of devices are supported
by modern versions of Linux, and each device needs its own custom driver. With
the advent of USB technology, there is some degree of consolidation. Now, it is
possible for a single generic USB driver to handle multiple devices. For example,
a generic keyboard driver can support a large number of USB-based keyboards.
Hence, it makes sense to write one complex USB driver that is generic enough to
support a large number of devices. This omits the need to write bespoke device-
specific drivers. In spite of such competing trends, the area of device drivers
is still quite rich and complex. Hence, there is a rich ecosystem comprising
driver developers, generic driver codes, software for verifying drivers and code
templates.

In the space of devices, storage devices such as hard disks and flash/NVM
drives have a very special place. They are arguably the most important citizens
in the device world. Other devices such as keyboards, mice and web cameras
are nonetheless important, but they are clearly not in the same league as stor-
age devices. The reasons are simple. Storage devices are often needed for a
computing system to function. They store all the data required for the system
to boot and run important software including the kernel. A storage device also
stores the swap space, which is a key component of the overall virtual memory
system.

Linux distinguishes between two kinds of devices: block and character. Block
devices read and write a large block of data at a time. For example, storage

355

© Smruti R. Sarangi 356

devices are block devices that often read and write 512-byte chunks of data in
one go. On the other hand, character devices read and write a single character
or a set of few characters at a time. Examples of character devices are keyboards
and mice. For interfacing with character devices, a simple device driver is often
sufficient; it can be connected to the terminal or the window manager. In this
case, the character device driver provides the user a method to interact with
the underlying OS and applications via the terminal.

We shall see that managing block devices is more complicated. There is a
need to create a custom library that merges, splits and rearranges requests for
efficiency. Moreover, for managing the data on a block device and for efficiently
accessing it, a file system is required. Hence, there is typically a need to create a
tree-structured file system to manage all the data stored on the storage device.
Note that a storage device cannot be accessed like a RAM (random access
memory); hence, the concepts of virtual memory and memory maps are not
relevant in their context. In any such file system, the internal nodes of the tree
are directories (folders in Windows). The leaf nodes are the individual files,
also known as regular files. A regular file is defined as a set of bytes that has
a specific structure based on the type of data it contains. For instance, we can
have image files, audio files, document files, etc. A directory or a folder on
the other hand has a fixed tabular structure that just stores pointers to every
constituent file or directory inside it.

Linux defines the concept of a generic file, which subsumes directories, reg-
ular files and a bunch of other entities such as devices, symbolic links, network
sockets and virtual files that hold kernel information. We shall look at many
such types of files later in this chapter. The basic idea is that Linux allows
us to interact with diverse types of entities using a common set of functions.
Given that each such entity is represented as a file, standard regular file access
functions can be used. This simplifies and standardizes the interface.

Organization of this Chapter

Figure 7.1 shows the organization of this chapter.

The first section explains the basics of the I/O system. It is important to
understand the hardware architecture before discussing the software support
provided by the kernel. We shall briefly cover the design of the motherboard,
the layers in the I/O system and the different forms of I/O on modern systems.
We shall briefly touch upon memory-mapped I/O, port-mapped I/O and DMA.

Next, we shall cover the basics of storage devices. They are a special class
of I/O devices that store data permanently and thus require extensive support.
They store the code and data of all the applications and the OS kernel. Hence,
to efficiently access them, it is important to understand their design and limita-
tions. In this section, we shall cover hard disks, RAID configurations (redundant
array), SSDs and novel NVM devices. We shall later on observe that it is im-
portant to know the idiosyncrasies of the underlying storage hardware to design
efficient file systems.

Subsequently, we shall look at the concept of the “generic file” in Linux.
Linux represents everything including regular files, directories, devices, kernel
interfaces, etc., as a generic file. In terms of devices, there are two kinds of
devices: block devices such as hard disks and character devices such as mice
and keyboards. Block devices require elaborate kernel support. They have

357 © Smruti R. Sarangi

I/O	System,	Storage	Devices
and	Device	Drivers

Basics

Storage	Devices

Files	and	Devices

Motherboard

Layers

Memory-mapped	I/O

Port-mapped	I/O

Hard	Disks

RAID

SSDs	and	NVMsBlock	Devices

Registration

Drivers

Block	I/O	Subsystem

I/O	Scheduling

Simple	Driver

Character	Devices

File	Systems

Basic	Features

Virtual	File	System

ext4	File	System

FAT	File	System

Journaling

Figure 7.1: Organization of this chapter

specialized drivers that have bespoke code for device registration, block I/O,
prefetching and batching, scheduling and monitoring the health of the attached
device. Character devices, on the other hand, are not that difficult to manage.
Their device drivers are often external modules that are much simpler.

Finally, we shall discuss file systems that manage all the generic files on a
Linux system. The Linux kernel defines a virtual file system architecture that
provides a common interface to every constituent file system. The main role of
a file system is to manage all its constituent files and to also specify the format
of each file. For instance, the popular ext4 file system in Linux uses a specific
file format to map logical file addresses to 512-byte blocks on the disk. The
popular FAT file system uses a different format. It find uses in USB memory
sticks. This chapter will end with a discussion on highly reliable file systems
that use journaling. A journaling file system ensures that all the updates are
correctly sent to the storage device and the system is immune to events such as
power failures.

© Smruti R. Sarangi 358

7.1 Basics of the I/O System

7.1.1 The Motherboard and Chipset

Figure 7.2 shows a conceptual diagram of the I/O system. On different machines
it can vary slightly, however the basic structure is still captured by the figure.

Processor

North Bridge
chip

Frontside
bus

Graphics
processor

Memory
modules

PCI express
bus

South Bridge
chip Hard

disk

SATA
Network

card

PCI express
bus

USBUSB USBUSB

USB ports

Audio/ Mic
ports

PCI express
bus

Intel high
def. audio on
a PCI bus

Figure 7.2: The I/O system in classical systems

The CPU chip referred to as the processor in the figure is connected to
the North Bridge chip using a high-bandwidth bus. This chip connects to the
memory chips and the GPU (graphics processor). It has a built-in memory
controller that controls all the memory modules and schedules all the memory
accesses. The other connection is to a PCI Express link that has many high-
bandwidth devices on it such as network cards and scanners. Nowadays, the
North Bridge chip has been replaced by on-chip memory controllers. That have
dedicated connections to the memory modules via 64 or 72-bit channels. A
graphics processor has also moved into the chip. It is known as the integrated
graphics card. There is a separate bus that connects all the cores to the on-chip
GPU.

The basic idea is that there are dedicated hardware modules that connect
the cores and caches to on or off-chip memory modules and GPU hardware.
They are typically managed at the hardware level and there is very little OS
involvement. Given that these devices have very high bandwidths and very low

359 © Smruti R. Sarangi

latencies, no kernel routine can be involved in data transfers. The performance
overheads will become prohibitive. The kernel can however be a part of the
control path – configure these devices and handle errors.

The job of orchestrating and coordinating regular I/O operations is delegated
to the South Bridge chip. It is typically a specialized piece of hardware that
is resident on the motherboard. Its job is to interface with a diverse set of
I/O devices via their bus controllers. Typically, we connect a multitude of I/O
devices to a single set of copper wires known as a bus. Each bus has a dedicated
bus controller that acts as an arbiter and schedules the accesses of the I/O
devices. Some examples are PCI and PCI Express buses that connect to a set
of peripherals like the network cards and USB ports, the audio bus that connects
to the speaker output and mic input, and the SATA bus that connect to SATA
disk drives. The role of the South bridge chip is quite important in the sense
that it needs to interface with numerous controllers corresponding to a diverse
set of buses. Note that we need additional chips corresponding to each kind of
bus, which is why when we look at the picture of a motherboard, we see many
chips. Each chip is customized for a given bus (set of devices). These chips
are together known as the chipset. They are a basic necessity in a large system
with a lot of peripherals. Without a chipset, we will not be able to connect to
external devices, notably I/O and storage devices. Over the last decade, the
North Bridge functionality has moved on-chip. Connections to the GPU and
the memory modules are also more direct in the sense that they are directly
connected to the CPUs via either dedicated buses or memory controllers.

However, the South Bridge functionality has remained as an off-chip entity in
many general purpose processors on server-class machines. It is nowadays (as of
2025) referred to as the Platform Controller Hub (PCH). Modern motherboards
still have a lot of chips including the PCH primarily because there are limits to
the functionality that can be added to the CPU chip. Let us elaborate.

I/O controller chips sometimes need to be placed close to the corresponding
I/O ports to maintain signal integrity. For example, the PCI-X controller and
the network card (on the PCI-X bus) are in close proximity to the Ethernet port.
The same is the case for USB devices and audio inputs/ outputs. Moreover,
note that to connect to a wide variety of peripherals, we need a lot of pins
on the CPU. We seldom have so many pins available on the CPU package to
connect to I/O devices. CPU chips that are designed for larger machines do
not have enough free pins – most of their pins are used to carry current (power
and ground pins). Hence, we need to multiplex I/O devices on the same set
of pins. Connecting the I/O devices to the PCH (South Bridge chip) is a way
of achieving this. The PCH multiplexes traffic to/from these devices, schedules
their requests and efficiently manages the I/O traffic. In this case, the CPU is
only connected to the PCH; it is not directly connected to the I/O devices.

In many mobile phones, a lot of the South Bridge functionality has moved to
the CPU chip, and thus many I/O controllers are consequently present within
the CPU SoC (system-on-chip) package. This is a reasonable design choice for
specific types of mobile devices, where we expect to connect to a fixed set of
peripherals. Furthermore, the motherboard’s size needs to be limited, hence, it
is not a wise idea to have many chips in the chipset. Given that mobile phones
use low-power chips, often enough pins are available to connect to I/O devices.

Regardless of which component is inside the chip and which component is
outside the chip, the architecture of the I/O subsystem has remained more or

© Smruti R. Sarangi 360

less the same (with minor changes) over decades. As discussed in the previous
paragraph, depending upon the use case, some components are placed inside
the CPU package and some components are placed outside it. There are many
factors for making such a decision like the target use case, the size of the moth-
erboard, the ease of packaging and the required communication latency between
the CPUs and the I/O devices.

Applica�on

Opera�ng
system Kernel

Device
driver

ProcessorI/O

system

I/O
device

So�ware

Hardware

Request

Response

Figure 7.3: Flow of actions in the kernel: application → kernel → device driver
→ CPU → I/O device (and back)

Figure 7.3 shows the flow of actions when an application interacts with an
I/O device. The application makes a request to the kernel via a system call.
This request is forwarded to the corresponding device driver, which is the only
subsystem in the kernel that can interact with the I/O device. The device driver
issues specialized instructions to initiate a connection with the I/O device. A
request gets sent to the I/O device via the chips in the chipset. A set of chips
that are a part of the chipset route the request to the I/O device. The South
Bridge chip is one of them. Depending upon the request type – read or write –
an appropriate response is sent back. In the case of a read, it is a chunk of data
and in the case of a write, it is an acknowledgment.

The response follows the reverse path. Here there are several options. If it
was a synchronous request, then the processor waits for the response. Once it
is received, the response (or a pointer to it) is put in a register, which is visible
to the device driver code. However, given that I/O devices can take a long time
to respond, a synchronous mechanism is not always the best. Instead, an asyn-
chronous mechanism is preferred where an interrupt is raised when the response
is ready. The CPU that handles the interrupt fetches the data associated with
the response from the I/O system.

This response is then sent to the interrupt handler, which forwards it to the
device driver. The device driver processes the response. After processing the
received data, a part of it can be sent back to the application via other kernel
subsystems.

7.1.2 Layers in the I/O System

A modern I/O system is quite complex primarily because we need to interface
with many heterogeneous devices. Therefore, there is a need to break down the

361 © Smruti R. Sarangi

I/O system into a set of layers where the connotation of a layer is the same as
that in the classical 7-layer OSI model for computer networks. The idea of a
layer is that it has a fixed functionality in terms of the input that it receives from
its lower layer and the outputs that it provides to its upper layer. Furthermore,
there is a well-defined interface between a layer and its adjacent layers. This
basically means that we can happily change the implementation of a layer as long
as it continues to perform the same function and its interfaces with the adjoining
layers remain the same – the correctness of the system is not affected. This
has allowed computer networks to scale across many heterogeneous devices and
technologies. The key idea here is that the layers are independent of each other
and thus one implementation of a layer can be easily replaced with another one.
For example, the TCP/IP protocol works for Ethernet-based wired networks,
WiFi networks and even 4G and 5G networks. The protocol is independent
of the technology that is actually used. This is only possible because of the
independence of layers. Similarly, the HTTP protocol is used for accessing
websites. It is also layer independent. Hence, it works on all kinds of networks.
Figure 7.4 tries to achieve something similar for I/O systems by proposing a
4-layer protocol stack.

Physical layer

Transmission Synchronization

Data link layer

Network layer

Protocol layer

Voltage levels,
�ming of bits,

synchroniza�on

Error correc�on,
framing

Routing messages to
the right I/O device

Device-driver level
transmission protocol

Figure 7.4: 4-layer I/O protocol stack

1. The lowest layer is the physical layer that is divided into two sublayers
namely the transmission sublayer and the synchronization sublayer. The
transmission sublayer defines the electrical specifications of the bus, and
the way that data is encoded. For example, the data encoding could be
active high, which means that a high voltage indicates a logical 1 and
vice versa, or the encoding could be active low, which means that a low
voltage indicates a logical 1 and vice versa. In this space, there are many
encoding schemes, and they have different properties. The synchronization
sublayer deals with timing. We need to understand that if we are sending
data at a high frequency, then recovering the data requires strict clock
synchronization between the sender and receiver. There are several options
here. The first is that the sender and receiver are proximate, and their
clocks are indeed synchronized. In this case, it is easy for the receiver to
recover the data. The second option is called a source synchronous scheme

© Smruti R. Sarangi 362

where the clock is sent along with the data. The data can be recovered
at the receiver using the clock that is sent along with the data. In some
designs like USB, the clock can be recovered from transitions in the data
itself. It is common to introduce artificial transitions in the data for easier
clock recovery.

2. The data link layer has a similar functionality as the corresponding layer
in networks. It performs the key tasks of error correction and framing
(chunk data into fixed sets of bytes).

3. The network layer routes messages/ requests to a specific I/O device or to
the CPU. Every entity placed on the motherboard has a unique address
that is assigned to it based on its location. The chips in the chipset
know how to route the message to the target device. We have seen in
Chapter2 that there are two methods of addressing: based on I/O ports
and memory-mapped addressing. This layer converts memory addresses
to I/O addresses. The I/O addresses are interpreted by the chipset and
then I/O requests are sent to the corresponding target devices.

4. Finally, the protocol layer is concerned with the high-level data transfer
protocol. There are many methods of transferring data such as interrupts,
polling and DMA. Interrupts are a convenient mechanism. Whenever
there is any new data at an I/O device, it simply raises an interrupt.
Interrupt processing has its overheads.

On the other hand polling can be used where a thread continuously polls
(reads the value) an I/O register to see if new data has arrived. If there
is new data, then the I/O register stores a logical 1. The reading thread
can reset this value and read the corresponding data from the I/O device.
Polling is a good idea if there is frequent data transfer. We do not have to
pay the overhead of interrupts. We are always guaranteed to read or write
some data. On the other hand, the interrupt-based mechanism is useful
when data transfer is infrequent. DMA-based transfer refers to outsourc-
ing the entire process to a DMA (Direct Memory Access) controller. It
performs the full I/O access (read or write) on its own and raises an inter-
rupt when the overall operation has completed. It is useful for reading/
writing large chunks of data.

7.1.3 Port-Mapped I/O

Let us now understand how I/O devices are accessed. Each device on the
motherboard exposes a set of I/O ports. An I/O port is a combined hardware-
software entity. An I/O port is a register that is accessible to privileged in-
structions (refer to Figure 7.5). Such registers are of three types: input (read
by the CPU), output (written to by the CPU) and read-write registers that
can be read and written. The registers are connected to a specialized hardware
device called a port controller. The chipset interacts with the device through
the port connector, which is a physical connector. Examples of port connectors
include the Ethernet and USB ports on the side of the laptop. External devices
are connected to these via cables or sometimes even directly such as USB stor-
age drives. Each such connector has an associated controller chip that handles

363 © Smruti R. Sarangi

Port connector

Port controller

Registers
Input Output

So�ware interface

Figure 7.5: I/O ports

the physical and data link layers. The controller speaks a “low-level language”
(language of bits and voltages).

Whenever some data is read, it is placed in the input registers (ports). Sim-
ilarly, when some bytes need to be sent to the device, the CPU writes them to
the output registers (ports). The controller picks the data from these registers,
initiates a connection with the I/O device and sends the data. These registers
thus act as a hardware front-end for the I/O device. They are accessible to
privileged assembly code as software-visible I/O ports. All that we need to do
is use x86’s built-in in and out instructions to access these I/O ports.

Intel x86 machines typically define 8-bit I/O ports. The architecture sup-
ports 64k (216) I/O ports. These ports are assigned to the connected devices. A
32-bit register can be realized by fusing four consecutive 8-bit I/O ports. Using
this technique, it is possible to define 8-bit, 16-bit and 32-bit I/O ports. An
I/O port thus presents itself as a regular register to privileged assembly code,
which can be read from or written to.

The set of I/O ports form the I/O address space of the processor. The
chipset maintains the mapping between I/O ports and the device controllers –
this is a part of the network sublayer. As mentioned before, in x86, the in and
out instructions are used to read and write to the I/O ports, respectively. Refer
to Table 7.1.

Instruction Semantics
in r1, ⟨i/oport⟩ r1 ← contents of ⟨i/oport⟩
out r1, ⟨i/oport⟩ contents of ⟨i/oport⟩ ← r1

Table 7.1: The in and out I/O instructions in x86

Let us now consider the quintessential method of accessing I/O devices –
port-mapped I/O. An I/O request contains the address of the I/O port. We
can use the in and out instructions to read the contents of an I/O port or
write to it, respectively. The pipeline of a processor sends an I/O request to
the North Bridge chip, which in turn forwards it to the South bridge chip. The

© Smruti R. Sarangi 364

latter forwards the request to the destination – the target I/O device. This uses
the routing resources available in the chipset. The entire scheme pretty much
works like a conventional network. Every chip in the chipset maintains a small
routing table; it knows how to forward the request given a target I/O device.
The response follows the reverse path, which is towards the CPU.

This is a simple mechanism that has its share of problems. The first is that
it has very high overheads. An I/O port is 8 to 32 bits wide, which means
that we can only read or write 1 to 4 bytes of data at a time. This basically
means that if we want to access a high-bandwidth device such as a scanner or
a printer, a lot of I/O instructions need to be issued. This puts a lot of load on
the CPU’s pipeline and prevents the system from doing any other useful work.
We need to also note that such I/O instructions are expensive instructions in
the sense that they need to be executed sequentially. They have built-in fences
(memory barriers). They do not allow reordering. I/O instructions permanently
change the system state and thus no other instruction – I/O or regular memory
read/write – instruction can be reordered with respect to them.

Along with bandwidth limitations and performance overheads, using such
instructions makes the code less portable across architectures. Even if the code is
migrated to another machine, it is not guaranteed to work because the addresses
of the I/O ports assigned to a given device may vary. The assignment of I/O
port numbers to devices is a complicated process. For devices that are integrated
into the motherboard, the port numbers are assigned at manufacturing time.
For other devices that are inserted into expansion slots, PCI-express buses, etc.,
the assignment is done at boot time by the BIOS. Many modern systems can
modify the assignments after booting. This is why, there can be a lot of variance
in the port numbers across machines, even of the same type.

Now, if we try to port the code to a different kind of machine, for example,
if we try to port the code from an Intel machine to an ARM machine, then
pretty much nothing will work. ARM has a very different I/O port architecture.
Clearly, the x86 in and out assembly instructions are not supported on ARM
machines. At the code level, we thus desire an architecture-independent solution
for accessing I/O devices. This will allow the kernel or device driver code to be
portable to a large extent. The modifications to a piece of code that performs
I/O should be ideally zero, even if it is ported to a new architecture.

Also note that the I/O address space is only 64 KB. Often there is a need for
much more space. Imagine we are printing a 100 MB file; we would need a fair
amount of buffering capacity in the port controllers. This is why many modern
port controllers include some amount of on-device memory. It is possible to write
to the memory in the port controller directly using conventional instructions or
DMA-based mechanisms. GPUs are prominent examples in this space. They
have their memory. The CPU can write to it. Many modern devices have
started to include such on-device memory. USB 3.0, for example, has about 250
KB of buffer space on its controllers.

7.1.4 Memory-Mapped I/O

This is where the role of another technology namely memory-mapped I/O be-
comes very important. It defines a virtual layer between the I/O ports and
the device driver or user application. In a certain sense, the I/O ports and
the device memory (if there is one) map to the regular physical address space.

365 © Smruti R. Sarangi

We can treat them as specialized memory locations and use regular load/store
instructions to access them. Let us build on this basic idea.

The same TLB and page table-based mechanism are used to map virtual
addresses to physical actresses. However, the twist here is that the physical
addresses need not correspond to storage locations on DRAM memory. In this
case, they are I/O port addresses, or addresses in the internal memory of the
port controller or the device itself. Given a physical address, the TLB is aware
that it is not a regular memory address, it is instead an I/O address. It can then
direct the request to the target I/O device via the chipset. This is easy to do
if the physical address space is partitioned. If we do not want to partition the
physical address space, then we always have the option of annotating a TLB or
page table entry to indicate that the entry corresponds to an I/O address. It is
clear that we need specialized hardware support for implementing these ideas.

The summary of this discussion is that the physical address space can be
quite heterogeneous, and it can encompass many different kinds of devices,
including regular memory as well as various kinds of I/O devices.

It is the role of the operating system, especially the device driver and parts
of the kernel, to create a mapping between the I/O ports (or device memory)
and physical memory pages. This ensures that the same program that accesses
I/O devices can run on multiple machines without significant modifications.
All that it needs to do is issue regular memory load and store instructions.
Magically, these instructions get translated to I/O accesses and get sent to the
corresponding I/O devices. This makes it very easy to read and write large
chunks of data in one go. For example, we can use the memcpy function in C for
effecting such transfers between DRAM memory and I/O device memory (or
registers) very easily. This makes the programming model quite simple. The
x86 ISA also has dedicated support for block move instructions across memory
addresses. This makes the programming interface with memory-maped I/O very
simple.

7.2 Storage Devices

In this section, we shall look at the core operational principles of storage devices.
It is necessary for every kernel developer to have a basic understanding of how
storage devices work such that she can create software to optimally use their
features. The software cannot be oblivious of the nature of the underlying
storage hardware.

7.2.1 Hard Disks

Let us look into hard disks, the most popular form of storage as of 2024, which
perhaps may be phased out in some years from now. Nevertheless, given its
towering presence in the area of storage devices, it deserves to be described
first. The storage technology is per se quite simple and dates way back to 1957,
when IBM shipped the first hard disk. It stores data based on the direction of
magnetization of a dipole magnet. There are tiny dipole magnets organized in
concentric circles on a disk (a platter), and their direction of magnetization de-
termines the sequence of bits that is stored inside it. Over the last 50 years, hard
disks have become the dominant storage technology in all kinds of computing

© Smruti R. Sarangi 366

devices starting from laptops to desktops to servers. After 2015, they started
to get challenged in a big way by other technologies that rely on nonvolatile
memory. However, hard disks are still extremely popular as of 2024, given their
scalability and cost advantages. Much of the kernel’s I/O subsystem relies on
the basic architecture that catered to hard disks.

Storage of Bits on the Recording Surface

To understand how bits are stored on a hard disk, we need to first understand
the NRZI (non-return to zero inverted) encoding and how magnets are used to
store bits.

Clock

Data

10 1 1 0 1 0 1 0 0 0

Figure 7.6: NRZI encoding

Small magnets are stored on a disk that rotates that with a very high speed.
The disk head mostly remains static. At periodic intervals, the disk head read
the bits stored on the recording surface. Note that the magnetic field is typically
not directly measured, instead the change in magnetic field is measured. It is
much easier to do so. Given that a changing magnetic field induces a potential
across terminals on the disk head, this can be very easily detected electronically.
Let us assume that the voltage difference is generated at the negative edge of
the clock. This means that whenever the clock has a negative edge, there is
a magnetic field transition and an induced potential, which leads to a current
pulse. We can afford to have a very accurate clock but placing magnets, which
are physical devices, such accurately on the recording surface is difficult. There
will be some variation in the production process. Hence, there is a need to
periodically resynchronize the clock with the magnetic field transitions recorded
by the head while traversing over the recording surface. Some minor adjustments
are continuously required. If there are frequent 0→ 1 and 1→ 0 transitions in
the stored data, then such resynchronization can be done.

However, it is possible that the data has a long sequence of 0s and 1s. In
this case, it is often necessary to introduce dummy transitions for the purpose
of synchronization. In the light of this discussion, let us try to understand the
basic NRZI protocol first (see Figure 7.6). It is a generic protocol that is used
to transmit data electronically. The logical value 0 corresponds to maintaining
the voltage value (there is no voltage transition or current pulse). Whereas, a
value equal to 1, flips the voltage. If the voltage is high, it becomes low, and
vice versa. A logical 1 thus represents a voltage transition, whereas a logical 0
simply maintains the value of the voltage. The protocol can start developing
errors if there is a long run of 0s because there are no transitions. Note that

367 © Smruti R. Sarangi

storing logical 1s is not a problem. There are continuous transitions in voltage,
and these can easily be detected.

Let us now apply this line of reasoning to hard disks. If all the magnets
are oriented in the same direction, then there are no flips in the direction of
magnetization. This corresponds to a run of 0s. Given that magnets can have
slightly different sizes, it is possible to either count an extra 0 or miss a 0. This
is why, it is necessary to introduce a few dummy 0→ 1 and 1→ 0 transitions.
They help synchronize the disk’s clock better and ensure that no bits are missed.
It is true that adding dummy data reduces the effective storage capacity of the
disk; however, it is required for correctness.

N S N S NS N SNS

0 1 0 1

Figure 7.7: Arrangement of tiny magnets on a hard disk’s recording surface

Figure 7.7 shows the arrangement of magnets on a hard disk’s recording
surface. As we can see, if the direction of magnetization is the same, then no
there is no change in the magnetic field. This represents a logical 0. However,
whenever there is a logical 1, there is a transition in the direction of the magnetic
field. This induces a current, which can be detected. The parallels to NRZI
encoding can clearly be seen.

Let us elaborate (see Figure 7.7). If two adjoining magnets have the same
direction of magnetization, then there will be no current induced because there
is no change in the magnetic field. Recall the Faraday’s law where an EMF
(Electromotive Force) is induced when a conductor is placed in a time-varying
magnetic field. We can thus infer a logical 0. However, if the directions of
magnetization are opposite to each other, then there will be a change in the
direction of the magnetic field, and this will induce an EMF across the two ends
of a conductor (as per the Faraday’s law). Therefore, as per the NRZI encoding,
we can infer a logical 1 in this case..

Platters, Sectors and Tracks

Let us now understand how these small magnets are arranged on a circular disk
that is known as a platter. As we can see in Figure 7.8, the platter is divided
into concentric rings that contain tiny magnets. Each such ring is called a
track. It is further divided into multiple sectors. Each sector has the same size:
512 bytes (typically). In practice, a few more bytes are stored for the sake of
error correction. To maximize the storage density, we would like each individual
magnet to be as small as possible. However, there is a trade-off here. If the
magnets are very small, then the EMF that will be induced will be very small
and will become hard to detect. As a result, there are technological limitations
on the storage density.

Moreover, we cannot store the same number of bytes on each track. This
will mean that tracks close to the center will have a much larger storage density
as compared to the outermost tracks. Note that that there is a bound on the

© Smruti R. Sarangi 368

Track

Sector

Figure 7.8: Structure of a platter. Note the sectors and tracks.

storage density. Hence, if it is kept the same, a fair amount of space will be
wasted in the outermost tracks. This will lead to inefficiency. Hence, it is a wise
idea to store different numbers of sectors per track. The number of sectors that
we store per track depends on its radius. Hence, tracks towards the periphery
have more sectors and track towards the center have fewer sectors. Modern
hard disks uses a slightly sophisticated version of this basic idea. They divide
the set of tracks into contiguous sets of rings called zones. Each zone has the
same number of sectors per track. The advantage of this mechanism is that
the electronic circuitry gets slightly simplified given that a platter rotates at a
constant angular velocity. Within a zone, we can assume that the same number
of sectors pass below the head each second.

Definition 7.2.1 Key Elements of a Hard Disk

• A hard disk has a set of platters that are rotating disks with small
magnets. A spindle passes through their centers.

• Each platter typically has two recording surfaces on both sides.

• Each platter is divided into concentric rings; each ring is known as
a track.

• A track stores a set of sectors (512 bytes each, typically).

Design of a Hard Disk

The structure of a hard disk is shown in Figures 7.9 and 7.10. As we can see,
there are a set of platters that have a spindle passing through their centers.
The spindle itself is controlled by a spindle motor that rotates the platters at a

369 © Smruti R. Sarangi

Spindle

Platter

Head

Arm

Figure 7.9: A hard disk

Platter

Spindle

Spindle motor

Read/Write
head

Arm

Actuator

Drive
electronics

Bus
interface

Bus

Figure 7.10: Internal structure of a hard disk

constant angular velocity. There are disk heads on top of each of the recording
surfaces. These heads are connected to a common rotating arm. Each disk head
can read as well as write data. Reading data involves sensing whether there is
a change in the voltage levels or not (presence or absence of an induced EMF).
Writing data involves setting a magnetic field using a small electromagnet. This
aligns the magnet on the platter with the externally induced magnetic field.
Sophisticated electronic circuits are required to accurately sense the changes in
the magnetic field, perform error correction, and transmit the bytes that are

© Smruti R. Sarangi 370

read back to the processor via a bus.

Let us now understand how a given sector is accessed. Every sector has
a physical address. Given the physical address, the disk controller knows the
platter on which it is located. A platter can have two recording surfaces: one on
the top and one on the bottom. The appropriate head needs to be activated, and
it needs to be positioned at the beginning of the corresponding sector and track.
This involves first positioning the head on the correct track, which happens via
rotating the disk arm. The time required for this is known as the seek time.
Once the disk head is on the right track, it needs to wait for the specific sector to
come underneath it. Given the fact that the platter rotates at a constant angular
velocity, this duration, known as the rotational latency, can be computed quite
accurately. Subsequently, the data is read, error checking is done, and after
appropriately framing the data, it is sent back to the CPU via a bus. This is
known as the transfer latency. The formula for the overall disk access time is
shown in Equation 7.1.

Tdisk access = Tseek + Trot latency + Ttransfer (7.1)

Definition 7.2.2 Disk Access Time Parameters

• The seek time is the time that it takes the head to reach the right
track of the disk.

• The rotational latency is the time that the head needs to wait for
beginning of the desired sector to come below it after it has been
positioned on the right track.

• The transfer time is the time it takes to transfer the sector to
the CPU. This time includes the time to perform error checking,
framing and sending the data over the bus.

It is important to note that software programs including devices drivers
perceive a hard disk or for that matter any storage device as an array of bytes.
They access it using a logical address, which is mapped to a physical address
by the disk controller. In some cases, this can also be done by the kernel if the
disk allows access to the raw device. Note that this is rare. Many a time, a
small DRAM-backed cache stores the most recent logical to physical mappings
as well as some of the data that was recently accessed. This reduces the load
on the hard disk.

Given that in a hard disk, there are mechanical parts and also the head
needs to physically move, there is a high chance of wear and tear. Hence, disk
drives have limited reliability. They mostly tend to have mechanical failures. To
provide failure resilience, the disk can maintain a set of spare sectors. Whenever
there is a fault in a sector, which will basically translate to an unrecoverable
error, one of the spare sectors can be used to replace this “bad sector”.

There are many optimizations possible here. We will discuss many of these
when we introduce file systems. The main idea here is to store a file in such
a way that it can be transferred to memory very quickly. This means that
the file system designer has to have some idea of the physical layout of the
disk and the way in which physical addresses are assigned to logical addresses.

371 © Smruti R. Sarangi

If some of this logic is known, then the seek time, as well as the rotational
latency can be reduced substantially. For instance, in a large file, all the data
sectors can be placed one after the other on the same track. Then they can be
placed in corresponding tracks (same distance from the center) in the rest of the
recording surfaces such that the seek time is close to zero. This will ensure that
transitioning between recording surfaces will not involve a substantial movement
of the head in the radial direction.

All the tracks that are vertically above each other have almost the same
distance from the center. We typically refer to a collection of such tracks as
a cylinder. The key idea here is that we need to preserve physical locality and
thus ensure that all the bytes in a file can quickly be read or written one after
the other. Once a cylinder fills up, the head can move to the adjacent cylinder
(next concentric track), so on and so forth.

7.2.2 RAID

Hard drives are relatively flimsy and have reliability issues. This is primarily
because they rely on mechanical parts, which are subject to wear and tear. They
thus tend to fail. As a result, it is difficult to create large storage arrays that
comprise hard disks. We need to somehow make large storage arrays resilient to
disk failures. There is a need to have some built-in redundancy in the system.
The concept of RAID (Redundant Array of Inexpensive Disks) was proposed
to solve such problems. Here, the basic idea is to have additional disks that
store redundant data. In case a disk fails, other disks can be used to recover
the data. The secondary objective of RAID-based solutions is to also enhance
the bandwidth given that we have many disks that can be used in parallel. If
we consider the space of these two dual aims – reliability and performance – we
can design many RAID solutions that cater to different kinds of users. The user
can choose the best solution based on her requirements.

RAID 0

B9

B7

B5

B3

B1

B10

B8

B6

B4

B2

Disk 1 Disk 2

Figure 7.11: RAID 0

© Smruti R. Sarangi 372

Here there is no redundancy, instead a concept called data striping is used
(refer to Figure 7.11). As we can see in the figure, data is distributed blockwise
across the two disks. For example, Disk 1 contains block B1, disk 2 contains
block B2, so on and so forth. It is possible to read both the disks in parallel.
If we are reading or writing to a large file with a lot of blocks, this strategy
effectively doubles the bandwidth. It however does not enhance the reliability
because there is no redundancy. All that we are doing is equally distributing
the blocks across the disks.

RAID 1

B5

B4

B3

B2

B1

B5

B4

B3

B2

B1

Disk 1 Disk 2

Figure 7.12: RAID 1

On the other hand, RAID 1 (shown in Figure 7.12) enhances reliability. Here
the same block is stored across the two disks. For example, block B1 is stored
on both the disks: Disk 1 and 2. If one of the disks fails, then the other disk can
be used to service all the reads and writes (without interruption). Later on, if
we decide to replace a failed disk, then the other disk that is intact can provide
all the data to initialize the new disk.

This strategy does indeed enhance reliability by providing a spare disk. How-
ever, the price that is incurred is that for every write operation, we actually need
to write the same copy of the block to both the disks. Reads are still fast be-
cause we can choose any one of the disks for reading. We especially choose the
one that is lightly loaded to service the read. This is sadly not possible in the
case of write operations.

RAID 2, 3 and 4

We clearly have some issues with RAID 1 because it does not enhance the
bandwidth of write operations. In fact, we need to write the same data to
multiple disks. Hence, a series of solutions have been proposed to ameliorate
this issue. They are named RAID 2, 3 and 4, respectively. All of them belong
to the same family of solutions (refer to Figure 7.13).

In the figure we see an array of five disks: four store regular data and one
stores parities. Recall that the parity of n bits is just their XOR. If one of the
bits is lost, we can use the parity to recover the lost bit. The same can be done

373 © Smruti R. Sarangi

B17

B13

B9

B5

B1

Disk 1

B18

B14

B10

B6

B2

Disk 2

B19

B15

B11

B7

B3

Disk 3

B20

B16

B12

B8

B4

Disk 4

P5

P4

P3

P2

P1

Parity Disk

Figure 7.13: RAID 2, 3 and 4

at the level of 512-byte blocks as well. If one block is lost due to a disk failure, it
can be recovered with the help of the parity block. As we can see in the figure,
the parity block P1 is equal to B1⊕B2⊕B3⊕B4, where ⊕ stands for the XOR
operation. Assume that the disk that stores B2 fails. We can always compute
B2 as B1⊕ P1⊕B3⊕B4.

Now, let us focus on the differences across the three RAID levels: RAID 2, 3
and 4. RAID 2 stores data at the level of a single bit. This means that its block
size is just a single bit, and all the parities are computed at the bit level. This
design offers bit-level parallelism, where we can read different bit streams in
parallel and later on fuse them to reconstruct large data blocks. Such a design
is hardly useful, unless we are looking at bit-level storage, which is very rare in
practice.

RAID 3 increases the block size to a single byte. This allows us to read
or write to different bytes in parallel. In this case, Disk i stores all the bytes
at locations 4n + i. Given a large file, we can read its constituent bytes in
parallel, and then interleave the byte streams to create a memory image of the
file. However, this reconstruction process is often slow and tedious. Hence, this
design is also not very efficient nor very widely used.

Finally, let us consider RAID 4, where the block size is equal to the con-
ventional block size (512 bytes). This is typically the size of a sector in a hard
disk, which can be accessed in one go. Hence, reconstructing data at the level of
blocks is much easier and much more intuitive. Furthermore, it is also possible
to read multiple files in parallel given that their blocks are distributed across
the disks. Such designs offer a high level of parallelism and if the blocks are
smartly distributed across the disks, then a theoretical bandwidth improvement
of 4× is possible in this case.

There is sadly a problem with these RAID designs. The issue is that there
is a single parity disk. Whenever, we are reading something, we do not have to
compute the parity because we assume that if the disk is alive, then the block
that is read is correct. Note that we are relying on block-level error checking, and
we are consequently assuming that they are sufficient to attest the correctness
of the block’s contents. Sadly, in this case, writing data is much more onerous.

© Smruti R. Sarangi 374

Let us first consider a naive solution.
We may be tempted to argue that to write to any block, it is necessary to

read the rest of the blocks from the other disks and compute the new value of
the parity. It turns out that there is no need to actually do this; we can instead
rely on an interesting property of the XOR function. Note the following:

P1 = B1⊕B2⊕B3⊕B4

P1′ = P1⊕B1′ ⊕B1 = B1′ ⊕B2⊕B3⊕B4
(7.2)

The new parity P1′ is thus equal to B1′⊕B2⊕B3⊕B4. We thus have a neat
optimization here; it is not necessary to read the rest of the disks. We simply
need to read the old value of the block B1 and P1. Subsequently, the new parity
P1′ needs to be written to the parity disk. Sadly, for every write operation, the
parity disk has to be read, and it has to be written to. This makes the parity
disk a point of contention – it will slow down the system because of requests
queuing up. Moreover, it will also see a lot of traffic, and thus it will wear out
faster. This will cause many reliability problems, and the parity disk will most
likely be the first to fail. Hence, there is a need to distribute the parity blocks
across the array of disks.

RAID 5

Figure 7.14 shows a set of disks with distributed parity, where there is no single
disk dedicated to exclusively storing parity blocks. We observe that for the first
set of blocks, the parity block is in Disc 5. Then for the next set, the parity
block P2 is stored in Disk 1, so on and so forth. Here the block size is typically
equal to the block size of RAID 4, which is normally the disk sector size, i.e.,
512 bytes. The advantage here is that there is no single disk that is a point
of contention. The design otherwise has the rest of the advantages of RAID 4,
which are basically the ability to support parallel read accesses and optimized
write accesses. The only disks that one needs to access while writing are as
follows: the disk that is being written to and the parity disk.

B17

B13

B9

P2

B1

Disk 1

B18

B14

P3

B5

B2

Disk 2

B19

P4

B10

B6

B3

Disk 3

P5

B15

B11

B7

B4

Disk 4

B20

B16

B12

B8

P1

Disk 5

Figure 7.14: RAID 5

375 © Smruti R. Sarangi

RAID 6

Let us now ask a more difficult question, “What if there are two disk failures?”
Having a single parity block will not solve the problem. We need at least two
parity blocks. The mathematics to recover the contents of the blocks is also
much more complex.

B17

B13

P3A

P2B

B1

Disk 1

B18

P4A

P3B

B5

B2

Disk 2

P5A

P4B

B9

B6

B3

Disk 3

P5B

B14

B10

B7

B4

Disk 4

B19

B15

B11

B8

P1A

Disk 5

B20

B16

B12

P2A

P1B

Disk 6

Figure 7.15: RAID 6

Without getting into the intricate mathematical details, it suffices to say
that we have two parity blocks for every set of blocks, and these blocks are dis-
tributed across all the disks such that there is no point of contention. Figure 7.15
pictorially describes the scheme.

7.2.3 SSDs

Let us next discuss another genre of storage devices that rely on semiconductor
technologies. The technology that is used here is known as flash. This technol-
ogy is used to create SSDs (solid state devices). Such storage technologies do
not use magnets to store bits, and they also do not have any mechanical parts.
Hence, they are both faster and often more reliable as well. Sadly, they have
their share of failure mechanisms, and thus they are not as reliable as we think
they perhaps are. Nevertheless, we can confidently say that they are immune
to mechanical shocks and to a large extent are also immune to fluctuations in
temperature.

Basic Operation

Let us understand at a high level how they store a bit. Figure 7.16 shows a novel
device that is known as a floating gate transistor. It looks like a normal NMOS
transistor with its dedicated source and drain terminals and a gate connected
to an external terminal (known as the control gate). Here, the interesting point
to note is that there are actually two gates stacked on top of each other. They
are separated by an insulating silicon dioxide layer.

Let us focus on the gate that is sandwiched between the control gate and
the transistor’s channel. It is known as the floating gate. If we apply a very
strong positive voltage, then electrons get sucked into the floating gate because

© Smruti R. Sarangi 376

of the strong positive potential and when the potential is removed, many of
the electrons actually stay back. When they stay back in this manner, the cell
is said to be programmed. We assume that at this point it stores a logical 0.
If we wish to reset the cell, then there is a need to push the electrons back
into the transistor’s substrate and clear the floating gate. This necessitates the
application of a strong negative voltage at the control gate terminal, which will
push the electrons back into the transistor’s body. In this case, the floating gate
transistor or the flash cell are said to be reset. The cell stores a logical 1 in this
state.

Source Drain
SiO2 Floating gate

Control gate

Symbol
(a) (b)

Figure 7.16: Floating gate transistor

Let us now look at the process of reading the value stored in such a memory
cell. When the cell is programmed, its threshold voltage rises. It becomes equal
to V +

T , which is higher than the normal threshold voltage VT . Hence, to read
the value in the cell, we set the gate voltage equal to a value that is between
VT and V +

T . If it is not programmed, then the voltage will be higher than the
threshold voltage and the cell will conduct current, otherwise it will be in the
cutoff state and will not conduct current. This is known as enabling the cell (or
the floating gate transistor).

Multi-level Flash Cells

It is possible to increase the storage density even further. We have up till now
been considering only two levels: presence of charge in the floating gate or its
absence. This automatically translated to two logic levels. Instead, we can have
a multilevel flash cell that has 2n distinct charging levels; this will allow us to
store n bits per cell. Such a cell is known as a multilevel flash cell that has a
higher storage density. However, it sadly has lower endurance. Additionally, it
has a high error rate because small fluctuations in the stored charge can lead to
bit errors. This creates a need for more error control bits (ECC bits).

P/E Cycles

Let us now discuss a very fascinating aspect of such flash-based devices. These
devices provide read-write access at the level of pages 1, not bytes – we can only

1This is not the same as a page in virtual memory.

377 © Smruti R. Sarangi

read or write a full page (512-4096 bytes) at a time. We cannot access data at
a smaller granularity. As we have seen, the storage of data within such devices
is reasonably complicated. We have fairly large flash cells and reading them
requires some work. Hence, it is a much better idea to read a large number of
bytes in one go such that a lot of the overheads can be amortized. Enabling
these cells and the associated circuits have associated time overheads, which
necessitates page-level accesses. Hence, reading or writing small chunks of data,
let’s say a few bytes at a time, is inefficient. We would like to emphasize once
again that even though the term “page” is being used, it is totally different from
a page in virtual memory. They just happen to share the same name.

Let us now look at writes. In general, almost all such devices have a DRAM-
backed cache that accumulates/coalesces writes. A write is propagated to the
array of flash cells either periodically, when there is an eviction from the cache, or
when the device is being ejected. In all cases effecting a write is difficult mainly
because there is no way of directly writing to a flash cell that has already been
programmed. We need to first erase it or rather deprogram it. In fact, given
that we only perform page-level writes, the entire page has to be erased. Recall
that this process involves applying a very strong negative voltage to the control
gate to push the electrons in the floating gates back into the substrate.

Sadly, in practice, it is far easier to erase data at the level of a group of
pages, because we can afford to have a single strong driver circuit to push
the electrons back. We can successfully generate a strong enough potential to
reset or deprogram the state of a large number of flash cells. In line with this
philosophy, in flash-based SSD devices, blocks are created that contain 32-128
pages. We can erase data only at the level of a block.

After that, we can write to a page, which means programming all the cells
that need to store a logical 0 and leaving/ignoring the rest of the cells. Recall
that if we do not program a cell, by default it stores a logical 1. One may ask a
relevant question here, “What happens to the rest of the pages in a block that
are not written to?” Let us keep reading to find the answer.

We thus have a program-erase (P/E) cycle. We read or write at the granu-
larity of pages, but erase at the level of blocks (of pages). To rewrite a page, it
is necessary to erase it first. This is because the 0→ 1 transition is not possible
without an erase operation. The crux of the issue is that we cannot write to
a cell that already stores a 0. This means that every page is first written to
(programmed), and then erased, then programmed again, so on and so forth.
This is known as a program-erase cycle (PE cycle).

Let us understand in detail what happens to the data when we wish to
perform a page rewrite operation. Whenever we wish to write to a page, we
actually need to do a couple of things. The first is that we need to find another
empty (not programmed) block. Next, we copy the contents of the current block
to the location of the empty block. In the copying process, we omit the page
that we wish to write to. This process involves many read-write operations.

Subsequently, we need to write the modified version of the page. Note that
the actual physical location of this page has now changed. It is now being
written to a different location, because the physical block that it was a part of
got erased, and all the other pages that in the block got transferred to a new
location. They are a part of a different physical block now, even though they
are a part of the same logical block. This answers the question with regard to
what happens with the rest of the pages in the block.

© Smruti R. Sarangi 378

There is therefore a need to have a table that maps a logical block to its
corresponding physical block. This is because, in designs like this, the physical
locations of the blocks are changed on every write. Whenever a block is copied
to a new address, the corresponding mapping needs to be updated. This is done
by the Flash Translation Layer (FTL) – firmware stored in the SSD itself. The
mapping table is also stored on the SSD. It is modified very carefully because
we don’t want any inconsistencies here. It is seldom the case that the kernel
maintains this table. This is because most flash devices do not give access to the
kernel at such a low level. There are experimental devices known as raw flash
devices that allow kernel developers to implement the FTL in the kernel and
subsequently evaluate different mapping algorithms. However, this is rare. In
practice, even something as simple as a pen drive has its own translation layer.

Reliability Issues

Let us now discuss some reliability issues. Unfortunately, a flash device as of
today can only endure a finite number of P/E cycles per physical block. The
maximum number of P/E cycle is sadly not much – it is in the range of 50-
150k cycles as of 2024. The thin oxide layer breaks down, and the floating gate
becomes unusable. Hence, there is a need to ensure that all the blocks wear
out almost at the same rate or in other words, they endure the same number
of P/E cycles. Any flash device maintains a counter for each block. Whenever
there is a P/E cycle, this counter is incremented. The idea is to ensure that all
such counts are roughly similar across all the blocks.

High P/E count

Free block

1. Copy the contents of a frequently
accessed block to a temporary (free) block

Low P/E count

2. Erase

3. Copy

4. Erase and copy

Figure 7.17: Block swap procedure

Sometimes it may so happen that a given physical block is accessed very
frequently and its P/E count increases disproportionately. We need to perform
wear leveling, which means that we need to ensure that all (physical) blocks
wear out at roughly the same rate. We thus follow the algorithm shown in
Figure 7.17, where we swap the contents of a heavily used block with that of a
block that has a low P/E count. The exact steps are as follows.

1. Copy the contents of the frequently-accessed (high P/E count) block B to
a free/empty block E, whose contents have been erased.

379 © Smruti R. Sarangi

2. Erase the contents of block B.

3. Transfer the contents of another infrequently-accessed block C that has a
low P/E count to B.

4. Copy the contents of E (erstwhile contents of B) to C. This completes
the swap.

If we have access to some form of volatile storage, such as a DRAM cache,
then using the additional free block E that acts as temporary space is not
required. The contents of block B can be transferred to DRAM, and then from
there to the destination block C that has a low P/E count.

The risk in this process is that the device may be powered off or get ejected
in the middle of this process. Then all the data that is stored in the volatile
DRAM cache can get lost. Hence, this is typically not done. It is way more
common to always keep transferring data to a free temporary block such that
the system is immune to such kind of events.

Let us now look at another phenomenon that affects reliability. It is known
as read disturbance. If we read a group of cells in a page continuously, transistors
in other pages of the block gradually start to get programmed. This is because
they also need to be enabled such that they can pass current. In the widely used
NAND flash technology, flash cells are connected in series. To read one cell, it
is necessary to enable the rest (make them conducting). This action raises the
voltage across each of the other cells. Over time the slightly increased voltage
leads to accumulation of charge at the floating gate. Over many cycles, other
cells in the block ultimately get programmed.

Hence, it is important to also maintain a read counter for each block. When-
ever it starts to exceed a threshold, we need to copy the block to a new location.
This is very similar to the way wear leveling is done.

Performance Considerations

Let us now take a high-level view and go over what we discussed. We introduced
a flash cell, which is a piece of nonvolatile memory that retains its values when
powered off, quite unlike conventional DRAM memory. Nonvolatile memories
essentially play the role of storage devices. They are clearly much faster than
hard disks, and they are slower than DRAM memory. However, this does not
come for free. There are concomitant performance and reliability problems that
require both OS support, and features such as wear leveling and swapping blocks
to minimize read disturbance.

Modern SSD devices take care of a lot of this within the confines of the device
itself such as by having DRAM-based caches. Nevertheless, kernel support is
still required, especially when we have systems with large flash arrays. It is nec-
essary to equally distribute requests across the individual SSD memories. This
requires novel data layout and partitioning techniques. Furthermore, we wish
to minimize the write amplification. This is the ratio of the number of physical
writes to the number of logical writes. Writing some data to flash memory may
involve many P/E cycles and block movements. All of them increase the write
amplification. This is why there is a need to minimize all such extraneous writes
that are made to the SSD drive.

© Smruti R. Sarangi 380

Most modern SSD disk arrays incorporate many performance optimizations.
They do not immediately erase a block that has served as a temporary block and
is not required anymore. They simply mark it as invalid, and it is later erased
or rather garbage collected. This is done to increase performance. Moreover,
the kernel can inform the SSD disk that a given block is not going to be used in
the future. It can then be marked as invalid and can be erased later. Depending
upon its P/E count, it can be either used to store a regular block, or it can even
act as a temporary block that is useful during a block swap operation. The
kernel also plays a key role in creating snapshots of file systems stored on SSD
devices. These snapshots can be used as a backup solution. Later on, if there
is a system crash, then a valid image of the system can be recovered from the
stored snapshot.

Up till now, we have used SSD drives as storage devices (as hard disk re-
placements). However, they can be used as regular main memory as well. Of
course, they will be much slower. Nevertheless, they can be used for capacity
enhancement. There are two configurations in which SSD drives are used: hor-
izontal and vertical. The SSD drive can be used in the horizontal configuration
to just increase the size of the usable main memory. The kernel needs to place
physical pages intelligently across the DRAM and SSD devices to ensure opti-
mal performance. The other configuration is the vertical configuration, where
the SSD drive is between the main memory and the hard disk. It acts like a
cache for the hard disk – a faster storage device that stores a subset of the data
stored on the hard disk. In this case also, the role of the OS (kernel and file
system) is crucial.

7.2.4 Nonvolatile Memories

Akin to flash devices, there are numerous nonvolatile memories in use today.
They use many different kinds of technologies. All of these primarily function
as storage devices but can also be used to extend the available physical memory
space as well. Many of them have better endurance and shelf lives as compared
to flash-based SSD drives.

Their basic underlying philosophy is the same. We construct a device with
two physical states: one corresponds to a logical 0 and the other corresponds
to a logical 1. Typically, one of them is a high-resistance state and the other
is a low-resistance state. Subsequently, we proceed to create an array of such
devices. We then enhance its reliability using a combination of hardware and
software approaches.

Let us consider a list of such technologies (refer to Table 7.2).

7.3 Files and Devices in Linux

7.3.1 Devices in Linux

Linux defines two kinds of devices: block devices and character devices. A block
device typically corresponds to storage devices that store data at the granularity
of blocks (ten to hundreds of bytes). The minimum data transfer size (reads
of writes) is one block. Blocks, in general, can be randomly accessed. It is not
possible to access data at a finer granularity. A block device driver needs to

381 © Smruti R. Sarangi

Device Operating Principle
Flash memory A transistor that has an additional floating gate that

can be made to store electrons. The presence and
absence of electrons in the floating gate corresponds
to the two logical states.

Ferroelectric
RAM (FeRAM)

The degree of polarization of the ferroelectric mate-
rial is a function of the voltage applied to it in the
past. The current polarization direction represents
the logical bit.

Magnetoresistive
RAM (MRAM)

The direction of magnetization of a ferromagnetic
material is a function of the direction of current flow
through it (in the past). The direction represents the
logical bit.

Phase change
memory (PCM)

A small heater is used to change the state from amor-
phous to crystalline and vice versa (two states).

Resistive RAM
(ReRAM)

Based on the history of the voltage applied, a fila-
ment forms based between the anode and cathode.
The resistance and the logical state of the cell is de-
termined by the width of this filament.

Table 7.2: Different kinds of nonvolatile memory (NVM) technologies

take all such characteristics of the block device into account. For example, hard
disks and SSDs are block devices. We have already seen that the typical block
size in a hard disk is 512 bytes, whereas in an SSD we read/write data at the
granularity of pages and erase data at the granularity of blocks.

On the other hand, there are character devices such as keyboards and mice.
They transfer data one or a few bytes at a time. Such devices typically don’t
have addressable locations and do not function as storage devices. Such devices
either read or produce a stream of characters. The device driver for a character
device needs to be very different from a block device driver. Data that is meant
to be read or written needs to be handled and managed very differently as
compared to block devices.

Linux follows the “everything is a file” model similar to Unix. This means
that every entity in the operating system is treated as a file regardless of whether
it is a file or not. For example, devices are treated as files. They are stored in
the /dev directory, and can be accessed as regular files. Let us elaborate. The
type of the file can be found out by running the command ls -l. An entry is of
the form trw-r--r--. ‘t’ corresponds to the type of the file. If it is ‘-’, it means
that it is a regular file. Other values of ‘t’ indicate correspond to other types of
files such as directories, devices, symbolic links, etc. (refer to Table 7.3).

7.3.2 Notion of Files

The interesting aspect of all Unix-like operating systems including Linux is
that a large number of entities are treated as a “file” by the utilities in the
operating system; they also support basic file operations namely opening and
closing a file, reading and writing bytes, changing permissions, etc. This file

© Smruti R. Sarangi 382

Indicator File type
- regular file
d directory
l symbolic link (points to another file or directory)
c character device
b block device
s socket (for inter-process communication)
p pipe (for inter-process communication)

Table 7.3: Different kinds of files in Linux

interface is a virtual layer on the actual entity. It is like a superclass in an
object-oriented programming language. A high-level operation is translated
to an entity-specific call that implements the operation at a lower level. For
example, a read operation on a regular file simply fetches its contents. Whereas,
a read operation on a block device actually reads the device (assuming that the
corresponding data is not cached in the internal page cache).

file

open close seek read write

Con�guous set of bytes
start endcurrent position

From the current
posi�on. Increment it

change
permissions

and ownership

get
stats

Figure 7.18: File operations in Linux

Every file has a name and associated metadata. The metadata contains its
access permissions and ownership information. The owner is a legitimate user
who is authorized to access the file. We shall look more at access permissions
in Section 8. They basically specify what the owner, other users in the owner’s
group and the rest of the users can do with the file. Some users have read
permission, some can write to it and some can treat it as an executable file.
The metadata also contains other statistics (in Linux’s terminology) such as
the file size, time of last modification, time of last access and the time that the
status changed last.

Let us look at some of the typical operations supported by the kernel on
generic files. Before accessing a file, it is necessary to open it first. This lets the
kernel know that the process issuing the system call is interested in accessing
the file. Some data structures need to be initialized to maintain the status
of the file access. In generic terms, a file is treated as an array of contiguous
bytes. Each open file has a pointer associated with it that points to the current
byte that is being read. For example, if the process has read 8 bytes, then its
current position (value of the pointer) is set to 8 (assume that we start counting
from 0). The current position is a part of the bookkeeping information that is

383 © Smruti R. Sarangi

maintained by each process. Also note that sometimes a file needs to be locked,
especially when multiple processes are concurrently accessing the same file. This
information is also maintained in the bookkeeping information maintained along
with each open file. Finally, the state associated with each open file needs to be
cleaned up when the file is closed.

Given that every file is treated as a contiguous set of bytes, where the first
byte is located at position 0, it is necessary to maintain the current position
(a byte pointer), which is done by the file pointer. If we do not maintain this
position, then with every read or write system call, it will be necessary to provide
the file pointer (offset within the file) as an additional argument. For example,
if we would like to read 4 bytes from the file pointer 100 onwards, then the value
“100” needs to be provided as an argument to the read or write system calls.
This is fine if we have a random file access pattern. However, most files are not
accessed in this manner. Typically, they are accessed sequentially. Hence, it
is a good idea to maintain an internal file pointer that need not be visible to
programmers. From the programmer’s point of view, it is maintained implicitly.

Sequential and Random Access of Files

Sometimes there is a need to access parts of the file randomly. One option is to
explicitly manipulate the file pointer. This can be done with the seek family of
system calls. The other option is to map parts of the file to memory. This means
that the file’s contents are mapped to regular memory pages. The kernel keeps a
record of which page in memory is mapped to which 4 KB chunk in the physical
file, which is stored on a storage device. The advantage of this mechanism
is that all file reads and writes can be serviced by writing to memory. On a
regular basis, the mapped memory pages can be flushed and the data written
by processes can be sent to the storage device. This process can be acclerated
if the memory starts to fill up. The general idea here is that storage devices are
very slow, and we would not like to access them frequently. Hence, it is a much
better idea to create a page cache in memory that stores a set of pages that are
mapped to contiguous 4 KB chunks of files. All that the program needs to do is
write to these pages, which is much faster. Note that the entire file need not be
mapped to memory-resident pages – only those parts that are frequently used
or may be used in the future need to be mapped.

This sounds like a good idea; however, it is hard to implement in practice.
How does the program know if a given file offset is present in memory (in a
mapped page), or is present in the underlying storage device? Furthermore,
the page that a file address is mapped to, might change over the course of
time. Thankfully, there are two easy solutions to this problem. Let us con-
sider memory-mapped I/O, where file addresses are directly mapped to virtual
memory addresses. The TLB and page table can be utilized for this purpose.
A simple solution is as follows. The entire file can be mapped to a process’s
virtual memory. Pages that are resident in the page cache will have regular
physical memory addresses. However, pages that are stored in the underlying
I/O device map to I/O addresses instead of memory addresses. In this case,
the memory system and chipset automatically redirect the request to the I/O
(storage) device that stores the file. The page cache can prove to be very bene-
ficial if the file access pattern is predictable. The logic is similar to CPU caches.
If we tend to access a given set of file pages very frequently, then they can be

© Smruti R. Sarangi 384

kept in the in-memory page cache. Moreover, if we can predict the file pages
that will be accessed in the future, then they can be prefetched into the page
cache. This optimization will not change the programmer’s view of memory or
the I/O system. Programs shall run unmodified, albeit much faster. The flip
side to this is that the page cache needs to be periodically flushed such that all
outstanding write operations are sent to the storage device. If there is a sudden
system shutdown then there is a possibility that some writes may not get sent
to the storage device. Unless additional precautions are taken, they can get lost
forever.

Another solution is to use port-mapped I/O. This means that I/O is per-
formed on files using read and write system calls, and the respective requests
go to the I/O system via I/O instructions. They are ultimately routed to the
storage device via chips in the chipset. The programmer simply invokes library
calls and specifies the number of bytes that need to be read or written, including
their contents (in the case of writes). The library calls curate the inputs and
make the appropriate system calls. After transferring data to the respective ker-
nel buffers, the system call handling code invokes the device driver routines that
finally issue the I/O instructions. This is a long and slow process and is clearly
not preferred. It may be the method of choice for legacy devices and security
or timing-sensitive devices where either memory-mapping is not supported or
the overheads of the page cache are prohibitive. It is important to appreciate
that the page cache is one of the most heavily engineered subsystems of the
Linux kernel. The heuristics to maintain an optimal size, prefetch file pages,
proactively write modified data to the storage device and ensure reliability are
quite sophisticated in modern kernels.

Let us look now at the data structures used to manage devices in Linux in
detail.

7.4 Block Devices

device

major number

minor number

device
driver

Figure 7.19: Numbering of a device

The first step in taking cognizance of a block device is to register it (refer to
Figure 7.19). Every device is assigned a major number and minor number by the
kernel. The major number is used to identify the device and the minor number is
used internally by the device driver. For example, USB flash drives use the same
major number, and thus share the same driver. However, individual devices are
assigned different minor numbers.

385 © Smruti R. Sarangi

7.4.1 Registering a Block Device

The first task is to register a block device. The device is registered by invok-
ing the function register blkdev (refer to Listing 7.1). A major number is
assigned to it along with a string name. The most important argument from an
operational standpoint is the function pointer probe that takes a devt (device
type) as the sole argument. The device type is a 2-tuple of the 12-bit major
number and 20-bit minor number. It is invoked whenever the system boots
up and adds the block device, or when it is dynamically inserted. Its job is to
initialize the driver, the device and load the code of the device driver in memory.

Listing 7.1: register blkdev function
source : include/linux/blkdev.h

register_blkdev (unsigned int major , const char *name ,

void (*probe) (dev_t devt));

Let us summarize the current state of our discussion. A major number is
assigned to a device or a family of related devices. If there are many devices
of the same type, such as USB devices, the minor number identifies a specific
device. The device driver is identified on the basis of the major number. It is
possible for a single device driver to service multiple devices, which means that
it can be associated with multiple major numbers. As we shall shortly see, a
device driver presents itself to the kernel as a set of function pointers. Given
that any modern operating system has to deal with hundreds of devices, it needs
to incorporate a plethora of device drivers. As a matter of fact, the success and
acceptability of an OS is dependent upon its device support. There is thus a need
to be very flexible in this regard and support as many devices as possible. Unless
OS developers encourage a large community of driver developers to develop
drivers for them, users will not adopt the OS because their devices will not
work.

7.4.2 Drivers and Modules

Therefore, a standardized interface needs to be provided to driver developers
such that they can write drivers easily. Linux indeed makes this process quite
simple. A driver’s external interface is a set of function pointers. A generic
driver is like a pure virtual class in C++ or an abstract class in Java that just
defines the signatures of the methods. It is up to the driver developer to provide
concrete implementations of these functions. We have already seen one such
function that was sent as an argument to the register blkdev function namely
the probe function. We shall see that there are many more such functions, which
driver developers need to implement.

Before looking at the structure of a driver, let us understand how drivers
themselves are managed by the kernel. We have already seen that in the current
versions of the kernel (as of 2024), 70% of the total code is accounted for by
drivers. The reason for this is simple. There are a very wide variety of devices
out there starting from printers to web cameras to hard drives to keyboards to
mice. Each one of them requires its own driver. For a long time, the adoption of
Linux was somewhat subdued primarily because of the limited device support.
Over the years, the situation has changed, which is why can we see the dispro-
portionate fraction of driver code in the overall code base. As Linux gets more

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/blkdev.h

© Smruti R. Sarangi 386

popular, we will see more driver code entering the codebase. Note that the set of
included drivers is not exhaustive. There are still a lot of devices whose drivers
are not bundled with the operating system distribution. The drivers have to be
downloaded separately. This is because many times there are licensing issues,
and there is also a need to reduce the overall size of the OS installation package.
Nevertheless, a lot of drivers are still bundled with the OS code such that they
are readily available.

Let us ask an important question at this stage. Given that the Linux kernel
is a large monolithic piece of code, should we include the code of all the drivers
also in the kernel’s memory image? There are many reasons for why this should
not be done. The first reason is that the kernel image size will become very
large. It may exhaust the available memory space and little memory will be
left for applications. The second is that very few drivers may actually be used
because it is not the case that a single system will be connected to 200 different
types of printers, even though the code of the drivers of those printers needs to
be bundled along with the OS code. The reason for this is that when someone
is connecting a printer, the expectation is that things will immediately work
and all drivers will get auto-loaded. If such drivers are readily available, then
the user experience will be seamless. However, they need not be a part of the
memory image; they can remain in the file system and be stored on the storage
device.

Summary: In general, if it is a common device, there should be no need to
go to the web and download the corresponding driver. This would be a very
inefficient process. Hence, it is a good idea to bundle the driver along with the
OS code. However, bundling the code does not imply that the compiled version
of it should be present in the kernel image all the time. Very few devices are
connected to a machine at runtime. Only the images of the corresponding
drivers should be present in memory and a part of the kernel’s memory image.

Modules

Recall that we had a very similar discussion in the context of libraries in Ap-
pendix B. We had argued that there is no necessity to include all the library
code in a process’s image. This is because very few library functions are used in
any single execution. Hence, we preferred dynamic loading of libraries and cre-
ated shared objects. It turns out that something very similar can be done here.
Instead of statically linking all the drivers, the recommended method is to cre-
ate a kernel module, which is nothing but a dynamically linked library/shared
object in the context of the kernel. All the device drivers should preferably be
loaded as modules. At run time they can be loaded on demand. This basically
means that the moment a device is connected, we find the driver code corre-
sponding to it and load it into memory. It is loaded into memory on-demand
the same way that we load a DLL. The advantages are obvious – efficiency and
reduced memory footprint. To load a module, the kernel provides the insmod
utility that can be invoked by the superuser – one who has administrative ac-
cess. The kernel can also automatically do this action, especially when a new
device is connected. There is a dedicated utility called modprobe that is tasked
with managing and loading modules (including their dependences).

The role of the module-loading utility is specifically as follows:

387 © Smruti R. Sarangi

1. Locate the compiled code and data of the module, and map its pages to
the kernel’s memory space.

2. Concomitantly, increase the kernel’s runtime code size and memory foot-
print.

3. There is a need to use a dynamic linker to change the addresses of all the
symbols in the module that is going to be added. Akin to the symbol
table in regular processes, the kernel maintains a global symbol table. It
has a list of all the symbols, functions and variables that are exported by
all the modules and the core kernel. These symbols can be accessed by
modules depending upon their requirements. The addresses of all relocat-
able symbols in the module are updated (akin to symbols in DLLs/shared
objects).

4. The symbols exported by the module are added to the global symbol table.

Kernel symbol table

Module 1 symbol
table

Module 2 symbol
table

Address of a func�on/
global variable

Figure 7.20: Kernel’s global symbol table

Global Symbol Table

Figure 7.20 shows the global symbol table. First, we have all the symbols
exported by the current kernel, and then we have module-specific symbol tables.
They store all the symbols exported by each module. All the modules can use
the symbols exported by the kernel. As we have discussed, they can use symbols
exported by other modules as well. Many times there is a need to enforce an
order in which the modules are loaded because the nth module may need specific
symbols exported by modules 1 . . . (n− 1).

Unloading a module is comparatively much simpler. We need to maintain a
reference count for each module. The reference count is equal to the number of
modules including the kernel that use symbols exported by the module. Once
the count reaches zero, the kernel can unload the module. We can follow the
reverse sequence of steps. We need to clean up the global symbol table, i.e.,
expunge the symbols exported by the module that needs to be unloaded.

© Smruti R. Sarangi 388

device

device_driver

bus_type

gendisk

Block device

request_queue

File system

Array of requests

I/O
scheduler

struct request
bio bio bio

List of memory regions

Figure 7.21: Kernel’s block I/O system

7.4.3 The Block I/O System

Overview

Now we are in a position to appreciate the overall structure of the block I/O
subsystem in Linux. It is shown in Figure 7.21. The two core concepts are
generic devices (struct device) and block devices.

A device is a generic construct that can represent both character and block
devices. It points to a device driver and a bus. A bus is an abstraction for a
shared hardware interconnect that connects many kinds of devices. Examples
of such buses are USB buses and PCI Express (PCIe) buses. It has many
associated data structures. Many times it is necessary to query all the devices
connected to the bus and find the device that needs to be serviced. Hence, a bus
needs to have pointers to the device drivers of the connected devices. However,
each generic device has two specific bindings: one with a device driver and one
with a bus.

Next, let us look at the structure of a block device. It has pointers to many
others important subsystems and data structures. First, it points to a file system
(discussed in detail in Section7.6). A filesystem is a mechanism to manage the
full set of files on the corresponding storage device. This includes reading and
writing to files, managing the metadata and listing them. Given that every
block device stores blocks, it is conceptually similar to a hard disk that does
the same. In the good old days, the hard disk was the most prominent block
storage device. Now there are many other kinds of devices including numerous
types of storage devices as well. Nevertheless, because of legacy reasons, the
term “disk” has been retained.

Consequently, Linux associates each block device with a gendisk structure,
which represents a generalized disk. It is a convenient way of abstracting all
block devices such as hard disks, SSDs, printers and scanners. Both a block
device and the corresponding gendisk are associated with a request queue. It
is an array of I/O requests that is managed by a dedicated I/O scheduler. An
I/O request (struct request) is a linked list of memory regions that need to
be accessed while servicing an I/O request.

389 © Smruti R. Sarangi

Generic Device Driver

Listing 7.2: struct device driver

source : include/linux/device/driver.h#L96

struct device_driver {

/* generic parameters */

const char *name;

struct bus_type *bus;

struct module *owner;

struct of_device_id *of_match_table;

/* function pointers */

int (* probe) (struct device *dev);

void (* sync_state)(struct device *dev);

int (* remove) (struct device *dev);

void (* shutdown) (struct device *dev);

int (* suspend) (struct device *dev , pm_message_t state);

int (* resume) (struct device *dev);

}

The generic structure of a device driver is shown in Listing 7.2. struct

device

driver stores the name of the device, the type of the bus that it is connected
to and the module that corresponds to the device driver. It is referred to as the
owner. It is the job of the module to run the code of the device driver.

The key task of the kernel is to match a device with its corresponding driver.
Every device driver maintains an identifier of type of device id. It stores a
name, a type and other compatibility information. This can be matched with
the name and the type of the device. Based on the match, the kernel chooses
the appropriate device driver for the device. This, in itself, can be a complex
process. Sometimes, the kernel may have several options, which need to be
automatically resolved.

Next, each driver has a bunch of function pointers, which are the callback
functions. They are called by other systems of the kernel, when there is a change
in the state of the device. For example, when a device is inserted, the probe

function is called. When there is a need to synchronize the state of the device’s
configuration between the in-memory buffers and the device, the sync state

function is called. The remove, shutdown, suspend and resume calls have their
usual meanings.

The core philosophy here is that these functions are common to all kinds of
devices. Hence, it is the job of every device driver to provide implementations
for these functions. Creating such a structure with function pointers is a stan-
dard design technique – it is similar to virtual functions in C++ and abstract
functions in Java. All these functions take a generic device (struct device) as
an argument.

A Generic Device

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/device/driver.h#L96

© Smruti R. Sarangi 390

Listing 7.3: struct device

source : include/linux/device.h#L555

struct device {

/* generic information */

dev_t devt;

u32 id;

/* parent device , bus and device driver */

struct device *parent;

struct bus_type *bus;

struct device_driver *driver;

/* Physical location of the device */

struct device_physical_location *physical_location;

/* DMA -related fields */

struct bus_dma_region *dma_range_map;

struct list_head dma_pools;

}

The code of struct device is shown in Listing 7.3. Every device contains a
⟨major,minor⟩ number pair (devt) and an unsigned 32-bit id. Recall that the
major number identifies the driver and the minor number identifies the specific
device. An astute reader may ask about the need of the id field. It is a field
that is used internally by the device driver. There could be multiple devices of
the same type, and device drivers often use such fields to distinguish between
them. It should be kept in mind that the major and minor version numbers
are meaningful at the level of the kernel code. However, for code internal to a
specific driver, the 32-bit id is often used.

Devices are arranged as a tree. Every device thus has a parent. It addi-
tionally has a pointer to the bus and its associated device driver. Note that a
device driver does not point to a device because it can be associated with many
devices. Hence, the device is given as an argument to the functions defined
in the device driver. However, every device needs to maintain a pointer to its
associated device driver because it is associated with only a single one.

Every block device has a physical location. There is a generic way of de-
scribing a physical location at which the block device is placed. It is specified
using struct device physical location. Note the challenges in designing
such a data structure. Linux is designed for all kinds of devices: wearables,
mobile phones, laptops, desktops and large servers. There needs to be a device-
independent way for specifying where a device is actually placed. The kernel
defines a location panel (id of the surface on the housing), which can take generic
values such as top, left, bottom, etc. A panel represents a generic region of a
device. On each panel, the horizontal and vertical positions are specified. These
are coarse-grained positions: (top, center, bottom) and (left, center, right). It
additionally stores two bits. One bit indicates whether the device is connected
to a docking station and the second bit indicates whether the device is located
on the lid of the laptop.

Block devices often read and write large blocks of data in one go. Port-
mapped I/O and memory-mapped I/O often turn out to be quite slow and
unwieldy in such cases. DMA-based I/O is much faster in this case. Hence,

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/device.h#L555

391 © Smruti R. Sarangi

every block I/O device is associated with a DMA region. Further, it points to a
linked list of DMA pools. Each DMA pool encompasses a set of buffers that can
be used for DMA transfers. These are buffers in kernel memory and managed
by a slab cache (refer to Section 6.4.2).

A Block Device and a Generic Disk

Listing 7.4: struct block device

source : include/linux/blk types.h#L40

struct block_device {

/* pointer to the encompassing device data structure */

dev_t bd_dev;

struct device bd_device;

/* starting sector and number of sectors */

sector_t bd_start_sect;

sector_t bd_nr_sectors;

/* generic disk and request queue */

struct gendisk *bd_disk;

struct request_queue* bd_queue;

/* file system related fields */

struct super_block *bd_super;

struct inode *bd_inode;

}

The code of a block device is shown in Listing 7.4. It is like a derived class
where the base class is a device. Given that C does not allow inheritance, the
next best option is to add a pointer to the base class (device in this case) in the
definition of struct block device. Along with a pointer, we add the version
numbers as well in the device type (devt) field.

Every block device is divided into a set of sectors. However, it can be divided
into several smaller devices that are virtual. Consider a hard disk, which is
a block device. It can be divided into multiple partitions. For example, in
Windows they can be C:, D:, E:, etc. In Linux, popular partitions are /swap,
/boot and the base directory ‘/’. Each such partition is a virtual disk. It
represents a contiguous range of sectors. Hence, we store the starting sector
number and the number of sectors.

As discussed earlier, for historical reasons, a block device is always associated
with a generic disk. This is because the most popular block devices in the early
days were hard disks. This decision has persisted even though there are many
more types of block devices nowadays such as SSD drives, NVM memories, USB
storage devices, SD cards and optical drives. Hence, a block device structure
has a pointer to a struct gendisk (described next).

Listing 7.5: struct gendisk

source : include/linux/blkdev.h#L121

struct gendisk {

/* major device number and name of the disk */

int major;

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/blk_types.h#L40
https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/blkdev.h#L121

© Smruti R. Sarangi 392

char disk_name [];

/* table of partitions */

struct block_device *part0;

struct xarray part_tbl; /* partition table */

/* table of function pointers */

struct block_device_operations *fops;

/* pointer to a request queue */

struct request_queue *queue;

}

The definition of struct gendisk is shown in Listing 7.5. Along with a
major number and name, the key data structures are a pointer to the associated
block device and a table of partitions. The notion of partitions is an integral
part of the definition of a generic disk. These represent virtual storage devices.
Most storage devices support partitions. The raw block device can be thought
of as a wrapper over the default partition (partition 0).

The partition table part tbl manages partitions dynamically. Each en-
try in the partition table is a pointer to a block device structure (struct
block device). Recall that we had associated a block device structure with
each partition.

The next important data structure is a pointer to a structure called block

device operations. It contains a set of function pointers that are associated
with different functions that implement specific functionalities. These are stan-
dard functions to open a device, release it (close it), submit an I/O request,
check its status, check pending events, set the disk as read-only and free the
memory associated with the disk.

Let us now discuss the request queue that is a part of the gendisk structure.
It contains all the requests that need to be serviced.

Point 7.4.1

Every block device points to a gendisk. Every gendisk in turn has a
partition table, where each partition is a virtual disk. It is represented
by a block device. All of these block devices are associated with the same
gendisk. All of them also share a request queue.

The Request Queue

Listing 7.6: struct request queue

source : include/linux/blkdev.h#L395

struct request_queue {

/* pointer to the last request */

struct request *last_merge;

/* I/O request queue that interfaces with the I/O

scheduler */

struct elevator_queue *elevator;

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/blkdev.h#L395

393 © Smruti R. Sarangi

/* per -CPU software request queue */

...

/* per -device request queues */

...

}

The code of struct request queue is shown in Listing 7.6. It stores a small
amount of current state information – the last request that has been serviced
(last merge).

The key structure is a queue of requests – an elevator queue. Let us explain
the significance of the elevator here. We need to understand how I/O requests
are scheduled in the context of storage devices, notably hard disks. We wish
to minimize the seek time (refer to Section 7.2.1). The model is that at any
point of time, a storage device will have multiple pending requests. They need
to scheduled in such a way that for each request, the disk head moves the least.
One efficient algorithm is to schedule I/O requests the same way an elevator
schedules its stops. We will discuss more about this algorithm in a subsequent
section on I/O scheduling algorithms.

The two other important data structures that we need to store are I/O
request queues. The first class of queues are per-CPU software-based request
queues. They store pending requests for the I/O device. It is important to
note that these are waiting requests that have not been scheduled to execute
on the storage device yet. Once they are scheduled, they are sent to a per-
device request queue that sends requests directly to the underlying hardware.
These per-CPU queues are lockless queues, which are optimized for speed and
efficiency. Given that multiple CPUs are not accessing them at the same time,
there is no need for locks and other concurrency control mechanisms. At this
point, it is possible to merge and reorder requests. This will make I/O processing
more efficient. For example, if there are multiple writes to the same disk block,
then the write requests can be merged. A later read can be reordered to appear
before an earlier write (to a different address). This is because read requests are
often on the critical path. This queue is represented by the structure struct

blk mq ctx in the current version of the kernel.

Note that most storage devices have internal request queues implemented at
the hardware level. They store pending I/O requests. The per-device request
queue (on the other hand) maintains requests that need to be sent to the device,
which basically means that a request leaves the queue and enters the hardware
request queue. This request is subsequently serviced by the device. Such a
process of sending requests from the per-device software queue to the hardware’s
queue is known as syncing (short form for synchronizing). This needs to be
done regularly and periodically. The frequency depends upon the time it takes
to do so, the maximum supported request rate, contention and the speed of the
device. If requests are sent too eagerly, then a lot of CPU time will be lost in
this process. If they are sent less aggressively, then the I/O response latency
will be high. This queue is implemented using struct blk mq hw ctx.

Let us end this discussion with a short discourse on operational aspects.
The per-device queue (also known as the dispatch queue) has requests from all
CPUs. It is important to identify every request and its corresponding response
with a tag. This is needed to match requests and their respective responses.

© Smruti R. Sarangi 394

request_queue

HW queues

SW queues

phy.
address
ranges

struct
request

Func�on called to
struct bio

Figure 7.22: Request queues in the device driver subsystem

The request queues are shown in Figure 7.22. We can see two types of queues:
HW queues (queues that are periodically synced with the device request queues)
and pure software queues that store requests that are yet to be scheduled. Let
us now look at each entry of these queues. Each such entry needs to store an
I/O request (struct request). Such an I/O request is represented by a struct

request (shown in Listing 7.7).
Each such structure stores a few pointers to associated data structures such

as the request queue, software and hardware queues and the block device. The
next few fields store the details of the I/O request: the total length of the data
(data length), starting sector number, the deadline and a timeout value (if any).
The fact that block I/O requests can have a deadline associated with them is
important. This means that they can be treated as soft real time tasks.

Listing 7.7: struct request

source : include/linux/blk− mq.h#L84

struct request {

/* Back pointers */

struct request_queue *q;

struct blk_mq_ctx *mq_ctx;

struct blk_mq_hw_ctx *mq_hctx;

struct block_device *part;

/* Parameters */

unsigned int __data_len;

sector_t sector;

unsigned int deadline , timeout;

rq_end_io_fn *end_io;

struct bio *bio;

}

There are two other fields of interest. The first is a function pointer (end io)
that is invoked to complete the request. This is device-specific and is imple-
mented by its driver code. The other is a generic data structure that has more

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/blk-mq.h#L84

395 © Smruti R. Sarangi

details about the I/O request (struct bio).

Listing 7.8: struct bio

source : include/linux/blk types.h#L252

struct bio {

struct block_device *bi_bdev;

struct bio_vec *bi_io_vec;

}

The fields in struct bio are shown in Listing 7.8. Each such structure has
a pointer to the block device and an array of memory address ranges (struct
bio vec). Each memory address range is a 3-tuple: physical page number,
length of the data and starting offset. It points to a memory region that either
needs to be read or written to. The bio vec structure is a list of many such
entries. We can think of it as a sequence of memory regions, where each single
chunk is contiguous. The entire region represented by bio vec however may
not be contiguous. The advantage of storing such memory regions is that it
is possible to merge multiple bio structs or bio vec vectors to create a larger
I/O request. This is often required because many storage devices such as SSDs,
disks and NVMs prefer long sequential accesses.

7.4.4 I/O Scheduling

Let us now discuss I/O scheduling algorithms. We briefly mentioned the classical
elevator scheduling algorithm. Let us look at the operation of an elevator. An
elevator moves from the lowest floor to the highest floor with a request, stopping
along the way. Then it moves straight down to the lowest floor that has a
request, servicing requests along the way. Either it continues to go straight up
till the end or continues to go straight down till the end. There is no back and
forth top-bottom movement. On similar lines, the disk head moves from the
innermost track to the outermost track servicing requests on the way. Then it
returns back to the innermost track servicing requests on the way. There are
variants of this algorithm, where no requests are serviced when the head moves
back from the outermost track to the innermost track. Akin to elevators, it
is possible to optimize this process by starting from the request that is closest
to the center (innermost) and stop at the request that is the farthest from the
center (outermost). This algorithm minimizes back and forth movement of the
disk head, and tries to ensure some degree of fairness.

There are many variants of the basic algorithm. We need to start by noting
that there are cases when the resulting schedule may be quite unfair as we saw
in Figure 7.23. Request A got processed earlier, which should not have been the
case. In fact, because the head reverses its direction, requests in the outermost
tracks get two quick chances in a small window of time. We are not being fair to
other pending requests. Hence, we can quickly conclude that fairness is slightly
being compromised here. Assume the disk head is on the track corresponding
to the outermost request. At that point of time, a new request arrives. It is
possible for the disk head to immediately reverse its direction and process the
new request that has just arrived. This will happen if the new request’s block is
located close to the outermost track, which is the situation shown in Figure 7.23.

It is possible to make the algorithm fairer by directly moving to the innermost
request after servicing requests while moving outward. Basically, in the reverse

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/blk_types.h#L252

© Smruti R. Sarangi 396

Old requestA

B

New request

Figure 7.23: Example of an instance of the elevator algorithm, where fairness
is being compromised. Assume Request B arrived before Request A. Fairness
would require Request B to be scheduled before Request A because it arrived
earlier. Assume that the head moves continuously towards the outermost track.
It missed Request B because it arrived after the head had gone over its track.
The head reached the outermost track, and then we started servicing requests
on the reverse path (outer to inner). By that time Request A had arrived. It
thus got processed, and this happened before Request B was processed. Also
note that requests in the vicinity of A got two back-to-back chances: one when
the head was moving towards the outermost track and one when it reversed its
direction.

direction (outer to inner), no requests are serviced. This involves the direct
movement of the head, which is a relatively fast operation.

Such classes of algorithms are very simple and are typically not preferred in
modern operating systems due to performance- and fairness-related concerns.
Hence, Linux uses three I/O scheduling algorithms that are more sophisticated
namely Deadline, BFQ and Kyber.

Deadline Scheduler

The Deadline scheduler stores requests in two queues. The first queue (sorted
queue) stores requests in the order of their block address, which is roughly the
same as the order of sectors. The reason for such a storage structure is to
maximize contiguous accesses and minimize the seek time and rotational delay.
Additionally, this scheduler prefers reads over writes because reads are typically
on the critical path. The scheduler maintains one more queue (deadline queue),
where requests are sorted by their deadline. If a request gets delayed significantly
and its deadline has expired, it is scheduled immediately. In this case, entries
in the deadline queue take precedence over entries in the sorted queue. This
design ensures high-performance I/O and at the same time provides soft real-
time guarantees.

397 © Smruti R. Sarangi

BFQ Scheduler

The BFQ (Budget Fair Queuing) scheduler is similar to the CFS scheduler for
processes (see Section 5.4.6). The same way that CFS apportions the processing
time between jobs, BFQ creates sector slices (like time slices) and gives every
process the freedom to access a certain number of sectors in the sector slice.
The main focus here is fairness across processes. Latency and throughout are
secondary considerations.

Kyber Scheduler

This scheduler was introduced by Facebook (Meta). It is a simple scheduler
that creates two buckets: high-priority reads and low-priority writes. Each
type of request has a target latency. Kyber dynamically adjusts the number of
allowed in-flight requests such that all operations complete within their latency
thresholds.

General Principles

In general, I/O schedulers and libraries perform a combination of three oper-
ations: delay, merge and reorder. Sometimes it is desirable to delay requests
a bit such that a set of requests of sufficient size can be created. It is easy to
apply optimizations on such a set with a sizable number of requests. One of the
common optimizations is to merge requests. For example, reads and writes to
the same block can be easily merged, and redundant requests can be eliminated.
Accesses to adjacent and contiguous memory regions can be combined. This is
a classical strategy that is often used to minimize the seek time and rotational
delay.

Furthermore, requests can be reordered. We have already seen examples of
reordering reads and writes to different addresses. This is done to service reads
quickly because they are often on the critical path. We can also distinguish
between synchronous writes (wait for it to complete) and asynchronous writes.
The former should have a higher priority because there is a process that is
waiting for it to complete. Other strategies for reordering factor in the current
position of the disk head and deadlines.

7.4.5 A Simple Block Device Driver

Let us look at a simple device driver. Sony’s memory stick driver is a quintessen-
tial example (/drivers/memstick/core/mspro block.c).

The module starts by calling the function mspro block init. It registers
the driver’s name and the block device “mspro block”. As we have seen earlier,
every driver is a structure that contains a set of function pointers.

In this case, the structure that represents the driver is mspro block driver.
It contains pointers to the probe, initialize, remove, suspend and resume

functions, respectively.
The initialization function mspro block probe initializes the memory card.

This function sends instructions to initialize the device’s state and prepares
the device for subsequent read/write operations. Next, it creates an entry in
the sysfs file system, which is a special file system that exposes attributes
of kernel objects such as devices to users. Files in the sysfs file system can

https://elixir.bootlin.com/linux/v6.2.12/source//drivers/memstick/core/mspro_block.c

© Smruti R. Sarangi 398

be accessed by user-level applications to find the status of devices. In some
cases, superusers can also write to these files, which allows them to control the
behavior of the corresponding devices. Subsequently, the initialization function
initializes the various block- device-related structures: gendisk, block device,
request queue, etc.

Typically, a device driver is written for a family of devices. For a specific
device in the family, either a generic (core) function can be used or a specific
function can be implemented. Let us consider one such specific function for
the Realtek USB memory card. It uses the basic code in the memstick direc-
tory but defines its own function for reading/writing data. This function is
rtsx usb ms handle req.

The driver maintains a queue of outstanding requests. It uses the basic
memstick code to fetch the next request. There are three types of requests:
read, write and bulk transfer. For reading and writing, the code creates generic
USB commands and passes them on to a low-level USB driver, whose job is to
send the raw commands to the device. For a bulk transfer, the driver sets up a
one-way pipe with the low-level driver, which ensures that the data is directly
transferred to a memory buffer. This memory buffer can be directly accessed
by the USB device using DMA.

Let us now look at the optimizations in the driver code.

Point 7.4.2

1. Most of the work involves framing appropriate requests and op-
timizing traffic to the device. This involves various operations
that rely on smart scheduling, delaying, merging and reordering
requests.

2. The code for communicating with the device is a small part of the
overall driver code.

3. Several drivers often cooperate to perform a task. The core driver
provides generic functionalities for a family of devices. Device-
specific drivers may override some of this functionality. Drivers
often take the help of other low-level drivers to communicate with
devices, especially when multiple protocols are involved. For ex-
ample, in this case, the memory stick driver needed the help of
USB drivers to communicate with the memory stick over USB.

7.5 Character Devices

Character device drivers are comparatively much simpler. Their latency and
throughput constraints are more relaxed. Hence, they can be implemented as
modules, and their implementations tend to be far less complicated.

Consider the USB keyboard driver (/drivers/hid/usbhid/usbkbd.c). The
entry point of the module is the function usb kbd probe. Its job is to allocate
a generic input device and associate the keyboard device with it. Akin to block
devices, there are two functions to register and deregister character devices
(resp.). Moreover, there are three function pointers that need to be initialized.
① A function that is called when the module is loaded. ② A function that is

https://elixir.bootlin.com/linux/v6.2.12/source//drivers/hid/usbhid/usbkbd.c

399 © Smruti R. Sarangi

called when the module is unloaded or the device is ejected. ③ A function that
is invoked when there is a “key press” event.

A character device driver does not have to do the complicated request pro-
cessing that block device drivers need to do. Character device drivers just need
to establish a connection between the interrupt and the corresponding function
implemented by the device driver. Whenever a key is pressed, an interrupt
is raised. The default interrupt handling system can find the device that has
raised the interrupt and call its IRQ handler function. This is quite an involved
process as we have seen in Chapter 4. It is possible that multiple devices are
sharing the same IRQ line. This makes it necessary to query each device and
find if it is the one that had raised the interrupt. The mechanisms discussed
in Chapter 4 ensure that all of this is seamlessly handled. We finally end up
calling the function associated with the device that generated the interrupt.

This device could be a composite device such as a USB controller, which is
connected to multiple ports. Each port may be connected to a hub that can be
attached to many more USB devices. Only one IRQ number is associated with
the USB controller. The job of the controller is to identify each connected USB
device and assign it a unique USB address, which is internal to the USB subsys-
tem. In other words, the generic code of the kernel identifies the USB controller
as the interrupting device when we press a key on a USB keyboard. The con-
troller’s interrupt handler further queries the controller and finds the address of
the specific device. In this case, it is the address of the USB keyboard. The de-
vice driver starts directly communicating with the keyboard via the controller.
It reads the data at this point, which comprises all the information regarding
the keys that were pressed.

Let us delve into the specifics. At the outset, the USB keyboard registers a
function called usb kbd irq with the kernel (refer to Listing 7.9). The generic
USB device driver invokes it, when it gets information from the USB keyboard
regarding the interrupt.

Listing 7.9: usb kbd irq function
source : drivers/hid/usbhid/usbkbd.c#L100

void usb_kbd_irq(struct urb *urb);

The argument is a struct urb, which is a generic data structure that holds
information pertaining to USB requests and responses. It holds details about
the USB endpoint (device address), status of the transfer, pointer to a memory
buffer that stores (or should store) the corresponding data and the type of the
transfer. The details of the keys that were pressed are present in this memory
buffer. Specifically, the following pieces of information are present for keyboards.

1. Status of special keys: Ctrl, Alt, Scroll Lock

2. Check if the same key has been continuously pressed.

3. The character corresponding to the key that was pressed (internal code or
ASCII code).

4. Report whether Num Lock or Caps Lock have been pressed.

The final output is either an ASCII character or a signal that is sent to the
current foreground process. The latter happens for some special key combina-

https://elixir.bootlin.com/linux/v6.2.12/source/drivers/hid/usbhid/usbkbd.c#L100

© Smruti R. Sarangi 400

tions such as Ctrl+c. It basically interrupts the foreground process by sending
the SIGINT singal to it.

Point 7.5.1

Unlike block devices that have direct connections to the motherboard’s
buses, character devices are connected to the motherboard via a network
of ports and controllers. Their latency and throughput constraints are
more relaxed as compared to block devices because they read and write
a few bytes a time.. The main challenge in managing character devices
is effectively ferrying the data across various buses, controllers, ports,
protocols and device drivers. A long chain of callback functions needs to
be created and data needs to be efficiently passed between a device and
its driver. Given that such devices are often hot-pluggable (connected
or disconnected at will), the driver and associated OS utilities need to
be very responsive.

7.6 File Systems

Let us now look at the design of conventional file systems. We shall not delve
into the details of the everything-is-a-file assumption, and instead focus on con-
ventional files and directories. Insofar, as the kernel and other OS routines are
concerned, a file is an array of bytes, or equivalently an array of logical blocks.
These blocks are stored on a storage device.

7.6.1 Tree-Structured Layout of a File System

A file system organizes the files and directories in a classical tree-structured
layout (see Figure 7.24). The directories (folders) are the internal nodes, and
the leaves are regular data files. In reality, a directory is a special kind of
data file; its contents represent the contents of the corresponding folder. It
stores a table, where each row represents the name of a file or subdirectory
in the folder. Specifically, the following fields are stored: file or subdirectory
name, permissions, ownership information and a pointer to its metadata. To
summarize, in Linux, most filesystems treat a directory as a regular data file
that stores a simple table. The table has a fixed format and is used to represent
the contents of the corresponding folder. The folder can contain subdirectories
(other folders) and individual files. Henceforth, we shall use the term “file” to
refer to a generic file and the term “regular file” to refer to a file that just stores
data.

The role of the metadata associated with each file (regular or directory) is
to map logical addresses to physical addresses (on the storage device). Every
file is assumed to start at logical address zero. If its size is n bytes, then the last
logical address is n−1. However, these bytes are seldom stored contiguously on
disk because of internal and external fragmentation. Recall that we had seen
similar problems in the case of physical memory as well (see Section 6.1.1). This
had necessitated virtual memory. Therefore, akin to virtual memory, there is a
need to create a translation layer here as well. It needs to map logical addresses
(within files) to physical addresses (within a storage device). There is thus a

401 © Smruti R. Sarangi

Figure 7.24: Tree-structured organization of a file system.

need to create a structure similar to a page table, which needs to be specific
to every file; it cannot be a centralized structure. Most Linux-like operating
systems define the concept of an inode (see Figure 7.25). It stores the metadata
associated with a file like its name, ownership information, size, permissions,
etc. It either has a pointer to the block mapping table or contains it directly.
If the user wishes to read the 1046th byte of a file, all that she needs to do is
compute the logical block number and pass the file’s inode to a generic function.
The output of this function is the physical block address on the storage device.

Definition 7.6.1 inode

An inode is a filesystem-specific data structure that is associated with
a generic file. It stores metadata associated with a file like its name,
ownership information, size, permissions, etc. In the case of regular files
and directories (in most cases), it also contains a pointer to its block
mapping table or contains it directly.

In most Linux file systems, a directory is treated as a regular file that stores
data in a specific format. Recall that since an inode acts like a metadata storage
unit in the world of files, it does not care what it is actually representing. It can
represent either regular files or directories or even devices. While representing
data (files and directories), it simply stores pointers to all the constituent blocks
without caring about their semantics. A block is just a collection of bytes. A
directory’s structure is also simple. It stores a table that is indexed by the
name of the file or subdirectory. The columns store metadata information and
a pointer to the inode of the corresponding entry. This is the elegance of the
design. The inode is a generic structure that can point to any type of file

© Smruti R. Sarangi 402

Logical address in a file Physical address on the
storage device

Path of the file

inode

Figure 7.25: Notion of a mapping table (either pointed to by an inode or stored
within it).

including network sockets, devices and inter-process pipes – it does not matter.
A directory is a regular data file that stores a list of inodes and other information
indexed by the name of the file.

Let us explain with an example. In Linux, the default file system’s base direc-
tory is /. Every file has a path. Consider the path /home/srsarangi/ab.txt.
Assume that an editor wants to open the file. It needs to access its data blocks
and thus needs a pointer to its inode. The open system call locates the inode
and provides a handle to it that can be used by user programs. Assume that
the location of the inode of the / (or root) directory is known. It is inode #2
in the ext4 file system. The kernel code reads the contents of the / directory
and locates the inode of the home subdirectory in the table of file names. This
process continues recursively until the inode of ab.txt is located. Once it is
identified, there is a need to remember this information. The inode is wrapped
in a file handle, which is returned to the process. For subsequent accesses such
as reading and writing to the file, all that the kernel needs is the file handle.
It can easily extract the inode and process the request. There is a no need to
recursively traverse the tree of directories. This is why it is necessary to open a
file first for reading and writing.

Let us now look at the file system in its entirety. We know that it needs to
store all the constituent inodes. Let us look at the rest of its components.

Recall that in hard disks and similar block devices, a single physical device
can be partitioned into multiple logical devices or logical disks. This is done
for effective management of the storage space, and also for security purposes –
we may want to keep all the operating system related files in one partition and
store all the user data in another partition. Some of these partitions may be
bootable. Bootable partitions typically store information related to booting the
kernel in the first sector (Sector or Block 0), which is known as the boot block.
The BIOS can then load the kernel.

Most partitions just store a regular file system and are not bootable. For
example, D: and E: are partitions on Windows systems. On Linux, /usr and
/home are examples of partitions. Generally, a partition has only one file system.
However, there are exceptions. For example, the swap partition on Linux (swap
space) does not have a file system mounted on it. There are rare examples,
where a file system can span multiple partitions, and there are systems where
multiple file systems are mounted on the same partition. However, these are for
very specialized systems. We shall not cover such esoteric topics in this chapter.
We will stick to regular file systems.

403 © Smruti R. Sarangi

The metadata of most file systems is stored in the second block (Block 1),
regardless of whether they are bootable or not. This block is known as the
superblock. It contains the following pieces of information: file system type
and size, attributes such as the block size or maximum file length, number of
inodes and blocks, timestamps and additional data. Some other important data
structures include inode tables, and a bit vector representing free inodes and
disk blocks. Note that one can always create efficient versions of bit vectors
with augmented trees.

7.6.2 Mounting a File System

Let us now explain what it means to mount a file system. A file system is a
tree-structured data structure. It is shown as a triangle in Figure 7.26. Most
operating systems have a default file system, which stores the system-wide root
directory. In Windows, it is “My Computer”, and in Linux it is /. Assume a
Linux system, where we insert a new storage device. This device will have its
file system that needs to be connected to the native file system. It will have its
dedicated superblock and inodes, as well as a root directory. The key question
is how do we access the files stored in the new file system that is a part of the
storage device?

Let us go back to the basics. Any file or directory has a path that is of the
form /dir1/dir2/.../filename in Linux. In Windows / is replaced with \.
The key idea is that all files should be accessible via a string of the aforemen-
tioned form. It is known as the path of the file and should be independent of the
storage devices that contain the files. Note that it is possible to connect many
different storage devices to a Linux system. We clearly cannot have different
ways of naming and accessing files. Hence, all Linux systems enforce a standard
format for file paths. A file path starts from the root directory ‘/’. A path
of this form is known as an absolute path. A path can also be relative, where
the location is specified with respect to the current directory. Here the parent
directory is specified with the special symbol “..” and the current directory
is specified as ‘.’. Given the current directory it is easy to convert one to the
other. Hence, the key question still remains. How do we specify paths in a
Linux system that comprises multiple file systems? We would like to maintain
the same format for specifying paths. This will simplify user programs and the
software stack.

/

/home/srsarangi/doc

/home/srsarangi/doc/books/osbook.pdf

/books/osbook.pdf

Mount point

Figure 7.26: Mounting a file system

© Smruti R. Sarangi 404

Consider the example in Figure 7.26 again. We need to attach a new file
system to the root file system (one that contains the / directory). The way to do
this in Linux is to create a dummy directory somewhere in the root (‘/’) file sys-
tem, and make that directory behave as the root of the new file system (mounted
on the storage device). Let the dummy directory be /home/srsarangi/doc. As-
sume that your author’s documents directory is mounted on the new storage
device. The mounting process makes the dummy directory the root directory of
the mounted file system. This is known as the mount point. In the file system
on the storage device, consider a file at the location /books/osbook.pdf. Once
this file system is mounted, then in the unified file system, its new location is
/home/srsarangi/doc/books/osbook.pdf (refer to Figure 7.26).

The mount command in Linux is used to mount a file system. When-
ever we insert a pen drive, the system automatically mounts its file system.
The root directory of the USB file system gets mapped to a directory on
the host machine’s file system. For example, it can become a directory such
as /mnt/usb. The file /videos/foo.mpg in the USB’s file system becomes
/mnt/usb/videos/foo.mpg. The advantage of mounting a file system in this
manner is that all the files in the system have a common naming and addressing
system across file systems – all absolute paths have the same basic format.

The next logical question is how does the kernel figure out how to process
files, especially when they are in different file systems. Let us consider the
path /mnt/usb/videos/foo.mpg again. /mnt is a part of the ‘/’ (root) file
system. The default file system driver can traverse this file system and reach
the mount point /mnt/usb. It will then realize that it is a mount point, and
the mounted file system is different. From this point onwards, it will invoke the
driver of the mounted file system. This driver will be tasked with retrieving the
file /videos/foo.mpg relative to its root. Things can get more interesting. A
mounted file system can mount another file system, so on and so forth. The
algorithm for traversing the unified file system tree remains the same. Recursive
traversal involves first identifying the file system from the current file path, and
then invoking its functions to locate the appropriate inode.

Finally, the unmount command can be used to unmount a file system. This
means that the file system’s files will not be accessible anymore.

7.6.3 Soft Links and Hard Links

Soft Links or Symbolic Links

Let us now slightly tinker with the tree structure of a file system and create a
DAG. This is sometimes useful, especially when we want to create shortcuts.
Consider a path that is very long. The user may not always want to type such
a long pathname. It is a much better idea to create a shortcut. For example,
/home/srsarangi/docs can be made to point to
/home/srsarangi/Documents/september/monday/noon/alldocs/pdfs. Such
shortcuts are very convenient. They are known as symbolic links or soft links
in Linux. It is very easy to create it (refer to Listing 7.10).

Listing 7.10: Creating a soft/symbolic link

ln -s path_to_target path_to_link

405 © Smruti R. Sarangi

Path
of the
file

File's inode

Po
in

ts
 t

o
th

e
sa

m
e

in
od

e
Directory

Symbolic
link

Hard
link

Figure 7.27: Hard and soft links

A separate file is created with its own inode (file type ‘l’). Its contents
contain the path of the target. Hence, resolving such a link is straightforward.
The kernel reads the path contained in the symbolic link file, and then uses
the conventional inode lookup algorithm to identify the corresponding inode. A
symbolic link makes working with the file system easier. However, it introduces
inefficiency in the sense that two lookups are required: first read the symbolic
link and then access the target file. If the link is deleted, the target is unaffected.
If the target is deleted, then the link becomes useless.

This mechanism sadly does not solve all our problems. Assume a scenario
where we would like to take backups. The aim is to create a new directory that
contains links to only those files that have been recently updated. Assume we
have some algorithm to identify these files. The aim is to minimize storage space
overheads. We thus cannot copy the files. Even symbolic links waste space in
terms of storing the full paths. Furthermore, a symbolic link is very strongly
tied to the path of the original file. The latter cannot be moved. It is possible
that the original target file is deleted, and another file with the same name is
created. The link will still work and end up pointing to the wrong file. This is
quite problematic.

Hard Links

Hence, hard links were introduced. The same ln command can be used to create
hard links as follows (refer to Figure 7.27).

Listing 7.11: Creating a hard link

ln path_to_target path_to_link

A hard link is a directory entry that points to the same inode as the target
file. In this case, both the hard link and the target file point to the same inode.

© Smruti R. Sarangi 406

If one is modified, then the changes are reflected in the other. However, deleting
the target file does not lead to the deletion of the hard link. Hence, the hard
link still remains valid. We pretty much maintain a reference count with each
inode. The inode is deleted when all the files and hard links that point to it are
deleted. Another interesting property is that if the target file is moved (within
the same file system) or renamed, the hard link still remains valid. However,
if the target file is deleted and a new file with the same name is created in the
same directory, the inode changes and the hard link does not remain valid.

There are nonetheless some limitations with hard links. They cannot be
used across file systems, and normally cannot link directories. The latter will
create infinite loops because a child can now link to an ancestor directory.

7.6.4 Virtual File System

Applica�on

Virtual File System (VFS)

ext3 FAT procfs sysfs devfs

Run df -a

Figure 7.28: File systems supported by the Linux virtual file system (VFS).

Let us now tackle a fundamental issue that we have conveniently ignored
up till now. We have assumed a unified file system that can tie together many
file systems, and create a single tree-structured namespace for all the files and
directories in the system (if we ignore symbolic/hard links). Needless to say,
this is very beneficial for users who are using the unified file system. They need
not bother about mount points and the details of the underlying file systems.
Insofar as they are concerned, the entire system has a single “virtual file system”
(VFS). Any file in this virtual file system has a path that is in the standard
format (uses ‘/’ as the delimiter), and can be processed using regular system
calls such as open, close, read, write, etc.

A virtual file system (VFS) is like virtual memory, which conveniently ab-
stracts out the details of the underlying native file system, technology and hard-
ware. Figure 7.28 shows a conceptual view of the Linux virtual file system where
a single file system unifies many different types of “native” file systems. We wish
to use a single interface to access and work with all the files in the VFS regard-
less of how they are stored or which underlying file system they belong to.
Finally, given Linux’s historical ties with Unix, everybody would like the VFS’s

407 © Smruti R. Sarangi

interface to be similar to that of the classical Unix file system (UFS). Given
these observations, let us list down the requirements of a virtual file system in
Point 7.6.1.

Point 7.6.1

1. The virtual file system (VFS) should be similar in terms of its
interface to the classical Unix file system (UFS). This includes the
functions used to work with files, file metadata and data structures
(inodes, directory entries and superblocks).

2. Regardless of the number and type of mounted file systems, we wish
to have a single tree-structured file system tree (without consider-
ing links). The internal nodes are the directories and the leaves are
the files.

3. The root directory is ‘/’. Hard links and symbolic links are sup-
ported.

4. File systems can be mounted at any point in the directory tree.

5. The everything-is-a-file assumption is followed. This means that
regular files, directories, devices, network sockets, pipes for inter-
process communication, etc., are represented as VFS files. They
can be accessed and processed using standard UFS file system func-
tions.

Virtualization of File Systems

Figure 7.28 shows a few file systems whose details are conveniently virtualized
by VFS. The ext3 and ext4 file systems are the default file systems on most
Linux systems as of 2025. The FAT (File Allocation Table) file system is used
in USB drives and in embedded devices. procfs is a special file system that
shows information about running processes, status of memory modules, CPU
usage and kernel data structures. It is a mechanism for the kernel to expose
information to user processes. For example, the file /proc/meminfo shows the
details of memory usage and /proc/cpuinfo stores all CPU-related information.

The sysfs file system is mounted at /proc/sysinfo. It stores information
about devices, drivers, buses, file systems and kernel data structures. Each
directory in /sys corresponds to a kernel object – a software representation of
devices, drivers and important kernel subsystems. On similar lines, the devfs

file system is mounted on /dev. This directory stores multiple files (one file per
device). Some modern device managers such as udev dynamically create and
destroy device files as and when they are plugged and unplugged.

The greatness of VFS is that it virtualizes all these file systems and unifies
them. The df command can be used to find the file systems mounted on a
standard Linux system.

Creation of Dummy inodes and Directory Entries

Now, let us consider file systems such as devfs or NFS (network file system)
that do not use inodes. Users or even other parts of the kernel should obviously

© Smruti R. Sarangi 408

be unaware of the semantics of underlying file systems. Hence, they are all
virtualized by VFS. Because VFS has to provide a standardized interface, it
creates inodes, directory entries, superblocks, file objects and page caches for
file systems that do not support them. The advantage here is that other kernel
routines and user programs need not be aware of the underlying details of each
native file system. They can interact with such file systems using standard file
handling operations.

Let us elaborate. If the underlying file system supports VFS structures
such as inodes and superblocks, then all that it needs to do is appropriately
wrap them and expose them to the rest of the kernel. However, if they are not
provided, then there is a need to create pseudostructures. A “pseudostructure”
is for example a dummy inode. It is created by VFS when a file is accessed.
VFS checks whether the underlying file system supports inodes or not. If it
does not, then it creates a dummy or pseudoinode structure and caches it. It
returns a pointer to this inode to any kernel function that wishes to work with
the file. Such a kernel function is blissfully unaware of the fact that it is actually
dealing with a pseudoinode. It invokes all the functions that it would invoke
on regular inodes. It is the job of VFS to appropriately translate these calls
and forward them to the driver of the underlying file system. The return value
is also suitably modified. VFS thus acts as an intermediary between the real
file system and kernel subsystems. It can make all file systems appear to be a
classical Unix file system. This makes it easy to write kernel code.

To do this, it is necessary to maintain a collection of pseudostructures in-
cluding pseudoinodes, pseudodirectory entries, pseudosuperblocks and so on.
Many such structures can be created when a file or directory entry is accessed
for the first time. Some more structures such as the pseudosuperblock need
to be created when the file system is mounted. Then they can be added to
a software cache. Any subsequent access will find the pseudostructure in this
cache.

7.6.5 Structure of an inode

Listing 7.12 shows the key fields of struct inode. Every inode contains a
pointer to a superblock. As we have discussed earlier, the superblock maintains
important information about the entire file system. Moreover, every inode has
a unique number, which is used to identify it.

The page cache is an important data structure in any file system. Its role
is to cache pages that are stored on the underlying storage device such as the
hard disk. Most of the I/O accesses to the storage device are actually served
by the in-memory page cache owing to the temporal locality of accesses. This
makes I/O operations significantly faster. Of course, the price that is paid is
consistency. If there is a power failure, then a lot of data that is not written to
permanent storage ends up getting lost. This is nevertheless an acceptable risk
given the huge performance improvement. It is possible to manually synchronize
the contents with the underlying storage device using the sync function call.
There are several options for synchronizing files automatically: periodically,
when a file is closed or when the file system is unmounted. Based on the
configuration, user applications can be written such that there is no violation in
correctness (keeping the synchronization strategy in mind). Every inode points
to the corresponding page cache (field: i data). Along with a pointer to the

409 © Smruti R. Sarangi

page cache, an inode additionally stores a pointer to the device that hosts the
file system (i rdev).

Listing 7.12: struct inode

source : include/linux/fs.h

struct inode {

/* Pointer to the superblock */

struct super_block *i_sb;

unsigned long i_ino; /* unique inode number */

struct address_space *i_data; /* ptr to page cache */

dev_t i_rdev; /* ptr to device */

/* size of the file */

blkcnt_t i_blocks;

loff_t i_size;

/* ownership and permission information */

umode_t i_mode;

kuid_t i_uid;

kgid_t i_gid;

/* point to a set of functions */

const struct inode_operations *i_op;

/* pointer to a file system or device */

void *i_private;

}

Next, we store the size of the file in terms of the number of blocks (i blocks)
and the exact size of the file in bytes (i size).

We shall study in Chapter 8 that permissions are very important in Linux
from a security perspective. Hence, it is important to store ownership and
permission information. The field i mode stores the type of the file. Linux
supports several file types such as a regular file, directory, character device,
block device, FIFO pipe, symbolic link and socket. Recall the everything-is-a-
file assumption. The file system treats all such diverse entities as files. Hence,
it becomes necessary to store their type as well.

The field i uid stores the id of the user who is the owner of the file. In
Linux, every user belongs to one or more groups. Furthermore, resources such
as files are associated with a group. This is indicated by the field i gid (group
id). Group members get some additional access rights as compared to users
who are not a part of the group. Some additional fields are the access time,
modification time and state representing the file’s lock’s status.

The next field i op is crucial to implementing VFS. It is a pointer to an inode
operations structure that contains a list of function pointers. These function
pointers point to generic file operations such as open, close, read, write, flush
(move to kernel buffers), sync (move to disk), seek and mmap (memory map).
Note that each file system has its own custom implementations of such functions.
The function pointers point to the relevant function (defined in the codebase of
the underlying file system).

Given that the inode in VFS is meant to be a generic structure, we cannot

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/fs.h

© Smruti R. Sarangi 410

store more fields. Many of them may not be relevant to all underlying file
systems. For example, we cannot store a mapping table because inodes may
correspond to devices or sockets that do not store blocks on storage devices.
Hence, it is a good idea to have a pointer to data that is used by the underlying
file system. The pointer i private is useful for this purpose. It is of type
void *, which means that it can point to any kind of data structure. Often
file systems set it to point to custom data structures. i private can also point
to a device that corresponds to the file. Hence, it is truly generic in character,
which is a necessity given the everything-is-a-file assumption.

Point 7.6.2

An inode is conceptually a two-part structure. The first part is a VFS
inode (shown in Listing 7.12), which stores generic information about
the file. The second part is a pointer to a file system-specific data struc-
ture. This data structure may store a logical-to-physical block mapping
structure, especially in the case of regular files and directories, or some
other custom kernel-specific data structure.

Directory Entry

Listing 7.13: struct dentry

source : include/linux/dcache.h

struct dentry {

/* Pointer to the parent directory */

struct dentry *d_parent;

/* Name and inode */

struct qstr d_name;

struct inode *d_inode;

/* children and subdirectories */

struct list_head d_child;

struct list_head d_subdirs;

/* List of other dentry structures that map to the same

hash bucket */

struct hlist_bl_node d_hash;

}

VFS has a generic directory entry structure (struct dentry). It is shown
in Listing 7.13. One of the key features that is visible is the tree-structured
nature of the directory structure. Every directory entry has a parent pointer
(d parent). Additionally, each entry has a list of children (d child) and a list
of subdirectories (d subdirs). These structures are linked lists. The main aim
is to facilitate efficient traversal of the directory structure.

Every directory has a name that is unique to its parent directory (qstr).
The most important field is the pointer to the inode (d inode) that contains
the contents of the directory. Recall that a directory basically stores a table.
The data can either be explicitly stored as a table, or be a conceptual table,
where some equivalent data structure is used to represent it. Nevertheless,

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/dcache.h

411 © Smruti R. Sarangi

from the point of view of an external observer, a table is stored. Each row
of the table corresponds to a file stored in the directory. It can represent a
regular file, directory, device, network socket, etc. Each file has a name, which
serves as its unique identifier within the directory. The other columns in a row
store its metadata, which are typically the corresponding file’s size and access
permissions. A row contains a pointer to the inode of the file.

Point 7.6.3

A directory conceptually represents a table, where each row is identified
by the file name. It serves as the key. The value stores a few metadata
fields and a pointer to the file’s inode. This file could be a subdirectory
that needs to be traversed using the same recursive algorithm.

It is natural to ask what exactly is stored within the disk blocks that con-
tain a directory’s contents. VFS does not define the internal structure of the
directory. It does not specify how the directory information should be orga-
nized within its constituent disk blocks. VFS simply creates a dentry structure
that stores metadata information and contains a pointer to the inode. It is the
role of the specific file system to create a representation for the contents of the
directory.

Point 7.6.4

VFS maintains a cache of inodes and dentry structures. For a frequently
visited directory, there is no need to make a call to the underlying file sys-
tem and traverse the directory tree to find its dentry. There is no need
to start from the ‘/’. Instead, the dentry corresponding to a directory
can directly be retrieved from the cache (if it is present). Furthermore,
if inodes and dentry structures are created dynamically by VFS, then
having such a cache reduces the occurrence of such events.

Address Space

Listing 7.14: struct address space

source : include/linux/fs.h

struct address_space {

struct inode *host; /* host inode */

struct xarray i_pages; /* Pointers to cached

pages (radix tree) */

struct rb_root_cached i_mmap; /* mapped vmas */

unsigned long nrpages;

/* Functions to bring in and evict folios */

const struct address_space_operations *a_ops;

/* Private data to be used by the owner */

struct list_head private_list;

void *private_data;

}

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/fs.h

© Smruti R. Sarangi 412

Let us now discuss the page cache (referred to by the i mapping field in
struct inode). This is a very useful data structure especially for file-backed
pages. Since I/O operations are slow, accessing I/O devices frequently is inef-
ficient. It is a wise idea to maintain an in-memory page cache that can service
reads and writes quickly. A problem of consistency is sadly created. If the sys-
tem is powered off, then there is a risk of updates getting lost. Thankfully, in
modern systems, this behavior can be controlled and regulated to a large extent
– it is possible to specify different policies. For example, we can specify that
when a file is closed, all its cached data needs to be written back immediately.
The close operation will be deemed to be successful only after an acknowl-
edgement is received indicating that all the modified data has been successfully
written back. Linux supports explicit sync (synchronization) calls, which can
be invoked by user applications. Kernel daemons can also periodically sync data
and trigger write-back operations when there is an urgent requirement for free
memory space.

The i mapping field in struct inode is of type struct address space. A
structure of type struct address space is specific to an inode; it maintains
the mapping for the page cache as we shall describe next (refer to Listing 7.14).
Specifically, this structure stores a mapping (i pages) that stores a list of cached
memory pages (stored as a radix tree). It maps the offset in the file to a struct

page if the corresponding page is cached. This means that given a file offset,
this structure can be queried to find if there is a cached page corresponding to it
or not. The second map i mmap maintains a list of vma s (stored as a red-black
tree). The need to maintain all the virtual memory regions (vma s) that have
cached pages arises from the fact that there is a need to quickly check if a given
virtual address is cached or not.

struct address space additionally contains a list of pointers to functions
that implement regular operations such as reading or writing pages (struct
address space operations). Finally, each address space stores some private
data, which is used by the functions that work on it. These functions are
typically implemented by routines resident in the code of native file systems
(not in VFS).

Point 7.6.5

There is a standard pattern that we have been observing for a while now.
Whenever we want to define a high-level base class in C, there is a need
to create auxiliary structures with function pointers. These pointers
are assigned to real functions by (conceptually) derived classes. In an
object-oriented language, there would have been no reason to do so. We
could have simply defined a virtual base class and then derived classes
could have overridden its functions. However, in the case of the kernel,
which is written in C, the same functionality needs to be created using
a dedicated structure that stores function pointers. The pointers are
assigned to different sets of functions based on the conceptually derived
class. In this case, the derived class is the actual file system such as ext4.
Ext4 will assign these pointers to functions that are specific to it; other
file systems such as exFat or ReiserFS also do the same.

413 © Smruti R. Sarangi

The role of struct vma s needs to be further clarified. A file can be mapped
to the address spaces of multiple processes. For each process, the vma regions
are separate; they are process-specific. The key problem is to map a vma region
to a contiguous region of a file. For example, if the vma region’s start and end
addresses are A and B (resp.), we need some record of the fact that the starting
address corresponds to the file offset P and the ending address corresponds to
file offset Q (note: B − A = Q− P). Each vma structure stores two fields that
help us maintain this information. The first is vm file (a pointer to the file)
and the second is vm pgoff. vm pgoff is the page offset within the file that
corresponds to the start of the vma region. Assume a virtual address X. The
offset within the file can be computed as follows given a virtual address that
is mapped to a location within a file.

offset =
(X − vm start)

PAGE SIZE
+ vm pgoff (7.3)

Here PAGE SIZE is 4 KB and vm start is the starting address of the vma.

Reverse Mapping File-Backed Pages

This mechanism can be used for doing reverse mapping as well. The task here
is to map a file offset to a set of vma s that contain mappings for it. We can
query the red-black tree of vma s (i mmap) to find the vma s that map file-backed
pages to the given offset.

7.6.6 Ext4 File System

Let us now look at the ext4 file system, which is the most popular file system on
Linux and Android machines as of 2025. It has two variants. The first variant
is very similar to the classical Unix File System. The second variant is designed
for large files.

Mapping based on Indirect Blocks

Pointers to 12 directly
mapped blocks

Pointers to
data blocks

Ptrs

Ptrs

Triple indirect
Double indirect

Indirect

Op�mized for
small files

Figure 7.29: Structure of an ext4 inode

Figure 7.29 shows a graphical representation of an ext4 inode structure,
which is the built-in inode structure of the ext4 file system. Along with some
additional metadata fields, an ext4 inode has a data structure for mapping

© Smruti R. Sarangi 414

logical blocks to physical blocks. A block is typically 4 KB in the ext4 file
system.

The design of the mapping structure is as follows. It has an array of 12
entries that map the first 12 blocks to their physical locations. This is a fast
way of accessing the mappings for the first 12 blocks, which makes this a very
fast solution for small files. Let us now consider the case of files that have more
than 12 blocks. The 13th entry in the array points to a block that contains a set
of pointers to data blocks. Such a block is known as an indirect block. Assume a
block can store κ pointers. This means that the pointers of the blocks numbered
13 . . . (12 + κ) can be stored in the indirect block. This further means that for
slightly larger files, the access time is higher because the indirect block needs
to be accessed. Now, the question that arises is, “What if we need more than
12 + κ blocks?”

In this case, double indirect blocks are used. A double indirect block is
stored in the 14th entry. Each such high-level double indirect block points to
κ low-level blocks. Furthermore, each low-level block points to κ file blocks.
This structure can thus store κ2 mappings. Similarly, the 15th entry is a triple
indirect block. It can point to κ3 mappings. There is no 16th entry. It is clear
that as the file size increases, the average access time also increases because of
the indirect blocks. This is a reasonable trade-off.

Trivia 7.6.1

The maximum file size is limited to 12+κ+κ2+κ3 blocks. If each block
pointer is 32 bits (4 bytes), a block can store 1024 block pointers. Hence,
the total file size is limited to 12+1024+10242 +10243 blocks, which is
roughly a billion blocks. Given that each block is 4 KB, the maximum
file size is roughly 4 TB.

Mapping based on Extents

The basic idea is similar to the concept of folios – long contiguous sequences of
pages in physical and virtual memory. In this case, we define an extent to be a
contiguous region of addresses on a storage device. Such a region can be fairly
large. Its size can vary from 4 KB to 128 MB. The advantage of large contiguous
chunks is that there is no need to repeatedly query a mapping structure for
addresses that lie within it. Furthermore, allocation and deallocation is easy.
A large region can be allocated in one go. The flip side is that we may end up
creating holes as was the case with the base-limit scheme in memory allocation
(see Section 6.1.1). In this case, holes don’t pose a big issue because extents
can be of variable sizes. We can always cover up holes with extents of different
sizes. However, the key idea is that we wish to allocate large chunks of data as
extents, and simultaneously try to reduce the number of extents. This reduces
the amount of metadata required to save information related to extents.

The organization of extents is shown in Figure 7.30. In this case, the struc-
ture of the ext4 inode is different. It can store up to four extents. Each extent
points to a contiguous region on the disk. However, if there are more than 5 ex-
tents, then there is a need to organize them as a tree (as shown in Figure 7.30).
The tree can at the most have 5 levels. Let us elaborate.

415 © Smruti R. Sarangi

i_block[] (first
12 bytes)

ext4_inode
index node

ext4_extent_header

ext4_extent_idx

ext4_extent_idx

ext4_extent_header

ext4_extent

ext4_extent

ext4_extent_header

ext4_extent

ext4_extent

Regions in
the disk

Figure 7.30: Structure of an ext4 inode with extents

There is no need to define a separate ext4 inode for the extent-based filesys-
tem. The ext4 inode defines 15 block pointers: 12 for direct block pointers, 1
for the single-indirect block, 1 for the double-indirect block and 1 for the triple-
indirect block. Each such pointer is 4 bytes long. Hence, the total storage space
required in the ext4 inode structure for such information is 60 bytes.

The great idea here is to repurpose these 60 bytes to store information related
to extents. There is no need to define a separate data structure. The first
12 bytes are used to store the extent header (struct ext4 extent header).
The structure is directly stored in these 12 bytes (not its pointer). An ext4
header stores important information about the extent tree: number of entries,
the depth of the tree, etc. If the depth is zero, then there is no extent tree.
We just use the remaining 48 (60-12) bytes to directly store extents (struct
ext4 extent). Here also the structures are directly stored, not their pointers.
Each ext4 extent requires 12 bytes. We can thus store four extents in this
case. Otherwise, the extents are arranged as a tree.

The code of an ext4 extent is shown in Listing 7.15. It maps a set of
contiguous logical blocks (within a file) to contiguous physical blocks (on the
disk). The structure stores the first logical block, the number of blocks and
the 48-bit address of the starting physical block. We store the 48 bits using
two fields: one 16-bit field and one 32-bit field. An extent basically maps a set
of contiguous logical blocks to the same number of contiguous physical blocks.
The size of an extent is naturally limited to 215 (32k) blocks. If each block is 4
KB, then an extent can map 32k × 4 KB = 128 MB.

Listing 7.15: struct ext4 extent

source : fs/ext4/ext4 extents.h

struct ext4_extent {

__le32 ee_block; /* first logical block */

__le16 ee_len; /* number of blocks */

__le16 ee_start_hi; /* high 16 bits (phy. block) */

__le32 ee_start_lo; /* low 32 bits (phy. block) */

};

https://elixir.bootlin.com/linux/v6.2.12/source/fs/ext4/ext4_extents.h

© Smruti R. Sarangi 416

Now, consider the case when we need to store more than 4 extents. In this
case, there is a need to create an extent tree. Each internal node in the extent
tree is represented by the structure struct ext4 extent idx (extent index).
It stores the starting logical block number and a pointer to the physical block
number of the next level of the tree. The next level of the tree is a block
(typically 4 KBs). Out of the 4096 bytes, 12 bytes are required for the extent
header and 4 bytes for storing some more metadata at the end of the block.
This leaves us with 4080 bytes, which can be used to store 340 12-byte data
structures. These could either be extents or extent index structures. We are
thus creating a 340-ary tree, which is massive. Now, note that we can at the
most have a 5-level tree. The maximum file size is thus extremely large. Many
file systems limit it to 16 TB.

As a theoretical exercise, let us compute the maximum size of the entire file
system. We can store enough information in the extent tree to map the entire
physical space of the storage drive. Given that the total number of addressable
physical blocks is 248. If each block is 4 KB, then the maximum file system
size (known as volume size) is 260 bytes, which is 1 EB (exabyte). We can thus
quickly conclude that an extent-based file system is far more scalable than an
indirect block-based file system.

Directory Structure

As discussed earlier, it is the job of the ext4 file system to define the internal
structure of the directory entries. VFS simply stores structures to implement
the external interface.

Listing 7.16: Ext4 directory entry
source : fs/ext4/ext4.h

struct ext4_dir_entry_2 {

__le32 inode; /* Inode number */

__le16 rec_len; /* Directory entry length */

__u8 name_len; /* Name length */

__u8 file_type; /* File type */

char name[EXT4_NAME_LEN]; /* File name */

};

Listing 7.16 shows the structure of a directory entry in the ext4 file system.
The name of the structure is ext4 dir entry 2. It stores the inode number,
length of the directory entry, length of the name of the file, the type of the file
and the name of the file. It basically establishes a connection between the file
name and the inode number. In this context, the most important operation is a
lookup operation. The input is the name of a file, and the output is a pointer to
the inode (or alternatively its unique number). This is a straightforward search
problem in the directory. We need to design an appropriate data structure for
storing the directory entries (e.g.: ext4 dir entry 2 in the case of ext4). Let
us start with looking at some naive solutions. Trivia 7.6.2 discusses the space
of possible solutions.

https://elixir.bootlin.com/linux/v6.2.12/source/fs/ext4/ext4.h

417 © Smruti R. Sarangi

Trivia 7.6.2

• We can simply store the entries in an unsorted linear list. This
will require roughly n/2 time comparisons on an average, where n
is the total number of files stored in the directory. This is clearly
slow and not scalable.

• The next solution is a sorted list that requires O(log(n)) compar-
isons. This is a great data structure if files are not being added or
removed. However, if the contents of a directory change, then we
need to continuously re-sort the list, which is seldom feasible.

• A hash table has roughly O(1) search complexity. It does not
require continuous maintenance. However, it also has scalability
problems. There could be a high degree of aliasing (multiple keys
map to the same bucket). This will require constant hash table
resizing.

• Traditionally, red-black trees and B-trees have been used to solve
such problems. They scale well with the number of files in a direc-
tory.

In practice, there is a need to create a hybrid data structure. If all the
directory entries fit within a block, they are stored as a linear list. A simple
linear search is all that is required. However, if more than a block is needed,
then ext4 uses a novel data structure called a hash tree. It uses the hash of the
file’s name as the key. The key is used to traverse a B+ tree (see Section C.3.3
in Appendix C) that is limited to three levels. The output is the value, which
in this case is a directory entry. We can think of a hash tree as a hybrid of a
regular hash table and a B+ tree.

Let us consider the implementation of the hash tree. The first data block
stores a dx root structure that stores metadata. It has a pointer to an array
of dx entry data structures. There can be 28 such dx entry s, where each
structure maintains a pointer to a file block. These blocks can contain other
dx entry structures or regular directory entries. Note that directory entries
can be stored only at the leaf level of this tree. The main aim is to realize a
regular B+ tree. The only caveat here is that the number of intermediate levels
(comprising dx entry s) is limited to 3.

The advantage of such a hash tree is that it works for both small and large
directories. It can store directory entries for a large number of files in a conve-
nient tree-shaped structure. This B+ tree allows fast logarithmic-time lookups
and has minimal maintenance overheads.

Recall from our discussion on B+ trees that there is often a need to rebalance
the tree by splitting nodes and moving keys between them. If keys are deleted,
then there is a need to merge nodes. This requires time and is a source of
overheads. The process of removing entries is seldom on the critical path. This
is because an entry can just be marked as removed and data structure updates
can be scheduled for a later time. However, adding a new entry is on the
critical path because it needs some space to reside. Hence, from an engineering
perspective, it makes some sense to keep some nodes empty, and also have some
space empty within each node. If there is a sudden surge in the number of files

© Smruti R. Sarangi 418

in a directory, it is possible to quickly allocate directory entries for them using
this mechanism.

7.6.7 The exFAT File System

Let us now move on to discussing a few more file systems. The FAT (File Allo-
cation Table) file system used to be quite popular in the 90s. exFAT (extensible
FAT) was introduced by Microsoft in 2006. As compared to FAT, it supports
larger file sizes. Other than minor modifications, most of the design is the same.
As of 2024, the exFAT file system is used in DVDs, USB drives and many em-
bedded systems. The current Linux kernel has extensive support for the exFAT
file system.

Storage device

1 2 3
FAT
table

File “abc”

Each entry points to the next entry in
the FAT table and the corresponding

loca�on on the storage device

Figure 7.31: Mechanism of storing a file in the exFAT file system

The basic concept is quite simple. We have a long table of entries (the FAT
table). This is the primary data structure in the overall design. Each entry has
two pointers: a pointer to the next entry in the FAT table (can be null) and a
pointer to a cluster stored on the disk. A cluster is defined as a set of sectors
(on the disk). It is the smallest unit of storage in this file system. We can think
of a file as a linked list of entries in the FAT table, where each entry additionally
points to a cluster on the disk (or some storage device). Let us elaborate.

Regular Files

Consider a file “abc”. It is stored in the FAT file system (refer to Figure 7.31).
Assume that the size of the file is three clusters. We can number the clusters 1, 2
and 3, respectively. Cluster 1 is clearly shown in the figure (first colored/shaded
entry on the left). This FAT table entry has a pointer to the corresponding
cluster. Note that this pointer is a disk address. Moreover, given that the first
entry is a part of a linked list, it contains a pointer to the next entry (2nd entry).
This entry is designed similarly. It has a pointer to the second cluster of the
file. Along with it, it also points to the next node on the linked list (3rd entry).
Entry number 3 is the last element on the linked list. Its next pointer is null.
It contains a pointer to the third cluster.

The structure is thus quite simple and straightforward. The FAT table just
stores a lot of linked lists. Each linked list corresponds to a file. In this case a
file represents both a regular file and a directory. A directory is also represented
as a regular file, where the data blocks have a special format. They basically
store a table where each entry represents a file or subdirectory. Furthermore,

419 © Smruti R. Sarangi

the entry points to the starting location of the corresponding entity in the FAT
table.

Almost everybody would agree that the FAT table distinguishes itself on the
basis of its simplicity. All that we need to do is divide the total storage space
into a set of clusters. We can maintain a bitmap for all the clusters, where the
bit corresponding to a cluster is 1 if the cluster is free, otherwise it is busy.
Any regular file or directory is a sequence of clusters and thus can easily be
represented by a linked list.

Even though the idea seems quite appealing, linked lists have their share of
problems. They do not allow random access. This means that given a logical
address of a file block, we cannot find its physical address in O(1) time. There
is a need to traverse the linked list, which requires O(N) time. Recall that
the ext4 file system allowed us to quickly find the physical address of a file
block regardless of its design in O(1) time (indirect blocks or extents). This
is something that we sacrifice with a FAT table. If we have pure sequential
accesses, then this limitation does not pose a major problem.

Directories

FAT
table

File “abc”

Name a�r FAT table entry
abc … …

Directory A directory is stored as a regular file: a
table of entries. Each entry (for a file)

points to a FAT table entry.

Figure 7.32: Storing files and directories in the FAT file system

Both ext4 and exFAT treat a directory as a regular file. It is just a collection
of blocks (clusters in the case of exFAT). The “data” associated with a directory
has a special format. As shown in Figure 7.32, a directory is a table with several
columns. The first column is the file name, which serves as a unique identifier of
the file. Modern file systems such as exFAT support long file names. Sometimes
comparing such large file names can be time-consuming. In the interest of
efficiency, it is a better idea to hash a file name to a 32 or 64-bit number.
Locating a file thus involves simple 32 or 64-bit hash comparison, which can be
done efficiently.

The next set of columns store the file’s attributes that include the file’s status
(read-only, hidden, etc.), file length and creation/modification times. The last
column is a pointer to the first entry in the FAT table. This part is crucial. It
ties a directory entry to the starting cluster of a file via the FAT table. The
directory entry does not point to the cluster directly. Instead, it points to the
first entry of the file in the FAT table. This entry has two pointers: one points

© Smruti R. Sarangi 420

to the first cluster of the file and the other points to the next entry of the linked
list.

Due to the simplicity of such file systems, they have found wide use in
portable storage media and embedded devices.

7.6.8 Journaling File Systems

Computer systems can crash during the middle of a file write operation. We
are looking at a situation where some blocks have been written to permanent
storage and the contents of the rest of the blocks are lost. After a system
restart, the file will thus be in an inconsistent state. It will be partially written
and consequently unusable. Given that crashes can happen at any point of
time, it is important to ensure that file systems are robust and resilient to such
failures. Otherwise, a lot of important data will get lost. Imagine something
like this happening to your bank account or your PhD thesis.

A popular mechanism for dealing with such issues and avoiding file system
corruption is journaling. A write operation is divided into multiple phases.

1. There is a pre-write phase where the details of a write request are written
to a journal first. A journal is a log of write entries that is stored on a
storage device. Writing to a journal means that the details of the write
accesses are written. This includes the physical address of the location on
the storage device and the corresponding blocks’ contents. The contents
may represent actual file data or file system metadata such as inodes and
dentry structures. Regardless of the contents, it is important to note that
the journal is stored on the storage device itself; this device is resilient to
power failures. This further means that after a journal entry has been
written, the data cannot be erased even after a power failure. This is
more like an “intent” record, where the intention to perform a write is
recorded. Once the journal entry is written a bit is set to indicate that
the write has been completed (from the point of view of the kernel).

2. Then there is the write phase, where the write is actually effected. The OS
sends the write to the storage device and completes it. During this process
the system may crash. When the system restarts, it will find unwritten
journal entries. The write operations can be finished at this stage. This
means that the system will attempt to complete the entire write operation
once again by reading the details from the corresponding journal entry.
Given that write accesses are idempotent (the same data can be written
to the same location over and over again), there is no problem. At this
point, the journal entry can be invalidated. This indicates that the write
operation is fully over.

3. Finally, there is a cleanup operation, where all invalidated journal entries
are removed. It is important to note that all updates to the journal are
made in stable storage. If a journal entry is not marked as invalid, then it
means that the write operation is not over yet. If the system is recovering
from a crash, there is a need to perform the write once again. Marking
the journal entry as invalid is a very fast and atomic operation. Here, the
assumption is that it cannot be interrupted by failures.

421 © Smruti R. Sarangi

Instead of performing long and complicated file system checks, just analyzing
the state of journals is enough to discover the integrity of the file system. If there
is a problem with some file’s contents, its journal entries can just be replayed.
Table 7.4 outlines the actions that need to be taken when the system crashes.
Each row corresponds to the phase of the write operation that was underway
when the system crashed.

Phase Action
Pre-write Discard the journal entry
Write Replay the journal entry
Cleanup Finish the cleanup process

Table 7.4: Actions that are taken when the system crashes in different phases
of a write operation

Assume that the system crashes in the pre-write phase. This can be detected
from its journal entry. The journal entry would be incomplete. We assume that
it is possible to find out whether a journal entry is fully written to the journal
or not. This is possible using a dedicated footer section at the end of the entry.
Additionally, we can have an error checking code to verify the integrity of the
entry. In case, the entry is not fully written, then it can simply be discarded.

If the journal entry is fully written, then the next stage commences where
a set of blocks on the storage device are written to. This is typically the most
time-consuming process. At the end of the write operation, the file system driver
updates the journal entry to indicate that the write operation is over. At this
point the journal entry is invalidated (not required anymore). Now assume that
the system crashes before this update is made. After a restart, this fact can
easily be discovered. The journal entry will be completely written, but there
will no record of the fact that the write operation has been fully completed.
The entire write operation can be re-done (replayed). Given the idempotence
of writes, there are no correctness issues.

Finally, assume that the write operation is fully done but before cleaning up
the journal, the system crashes. When the system restarts it can clearly observe
that the write operation has been completed, yet the journal entry is still there,
albeit in an invalid state. It is easy to finish the remaining bookkeeping work
and queue the entry for removal. Either it can be removed immediately or it
can be removed later by a dedicated kernel thread.

There are different variants of this basic idea. Most journaling file systems
only store the metadata in this fashion. This is because the inodes and directory
entries determine the integrity of the file system itself. However, they do not
use this mechanism to store the contents of files. The rationale is that jour-
naling is an expensive mechanism in terms of performance, and the reliability
requirements for the contents of individual files are not that great.

7.6.9 Accessing Files in Linux

Example 7.6.1 shows an example of a C program for copying a file in Linux.
The aim is to copy the contents of “a.txt” to a new file “b.txt”. We start with
making the fopen call that opens the file. This library call in turn makes the

© Smruti R. Sarangi 422

open function call. Subsequently, VFS locates the file’s inode and returns a
handle to it.

Linux maintains a table of open files for each process and also a systemwide
open file table. Whenever a new file is opened, its details are added to the
systemwide open file table, if a corresponding entry does not exist. Next, in-
formation regarding the recently opened file is added to the per-process open
file table with a reference to the entry in the systemwide open file table. The
index in this per-process open file table is the integer file descriptor. It is used
to uniquely identify an open file (within the process). There are some standard
file descriptors in Linux that are pre-defined. 0 stands for the standard input
from the shell (stdin). 1 is the standard output stream (stdout) and 2 is the
standard error stream (stderr). It is important to note that two processes may
actually point to two different files even if their respective per-process file de-
scriptors have the same values. This is because the contents of their per-process
open file tables are different.

Along with the integer file descriptor, Linux maintains buffers to store data
that is read or written to the file. It also stores the status of the file (opened for
reading, writing or appending), the current file pointer and information related
to errors encountered. All of this information is bundled in the FILE structure
that is returned by the fopen library call. Note that this call specifically returns
a pointer to a FILE structure because it is always more efficient to do so. Insofar
as the C program is concerned, the FILE pointer is the only handle to the open
file that it has. If it is NULL after an fopen call, then it means that for some
reason the file could not be opened. Either it does not exist or the user does
not have adequate permissions.

Example 7.6.1

Write a program in C to copy a file. Copy the contents of “a.txt” to
another file “b.txt”.

Answer:

Listing 7.17: Copying a file

#include <stdio.h>

#include <stdlib.h>

int main() {

char c;

FILE *src_file , *dst_file;

/* Open the source and destination files */

src_file = fopen("a.txt", "r");

dst_file = fopen("b.txt", "w");

if (src_file == NULL) {

fclose(dst_file);

printf("Could not open a.txt \n");

exit (1);

}

423 © Smruti R. Sarangi

if (dst_file == NULL) {

fclose(src_file);

printf("Could not open b.txt \n");

exit (1);

}

/* Iteratively transfer bytes */

while ((c = fgetc(src_file)) != EOF) {

fputc(c, dst_file);

}

/* Close the files */

fclose(src_file);

fclose(dst_file);

printf("Successfully copied the file \n");

}

On similar lines, we open the file “b.txt” for writing. In this case, the mode
is “w”, which means that we wish to write to the file. The corresponding mode
for opening the source file (“a.txt”) was “r” because we opened it in read-only
mode. Subsequently, we keep reading the source file character by character and
keep writing the characters to the destination file. If the character read is equal
to EOF (end of file), then it means that the end of the file has been reached and
there are no more valid characters left. The C library call to read characters
is fgetc and the library call to write a character is fputc. It is important to
note that both these library calls take the FILE handle (structure) as the sole
argument for identifying the file that has been opened in the past. Here, it is
important to note that a file cannot be accessed without opening it first. This
is because opening a file creates some state in the kernel, which is subsequently
required for accessing it. We are already aware of the changes that are made
such as adding a new entry to the systemwide open file table, per-process open
file table, etc.

Finally, we close both the files using the fclose library calls. They clean up
the state in the kernel. They remove the corresponding entries from the per-
process file table. The entries from the systemwide table are removed only if
there is no other process that has simultaneously opened these files. Otherwise,
we retain the entries in the systemwide open file table.

Let us consider the next example (Example 7.6.2) that opens a file, maps it
to memory and counts the number of ’a’s in the file. We proceed similarly. We
open the file “a.txt”, and assign it to a file handle file. In this case, we need
to also retrieve the integer file descriptor because there are many subsequent
library calls that need it. This is easily achieved using the fileno function.

Example 7.6.2

Open a file ”a.txt”, and count the number of ’a’s in the file.

Answer:

© Smruti R. Sarangi 424

Listing 7.18: Count the number ’a’s in a file

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include <sys/stat.h>

#include <unistd.h>

#include <sys/mman.h>

int main() {

FILE *file;

int fd;

char *buf;

struct stat info;

int i, size , count = 0;

/* Open the file */

file = fopen("a.txt", "r");

if (file == NULL) {

printf ("Error opening file a.txt");

exit (1);

}

fd = fileno(file);

/* Get the size of the file */

fstat(fd , &info);

size = info.st_size;

/* Memory map the file */

buf = mmap(NULL , size , PROT_READ , MAP_PRIVATE , fd ,

0);

/* Count the number of ’a’s */

for (i = 0; i < size; i++) {

if (buf[i] == ’a’)

count ++;

}

/* Unmap and close the file */

munmap(buf , size);

fclose(file);

printf("The number of ’a’ chars is %d\n", count);

}

Subsequently, we invoke the fstat function to get the statistics associated
with a file, especially its size. fstat returns all this information in the info

structure. Next, we map the open file to memory. The mmap function takes a
bunch of arguments. The first argument is the address at which the file needs
to be mapped. It is optional and in this case we are specifying it to be NULL,
which means that the OS can decide where to place the contents of the file.
In the latter case, the return value of the mmap call is the virtual address at

425 © Smruti R. Sarangi

which the file was mapped. The next argument is the size of the file, which
we got from the info structure (output of fstat). The next argument is the
type of access permission that is required. In this case, we just want read
permission (PROT READ). It is possible to share the mapped region with other
processes by specifying the subsequent argument as MAP SHARED. There is no
such requirement in this case. Hence, we pass the argument MAP PRIVATE. The
last two arguments are the number of the file descriptor and the starting offset
of the region within the file, respectively.

If this process is successful, then a part of the process’s address space gets
mapped to memory. Internally, the magic happens in the page table of the
process. A part of the virtual address is mapped to physical pages in the page
cache. These pages store file blocks in physical memory. This means that any
change made by the process reflects in the contents of the physical pages that
are a part of the page cache. Depending upon the writeback policy, the page
cache writes the data in its pages to the file stored on disk. This mechanism is
not visible to the user process. Insofar as it is concerned, it simply directs the
writes to the memory-mapped region in its virtual address space. The rest of
the data transport from a program’s virtual address space to the page cache’s
pages to the file stored on the disk happens automatically !!!

In our example, we access a file as if it is an array stored in memory. The
statement buf[i] == ’a’ does exactly that. Finally, we unmap the memory
region and close the file.

7.6.10 Pipes

Let us now focus on a special kind of file known as a pipe. A pipe functions
as a producer-consumer queue. Even though modern pipes have support for
multiple producers and consumers, a typical pipe has a process that writes data
at one end, and another process that reads data from the other end. There is
built-in synchronization. This is a fairly convenient method of transferring data
across processes. There are two kinds of pipes: named and anonymous. We
shall look at anonymous pipes first.

Anonymous Pipes

An anonymous pipe is a pair of file descriptors. One file descriptor is used to
write, and the other is used to read. This means that the writing process has
one file descriptor, which it uses to write to the pipe. The reading process has
one more file descriptor, which it uses to read. A pipe is a buffered channel,
which means that if the reader is inactive, it buffers the data that has not been
read. Once the data is read, it is removed from the pipe. Example 7.6.3 shows
an example.

Example 7.6.3

Write a program that uses anonymous pipes.

Answer:

Listing 7.19: Using an anonymous pipe across a parent-child process pair

© Smruti R. Sarangi 426

#include <stdio.h>

#include <string.h>

#include <unistd.h>

int main() {

pid_t pid;

int pipefd [2];

char msg_sent [] = "I love my OS book";

char msg_rcvd [30];

/* Create the pipe (file descriptor pair) */

/* 0 is the read end and 1 is the write end */

pipe(pipefd);

/* fork */

pid = fork();

if (pid > 0) {

/* parent process */

close(pipefd [0]);

/* write the message */

write(pipefd [1], msg_sent , strlen(msg_sent) +

1);

close(pipefd [1]);

} else {

/* Child process */

close(pipefd [1]);

/* read the message */

read(pipefd [0], msg_rcvd , sizeof(msg_rcvd));

close(pipefd [0]);

/* print the message */

printf("Message received: %s\n", msg_rcvd);

}

}

As we can see in the example, the pipe library call (and system call) creates
a pair of file descriptors. It returns a 2-element array of file descriptors. 0 is the
read end, and 1 is the write end. In the example, the array of file descriptors is
passed to both the parent and the child process. Given that the parent needs
to write data, it closes the read end (pipefd[0]). Note that instead of using
fclose, we use close in this example; it takes a file descriptor as input. In
general, the library calls with a prefix ‘f’ are at a high level and have lower
flexibility. On the other hand, calls such as open, close, read and write

directly wrap the corresponding system calls and are at a much lower level.

The parent process quickly closes the file descriptor that it does not need
(read end). It writes a string msg sent to the pipe. The child process is the
reader. It does something similar – it closes the write end. It reads the message
from the pipe, and then prints it.

427 © Smruti R. Sarangi

Named Pipes

DELL@Desktop-home2 ~
$ mkfifo mypipe

DELL@Desktop-home2 ~
$ file mypipe
mypipe: fifo (named pipe)

DELL@Desktop-home2 ~
$ ls -al mypipe
prw-rw-rw- 1 DELL None 0 Apr 23 09:38
mypipe

DELL@Desktop-home2 ~
$ tail -f mypipe
I love my OS course

DELL@Desktop-home2 ~
$ echo "I love my OS
course" > mypipe

Create a
named pipe

Note the ‘p’

Wait �ll the
pipe is

wri�en to

Write to the
pipe

Figure 7.33: Pipes in Linux

Figure 7.33 shows a method for using named pipes. In this case the mkfifo
command is used to create a pipe file called mypipe. Its details can be listed
with the file command. The output shows that it is a named pipe, which is
akin to a producer-consumer FIFO queue. A directory listing shows the file to
be of type ‘p’. Given that the file mypipe is now a valid file in the file system, a
process running on a different shell can simply write to it. In this case, we are
writing the string “I love my OS course” to the pipe by redirecting the output
stream to the pipe. The ‘>’ symbol redirects the output to the pipe. The other
reading process can now read the message from the pipe by using the tail shell
command. We see the same message being printed.

Using such named pipes gives processes a convenient mechanism to pass
messages between each other. They do not have to create a new pipe all the
time. One end of the pipe can just be treated as a regular file that is being
written to. As we have seen the ‘>’ symbol redirects the standard output
stream to the pipe. Similarly, the other side, which is the read end can be used
by any program to read any messages present in the pipe. Here also it is possible
to redirect the standard input to a file using the ‘<’ symbol.

7.7 Summary and Further Reading

7.7.1 Summary

Summary 7.7.1

1. A modern I/O system relies on a set of chips placed on the mother-
board; they assist the CPU and OS in performing I/O operations.
They comprise the chipset.

© Smruti R. Sarangi 428

2. The North Bridge chip (or another chip with equivalent functional-
ity) connects to high-bandwidth devices such as the memory mod-
ules and graphics card.

3. The South Bridge chip connects to slower devices such as USB
devices, hard disks and audio ports.

4. A typical I/O stack is divided into multiple layers.

(a) The lowest layer is the physical layer. The transmission layer
specifies the signals and voltages used to transmit messages.
Synchronizing signals with the receiver’s clock is difficult in
high-speed buses. The synchronization layer manages this
synchronization aspect. Most of the time the receiver’s clock
is synchronized with transitions in the data.

(b) The data link layer does error correction and bit framing.

(c) The network layer ensures that messages are routed to the
correct chip in the chip set.

(d) The protocol layer is the highest layer that specifies the nature
of messages and transactions supported by the I/O device.
The device driver interacts with the device using the semantics
defined in this layer.

5. Port-mapped I/O is a classical method to perform I/O. ISA-
addressable registers are associated with physical I/O ports. The
in and out instructions can be used to read and write data into
ports, respectively.

6. A more scalable method is memory-mapped I/O where a part of
the virtual address space is mapped to I/O devices. Processes use
regular load and store instructions to access memory-mapped vir-
tual memory. The TLB and the chipset convert these instructions
into I/O instructions.

7. It is possible to outsource the entire I/O operation to an off-chip
DMA (Direct Memory Access) engine. It sends an interrupt to the
CPU once the transfer is done.

8. Hard disks used to be the most common storage technology and
still are quite popular in 2025. They use a set of platters with
magnetic recording surfaces to store data.

9. The NRZI scheme is used to store data, where the difference in
the direction of magnetic fields across adjoining magnets matters.
These “magnetic field transitions” are easier to record because a
changing magnetic field induces an EMF across a conductor, which
can be easily detected with sensitive electronics.

10. The arrangement of magnets on a recording surface (platter) is as
follows.

429 © Smruti R. Sarangi

(a) Typically, both sides of a platter are used as recording sur-
faces.

(b) Each recording surface has a disk head that reads and writes
data.

(c) The magnets are arranged in concentric rings known as tracks.

(d) Each track stores a set of sectors. A sector typically stores
512 bytes along with error correction bits.

(e) The time required to reach the right track is known as the
seek time – this involves a radial movement of the disk head.
It then waits for the right sector to come under it. This time
is known as the rotational latency. Finally, the sector is read.
The time required to read the sector and transfer the data is
the transfer time.

(f) The density of bytes is roughly the same across a platter. This
means that there are fewer sectors in the innermost tracks and
more sectors in the outermost tracks.

(g) All the tracks that have the same radius across recording sur-
faces comprise a cylinder. Consecutive logical addresses are
typically stored on a cylinder given that this storage pattern
minimizes the seek time.

11. Hard disks have mechanical components and thus are prone to
mechanical and thermal damage. Hence, there is a need to create
an array of disks to ensure reliability. Additionally, an array of
disks can sustain a higher throughput. Such arrays are known as
RAID arrays.

(a) RAID 0 uses data striping where the blocks are distributed
across the disks. There is no error correction.

(b) RAID 1 uses mirroring (blocks copied across disks).

(c) RAID 2, 3 and 4 have a parity disk that stores the parity byte
for a set of blocks stored across the disks. They differ by their
block size. They have advantages in terms of the bandwidth.

(d) In RAID 5, the parity block is distributed across disks, and
there is no single point of contention.

(e) RAID 6 uses two parity blocks for greater reliability.

12. SSDs (solid state disks) do not rely on mechanical components.
Instead, they rely on the floating gate transistor that stores state
in an additional transistor gate known as the floating gate. If elec-
trons are trapped inside it, then its threshold voltage changes. This
trapped state represents a logical 0. The default state corresponds
to a logical 1.

13. The advantage of such a storage technology is that the values are
retained even when the device is powered off. Given that semicon-
ductor storage is used, the devices are very fast. However, writing

© Smruti R. Sarangi 430

new data is not that easy – all the old data needs to be erased
and the cells need to be reset first. Normally, data is read at the
granularity of pages (4 KB to 16 KB). Sadly, it is not possible
to rewrite a page without erasing a full block of pages. A block
contains 64-256 pages.

14. This necessitates program-erase (P/E) cycles where a page is pro-
grammed (written to), then erased, reprogrammed, and so on.
Such devices support a fixed number of P/E cycles. This requires
wear leveling that homogenizes the P/E cycles across blocks.

15. A file represents a generic entity in Linux that could be a regular
file (array of contiguous bytes on a storage device), directory, pipe,
device, etc. Linux defines a virtual file system (VFS) that abstracts
all these entities and supports the everything-is-a-file assumption.
The specific functions are implemented by kernel routines that im-
plement a few of the aforementioned entities or by the underlying
native file system.

16. Regular data files are stored on block devices. Each block device
points to a struct device, a generic disk and a queue of requests.

17. To implement a file system on a block device, a device driver needs
to be implemented for it such that it can be accessed by the kernel.
A device driver is a generic structure with a set of function point-
ers. These pointers need to point to functions that implement the
corresponding functionalities of the device.

18. Character devices typically have simple device drivers that are im-
plemented as kernel modules. Modules are add-on software entities
like dynamic libraries that can access symbols defined by the kernel
and be loaded on-demand.

19. struct inode and dentry are generic structures in the VFS file
system. They define generic files and directory entries, respectively.

20. The ext4 file system is a very popular native file system on Linux
systems. It also defines its own inode, whose main role is to map
logical blocks to physical blocks on the underlying storage device.
It stores pointers to 12 directly mapped blocks. It additionally
points to one indirect block (one that stores pointers to physical
blocks), one double indirect block and one triple indirect block.

21. The ext4 file system’s inode can also be configured differently. It
can store extents – 4 KB to 128 MB regions. The inode can directly
store pointers to 4 extents. If there are more than 4 extents, then
it organizes them as a tree. This tree can have at the most 5 levels.

22. The exFAT file system is much simpler. It organizes all the entries
as a linked list in a global table known as the File Allocation Table
(FAT table). Each entry points to the next entry and a cluster (set
of sectors) on the disk.

431 © Smruti R. Sarangi

23. Journaling file systems are used to ensure that there is no data loss
even if there is a sudden failure of the storage device.

24. Pipes are special kinds of files in the file system that implement a
producer-consumer queue. One process can write at one end of the
pipe and another process can read from the other end.

7.7.2 Further Reading

This chapter was meant to initiate the reader in Linux device and file system
management. Readers who wish to write device drivers should refer to books on
writing drivers for Linux: Corbet et al. [Corbet et al., 2009] and Madieu [Madieu,
2022]. To learn Linux’s device driver interface, it is advisable to write simple
drivers and learn on the way.

A seminal paper introducing the Linux block I/O architecture was presented
in the Linux symposium in 2004 [Axboe, 2004]. Subsequently, a lot of work has
been done in efficiently managing block I/O devices and I/O scheduling. For
example, Stan and Kai proposed fair and efficient flash I/O scheduling [Park
and Shen, 2012], Aupy et al. proposed a scheduler for periodic tasks [Aupy
et al., 2019], Lu et al. introduced latency-aware fair scheduling [Lu et al., 2015],
and Bjørling et al. [Bjørling et al., 2013] created a scheduling system for SSDs
that has multiple queues.

In this context, it is important to evaluate Linux’s I/O subsystem. It was
evaluated for big data workloads in 2014 by Abdelmounaam et al. [Rezgui et al.,
2014]. Another important recent paper is a thorough evaluation of the Kyber
scheduler [Ren et al., 2024].

Exercises

Ex. 1 — When is a source synchronous bus used?

Ex. 2 — Why are modern buses like USB designed as serial buses?

Ex. 3 — What is the advantage of RAID 5 over RAID 4?

Ex. 4 — Give an example where RAID 3 (striping at the byte level) is the
preferred approach.

Ex. 5 — What is the advantage of a storage device that rotates with a con-
stant linear velocity?

** Ex. 6 — RAID 0 stripes data – stores odd numbered blocks in disk 0 and
even numbered blocks in disk 1. RAID 1 creates a mirror image of the data (disk
0 and disk 1 have the same contents). Consider RAID 10 (first mirror and then

© Smruti R. Sarangi 432

stripe), and RAID 01 (first stripe and then mirror). Both the configurations
will have four hard disks divided into groups of two disks. Each group is called
a first-level RAID group. We are essentially making a second-level RAID group
out of two first-level RAID groups. Now, answer the following questions:

a)Does RAID 01 offer the same performance as RAID 10?

b)What about their reliability? Is it the same? You need to make an implicit
assumption here, which is that it is highly unlikely that both the disks
belonging to the same first-level RAID group will fail simultaneously.

Ex. 7 — The motor in hard disks rotates at a constant angular velocity. What
problems does this cause? How should they be solved?

Ex. 8 — We often use bit vectors to store the list of free blocks in file systems.
Can we optimize the bit vectors and reduce the amount of storage?

Ex. 9 — What is the difference between the contents of a directory, and the
contents of a file?

Ex. 10 — Describe the advantages and disadvantages of memory-mapped I/O
and port-mapped I/O.

Ex. 11 — Give an example of a situation in which ordinary pipes are more
suitable than named pipes, and an example of a situation in which named pipes
are more suitable than ordinary pipes. Explain your answer.

Ex. 12 — Give an example of a situation in which sockets are more suitable
than shared memory and an example of a situation in which shared memory
is more suitable than sockets for inter process communication. Explain your
answer.

Ex. 13 — Consider a hard disk that rotates at 15,000 rotations per minute
(RPM) and has a transfer rate of 50 Megabytes/sec. The seek time is 5 ms.
How much time does it take to transfer a 512 byte sector (on an average)?

Ex. 14 — How does memory-mapped I/O work in the case of hard disks? We
need to perform reads, writes and check the status of the disk. How does the
processor know that a given address is actually an I/O address, and how is this
communicated to software? Are these operations synchronous or asynchronous?
What is the advantage of this method over a design that uses regular I/O ports?
Explain your answers.

Ex. 15 — Explain the working of the FAT file system.

Ex. 16 — FAT file systems find it hard to support seek operations. How can
a FAT file system be modified to support such operations more efficiently?

Ex. 17 — What are the advantages of representing everything as a file in
Linux?

Ex. 18 — How is the file system for a flash device different from that of a file
system tailored for hard disks?

433 © Smruti R. Sarangi

* Ex. 19 — Assume a storage system with a three-layered structure: small
amount of volatile RAM memory (fast), numerous flash (SSD) disks (medium
speed), and an array of hard disks (very slow). We want to create a filesystem
for a service like Instagram (image sharing). Design a file system with the
following features.

a)A user can add any number of images (variable sizes).

b)Each image can be commented upon, and there can be replies to comments
as well. However, we cannot comment on replies. The size of each comment
and reply is limited to 256 bytes.

Ex. 20 — Most flash devices have a small DRAM cache, which is used to
reduce the number of PE-cycles and the degree of read disturbance. Assume
that the DRAM cache is managed by software. Suggest a data structure that
can be created on the DRAM cache to manage flash reads and writes such that
we minimize the #PE-cycles and read disturbance.

* Ex. 21 — We want to implement a container (such as Docker) with a virtual
file system. It is a file system that sits on top of the host’s file system. It contains
a subset of the files in the underlying file system (maintained by the host OS).
Any process running in the container can only access the virtual file system. If
it decides to modify a file or make some other change to the file system such
as deleting a file or changing the metadata, then the changes are confined to
the virtual file system. Other user processes running on the host OS do not see
these updates. Propose a method to implement such a virtual file system.

Ex. 22 — Answer the following questions with respect to devices and device
drivers:

a)Why do we have both software and hardware request queues in struct

request queue?

b)Why do device drivers deliberately delay requests?

c)Why should we just not remove (eject) a USB key?

d)What can be done to ensure that even if a user forcefully removes a USB
key, its FAT file system is not corrupted?

Ex. 23 — Do different partitions of a hard disk have separate request queues?

Ex. 24 — What is the purpose of struct bio?

Ex. 25 — Suggest an algorithm for periodically draining the page cache (sync-
ing it with the underlying storage device). What happens if the sync frequency
is very high or very low?

* Ex. 26 — A container such as Docker virtualizes the file system. It stores
the difference between the “virtual” file system and the underlying host file
system (at the level of full files). Let us assume that there are some large files
in the host file system that the container writes to. We however do not want
to replicate the entire file. We want to replicate only those parts of a large file
that have been modified by a Docker process, and we want to make minimal

© Smruti R. Sarangi 434

changes to Docker’s standard inode based file system. Propose the design of a
such a file system.

** Ex. 27 — Design a file system for a system like Twitter/X. Assume that
each tweet (small piece of text) is stored as a small file. The file size is limited
to 256 bytes. Given a tweet, a user would like to take a look at the replies to
the tweet, which are themselves tweets. Furthermore, it is possible that a tweet
may be retweeted (posted again) many times. The “retweet” (new post) will
be visible to a user’s friends. Note that there are no circular dependences. It
is never the case that: (1) A tweets, (2) B sees it because B is A’s friend, (3)
B retweets the same message, and (4) A gets to see the retweet. Design a file
system that is suitable for this purpose.

Ex. 28 — Consider a large directory in the exFAT file system. Assume that
its contents span several blocks. How is the directory (represented as a file)
stored in the FAT table? What does each row in a directory’s data block look
like? How do we create a new file and allocate space to it in this filesystem?
For the last part, explain the data structures that we need to maintain. Justify
the design.

Chapter 8
Virtualization and Security

8.1 Basics of Virtualization

8.1.1 Overview

The landmark feature of modern cloud computing is that it is possible to run
an operating system as an application. For example, it is possible to run an
Windows operating system as an “application” on the Linux operating system.
There are many advantages of this model. The first advantage that comes to
mind is that a user can create a custom environment with all her libraries and
software installed. There is no need to prepare an environment by installing all
the necessary software, which can take a long time and can be an arduous pro-
cess. Furthermore, different applications by different users may have different
and conflicting requirements. It may not be possible to install different versions
of libraries and runtime environments on the same machine. However, running
an OS as an application gives user processes an isolated view. This method does
not require different users to share the same set of libraries or runtime environ-
ments. Each such OS that runs as an application is known as a “guest OS”,
which runs within its virtual environment. This virtual environment includes a
view of the CPUs and devices, and also the runtime state of the operating sys-
tem and all the applications executing on it. The virtual environment is known
as a virtual machine, abbreviated as a VM. Each guest OS sees a virtual view
of all hardware resources, hence, this method is known as virtualization.

The second advantage of such kind of “virtualization” is that it is possible
to migrate a running OS from one machine to another unbeknownst to the user.
This means that services provided by applications running on a guest OS are
always available. In case the host OS or host machine (platform running the
guest OS) go down, it is possible to migrate the guest OS to another server and
avoid any kind of disruption. This is the key concept that underlies modern
cloud computing. Many users who host or access services on the cloud do not
perceive the fact that their VMs may actually be migrating across servers. Inso-
far as they are concerned, the guest OS is always available and their applications
are always responsive. This is a very powerful feature of modern cloud comput-
ing because it decouples executing applications from the physical machine that

435

© Smruti R. Sarangi 436

they are running on.

The third advantage is a better use of resources. Assume that 1000 users
want to run their applications on a cloud computing setup. Let us assume that
each one of them has their guest OS with all their configured applications. It
will seldom be the case that all the applications are active at the same time.
Hence, there is no reason to create a system that has 1000 host machines,
where each host machine is running one guest OS each. Instead, we could
consolidate resources based on actual usage and demand. With proper dynamic
load-balancing, it is indeed possible to reduce the number of actual hosts to let’s
say 200. This will ensure proper utilization of resources. In case, the activity
suddenly increases, the cloud can expand and add more machines. VMs need
to be migrated to these new machines. Executing and migrating VMs in this
fashion provides a degree of elasticity, which is a key feature of cloud computing.

Let us now summarize our learning and delve slightly deeper. The first re-
quirement is that user applications should not be aware that their OS is running
on a VM, which itself is running on a host OS. If users applications need to be
aware of this, then it will be necessary to code them differently to run in a
cloud computing environment – a version of the code has to be created for a
standalone application, and a version of the code has to be created for executing
the application on a cloud. This is too cumbersome and thus is not advisable.
Arguing along these lines, the guest OS should also not be aware that it is run-
ning as a regular application on a host OS. It should run unmodified in such a
setup. If we are forced to make changes to user applications or the guest OS,
then the changes may vary depending on the host OS. There will thus be a need
to create many different versions of the applications and the guest OS for dif-
ferent host OSes, which is absolutely undesirable. Hence, the user applications
and guest OS should run unmodified and they also need to feel that they are
actually running on native hardware. The last statement is the crux of the idea
of virtualization.

The host OS has a component known as the hypervisor, which is also known
as the VMM (Virtual Machine Manager). They virtualize CPUs, I/O and stor-
age devices and the network. An hypervisor makes the guest OS perceive that
it is actually running on a real machine, even though it is using virtual CPUs,
virtual devices and a virtual network. These virtual hardware resources appear
to be “real” to the guest OS. Specifically, the hypervisor creates a VM for each
guest OS, which appears to be a full-fledged standalone machine to the guest
OS. The hypervisor itself could be a regular operating system with virtualiza-
tion features such as Linux with KVM (Kernel Virtual Machine) support or
could be a very thin kernel that is only tailored for creating and hosting VMs
(e.g. IBM LPAR).

Over the years, the field of virtualization has matured significantly. For ex-
ample, a running VM can be paused (suspended), migrated to another machine
and resumed there. The state of a suspended VM represents its snapshot. Such
snapshots can be used to restore it later in case there is an error. This increases
the overall robustness of the system. Moreover, it is possible to run multiple
redundant copies of a VM and in the process ensure that the system is always
available. These sophisticated applications of virtualization have led to today’s
large cloud computing industry that hosts almost all our web-based services.

437 © Smruti R. Sarangi

Definition 8.1.1 Virtualization Basics

In a typical cloud computing environment, an operating system is run
as a regular application on top of a host operating system. The guest
OS is provided a virtual view of the system, where it perceives virtual
CPUs, I/O, storage and network devices. This is known as virtualiza-
tion and the virtual view of hardware is known as a virtual machine or
VM. Moreover, the host OS has a component known as the hypervisor
(or Virtual Machine Manager (VMM)) that creates a VM for running a
guest OS and manages it. There is no need to modify the guest OS’s
kernel or the applications themselves. They are oblivious of virtualiza-
tion. Virtualization provides several advantages such as the ability to
create a custom environment in the cloud, reduce downtime due to vir-
tual machine snapshoting and migration, and effective load balancing.

Example 8.1.1

Example of a system with multiple VMs and guest operating systems.

Trivia 8.1.1

Popek and Goldberg [Popek and Goldberg, 1974] were the first to lay
out the necessary requirements of virtualization.

Equivalence The behavior of applications running on the guest OS is
functionally identical to natively running applications as long as
there are no routines that explicit measure the timing of functions
and contention due to resource availability.

Performance An overwhelming number of instructions run directly on
the CPU. There is no virtualization-related overhead.

Safety The hypervisor or VMM completely controls the access to all
system resources.

8.1.2 Types of Hypervisors

There are four main types of hypervisors as shown in Table 8.1.
Paravirtualized hypervisors such as Xen [Barham et al., 2003] were the ear-

liest to arrive on the scene. Paravirtualization requires modifications to the

© Smruti R. Sarangi 438

guest OS. Applications need not be aware of virtualization, however, the guest
OS needs to be aware of it. Furthermore, the guest OS needs to regularly com-
municate with the hypervisor and exchange information with it. Versions of
Linux were created to work with the Xen hypervisor, which itself was a special-
ized Linux kernel. In the early days, this was indeed a revolutionary idea. It
enabled virtualization, albeit with a small cost. The cost was a dedicated kernel
for each type of paravirtualization based hypervisor. It was clear that this idea
had a limited life. Hence, researchers started searching for methods that did
not require the guest OS to be modified.

Over time, three types of hypervisors developed namely Type 0, Type 1
and Type 2 hypervisors. Type 0 hypervisors have native hardware support
for virtualization. They implement most of their features either in hardware
or firmware. They often have a very thin software layer, which is a small,
specialized kernel that can only create and manage hypervisors. This is not a
general-purpose kernel. Clearly, such systems are expensive, yet are the fastest.

Type 1 hypervisors, on the other hand, involve modifications to general
purpose operating systems, where the kernel is augmented with an additional
hypervisor module. For example, the Linux kernel has a built-in add-on known
as KVM (kernel virtual machine), which can be used to create and manage VMs.
VMWare ESX and Citrix XenServer also fall in this category. There is a broad
spectrum of solutions in this space. The host OS could either be a full-fledged
operating system as in the case of Linux KVM, or could be limited in terms of
its features.

Type Explanation Examples
Paravirtualized The code of the guest OS is modified Xen
Type 0 Hardware- or firmware-based; mini-

mal software support
IBM LPAR, Oracle
LDOM

Type 1 Kernel support provided for hosting
VMs

Linux KVM,
VMWare ESX, Citrix
XenServer

Type 2 Run a guest OS as a regular process VMPlayer, Virtual-
Box

Table 8.1: Types of hypervisors

Finally, we have Type 2 hypervisors, which run a guest OS as a regular
application process. VMPlayer and VirtualBox are popular examples in this
space. They do not require sophisticated kernel support. They run in user
space and are thus extremely easy to use. Clearly, their performance is not at
the same level as hypervisors in other categories.

8.1.3 CPU Virtualization

Let us start with CPU virtualization. Linux lists the nature and number of
CPUs in the /proc/cpuinfo file. Linux refers to every core as a CPU. In fact,
when hyperthreading is enabled on Intel machines, each core runs two threads –
each such thread is a CPU for the Linux kernel. Assume that a machine has 32
CPUs. A strict physical partition would imply the following example scenario.

439 © Smruti R. Sarangi

The host OS keeps 4 CPUs for itself and allots 14 CPUs each to both of its
hosted VMs. This sadly militates against the idea of virtualization. It should
be possible to create a VM with any number of “virtual” CPUs.

Hence, a realistic scenario may look like this. The hypervisor does not
strictly partition the set of CPUs between itself and the executing VMs. It
can, if it wishes to; however, this is not strictly necessary. Instead, it lets VMs
take physical CPUs based on its scheduling decisions. Each VM may decide to
implement any number of virtual CPUs. This means that VM 1 may inform its
guest OS that it actually has 100 CPUs. VM 2 may inform its guest OS that
it has 50 CPUs. The guest OSes will believe this to be a fact and will make
their scheduling decisions accordingly blissfully unaware of the fact that they
are actually being assigned virtual CPUs that don’t actually exist.

Consider Guest OS 1. Assume it tries to run a program on (virtual) CPU 99.
It will follow the usual procedure. The core running it will send an IPI (inter-
processor interrupt) to CPU 99. This will start the interrupt handler on CPU
99, which in turn will invoke the scheduler, and the scheduler will then run the
desired process on the core. However, in this case, this conventional mechanism
will cease to work. This is because issuing an IPI is a privileged instruction.
Guest OSes typically run in higher rings, and do not have the privileges to issue
such instructions. Second, CPU 99 does not exist. Hence, even if an IPI is sent
with the help of the host OS, the CPU number will be invalid. This is precisely
why CPU virtualization is difficult. In the case of paravirtualization, things are
easy. This is because instead of issuing an IPI, the guest OS can simply call a
routine in the host OS and pass it the details of the IPI. Then the host OS can
issue a correct version of the IPI. It can, for instance, map CPU 99 to CPU 25
and proceed accordingly. However, when paravirtualization is not there, this
problem appears to be vexing.

Trap and Emulate

Let us attempt to create a solution. Let us be optimistic and simply allow the
guest OS to go ahead and issue the IPI instruction. This is a privileged instruc-
tion and will cause a fault because the guest OS is running with insufficient
privileges. This event will subsequently lead to an exception being generated.
In the kernel parlance, such an event is known as a trap. The key point to note
here is that the exception handler will run in the host OS. It will quickly figure
out that the erroneous IPI instruction was issued by a guest OS. It will clearly
have access to the operands of the instruction and the ID of the guest OS. It
will try to emulate the IPI. It will do exactly the same set of actions that we
described in the previous paragraph in the context of paravirtualization. It will
internally map virtual CPU 99 to let’s say real CPU 25. It will then send an
IPI instruction to CPU 25. This will lead to an interrupt handler running on
CPU 25. This handler will again belong to the host OS. The host OS will store
the context of the executing program and then invoke the interrupt handler of
the guest OS. Here we are assuming that the host OS is aware of the IDT of the
guest OS (see Section 4.2) and knows the addresses of all its interrupt handlers.
Furthermore, it can access the guest OS’s memory space and invoke interrupt
handlers. The guest OS thus does not even get to perceive that it is running on
virtualized hardware.

The guest OS is oblivious of the entire trap-and-emulate mechanism. Fur-

© Smruti R. Sarangi 440

thermore, this mechanism allows the hypervisor to create VMs with any number
of resources. A VM can have any number of CPUs. Guest OSes can also issue
all kinds of privileged instructions. They can appear to assume exclusive control
of the underlying hardware, even though this is clearly not the case.

Now, let us try to see when this method will not be effective. Consider
polymorphic instructions that have different behaviors when issued at different
ring levels such as x86’s POPF instruction. It pops the stack and populates the
flags register. If it is invoked in ring level 0, all the privileged flag bits are
populated; however, if it is invoked in any other ring level, then many flag bits
are not set. This means that when the guest OS has insufficient permissions, the
hardware does not generate an exception; there is always a valid output. The
trap-and-emulate method will clearly not work in this case because it explicitly
relies on a fault being generated. Hence, we need to search for a different
solution.

Next, consider instructions that have a clear physical side effect. These side
effects will be visible to other VMs. Consider a web camera. One guest OS
asks it to turn right and the other guest OS asks it to turn left. Clearly, this
is not possible. The camera is thus not a resource that can be shared across
guest OSes. Otherwise, the behavior is not well-defined. Some other resources
such as printers can be shared. However, here also corner cases are present.
Assume there is one instruction to turn the printer off and there is a conflicting
instruction issued by another guest OS to print a page. Such situations can
either be handled by brute force where many such hardware resources are either
not shared at all, or for all combinations of operations the behavior is defined.
For example, in this case, one guest OS may see the printer to be turned off
after it has issued the “off” instruction, whereas the other guest OS may be
able to print a page.

Binary Translation

This is a solution for polymorphic instructions. In this case, a dedicated compi-
lation engine reads code pages before they are accessed and dynamically trans-
lates them. It basically converts polymorphic instructions to more innocuous
variants that either raise interrupts when invoked in privileged mode or perform
some other action that serves the desired purpose.

Let us go through the details. All the code pages are marked as inaccessible
to begin with. Whenever a code page is accessed for the first time, a fault gets
generated. This is basically a soft page faulty and is meant to invoke a custom
action. Recall that we had introduced such a mechanism while introducing the
access tracking algorithm for pages (see Section 2.2.3). The mechanism used
here is quite similar.

The interrupt handler is implemented in the hypervisor. It reads the code
page and possibly a few subsequent pages. In general, instructions are aligned
to page boundaries. Hence, in all realistic settings, it will never be the case that
an instruction is split across pages. As a result a set of complete instructions
will be found in the pages. A dedicated module in the hypervisor can then scan
all the instructions in these pages and check for polymorphic behavior. If any
of the instructions are polymorphic and exhibit different behaviors at different
ring levels, then such sensitive instructions are replaced with a functionally
equivalent sequence. Either the behavior is made the same across ring levels,

441 © Smruti R. Sarangi

which is seldom possible, or the instruction is made to generate a trap if executed
by the guest OS. This makes the instruction innocuous. The hypervisor can now
trap all such privileged behaviors and implement the requested functionality.
This method is known as binary translation.

Binary translation has its share of shortcomings. A single complex instruc-
tion may need to be translated into many different instructions. This will change
the branch targets. Modern programs use offset-based addressing. If the trans-
lated instructions lie between a branch instruction and its target, then there
is a need to change the branch target in the branch instruction. This leads to
multiple branches. It is common to place a trampoline instruction, which is
basically a novel branch instruction placed between an existing branch and its
target. Such cascaded branching helps reduce the complexities associated with
modifying branch targets. This is one of the most complex aspects of binary
translation.

Moreover, the translated code may not be very efficient. It may not be well
suited for deep CPU pipelines. Furthermore, modern x86 instructions have com-
plex logic for setting flags. It is important to ensure that translated instructions
also set the same set of flags. The same holds for the memory model, exceptions
and interrupts. We desire full equivalence between two sequences of machine
instructions, which is hard to guarantee in practice. A fair amount of formal
verification is used to ensure this in a bulletproof manner.

The translated instructions are placed in a code cache. It is important to
ensure that this code cache has a limited size. If not managed properly, the per-
formance and memory overheads associated with accessing it may be prohibitive.
This causes an issue especially while dealing with self-modifying code. There
could be security implications of this process. For example, translated code
may expose vulnerabilities that were not present in the original code. Hence,
dynamic binary translation (abbreviated as DBT) is still considered a difficult
technique.

Paravirtualization

The story of the Xen hypervisor [Barham et al., 2003] and paravirtualization
is central to the history of virtualization. In the late nineties, processors did
not support hardware-assisted virtualization. As a result, the trap-and-emulate
approach was used, which was slow. We have already discussed that this ap-
proach is problematic. Hence, in 2003, the Xen hypervisor was conceived. It
emerged out of the Xenoserver project in the University of Cambridge. The
key idea is as follows. A very minimalistic hypervisor runs on hardware. The
guest OS is modified and made hypervisor-aware. The hypervisor and guest OS
communicate via a specialized mechanism known as hypercalls. Hypercalls are
used to pass parameters and privileged information. Paravirtualization lost its
appeal after 2005, when hardware-supported virtualization arrived.

However, it is still alive in the field of I/O virtualization. I/O devices are not
fully compliant with virtualization mainly because I/O devices are manufactured
by many small vendors. Hence, there is a need to use such a mechanism to
communicate between the guest OS and the hypervisor. Linux uses the virtio
standard. It is used to implement virtualization for the network, block devices,
timers and file systems. Paravirtualized drivers are fast, reduce the number of
interrupts and provide better timing accuracy. It is a basically a method of

© Smruti R. Sarangi 442

cooperatively sharing the control of devices.
We will discuss memory and I/O virtualization in later sections. Let us focus

on CPU virtualization in this section. The Xen hypervisor runs in Ring 0 on
x86 machines. The guest OS runs in less privileged modes (Ring 1 or Ring 3).
Now, assume that the guest OS issues a privileged instruction. In this case, the
trap-and-emulate method is normally not used. Instead, a privileged instruction
is replaced with a hypercall. This requires modification of the guest kernel. The
hypercall is in principle like a system call. Akin to system calls, every hypercall
has a number and a set of arguments.

The hypercalls are handled by the underlying Xen hypervisor. There are
dedicated hypercall handlers. They implement the functionality of the privileged
instruction. It is possible to optimize this process. Hypercalls can implement
batching where the system can collect and fuse multiple privileged calls. They
can then be executed efficiently. Note that these are synchronous calls.

For passing messages from the hypervisor to a guest OS, Xen uses event
channels that are asynchronous mechanisms. The workflow starts with a reg-
ular hypercall where a request is made to get an event channel allocated. The
hypervisor sets up an event channel and assigns it a channel number. When the
hypervisor wishes to send a message to the guest OS. This could be to notify the
guest OS about some message sent by some hardware device. The preferred way
in Xen is to use an event channel. The hypervisor acts like a hardware device
and sets a “pending interrupt bit”. The message sent on the event channel is like
a virtual interrupt. Such virtual interrupts have their virtual interrupt drivers
that process the messages sent by the hypervisor. Subsequently, appropriate
action is taken. The guest OS reads the message associated with the interrupt,
which is stored in a shared buffer. Then it unmarks the pending interrupt bit.
This is tantamount to acknowledging the interrupt.

8.1.4 Memory Virtualization

Let us now look at memory virtualization. This is as important as CPU virtu-
alization. In general, there is no need to intervene if there are no TLB misses
and page faults. The CPU computes the virtual address. As long as it is trans-
lated correctly using the TLB and issued to the memory system, there is no
issue. However, the moment there is a TLB miss or page fault, the kernel and
hypervisor need to get involved. In a regular kernel, when there is a TLB miss,
there is a need to walk the page table. This can be done in hardware or by the
kernel. In the case of a hypervisor, there are two page tables. One is the page
table of the guest OS and the other is the page table of the hypervisor. Hence,
a page walk technically does not make a lot of sense. There is also a possibility
of a page fault. In that case, a mechanism needs to be created to manage the
swap space, populate the page tables and somehow synchronize the page tables
of the guest OS and hypervisor.

Let us understand the crux of the problem. Unless we consider paravir-
tualization, the guest OS is not aware of the existence of the hypervisor. It
maintains its own page table and assumes that it is the exclusive owner of the
physical memory and swap space. However, this is not the case. Multiple VMs
can be actively executing on a system. The hypervisor in this case acts as the
host OS. It maintains its page table, manages the physical memory and the swap
space. There is a need to reconcile between these two realities. The illusion of

443 © Smruti R. Sarangi

exclusive execution needs to be provided to a VM.
To start with, let us introduce the following terms.

Term Explanation
GVA Guest virtual address
GPA Guest physical address
HVA Host virtual address
HPA Host physical address

It is clear that to enable seamless execution of the program, the TLB needs
to store the GVA (guest virtual address) and translate it to the HPA (host’s
physical address). The mapping is thus GVA → HPA. Consider Type 1 hyper-
visors. There are two popular methods: nested paging and shadow paging.

Nested Paging

Whenever there is a TLB miss, there is a need to fill the TLB entry with the
host’s physical address (HPA). Note that the TLB always maintains a trans-
lation from GV A → HPA. Hence, there is a need to find the HPA and fill
the TLB entry with it. The first action is to allow the guest OS to walk its
page table. It manages its version of physical memory, which is virtualized. As-
sume that it finds an entry in the guest page table and the page is in memory.
Consider the point at which the page walker reaches the last-level page table
entry. The page that stores the page table entry is marked as non-accessible.
Once this page is accessed, a soft page fault is generated. This process gener-
ates a trap, and gets immediately intercepted by the hypervisor. It reads the
page and figures out the GPA (guest physical address). The hypervisor lets
the guest OS proceed and attempt a write to the TLB. This is where it needs
to be stopped. Here also a trap is generated because writing to the TLB is a
privileged operation.

GVA � GPA � HPA

CPU GVA HPA
miss

Handle TLB miss
1

TLB

Guest
page
table

GVA GPA

2

Nested
page
table

GPA HPA

3

Trap

Guest

4

Populate
TLB

Host

Figure 8.1: Overview of nested paging

At this point, the magic of nested paging (see Figure 8.1) kicks in. Instead of
writing to the TLB, the operation is ignored. The guest OS is clearly not aware

© Smruti R. Sarangi 444

of this. It thus feels that its operation has succeeded. Unbeknownst to the guest
OS, the hypervisor maintains a nested page table for each VM. It translates the
GPA to the HPA. This HPA is then used to fill up the corresponding TLB entry.
A mapping is thus created.

Now, consider the other case, where either an entry is not found in the guest
page table or it is not present in the guest’s virtualized memory. In the first
case, there is a need to allocate a new page if demand paging is enabled. This
page is allocated in the guest’s physical memory. In the second case, the page
needs to be transferred from the swap space to the guest’s physical memory. In
this case, the swap space itself can be virtualized. We will discuss this in the
section on I/O and storage virtualization. In both the cases, the page needs to
be allocated in the guest’s physical memory. In a scheme with nested paging,
the page is actually allocated in the host’s physical memory. The host’s nested
page table associates the GPA with the corresponding HPA.

Point 8.1.1

A nested paging scheme requires two page table accesses upon a TLB
miss. The guest’s page table is accessed to convert the GVA to the
GPA. Then the host’s page table is accessed to convert the GPA to the
actual HPA. It is important to note that in all cases the TLB stores a
translation from the GVA to HPA.

Point 8.1.2

The term “nested paging” is typically used in AMD systems. Intel sys-
tems use the term “Extended Page Table (EPT)”.

Shadow Paging

A criticism of nested paging is that processing TLB misses and page faults is
slow. Two different page tables have to be updated such that they remain
synchronized. In this case, the term “synchronized” does not mean that they
have the same entries. It means that they have entries that are logically linked.
For example, the GPA is stored in the guest’s page table. The same GPA is
used to access the nested page table to yield the HPA. Moreover, for handling a
TLB miss, two different page tables have to be accessed, which is a slow process
in terms of time.

Shadow paging tries to reduce the latency of a TLB miss at the cost of
increased storage space. In shadow paging, the hypervisor mirrors every page
table of every process in the guest OS. Each such page table maintained by the
hypervisor is known as a shadow page table. Note that each page table in the
guest OS stores the mapping GV A → GPA. Each shadow page table on the
other hand stores the mapping GV A → HPA. The advantage here is direct
translation. Most of the time there is no need to access the guest’s page table
on a TLB miss. The shadow page table can be accessed directly. In this case,
the CR3 register stores the address of the shadow page table. Once there is a
TLB miss, the shadow page table yields the HPA, which is used to fill the TLB
entry. Hence, in this scheme, only a single page table access is required. The
guest OS’s page tables mostly remain unused.

445 © Smruti R. Sarangi

GVA � HPA

CPU GVA HPA
miss

Handle TLB miss

1
TLB

Shadow
page
table

GVA HPA

2

Host

3

Populate
TLB

Figure 8.2: Overview of shadow paging

Hence, there is no need to maintain strict synchronization between the
guest’s and host’s page tables. They can diverge; however, as we shall see,
this is a nuanced matter. Let us understand why and when there is a need to
communicate changes from the guest’s page tables to the shadow page tables
maintained by the host. Note that in this case synchronization is unidirectional,
from guest to the host. It is never the other way around. Assume that the guest
updates its page table. Maybe it unmaps a page. This changes have to propa-
gate to the host immediately. This is because we do not want any guest program
to access virtual addresses that belong to the unmapped page. Hence, the hy-
pervisor needs to ensure that such accesses are trapped. It can then remove
the entries from the TLB and update the shadow page tables. However, if a
new entry is added, then that update need not propagate immediately. This
can propagate lazily. In the worst case, this may lead to a TLB miss due to the
unmapped page, and then the host can update the shadow page table.

The guest may revoke access to a page or make a page inaccessible. This is
to track page accesses and generate soft page faults. Some of these changes are
needed for correctness and security. In such situations, there is a need to ensure
that these changes are propagated immediately. Sometimes this is done to track
accesses to prime LRU page replacement algorithms. We need to note that the
guest’s memory management is based on inaccurate information given that it
does not handle all TLB misses and soft page faults. Given that it still runs in
a virtualized environment, it needs to manage pages in memory and swap them
out. The swap space too is virtualized. It is typically not managed to pages
in the host’s RAM. The reason is that the guest assumes that changes made to
the swap space are being made to persistent storage. Storing pages in the host’s
RAM memory breaks this abstraction. As a result, they are typically stored on
the host’s disk. This causes a problem because the guest’s page replacement
algorithm is based on inaccurate information, and there is a potential for a

© Smruti R. Sarangi 446

higher page fault rate.

Ballooning

The ballooning mechanism is important here. Sometimes the host may want
to take memory space away from a guest. This could be because of increased
memory pressure faced by the host due to the requirements placed by other VMs
running on it. A simple approach is to simply mark several hardware pages as
inaccessible and invalidate the corresponding TLB entries unbeknownst to the
guest. Such brute force approaches seldom work very well. It is instead a better
idea to force guests to run a balloon driver, which is a specialized driver that
detects if the memory space is being reduced by some external agent. In this
case, the external agent is the host hypervisor. Once the balloon driver receives
the message, it starts to inflate. Let us elaborate.

Assume the hypervisor indicates to the driver that 2 GB needs to be freed.
The balloon driver will then try to acquire 2 GB of memory in the guest’s
memory system. After allocating the requested memory to the balloon driver,
the guest kernel will automatically have less memory available. It will thus be
forced to shrink its memory footprint. Note that the balloon driver will have a
very high priority, and it will not be asked to release its pages. Once the guest
kernel has shrunk its memory space, the balloon driver informs the hypervisor
about the pages that it has been allocated in the guest’s memory space. Those
mappings can then be removed from the shadow page tables.

The reverse is also possible. If the hypervisor wants to give back memory
to a guest, it simply deflates the balloon. This means that the balloon driver
releases pages to the guest kernel. The guest can then allocate those pages to
other guest processes.

8.1.5 Hardware-Assisted Virtualization

It should be clear up till now that there is a fair amount of software involvement
in the entire virtualization process. Starting from virtualizing the CPU to virtu-
alizing the memory, there is extensive involvement of the hypervisor at various
points. We need to sometimes deliberately generate traps such that the hyper-
visor can do the needful. As we saw in the case of nested paging, it is necessary
to mark the pages of the guest kernel as read-only such that their accesses can
be tracked. This generates soft page faults, which lead to performance degra-
dation. In an ideal world, the delay introduced due to virtualization should be
minimal. This requires hardware support.

Let us describe the popular Intel® VT-x hardware-assisted solution. It
broadly supports two modes of operation: root mode and non-root mode. The
former is for hypervisors and the latter is for guest operating systems. Both the
modes support all four rings. This means that ring 3 now can run in two modes:
root mode and non-root mode. There is the notion of a VM entry and VM exit.
A VM entry means that the CPU starts executing the guest OS (the VM).
Similarly, a VM exit means that the control gets transferred from executing VM
instructions to hypervisor instructions. Many instructions in guest mode can
trigger a VM exit. For example, many events can lead to VM exits such as
external interrupts, accessing specialized hardware resources, exceptions, I/O
device and MSR accesses. Modern systems are quite flexible. They allow the

447 © Smruti R. Sarangi

user to configure this behavior. For example, she can choose which events lead
to a VM exit and which events do not. Akin to signals it is also possible for
the hypervisor to inject interrupts into running VMs such that a VM exit is
triggered.

This is where the hardware support for the VM is required. A dedicated
hardware structure called the Virtual Machine Control Structure (VMCS) main-
tains the state of the processor. Consider a VM entry event. Here, we are
transitioning from root mode to non-root mode. The assumption is that the
VMCS stores the state of the processor that corresponds to starting execution
in non-root (guest) mode. Hence, all that needs to be done is swap the current
state of the processor with the contents of the VMCS. Then non-root mode
execution can start. In this mode, the VMCS saves the processor state required
for transitioning back to root mode execution. When doing a VM exit, a similar
state swap needs to be performed.

CPU Virtualization

It is important to note that in this case, the processor state does not contain the
state of all the general-purpose registers. This is quite unlike regular process
context switches. VMMs can store the register state. The processor state mainly
stores the values of all the special-purpose registers for example CR3 (base
address of the page table) and IDTR (address of the interrupt descriptor table).

Note that the most important problem in CPU virtualization was the ex-
istence of polymorphic instructions – instructions that behaved differently in
different modes without generating exceptions. They are not a problem here
because both the modes of execution – root and non-root mode – have access
to all four privilege rings. Hence, polymorphic instructions per se do not pose
a problem. In some cases, however, they may trigger a VM exit. As we have
discussed, there is a separate mechanism for ensuring this. It is possible to
separately configure the VM-execution control fields to issue “VM exits” when
certain instructions or special conditions occur.

Memory Virtualization

Address virtualization is also taken care of seamlessly. The physical addresses
space is split across VMs. They can directly any physical memory location that
is assigned to them. Furthermore the CR3 and IDTR registers store physical
addresses and thus all performance-critical structures such as page tables can be
accessed directly. In this context, it is important to discuss the design of page
tables when hardware-assisted virtualization is supported. Managing shadow
page tables is difficult and cumbersome. Every update to the guest page table
needs to be tracked and the changes need to reflect in the shadow page table.
This is quite difficult to do correctly, especially if we don’t want to make any
modifications to the host OS’s source code.

This is why most hardware virtualization solutions have instead opted for
nested page tables. It is much easier to manage them at the hardware level. Intel
has Extended Page Tables (EPT®) and AMD has the notion of Nested Paging
®. These are a separate set of page tables that are managed by hardware,
and are also walked in hardware. They basically map the physical addresses in
the guest’s address space to physical addresses in the host’s address space. We

© Smruti R. Sarangi 448

have already discussed the notion of adding tags to TLB entries to ensure that
they are flushed when there is a context switch. This feature becomes quite
important in such scenarios because there is contention among processes across
VMs also.

8.1.6 I/O Virtualization

Basic Approaches

There is a fundamental trade-off over here. Do we implement all the device
drivers in the hypervisor or do we allow guest OSes to use their own device
drivers? Note that the range of devices that a modern machine must support
is fairly large. As it is, 70% of the code in the latest kernel comprises driver
code. If we want hypervisors to have extensive I/O support, then all this code
now needs to move to the hypervisor also, which will make it quite bulky and
difficult to maintain in the long run. Hence, many users find Type-1 and Type-2
hypervisors to be easier to use. They after all run on a full-fledged OS kernel.
The drivers in the host OS can be used. However, if we are looking at Type-0
hypervisors that are also known as bare metal hypervisors, then we are in a fix.
It would be unwise to add extensive driver support to such hypervisors because
they are meant to be lean and efficient. A compromise solution exists. It can
have some in-built drivers within it such that it can interact with the key parts of
the system such as the processors, memories, network cards and storage devices.
This should be enough to run VMs. For other specialized devices, the drivers
in the guest OS can co-opted by giving them adequate permissions. This was
hard to do in conventional software-only virtualization. However, with hardware
support where precise device-level permissions can be assigned, this is easy to
do. A guest OS can be provided low-level access to a device. The guest OS can
then fully access it.

Sadly, I/O virtualization is quite tricky. We have already looked at the
example of the web camera where one VM tries to rotate it to the left and the
other tries to rotate it to the right. It is not possible, to share access to the
web camera in such cases. One of the processes (in a VM) needs to lock it in
exclusive mode. This basically means that the web camera stops being available
to the other VM.

Another common approach is device emulation. A virtual device is created
and presented to guest VMs. They operate it as if it were a real I/O device.
There is a virtualization layer that converts virtual device-level operations to
actual operations. In some cases, such as network cards and storage devices, this
is indeed possible. A virtual network card can be presented to the guest VM. It
can perform actions on it. Those actions will be translated to real actions by the
actual device driver that is a part of the hypervisor. The reverse path, which
is injecting into a running VM interrupts needs to also be created. Without
this feature, devices will not be able to inform guest OSes about critical events
such as power failures or message arrivals. There is thus a need to virtualize
the APIC (programmable interrupt controller). A software version of the APIC
needs to be created inside the hypervisor such that it can be independently
programmed by a VM. If a VM decides to receive a certain interrupt, then it
programs its virtualized APIC. This is caught by the emulation layer of the
APIC, and then the operation is appropriately translated and the real APIC is

449 © Smruti R. Sarangi

programmed. Using this mechanism, we can even route an interrupt to multiple
VMs. The mechanism is completely flexible.

Let us look at other points in the spectrum of I/O virtualization especially
the extrema. Sometimes it is hard to create a virtual device, and it is a much
better idea to dedicate a device to a VM (as we have seen in the case of web
cameras). The other end of the spectrum is to actually support virtualization
at the level of the device itself. This is known as pass through virtualization.
Each device maintains multiple queues and configurations (one per VM) and
picks requests/entries from them according to a predefined scheduling policy.
Bypassing the host OS has its series of complications and is clearly not the
recommended solution for all kinds of devices. Let us see why. VMs typically
move across host machines for a long-running job. Hosts frequently go down,
get scheduled for software updates and data center manages continually perform
load balancing. As a result a long job such as preprocessing a large ML workload
may keep on migrating between physical machines. These can be heterogeneous
and have different sets of underlying hardware.

This means that when a job moves from Machine A to B, the guest OS
needs to be informed that it needs to rescan all devices, remove some devices
and add new devices to its internal tables including their respective drivers. This
is indeed a slow process and existing tasks that were interacting with devices
on Machine A need to be terminated. Moreover, the method of interacting
with the underlying system may also change. For example, Machine B may not
have an additional NVM.e disk. This is clearly not a practical solution. It is
much better if every VM and guest OS see exactly the same set of devices such
that their applications perceive a stationary execution environment that does
not frequently change. This is only possible if virtual devices are exposed to
guest OSes. This further means that each underlying hypervisor has real device
drivers for real devices. The hypervisor virtualizes each “real” device and creates
one or more “virtual” devices. Wherever a guest OS goes, it perceives the same
set of devices.

Security plays a major role here. Sometimes it is necessary to restrict DMA
access to certain VMs. Both Intel and AMD’s virtualization solutions have
configuration mechanisms to specify which VM can access which device and also
the assigned DMA ranges. This allows the user to map device access permissions
to executing VMs at a very fine granularity.

Optimizations

Several optimizations are possible with virtual devices. The first is that it is
possible for the hypervisor to omit, merge and batch requests. Assume that
the guest OS sends two messages that are idempotent. One of them can be
safely removed. Sometimes, it may be a good idea to batch multiple write
operations to the storage devices or the network cards. They can be buffered
by the hypervisor and written back later. During this time, if there is a read
access, then the write requests that are pending need to be checked first. Both
read and write requests, or alternatively, network send and receive requests, can
be combined in the interest of performance. Sometimes, it is also a good idea to
keep buffering until there is a convenient opportunity to issue the I/O request.
For example, if a VM is trying to send packets over the network, it can keep
on sending them to its virtual device. Depending upon the implementation of

© Smruti R. Sarangi 450

the hypervisor, this can either lead to an execution mode switch or not. In
either case, the guest VM does not have to wait till the packets are actually
sent. It can begin execution quickly. The next time there is a timer interrupt,
the “real network device driver” can check for pending network requests and
execute them. This means that network requests will never get delayed by more
than one jiffy. Such “request combining” has its benefits in terms of reduced
overhead due to frequent context switches. Let us explain this with a practical
example. Assume that you are in the middle of some important work such as
reading this book. Email and instant messages keep coming. They will break
your concenteration and train of thought if you immediately start answering
them. When you resume reading this book again, you would have forgotten
where you were and you will end up taking some time to catch up. Again after
some time, if there is a similar such interrupting event, you may start doing
the same thing again. If this pattern continues, then the actual throughput
measured in terms of the number of pages that you as a reader understood from
this book will be quite low. Hence, the right approach is to put the phone on
silent mode and continue reading this book ,. Maybe, every half an hour, all
pending emails and instant messages can be checked and resopnded to. This
will prove to be far more efficient. Very little time will be wasted in frequent
context switching. Even the send of an email or message seldom expects an
instant reply; hence, this delay is tolerable. This is exactly the solution that we
are proposing for a conceptually similar problem in the field of virtual devices
!!!

The next optimization is kind of brilliant. Note that we are not desirous of
modifying the guest OS because paravirtualization is by and large out of fashion
now; however, there is a tiny gray region where the guest OS can be made aware
of virtualization without actually modifying its source code. This happens as
follows. Note that we are creating a new virtual device here. Insofar as the guest
OS is concerned, it is an actual device with its own unique semantics. Hence, it
needs to have its own device driver, which can be installed on a guest OS. It is
now possible to have bespoke communication mechanisms between the device
driver of the virtual device and device driver of the real device unbeknownst to
the guest kernel. For example, both the device drivers can share shared memory
regions. If there are pending interrupts, then all that the hypervisor’s driver
can do is set a few bits indicating the specific interrupts that are pending. The
guest’s device driver can periodically inspect such regions. In fact, the same
holds for all kinds of communication regardless of direction. It is possible to
significantly reduce context switches using this approach.

Critics and skeptics may argue that this feature would require all guest OSes
to have drivers for a given hypervisor and virtual device combination. This
seems to be well accepted by the community. In other words, the community is
willing to pay this small price. VMWare’s vmxnet network adapter is one such
virtual device that has found wide acceptance.

In some cases, modifying the host OS’s kernel makes sense especially in the
case of Type 1 and 2 hypervisors. Linux follows a single-copy architecture,
which means that any data structure is stored in only one place, there are no
redundant duplicates. Now, it is very well possible that a network packet may
be buffered in both the guest OS’s memory and in the host OS’s memory, which
is not advisable given the single-copy philosophy. If we are using virtual devices,
then the host OS is clearly aware of the locations in guest memory that store the

451 © Smruti R. Sarangi

packet via its device driver. An optimization is possible here where the host OS
takes storage in guest memory into cognizance and does not create an additional
redundant copy. It retrieves the guest copy when there is a need to transmit
the packet. A lot of assumptions are being made here. For example, we are
assuming that the guest OS will retain the network packet and not remove it.
Given that there is a communication mechanism between the virtual and real
device drivers, this can be ensured in specific cases. Hence, this optimization
is indeed feasible, even though we must add a disclaimer that it is difficult to
implement it correctly and it is clearly not generic in nature.

Next, let us look at “pass through” approaches that bypass the host OS
and hypervisor. In this case, I/O devices have to support virtualization and
expose different IRQs to different VMs. Of course, this approach is not very
generic and portable. The problem of remapping IRQs when the VM physically
moves to another machine remains. Nonetheless, this approach can prove to
be very efficient in specific cases where we wish to maximize performance and
VM migration is not top on our agenda. There are however some issues that
complicate this picture. The first is DMA. For setting up DMA transfers, control
of physical memory is necessary. If guest OSes do not have control over the
physical memory, then their drivers cannot setup DMA transfers. However,
there are workarounds, where addresses can be translated while setting up DMA
transfers. The second is that the host OS should still retain some control over
the device. This means that it should be able to schedule the accesses or enforce
policies. This depends on the kind of interface that the I/O device provides. A
good solution should clearly have this feature such that the guest OS can manage
VM access policies with each I/O device that allows pass-through virtualization.

8.2 Containers

Virtual machines started the cloud computing revolution. However, all good
things had to come to an end. Towards 2015, it was felt that virtual machines
are becoming heavyweight. Often there is no need to run a full-scale operating
system especially when the guest and host operating system share mostly the
same environment. It could be the case that the guest OS requires Python 3.14
and the host OS has 3.12. For such a minor difference, there is no need to create
a full VM that has its own OS image. Many times such VMs run just a single
application. If we think about it, we are creating a full operating system and
virtual machine to just run one application. Most of the time, all that we need
is a different version of a library or a configuration file. Hence, a VM is clearly
overkill. There is a need for a far more lightweight solution. Containers such as
Docker and Kubernetes solve this problem.

As opposed to full-fledged virtual machines, containers enjoy a separate vir-
tualized view of the file system, processes, users and networking. There are three
integral building blocks of containers: namespaces, cgroups and layered file sys-
tems. Many consider security modules as the fourth building block. However, it
is important to understand that modern containers are incomplete without se-
curity modules, however, they are technically speaking not integral to containers
the same way as namespaces or layered file systems are.

© Smruti R. Sarangi 452

8.2.1 Namespaces

Let us look at namespaces first, which we had briefly introduced in Chapter 3
(Section 3.1.12). Namespaces were defined as a collection of processes. They
contain a subset of all the processes in the system, and enjoy an isolated view.
Each namespace has its own init process, which under normal circumstances
cannot be terminated by other processes in the namespace. Furthermore, it
becomes the parent of all the processes in the namespace when their parent
dies.

We had also mentioned that namespaces themselves are organized as a tree
(hierarchically). It is important to note that processes in a namespace are visible
to all ancestral namespaces. However, they are not visible to child namespaces.
Let us understand this important asymmetry. Processes are visible to ancestral
namespaces because it should be possible to control their behavior. We are
implicitly assuming here that proccesses in an ancestral namespace are in a more
privileged position. They can potentially become process managers, where they
can control the behavior of processes in child namespaces.

Let us also recall that we made a distinction between struct pid, which
is a data structure that represents a running process, and a process number
(pid t), which is specific to a namespace. A struct pid is a structure that
stores all information about a running process. There is only a single copy of
it per running process. However, this same process can have different num-
bers (pid numbers) across different namespaces. This means that a process can
be a member of several namespaces – its original namespace and all ancestral
namespaces. In each of these namespaces, it will have the same struct pid

data structure, and it can have potentially different process ids (pids) in dif-
ferent namespaces. An advantage of this mechanism is that processes within a
namespace can refer to each other using pid t numbers. Even if this namespace
is moved to another machine, the system will still continue to work because the
processes will continue to retain their pid numbers.

Different Types of Namespaces

Let us generalize the definition of a namespace. It turns out that a namespace
is not limited to process IDs alone. Namespaces are much more than that. A
namespace is a generic kernel object that creates a context (a virtualized and
isolated view of resources) for a set of processes. It is true that we have up till
now looked as process namespaces; however, we can have many other kinds of
namespaces also that wrap many other kinds of entities.

Definition 8.2.1 Namespace

A namespace is a generic kernel object that creates a context (a virtual-
ized and isolated view of resources) for a set of processes.

Table 8.2 shows a list of namespaces in the Linux kernel. Along with process
ids, many other kinds of namespaces can be created. They can create different
kinds of virtualized environments. For example, mount namespaces create ded-
icated mount tables for different namespaces. This means that if a process is a
part of a given mount namespace, it can see certain mounted file systems and

453 © Smruti R. Sarangi

Namespace Entity Virtualized
PID (pid) Process ids (isolated view)
Mount (mnt) Mount points
Network (net) Network stack
Inter-process Communication (IPC) IPC mechanisms
UTX (Unix time sharing) Hostname and domain name
User ID (user) Users
Time System time

Table 8.2: Types of namespaces in the Linux kernel

cannot access certain file systems because they are not mounted. The same holds
for the network, inter-process communication, host/domain names (UTX), user
ids and time. For example, it is possible to create a different regime of user ids
within the host operating system. The same holds for a different time zone or
a different hostname. All of these namespaces allow us to create a virtual envi-
ronment within the host operating system and provide a fully isolated virtual
environment. There is a concept of a cgroup namespace. We are deliberately
not mentioning this concept at this point of time. We will discuss more when
we discuss cgroups. Let us explain these concepts with an example.

Method of Creating a Namespace

We shall mostly rely on shell commands in this subsection. The most impor-
tant command is unshare. It creates a new namespace, and then executes a
program within it. If no program, then it runs the shell by default. As long as
a namespace has a member process, it survives. However, often there is a need
to create a persistent namespace that remains alive even if it does not have a
member process. There should always be a possibility to revive it later on when
there are processes that can be added to the name space. This can be realized
using a specialized mechanism known as a bind mount. It makes a file present in
one location of the file system appear at another location in the file system. The
bind mount point is conceptually similar to a symbolic link or an alias. We shall
see that it is possible to restrict file system access to a process. For example, we
can limit it to access files only within a certain directory. If it needs access to
some system libraries, then those libraries can be “bind mounted” to locations
within the directory that the process has access to.

Listing 8.1: Example of using the unshare command

unshare --fork \

--pid \

--mount \

--uts \

--ipc \

--net \

--mount -proc \

bash

Listing 8.1 shows an example of using the unshare command. The first
option fork creates a new process to execute the command as the name suggests.

© Smruti R. Sarangi 454

The next argument pid creates a pid namespace, which creates an isolated
collection of process IDs. We create a new mount namespace, where we can
mount file systems “privately”. On similar lines, we create uts, ipc and net

namespaces. The last option is interesting and is a good practice, especially
before mounting the pid namespace. It creates a special mount point for the
proc file system. This allows special mount points and namespace information
to be placed in the modified version of the proc file system. Otherwise, they
may corrupt the execution of existing programs in the system. Note that we
typically need to run such programs using root privileges. Let us now check
that we are indeed running within a container.

Let us display the pid of the current shell (see Listing 8.2).

Listing 8.2: Checking that we are within the container

echo "PID inside container:" $$
ps aux

We observe that the shell’s process ID is 1. It is basically the init process in
the new PID namespace. Next, we can change the host name (see Listing 8.3).
Invoking the hostname command with an argument ends up changing the host
name. However, this happens only for the container because it has a dedicated
net namespace. The change is not reflected in the rest of the system.

Listing 8.3: Isolating the host name

hostname

hostname container -demo

hostname

Let us now look at the intricacies of the mount and mount-proc options. The
mount command invoked without arguments shows the details of all the mounted
file systems. If we run this command within the container, it shows two entries
for the proc file system. One of the mounts corresponds to the original proc
file system, and the other corresponds to the freshly mounted file system in the
new container. Next, we mount a temporary file system (type:tmpfs). In this
case, we invoke the mount command with the -t option. The first argument is
the type of the file system that needs to be mounted. tmpfs is a temporary file
system – a virtual file system in the RAM. The mount point is /tmp/demo. This
is the root of a temporary file system that can be used to store a large number
of files in RAM. We can think of this as a RAM file system. If the RAM runs
out of memory, then some of the pages need to be stored on swap space. The
pages used for storing files in the file system typically come from the page cache
(refer to Section 7.6.5).

Listing 8.4: Mount namespaces

mount #see the list of all mounted file systems

mkdir /tmp/demo

mount -t tmpfs /tmp/demo

mount | grep demo

We live it as an exercise for the reader to verify that the local time, IPC
(inter-process communication) and network information can be virtualized. As

455 © Smruti R. Sarangi

we observe, a namespace is a mechanism to virtualize operating system resources
such as process IDs, IPC, network information, mount points, etc. Creating a
namespace is easy – it can be done just via the unshare command.

Other Commands

Assume a namespace has already been created, and a new process would like to
join it. Then we need to use the nsenter command to execute the process in
the given namespace. The argument is another process that runs in the target
namespace. The kernel extracts the namespaces that this other process is a part
of. The target process is then moved to those namespaces.

Another command is lsns that shows the list of namespaces in the system.
The reader is advised to create a namespace using the commands mentioned in
the previous subsection. The list of namespaces can be listed. Another useful
command in this space is pstree that shows all the namespaces in the system
using a tree-structured view. The user with appropriate permissions can always
inspect the namespaces by browsing the /proc/<pid>/ns directory.

struct nsproxy

Let us now look at the implementation of namespaces in the kernel. The um-
brella data structure is struct nsproxy. Listing 8.5

Listing 8.5: The nsproxy structure.
source : include/linux/nsproxy.h#L31

struct nsproxy {

atomic_t count; // reference count

struct uts_namespace *uts_ns;

struct ipc_namespace *ipc_ns;

struct mnt_namespace *mnt_ns;

struct pid_namespace *pid_ns_for_children;

struct net *net_ns;

struct time_namespace *time_ns;

struct time_namespace *time_ns_for_children;

struct cgroup_namespace *cgroup_ns;

};

This nodal data structure has a bunch of pointers to individual namespaces
that are of different types. Some namespaces have a name with a “for children”
suffix. This means that all child processes will be a member of this namespace.
This is a convenient mechanism especially for the time namespace. The parent
and child processes can be in different time domains for instance. Each of
these namespaces virtualize some aspect of the kernel and provide a degree of
isolation.

8.2.2 Cgroups

Let us now explain the notion of cgroups (Control groups) that limit and account
for the resource usage of processes (refer to [Menage, 2004]). Pure virtualization
using namespaces and containers is a very useful concept; however, it also creates
the space for a lot of contention. Unless, strict resource limits are assigned,
containers will try to use excessive resources, which may lead to problems such

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/nsproxy.h#L31

© Smruti R. Sarangi 456

as thrashing. Furthermore, it will not be possible to enforce priorities. It should
be possible to assign more resources to high-priority processes. This information
is stored in cgroups. They act like resource governors – CPU, I/O and memory.
A cgroup is an independent entity like a namespace – it can be assigned to a set
of processes. Cgroups themselves are organized as a tree (refer to the code in
Listing 8.6).

Listing 8.6: Structure of a cgroup

source : include/linux/cgroup− defs.h#L378

struct cgroup {

/* All ancestors including self */

int level;

struct cgroup *ancestors [];

/* Private pointers for each registered subsystem */

struct cgroup_subsys_state __rcu *subsys[

CGROUP_SUBSYS_COUNT];

struct cgroup *dom_cgrp;

struct kernfs_node *kn; /* cgroup kernfs entry */

}

Cgroups are organized as a tree. Each cgroup has a level. The root cgroup’s
level is 0. Since they are organized as a tree, one would naively assume that
each cgroup should have a pointer to a parent cgroup. However, linux actually
stores all the ancestors right from the root till the parent. We shall quickly
see why this is required. We shall see that cgroups are organized similar to an
object-oriented hierarchy. Many times a cgroup overrides some of the earlier
settings defined in ancestor cgroups and sometimes it just inherits them. This
is why storing the entire path is required.

All the resource limits are stored in cgroup subsys state. This is the most
important data structure that resource controllers use. Note that in the kernel
literature the cgroup subsys state data structure is also referred to as a css.

Listing 8.7: struct cgroup subsys state

source : include/linux/cgroup− defs.h#L155

struct cgroup_subsys_state {

int id; /* unique id */

/* The cgroup that this css is attached to */

struct cgroup *cgroup;

/* parent css */

struct cgroup_subsys_state *parent;

/* cgroup subsystem that this css is attached to */

struct cgroup_subsys *ss;

}

Every css has a unique id. There is a back pointer to the cgroup that is
attached to the current css. The css data structures are also arranged as a tree.
The value of such a tree will be appreciated later. The most important data

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/cgroup-defs.h#L378
https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/cgroup-defs.h#L155

457 © Smruti R. Sarangi

structure that we need to focus our attention on is cgroup subsys. This data
structure stores the real resource limits. It defines the rules that the resource
controller will use.

8.2.3 Overlay File System

Every container has an overlay file system, which adds a layer on top of the
existing file system. In general, either the entire host file system or a subset of
it is visible to the container. However, if the container writes to a file, then a
new copy is created and that copy is stored in the overlay file system. This is
the broad idea. Such an overlay file system basically stores the additional files
that the container owns. This is an extremely space-efficient method fo storing
the files owned by the container. We can conceptually think of an overlay file
system to contain multiple layers. The host file system is the lowermost layer.
The container file system is a layer on top of it. Whenever, there is a file
lookup, the uppermost layer is checked first and then the file system driver
proceeds towards lower layers.

8.3 Summary and Further Reading

8.3.1 Summary

8.3.2 Further Reading

© Smruti R. Sarangi 458

Exercises

Ex. 1 — Explain the different types of hypervisors.

Ex. 2 — Describe the trap-and-emulate method. How does it work for inter-
rupts, privileged instructions and system calls?

** Ex. 3 — Most proprietary software use a license server to verify if the user
has sufficient credentials to run the software. Think of a “license server” as an
external server. The client sends its id, and IP address (cannot be spoofed) along
with some more information. After several rounds of communication, the server
sends a token that the client can use to run the application only once. The next
time we run the application, a fresh token is required. Design a cryptographic
protocol that is immune to changing the system time on the client machine,
replay attacks, and man-in-the-middle attacks. Assume that the binary of the
program cannot be changed.

** Ex. 4 — We want to implement containers in an operating system. A
container is a mini virtual machine. Here are the features that a container
should have:

a)Every container has its own set of user ids and passwords.

b)We can launch a process inside a container. It will not be visible to pro-
cesses in other containers. At any point of time, processes from multiple
containers might be running. Note that a container is not an operating
system, nor a VMM. It is just a thin layer on top of the OS.

c)Initially, every process sees the native file system of the underlying OS.
However, the moment, we change a file, a fresh copy is created for that
container. For example, if we create a new version of /etc/passwd in a
container, then only that container will see the updated version of this file.
This change will not be visible outside the container.

d)It should be possible to restrict the privileges of processes in a container.
For example, they might not be able to access the network, or certain
sectors on the disk.

Suggest a mechanism to implement all of these as efficiently as possible.

** Ex. 5 — Let us design an operating system that supports record and re-
play. We first run the operating system in record mode, where it executes a host
of applications that interact with I/O devices, the hard disk, and the network.
A small module inside the operating system records all the events of interest.
Let us call this the record phase.
After the record phase terminates, later on, we can run a replay phase. In this
case, we shall run the operating system and all the constituent processes exactly
the same way as they were running in the record phase. The OS and all the
processes will show exactly the same behavior, and also produce exactly the
same outputs in the same order. To an outsider both the executions will be
indistinguishable. Such systems are typically used for debugging and testing,
where it is necessary to exactly reproduce the execution of an entire system.

459 © Smruti R. Sarangi

Your answer should at least address the following points:

a)What do we do about the time? It is clear that we have to use some notion
of a logical time in the replay phase.

b)How do we deliver I/O messages from the network or hard disk, and inter-
rupts with exactly the same content, and exactly at the same times?

c)What about non-determinism in the memory system such as TLB misses,
and page faults?

d)How do we handle inherently non-deterministic instructions such as reading
the current time and generating a random number?

* Ex. 6 — We wish to encrypt a part of the physical memory space. How do
we modify the virtual memory mechanism to support this? Assume that the
OS is trustworthy.

Ex. 7 — How does the VMM keep track of updates to the guest OS’s page
tables in shadow and nested paging?

Ex. 8 — Answer the following questions with respect to virtual machines:

Ex. 9 — If there is a context switch in the guest OS, how does the VMM
get to know the id (or something equivalent) of the new process (one that is
being swapped in)? Even if the VMM is not able to find the pid of the new
process being run by the guest OS, it should have some information available
with it such that it can locate the page table and other bookkeeping information
corresponding to the new process.

Ex. 10 — How do we virtualize the TLB?

Ex. 11 — What happens if the guest page table is not walked when there is
a TLB miss in a system with nested paging? Assume that instead of walking
the guest page table, the TLB miss is never reported to the guest OS. Instead,
a new TLB entry is directly added.

Ex. 12 — In nested paging, can the host’s page table be considered as an
extension of the guest’s page table? Explain your answer.

Ex. 13 — Why does HW-assisted virtualization allow the host’s shadow page
table and the guest page table to go out of sync, and why is this not a problem?

© Smruti R. Sarangi 460

Appendix A
The X86-64 Assembly Language

In this book, we have concerned ourselves only with the Linux kernel and that
too in the context of the x86-64 (64-bit) ISA. This section will thus provide a
brief introduction to this ISA. It is not meant to be a definitive reference. For a
deeper explanation, please refer to the textbook on basic computer architecture
by your author [Sarangi, 2021].

The x86-64 architecture is a logical successor of the x86 32-bit architecture,
which succeeded the 16 and 8-bit versions, respectively. It is the default architec-
ture of all Intel and AMD processors as of 2023. The CISC ISA got complicated
with the passage of time. From its early 8-bit origins, the development of these
processors passed through several milestones. The 16-bit version arrived in
1978, and the 32-bit version arrived along with Intel 80386 that was released in
1985. Intel and AMD introduced the x86-64 ISA in 2003. The ISA has become
increasingly complex over the years and hundreds of new instructions have been
added henceforth, particularly vector extensions (a single instruction can work
on a full vector of data).

A.1 Registers

ax

bx

cx

dx

ah al

bh bl

ch

dh

cl

dl

Figure A.1: Two virtual 8-bit registers within a 16-bit register

The x86-64 ISA has 16 registers. These 16 registers have an interesting
history. In the 8-bit version, they were named simply a, b, c and d. In the

461

© Smruti R. Sarangi 462

16-bit avatar of the ISA, these registers were simply extended to 16 bits. Their
names changed though, for instance a became ax, b became bx, and so on. As
shown in Figure A.1, the original 8-bit registers continued to be accessible for
backward compatibility. Each 16-bit register was split into a high and low part.
The lower 8 MSB bits are addressable using the specifier al (low) and bits 9-16
are addressable using the register ah (high).

A few more registers are present in the 16-bit ISA. There is a stack pointer
sp (top of the stack), a frame pointer bp (beginning of the activation block for
the current function), and two index registers for performing computations in a
loop via a single instruction (si and di). In the 32-bit variant, a prefix ‘e’ was
added. ax became eax, so on and so forth. Furthermore, in the 64-bit variant
the prefix ‘e’ was replaced with the prefix ‘r’. Along with these registers, 8 new
registers were added – r8 to r15. This is shown in Figure A.2. Note that even
in the 64-bit variant of the ISA, known as x86-64, the 8, 16 and 32-bit registers
are accessible. It is just that these registers exist virtually (as a part of larger
registers).

eax

ebx

ecx

edx

esp

ebp

esi

edi

ax

bx

cx

dx

sp

bp

si

di

rax

rbx

rcx

rdx

rsp

rbp

rsi

rdi

r8

r9

r15

64 bits
32 bits

16 bits

Figure A.2: The registers in the x86-64 ISA

Note that unlike newer RISC ISAs, the program counter is not directly
accessible. It is known as the instruction pointer in the x86 ISA, which is not
visible to the programmer. Along with the program counter, there is also a
flags register that becomes rflags in x86-64. It stores all the ALU flags. For
example, it stores the result of the last compare instruction. Subsequent branch

463 © Smruti R. Sarangi

instructions use the result of this compare instruction for deciding the outcome
of conditional branches (refer to Figure A.3).

eflags

eip

flags

ip

rflags

rip

64 bits
32 bits

16 bits

Figure A.3: Special registers in the x86 ISA

There are a couple of fields in the rflags register that are commonly used.
Each field typically requires 1 bit of storage and has a designated bit position
in the 64-bit register rflags. If the corresponding bit position is set to 1, then
it means that the corresponding flag is set otherwise it is unset (flag is false).
OF is the integer overflow flag, CF is the carry flag (generated in an addition),
the ZF flag is set when the last comparison resulted in an equality, and the
SF sign flag is set when the last operation that could set a flag resulted in a
negative result. Note that a comparison operation is basically implemented as
a subtraction operation. If the two operands are equal, then the comparison
results in an equality (zero flag is set) otherwise if the first operand is less than
the second operand, then the result is negative and the sign flag is set to 1
(result is negative).

Floating Point Registers

The basic floating point register set has 8 registers (see Figure A.4). They are
80 bits wide. This is known as extended precision (more than double precision,
which is 64 bits). The organization of floating point registers is quite interesting.
The registers are arranged as a stack. The stack top is st0 and the bottom of
the stack is st7. If a new value is pushed to the stack, then the value at the
stack top moves to st1. The rest of the registers are also pushed back by 1.
For example, the old st3 becomes the new st4. Every register is basically a
position in this model. Additionally, registers are also directly accessible. For
example, we can directly use the register specifier st5. However, the connection
between the value and the register location st5 will break the moment there is
a push or pop operation on the stack. Floating point operations are typically
structured as operations that use the top of the stack (st0) as the implicit
operand, and often involve push/pop operations. For example, the floating
point add operation adds the first two entries on the stack, pops one entry and
replaces the top of the stack with the sum. This reduces the overall code size
dramatically. This was an important motivation when the floating point ISA
was designed.

The stack-based model is typically adopted by very simple machines that
are easy to program. We basically restrict our set of instructions to arithmetic
instructions, load/store instructions, push and pop. The 80387 math coproces-
sor that used to be attached to erstwhile Intel processors to provide floating

© Smruti R. Sarangi 464

st0 st1 st5st4st0 st0st2 st3 st6 st7
FP register

stack

Figure A.4: Floating point registers

point capabilities used this stack-based model. This basic programming model
has remained in the x86 ISA. Because backward compatibility is a necessary
requirement, this model is still present. With the advent of fast hardware and
compiler technology, this has not proved to be a very strong impediment.

A.2 Basic Instructions

There are two formats in which x86 instructions are written. There is an Intel
format and there is an AT&T format. In both the formats one of the sources
is also the destination operand. In the Intel format, the first operand is both a
source and a destination, whereas in the AT&T format, the second operand is
both a source and a destination. The AT&T format is the default format that
the popular open source compiler gcc generates unless it is instructed otherwise.
We will thus use the AT&T format in this book.

Examples of some instructions are as follows.

movq $3 , %rax

movq $4 , %rbx

addq %rbx , %rax

movq %rax , 8(% rsp)

The basic mov operation moves the first operand to the second operand.
The first operand is the source and the second operand is the destination in
this format. Each instruction admits a suffix (or modifier), which specifies the
number of bits that we want it to operate on. The ‘q’ modifier means that
we wish to operate on 64 bits, whereas the ‘l’ modifier indicates that we wish
to operate on 32-bit values. In the instruction movq $3, %rax, we move the
number 3 (prefixed with a ‘$’) to the register rax. Note that all registers are
prefixed with a percentage (‘%’) symbol. Similarly, the next instruction movq

$4, %rbx moves the number 4 to the register rbx. The third instruction addq

%rbx, %rax adds the contents of register rbx to the contents of register rax,
and stores the result in rax. Note that in this case, the second operand %rax

is both a source and a destination. The final instruction stores the contents of
rax (that was just computed) to memory. In this case, the memory address is
computed by adding the base address that is stored in the stack pointer (%rsp)
with the offset 8. The movq instruction moves data between registers as well as
between a register and a memory location. It thus works as both a load and a
store. Note that we cannot transfer data from one memory location to another
memory location using a single instruction. In other words, it is not possible to
have two memory operands in an instruction.

Let us look at the code for computing the factorial of the number 10 in
Listing A.1. In this case, we use the 32-bit version of the ISA. Note that it is

465 © Smruti R. Sarangi

perfectly legal to do so in a 64-bit processor for power and performance reasons.
In the code shown in Listing A.1, eax stores the number that we are currently
multiplying and edx stores the product. The imull instruction multiplies the
partial product (initialized to 1) with the index.

Listing A.1: Code for computing factorial(10)

movl $1 , %edx # prod = 1

movl $1 , %eax # i = 1

.L2:

imull %eax , %edx # prod = prod * i

addl $1 , %eax # i = i + 1

cmpl $11 , %eax # compare i with 11

jne .L2 # if (!(i == 11)) goto .L2

Format of Memory Operands

The x86 instruction set has elaborate support for memory operands. Since it is a
CISC instruction set, it supports a wide variety of addressing modes, particularly
for memory operands. The standard format for specifying a memory address
in x86 assembly is as follows: seg:disp(base,index,scale). The address
is computed as shown in Equation A.1. Here, we are assuming that the seg

segment register stores a base address that gets added to the computed address.
Section 2.2.4 discusses segmentation in x86 in great detail. Often the segment
register is not specified. For different types of accesses, default segment registers
are used. For example, the code segment register is used for code and the data
segment register is used for data.

address = seg + (base+ index ∗ scale+ disp) (A.1)

base refers to the base address register. It is additionally possible to specify
an index, which is also a register. Its contents are added to the base address
(stored in the base register). The index register can optionally be scaled by the
value specified in the scale parameter. The scale parameter is very useful
while implementing array accesses. The base address of the array is stored in
the base register, the array index is stored in the index register and scale

is used to specify the size of the data type. For instance, if the data type is
an integer, then the scale is equal to 4. If the data type is a double, then the
scale is equal to 8, so on and so forth. It is additionally possible to specify a
fixed offset, which is also known as the displacement (disp field). This field is
particularly important while specifying the address of variables stored on the
stack or in some regions where the location is a fixed offset away from the start
of the region. The disp field can also be specified standalone, when nothing
else is specified. The advantage here is that we can implement direct memory
addressing, where the memory address is specified directly – it need not be
calculated using the base or index registers.

Let us consider a few examples. The address (4(%esp)) has esp as the base
register with 4 as the displacement. In this case, the address is being specified
relative to the value of the stack pointer stored in esp. Another example of an
address is (%eax,%ebx). This address does not have a displacement or a scale.
It just has a base register (eax) and an index register ebx. Let us now look

© Smruti R. Sarangi 466

at another address in its full glory, -32(%eax,%ebx,0x4). The displacement is
(-32) and the scale is 4 (specified in the hex format).

As we can observe, in x86, the memory operand field is extremely expressive,
and it can be used to specify a wide range of operands in a reasonably large
number of formats.

Appendix B
Compiling, Linking and Loading

B.1 The Process of Compilation

It is important to understand the process of compiling, linking and loading.
Many students often get confused with these concepts and don’t understand
what they really mean and how they can be used to build large software. Let
us first look at the simplest of these steps, which is the process of compilation.
A compiler’s job can be broken into two parts: frontend and backend. The
frontend part of the compiler reads a C file, ensures that the syntax is correct,
and it is well-formed. If there are no errors, we proceed to the second stage,
which involves invoking the backend routines. Of course, if there is an error, the
programmer is informed and then the programmer needs to make appropriate
changes to the program such that the compilation errors go away.

The frontend basically reads a sequence of bytes (the C file) and converts
it into a sequence of tokens. This process is known as lexical analysis. The
sequence of tokens is then used to create a parse tree. Often programs like
yacc and bison are used to specify the grammar associated with a programming
language and automatically create a parse tree for a source code file (like a C
file). The parse tree contains the details of all the code that is there in the
C file. This includes a list of all the global and statically defined variables,
their data types, all the functions, their arguments, return values and all the
code statements within the functions. In a certain sense, the parse tree is a
representation that passes certain syntactic and semantic checks, completely
represents the contents of the C file, and is very easy to handle. It incorporates
many syntactic details, which are not really required to create machine code.
Hence, the parse tree is used to construct a simpler representation that is far
easier to process and is devoid of unnecessary details – this simpler tree is known
as the Abstract Syntax Tree or AST. The AST is the primary data structure
that is processed by the backend of the compiler.

B.1.1 Compiler Passes

The backend of the compiler is structured as a sequence of multiple passes. Each
pass reads the abstract syntax tree and then produces a representation that is

467

© Smruti R. Sarangi 468

semantically equivalent, yet is a more optimized version. For instance, there
could be pieces of code that will never be invoked in any execution. Such pieces
of code are known as dead code. One pass could be dead code removal where
all such pieces of code are identified and removed. Another common compiler
pass is an optimization pass called constant folding. Consider a statement in
a C file, which is as follows: int a = 5 + 3 + 9;. In this case, there is no
need to actually put the values 5, 3 and 9 in registers and add them. The
compiler can directly add 5, 3 and 9 and set the value of variable a to 17. Such
optimizations save many instructions and make the program quite efficient.
Compiler writers are quite ingenious and have proposed tens of optimizations.
In fact, the optimization flags -O1, -O2 and -O3 in the popular gcc compiler
specify the aggressiveness of optimizations. For example, -O1 comprises fewer
optimization passes than -O2, so on and so forth. Having more optimization
passes increases the chances of producing more efficient code. However, often
diminishing returns set in, and sometimes the optimizations also tend to cancel
each other’s gains. Hence, it can so happen that overly optimizing a program
actually leads to a slowdown. Hence, there is a need to understand which passes
a program is actually going to benefit from.

The important point to note is that this is a highly complicated process
where a pass is designed for a particular kind of optimization and the process
of backend compilation is essentially a sequence of multiple passes. Clearly, the
nature of the passes matters as well as their sequence. The backend starts with
working on ASTs, which gradually get optimized and simplified. At some point,
compilers start producing code that looks like machine code. These are known
as intermediate representations (IRs). Initially, the intermediate representations
are at a reasonably high-level, which means that they are not ready to be con-
verted to assembly code just yet. Gradually, each instruction in the intermediate
representation starts getting closer and closer to machine instructions. These
are referred to as medium and low level intermediate representations. For obvi-
ous reasons, low-level IR cannot be used to perform major optimizations that
require a lot of visibility into the overall structure of the code. However, simple
instruction-level optimizations can be made easily with IR representations that
are close to the final machine code. These are also known as peephole optimiza-
tions. Gradually, over several compiler passes, the IR starts representing the
machine code.

The last step in the backend of the compiler is code generation. The low-level
IR is converted to actual machine code. It is important for the compiler to know
the exact semantics of instructions on the target machine. Many times there are
complex corner cases where we have floating point flags and other rarely used
instructions involved. They have their own set of idiosyncrasies. Needless to
say, any compiler needs to be aware of them, and it needs to use the appropriate
set of instructions such that the code executes as efficiently as possible. We need
to guarantee 100% correctness. Furthermore, many compilers as of 2023 allow
the user to specify the compilation priorities. For instance, some programmers
may be looking at reducing the code size and for them performance may not
be that great a priority. Whereas, for other programmers, performance may be
the topmost priority. Almost all modern compilers are designed to handle such
concerns and generate code accordingly.

469 © Smruti R. Sarangi

B.1.2 Dealing with Multiple C Files

We may be very happy at this stage because a full C file has been fully compiled
and has been converted to machine code. However, some amount of pessimism
is due because most modern software projects typically consist of thousands of
files that have been written by hundreds of developers. As a result, any project
will have hundreds or thousands of C files. Now, it is possible that a function in
one C file actually calls functions defined in other C files, and there is a complex
dependence structure across the files. The same holds true for global variables
as well. Hence, we observe that when a C file is being compiled, the addresses
of many functions as well as global variables that are being used may not be
known.

Point B.1.1

If we have many source files, the addresses of many variables and func-
tions will not be known at the compilation stage. This is because they
are defined in other files. Their addresses need to be resolved later.

Object Files

Let us now take a look at Figure B.1. It shows the different phases of the overall
compilation process. Let us look at the first phase, which is converting a C file
to a .o file. The .o file is also known as an object file, which represents the
compiler output obtained after compiling a single C file. It contains machine
code corresponding to the high-level C code along with other information. It is
of course possible that a set of symbols (variables and functions) do not have
their addresses set correctly in the .o file because they were not known at the
time of compilation. All such symbols are identified and placed in a relocation
table within the .o file. The linking process or the linker is then tasked with
taking all the individual .o files and combining them into one large binary file,
which can be executed by the user. This binary file has all the symbols’ addresses
defined (we will relax this assumption later). Note that we shall refer to the
final executable as the program binary or simply as the executable.

x.c

y.c

z.c

x.o

y.o

z.o

gcc –c x.c

a.out

The final executable
that runs.

Linking
Command: ld

Figure B.1: The process of compiling and linking

© Smruti R. Sarangi 470

Overview of Header Files

It turns out that there is another serious problem. Whenever, a function is
invoked in a C file, we need to know its signature – the number of arguments,
their respective data types and the data type of the return value. If the C
function’s signature is not available to the compiler, then it will not be able to
generate code or even check whether the program has been written correctly
or not. This is bound to be the case when functions are defined in other C
files. Languages such as C furthermore also automatically change the type
(typecasting) of input arguments based on the signature of the function. For
instance, if a character (char) type variable is sent to a function that expects
an integer, then automatic type conversion takes place. There are many more
such cases where a similar type conversion scheme is used. But to do that, we
need to insert dedicated code in the compiled program and thus knowing the
signature of the function is essential. Once the signature is provided, the original
function could be defined in some other C file, which per se is not an issue –
we can compile the individual C source code file seamlessly. To summarize, the
signature of a function needs to be available at the time of compilation.

Point B.1.2

The signature of a function can be used to implement many tasks like au-
tomatic type conversion, correctly arranging the arguments and properly
typecasting the return value. Without the signature, the compilation
process will fail. Hence, the signatures of externally defined functions
should be available to C files. This will allow them to use a function
without defining it.

Let us further delve into the problem of specifying function signatures, which
will ensure that we can at least compile a single C source code file correctly and
create the corresponding object file. Subsequently, the linker can combine all
the object files and create the program’s binary or executable.

B.1.3 The Concept of the Header File

The direction of our discussion centers around specifying the signatures of func-
tions even though the functions may themselves be defined somewhere else. Let
us thus introduce two terms – declaration and definition. The declaration refers
to specifying the signature of a function. For instance, a declaration may look
like this: int foo (int x, char y, double z);. On closer examination, we
note that there is no need to specify the names of the parameters because this
information is not of any use. All that the compiler needs to know are the
types of the parameters and the type of the return value. Hence, an alternative
signature can be int foo(int, char, double);. This is all that is required.

Novice programmers normally specify the signature of all functions at the
beginning of a C file or right before the function is actually used. This will do
the job, even though it is not an ideal solution. Often the keyword extern is
used in C and C++ programs to indicate that the function is actually defined
somewhere else.

The definition refers to the function’s actual code – C statements within the
function. Consider a project with a single C file, where a function is invoked after

471 © Smruti R. Sarangi

it is defined. In this case, there is no need to actually declare the signature of the
function – the definition serves the purpose of also declaring the signature of the
function. However, in the reverse case, a declaration is necessary. For example,
let us say that the function is invoked in Line 19 and its code (definition) starts
at Line 300. There is a need to declare the signature of the function before Line
19. This is because when the relevant compilation pass processes Line 19, it
will already be armed with the signature of the function, and it can generate
the corresponding code for invoking the function correctly.

We need to do something similar for functions defined in other files in a large
multifile project. Of course, dealing with so many signatures and specifying
them in every source code file is a very cumbersome process. In fact, we also
have to specify the signature of global variable definitions (their types) and even
enumerations, structures and classes. Hence, it makes a lot of sense to have a
dedicated file to just store these signatures. There can be a pre-compilation
phase where the contents of this file are copy-pasted into source code files (C or
C++ files).

A header file or a .h file precisely does this. It contains a large number of
signatures of variables, functions, structs, enumerations and classes. All that
a C file needs to do is simply include the header file. Here the term include

means that a pre-compilation pass needs to copy the contents of the header file
into the C file that is including it. This is a very easy and convenient mechanism
for providing a bunch of signatures to a C file. For instance, there could be a set
of C files that provide cryptographic services. All of them could share a common
header file via which they export the signatures of the functions that they define
to other modules in a large software project. Other C files need to include this
header file and call the relevant functions defined in it to obtain cryptographic
services. The header file thus facilitates a logical grouping of variable, function
and structure/class declarations. It is much easier for programmers to include
a single header file that provides a cohesive set of declarations as opposed to
manually adding declarations at the beginning of every C file.

Header files have other interesting uses as well. Sometimes, it is easier to
simply go through a header file to figure out the set of functions that a set of C
functions provide to the rest of the world. It is a great place for code browsing.

Barring a few exceptions, header files never contain function definitions or
any other form of source code. Their role is not to have regular C statements.
This is the role of source code files such as .c and .cpp files. Header files are
reserved only for signatures that aid in the process of compilation. For the
curious reader, it is important to mention that the only exception to this rule
is C++ templates. A template is basically a class definition that takes another
class or structure as an argument and generates code based on the type of the
class that is passed to it at compile time.

Now, let us look at a set of examples to understand how header files are
meant to be used.

Example

Listing B.1: factorial.h

#ifndef FACTORIAL_H

#define FACTORIAL_H

© Smruti R. Sarangi 472

extern int factorial (int);

#endif

Listing B.1 shows the code for the header file factorial.h. First, we check
if a preprocessor variable FACTORIAL H is already defined. If it is already defined,
it means that the header file has already been included. This can happen for
a variety of reasons. It is possible that some other header file has included
factorial.h, and that header file has been included in a C file. Given that
the contents of factorial.h are already present in the C file, there is no need
to include it again explicitly. This is ensured using preprocessor variables. In
this case, if FACTORIAL H has not been defined, then we define the function’s
signature: int factorial(int);. This basically says that it takes a single
integer variable as input and the return value is an integer.

Listing B.2: factorial.c

#include "factorial.h"

int factorial (int val){

int i, prod = 1;

for (i=1; i<= val; i++) prod *= i;

return prod;

}

Listing B.2 shows the code of the factorial.c file. Note the way in which
we are including the header file. It is being included by specifying its name
in between double quotes. This normally means that the header file should
be there in the same directory as the C file (factorial.c). We can also use the
traditional way of including a header file between the ’<’ and ’>’ characters. In
this case, the directory containing the header file should be there in the include
path. The “include path” is a set of directories in which the C compiler searches
for header files. The directories are searched in ascending order of preference
based on their order in the include path. There is always an option of adding
an additional directory to the include path by using the ‘-I’ compilation flag in
gcc. Any directory that succeeds the ‘-I’ flag is made a part of the include path
and the compiler searches that directory as well for the presence of the header
file. Now, when the compiler compiles factorial.c, it can create factorial.o
(the corresponding object file). This object file contains the compiled version
of the factorial function.

Let us now try to write the file that will use the factorial function. Let us
name it prog.c. Its code is shown in listing B.3.

Listing B.3: prog.c

#include <stdio.h>

#include "factorial.h"

int main(){

printf("%d\n",factorial (3));

}

All that the programmer needs to do is include the factorial.h header file
and simply call the factorial function. The compiler knows how to generate
the code for prog.c and create the corresponding object file prog.o. Given

473 © Smruti R. Sarangi

that we have two object files now – prog.o and factorial.o – we need to link
them together and create a single binary that can be executed. This is the job
of the linker that we shall see next. Before we look at the linker in detail, an
important point that needs to be understood here is that we are separating the
signature from the implementation. The signature was specified in factorial.h

that allowed prog.c to be compiled without knowing how exactly the factorial
function is implemented. The signature had enough information for the compiler
to compile prog.c.

In this mechanism, the programmer can happily change the implementation
as long as the signature is the same. The rest of the world will not be affected,
and they can continue to use the same function as if nothing has changed. This
allows multiple teams of programmers to work independently as long as they
agree on the signatures of functions that their respective modules export.

B.2 Linker

The role of the linker is to combine all the object files and create a single exe-
cutable. Any project in C/C++ or other languages typically comprises multiple
source files (.c and .cpp). Moreover, a source file may use functions defined in
the standard library. The standard library is a set of object files that defines
functions that many programs typically use such as printf and scanf. The
final executable needs to link these library files (collections of object files) as
well.

Definition B.2.1 Standard C Library

The standard C library is a collection of compiled functions that enable
a user program to access system services such as reading and writing to
files or sending messages over the network.

There are two ways of linking: static and dynamic. Static linking is a simple
approach where we just combine all the .o files and create a single executable.
This is an inefficient method as we shall quickly see. This is why dynamic
linking is used where all the .o files are not necessarily combined into a single
executable at the time of linking.

B.2.1 Static Linking

A simple process of compilation is shown in Figure B.2. In this case we just
compile both the files: prog.c and factorial.c. They can be specified as
arguments to the gcc command, or we can separately create .o files and then
compile them using the gcc command. In this case, the gcc command invokes
the linker as well.

The precise role of the linker is shown in Figure B.3. Each object file contains
two tables: the symbol table and the relocation table. The symbol table contains
a list of all the symbols – variables and functions – defined in the .o file. Each
entry contains the name of the symbol, sometimes its type and scope, and its
address. The relocation table contains a list of symbols whose address has not

© Smruti R. Sarangi 474

� gcc factorial.c prog.c
� ./a.out

6

Plain, old, simple, and
inefficient

� gcc –c factorial.c –o factorial.o
� gcc –c prog.c –o prog.o
� gcc factorial.o prog.o
� ./a.out

6

Compile .o files
separately

Figure B.2: Code for static linking

Defines the factorial
func�on

factorial.c

Uses the factorial
func�on defined in

factorial.c

prog.c

Declara�on of the
factorial func�on

factorial.h

#include

Symbol
table

Figure B.3: Compiling the code in the factorial program and linking the com-
ponents

been determined as yet. Let us now explain the linking process that uses these
tables extensively.

Each object file contains some text (program code), read-only constants and
global variables that may or may not be initialized. Along with that it references
variables and functions that are defined in other object files. All the symbols
that an object file exports to the world are defined in the symbol table and all
the symbols that an object file needs from other object files are listed in the
relocation table. The linker thus operates in two passes.

Pass 1: It scans through all the object files and concatenates all the text sec-
tions (instructions), global variables, function definitions and constant def-
inition sections. It also makes a list of all the symbols that have been
defined in the object files. This allows the linker to compute the final
sizes of all the sections: text, data (initialized global/static variables), bss
or (block starting symbol, uninitialized global/static variables) and con-
stants. All the program code and variable definitions are concatenated
and the final addresses of all the variables and functions are computed.

475 © Smruti R. Sarangi

The concatenated code is however incomplete. The addresses of all the
relocated variables and functions (defined in other object files) are set to
zero (undefined).

Pass 2: In this stage, the addresses of all the relocated variables and functions
are set to their real values. We know the address of each variable at the
end of Pass 1. In the second pass, the linker replaces the zero-valued
addresses of relocated variables and functions with the actual addresses
computed in the first pass.

Issues with Static Linking

Let us now look at some common issues with static linking. In this case, we
want to link all the object files as well as the standard C library together and
build one large executable. This is shown in Figure B.4. We quickly observe
that to statically link everything, all that we need to do is add the ‘-static’
flag to the compilation options. We can check this using the ldd command.
The output will show that the executable is statically linked, and no dynamic
libraries are referenced. For a very simple program that simply prints integers,
the size of the executable is quite large. It is close to 1 MB (892 KB to be precise
on your author’s system). There are several reasons for this. The first is that
the code that we write is not ready by itself to be executed by the operating
system. The compiler typically adds many more functions that setup all the
memory regions, load the constants into memory and create the environment
for program execution.

The first function to be called is start. It starts the process of setting up
the memory space of the process. It invokes a sequence of functions: one of
them is libc start main, which ultimately calls the main function. The code
of all these functions needs to be present in the executable. The main function is
thus not the first function to be invoked. Even when the main function returns,
the process does not immediately terminate. Again a sequence of functions are
invoked that release all the resources that the process owned such as open files
and network connections.

Surprisingly, all this overhead is not much. The dominant source of over-
heads here is the code of all the C libraries that is added to the executable.
This means that if we invoke the printf function, then the code of printf as
well as the set of all the library functions that printf invokes (and in turn they
invoke) are added to the executable. These overheads can be quite prohibitive.
Assume that a program’s source code contains one hundred unique library calls,
but in any practical execution only 25 unique library calls are made. The size
overhead is 100/25 (4×). Sadly, at compile time, we don’t know which library
calls will be made and which ones will not be made. Hence, we conservatively
assume that every single library call that is mentioned in any object file will
actually be made, and it is not dead code. Consequently, the code for all these
library functions (including their backward slice) needs to be included in the
executable. Here, the backward slice of a library function such as printf com-
prises the set S of library functions called by printf, as well as all the library
functions invoked by functions in S, so on and so forth. Formally, this set is
known as the reflexive-transitive closure of the printf function. Because of
this, we need to include a lot of code in executables. Therefore, they become

© Smruti R. Sarangi 476

very large. This can be visualized in Figure B.4.
Along with the large size of executables, which in itself is problematic, we

lose a chance to reuse code pages that are required by multiple processes. For
instance, almost all processes share a few library functions defined in the stan-
dard C library. As a result, we would not like to replicate the code pages of
library functions – this would lead to a significant wastage of memory space.
Hence, we would like to share them across processes saving a lot of runtime
memory.

To summarize, if we use such statically linked binaries where the entire code
is packaged within a single executable, such code reuse options are not available
to us. Hence, we need a better solution. This solution is known as dynamic
linking.

� gcc –sta�c test.c
� ldd a.out

not a dynamic executable
� du –h a.out

892K a.out

#include <stdio.h>

int main(){
int a = 4;
printf ("%d",a);

}

test.c

Check if all the func�ons
are bundled or not

The size of the binary is quite
large because the code of the

en�re library is included in a.out

Add the code to
a.out

Figure B.4: Size of a statically linked executable

B.2.2 Dynamic Linking

Dynamic linking solves many of the problems with static linking. The basic idea
here is that we do not add the code of all library functions or even functions
defined in object files (part of the program’s code base) unless there is a very
high chance that the code will actually be used and that too very frequently.
Furthermore, we would also not like to add code to an executable if there is
a high chance that it will be reused across many processes. If we follow these
simple rules, the size of the binary will remain reasonably small. However, the
program execution gets slightly complicated because now there will be many
functions whose code is not a part of the executable. As a result, invoking those
functions will involve a certain amount of complexity. Some of this is captured
in Figure B.5.

In this case, where printf is dynamically linked, the address of the printf
symbol is not resolved at link time. Instead, the address of printf is set to a
dummy function known as a stub function. The first time that the stub function
is called, it locates the path of the library that contains the printf function,
then it copies the code of the printf function to a memory address that is
within the memory map of the process. Finally, it stores the address of the
first byte of the printf function in a dedicated table known as the jump table.
The next time the stub function is called, it directly accesses the address of the
printf function in the jump table. This basically means that the first access
to the printf function is slow. Henceforth, it is very fast.

477 © Smruti R. Sarangi

prin�
Stub

func�on

Locate the
func�on in a

library

first
�me

Copy the func�on
to the address
space of the

process

subsequently

Call the func�on using
its address

Store the address
of the func�on

Figure B.5: Dynamically linking a program

The advantages of this scheme are obvious. We only load library functions
on-demand. This minimizes the size of the executable. Furthermore, we can
have one copy of the shared library code in physical memory and simply map
regions of the virtual address space of each process to the physical addresses
corresponding to the library code. This also minimizes the memory footprint
and allows as much of runtime code reuse as possible. Of course, there is a very
minor performance penalty. Whenever a library function is accessed for the first
time, there is a necessity to first search for the library first and then find the
address of the function within it. Searching for a library, proceeds in the same
manner as searching for header files.

During the process of compilation, a small note is made about which function
is available in which library. Now if the executable is transferred to another
machine and run there or even run on the same machine, it is necessary to
locate the library at runtime. The stub function calls a function named dlopen.
When invoked for the first time for a given library function, its job is to locate the
library. Akin to the way that we search for a header file, there is a search order.
We first search for the library in the current directory. If it is not found, we
check the directories in the LD LIBRARY PATH environment variable. Then
we search known locations in the system such as /lib and /usr/lib. The search
order is very important because often there are multiple copies of a library, and
we want the program to fetch the correct copy.

Each library defines a symbol table that lists the symbols that it exports to
the rest of the world. This is how we can find the addresses of the functions
that are present within the library and copy them to the memory space of the
process that dynamically links the library. The code can also be copied to a
shared location and then mapped to the virtual address space of any process
that wishes to use the code. This is a very efficient method and as of today, this
is the de facto standard. Almost all software programs use the shared library
based dynamic linking mechanism to reduce their code size and ensure that they
remain portable across systems.

Many times, when we are not sure if the target system has a shared library
or not, the software package can either bundle the shared library along with
the executable or the target system can install the shared library first. This is
very common in Linux-based systems, where shared libraries are bundled into

© Smruti R. Sarangi 478

packages. Whenever, a software is installed (also distributed as a package), it
checks for dependencies. If a package is dependent on other packages, then
it means that those packages provide some shared libraries that are required.
Hence, it is necessary to install them first. Moreover, these packages could have
dependencies with other packages that also need to be installed. We thus need
to compute the backward slice of a package and install the missing packages.
This is typically done by the package manager in Ubuntu or RedHat Linux.

It is important to note that the notion of shared libraries and dynamic
linking is there in all operating systems, not just Linux. For example, it is
there in Windows where it is known as a DLL (dynamically linked library).
Conceptually, a shared library on Linux (.so file) and a DLL in Windows (.dll
file) are the same.

� gcc –c factorial.c –o factorial.o
� ar –crs factorial.a factorial.o
� gcc prog.o factorial.a
� ./a.out

6

factorial.a is a library that is
sta�cally linked in this case

The ar command creates a library
out of several .o files

� gcc –c –fpic –o factorial.o factorial.c
� gcc –shared –o libfactorial.so factorial.o
� gcc –L. prog.c -lfactorial
� export LD_LIBRARY_PATH= p̀wd`
� ./a.out

6

Generate posi�on independent code

Create the shared library
Create the executable. Reference the shared library.

Tell the system that the factorial library is in the
current directory

Figure B.6: Code for dynamic linking

Figure B.6 shows the method to generate a shared object or shared library
in Linux. In this case, we want to generate a shared library that contains the
code for the factorial function. Hence, we first compile the factorial.c file
to generate the object file (factorial.o) using the ‘-c’ gcc option. Then we
create a library out of the object file using the archive or ar command. The
extension of the archive is ’.a’. This is a static library that can only be statically
linked like a regular .o file.

The next part shows us how to generate a dynamic library. First, we need
to compile the factorial.c file in a way that is position independent – the
starting address of the code does not matter. This allows us to place the
code at any location in the virtual address space of a process. All the ad-
dresses are relative to a base address. In the next line, we generate a shared
object from the factorial.o object file using the ‘-shared’ flag. This generates
libfactorial.so. Next, we compile and link prog.c with the dynamic library
that we just created (libfactorial.so). This part is tricky. We need to do
two separate things.

Consider the command gcc -L. prog.c -lfactorial. We use the ‘-L’ flag
to indicate that the library will be found in the current directory. Then, we
specify the name of the C file, and finally we specify the library using the ‘-l’
flag. Note that there is no space in this case between ‘-l’ and factorial. The
compiler searches for libfactorial.so in the current directory because of the
-L and -l flags.

In this case, running the executable a.out is not very straightforward. We

479 © Smruti R. Sarangi

need to specify the location at which the factorial library will be found given
that it is not placed in a standard location that the runtime (library loader)
usually checks such as a /lib or /usr/lib. We thus add the current directory
(output of the pwd command) to the LD LIBRARY PATH environment variable.
After that we can seamlessly execute the dynamically linked executable – it will
know where to find the shared library (libfactorial.so).

Readers are welcome to check the size of dynamically linked executables.
Recall the roughly 1 MB sized executable that we produced post static linking
(see Figure B.4); its size reduces to roughly 12 KB with dynamic linking !!!

Let us finish this round of discussion with describing the final structure of
the executable. After static or dynamic linking, Linux produces a shared object
file or executable in the ELF format.

B.2.3 The ELF Format

The ELF format (Executable and Linkable Format) is arguably the most popular
format for executables and shared libraries. An executable or a shared library
in the ELF format starts with a header that describes the structure of the file
and details about the ISA and machine compatibility. It is divided into several
sections: contiguous regions in the virtual address space that store the same
type of information (code, constants, etc.). Sections are grouped into segments.
An ELF executable or binary has a program header table (list of segments) and
a section header table (list of sections). The starting address of each section or
segment is specified in these tables.

The typical sections in an ELF file are the text section (instructions in the
binary), data section (initialized data), bss section (uninitialized data), symbol
table (list of variables and functions defined in the file) and the relocation table
(variables and functions that are defined elsewhere). There is some information
regarding dynamic linking in the corresponding section (dynamic).

B.3 Loader

The loader is the component of the operating system whose job is to execute a
program. When we execute a program in a terminal window, a new process is
spawned that runs the code of the loader. The loader reads the executable file
from the file system and lays it out in main memory. It needs to parse the ELF
executable to realize this.

It creates space for all the sections, loads the constants into memory and
allocates regions for the stack, heap and data/bss sections (static and global
variables). Additionally, it also copies all the instructions into memory. If
they are already present in the memory system, then instead of creating a
new copy, we can simply map the instructions to the virtual memory of the
new process. If there is a need for dynamic linking, then all the information
regarding dynamically linked symbols is stored in the relocation table and the
dynamic section in the process’s memory image. The loader also initializes the
jump tables.

Next, it initializes the execution environment such as setting the state of all
the environment variables, copying the command line arguments to variables
accessible to the process and setting up exception handlers. Sometimes for

© Smruti R. Sarangi 480

security reasons, we wish to randomize the starting addresses of the stack and
heap such that it is hard for an attacker to guess runtime addresses. This can
be done by the loader. It can generate random values within a pre-specified
range and initialize base addresses in the program such as the starting value of
the stack pointer and the heap memory region.

The very last step is to issue a system call to erase the memory state of
the loader and start the process from the first address in its text section. The
process is now alive, and the program is considered to be loaded.

Appendix C
Data Structures

In this section, we provide an overview of the commonly used data structures
in the Linux operating system. Note that this is not meant to be a rigorously
theoretical section. Given that there are excellent texts on algorithms and data
structures [Cormen et al., 2009], there is no need to rigorously explain all the
concepts in detail in this book. The main aim of this appendix is to briefly
describe the data structures, provide some examples, list their main properties
and highlight where these data structures are used. At the end of this short
appendix, the reader should clearly be able to understand when and where a
data structure should be used and what it is good for. Furthermore, the reader
should be able to appreciate the limitations of every data structure and why a
need may arise to mix-and-match a bunch of data structures to solve a real-world
problem.

C.1 Linked Lists in Linux

Defining generic link lists in the kernel code is a problem of fundamental im-
portance. Note that the way that we normally define linked lists, which is by
declaring a structure of the form – struct Node – and then having a member
called struct Node *next is not a great idea. It will not lead to a generic
solution where we can create a linked list out of diverse structures. This is be-
cause if we want to write generic routines to operate on linked lists, then they
will have to take a generic void * pointer as an argument for the encapsulating
object (structure). A need will arise to find a pointer to the next member. The
default solution is to typecast the void * pointer to a pointer to the type of
object that it points to. However, this solution will not lend itself to a generic
implementation because the code to traverse a linked list should be independent
of the type of the linked list node. In a programming language that supports
templates where the type of the node is sent as an argument in the code, im-
plementing generic routines is very easy. The C++ standard library uses such
methods. This facility is sadly not available in languages such as C that do not
have such sophisticated features.

In any large code base like the Linux kernel, we have linked lists for all kinds
of structures and thus a method is required where it is very easy to operate on

481

© Smruti R. Sarangi 482

such linked lists as well as easily create a linked list out of any kind of structure.
This is a very important software engineering problem that the early developers
of the kernel faced. Given that the kernel is written in C, a novel solution had
to be created.

Linux’s solution is quite ingenious. It heavily relies on C macros, which are
unique strength of C. We would advise the reader to go through this topic before
proceeding forward. Macros are very useful yet very hard to understand.

C.1.1 struct list head

Listing C.1 shows the definition of struct list head – the data structure rep-
resenting a doubly linked list. This structure has two members, which are
pointers to lists of the same type struct list head. They are named next

and prev, respectively. This is all that there is to the definition of a linked list.
A struct list head structure represents a linked list node – it has pointers
to the next and previous entries. This is surprisingly enough to operate on the
linked list. For example, we can traverse the list, add new entries as well as
remove entries.

The crucial question that we need to answer here is, “Where is the encapsu-
lating object (structure) that needs to be linked together?” In general, we define
a linked list in the context of an object (such as struct Node). We interpret
the linked list to be a list of such objects. Here, there is no such object. Instead,
there is just a generic linked list node with pointers to its next and previous
nodes. It is not storing any other information of interest and thus this solution
does not appear to be very useful. It is true that it satisfies our demand for
generality; however, it does not align with our intuitive notion of a linked list
as we have studied in a data structures course.

Listing C.1: The definition of a linked list
source : include/linux/types.h#L178

struct list_head {

struct list_head *next , *prev;

}

This is where we will use the magic of macros. We will use two macros to
solve this problem as shown in Listing C.2.

Listing C.2: The list entry and container of macros
source : include/linux/list.h#L519 and
source : include/linux/container of.h#L18 (resp.)

#define list_entry (ptr , type , member) container_of (

ptr , type , member)

#define container_of(ptr , type , member) ({

void *__mptr = (void *)(ptr);

((type *)(__mptr - offsetof(type , member))); })

Focus on the container of macro. It takes three inputs: a pointer, a type
and a member name. The first statement simply typecasts the pointer to void*.
This is needed because we want to create a generic implementation, which is not
dependent on any particular type of object. The offsetof macro provides the
offset of the starting address of the member from the beginning of the structure.

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/types.h#L178
https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/list.h#L519
https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/container_of.h#L18

483 © Smruti R. Sarangi

Listing C.3: Examples of structures

struct abc {

int x;

struct list_head list;

}

struct def {

int x;

float y;

struct list_head list;

}

Consider the structures shown in Listing C.3. In the case of struct abc,
the value of offsetof(abc, list) is 4. This is because we are assuming the
size of an integer is four bytes. The integer x is stored in the first four addresses
of struct abc. Hence, the offset of the list member is 4 here. On the same
lines, we can argue that the offset of the member list in struct def is 8.
This is because the size of an integer and that of a float are 4 bytes each.
Hence, (mptr - offsetof(type, member)) provides the starting address of
the structure that is the linked list node. To summarize, the container of

macro returns the starting address of the linked list node or in other words the
encapsulating object given the offset of the list member in the object.

It is important to note that this is a compile-time operation. Specifically, it
is the role of the preprocessor to execute macros. The preprocessor is aware of
the code as well as the layouts of all the structures that are used. Hence, for
it to find the offset of a given member from the starting address of a structure
is very easy. After that computing the starting address of the linked list node
(encapsulating object) is easy. This is a simple piece of code that the macro
will insert into the program. It involves a simple subtraction operation.

A macro is quite different from a regular function. Its job is to generate
custom code that is subsequently compiled. In this case, an example piece of
code that will be generated will look like this: (Node *)(mptr - 8). Here,
we are assuming that the structure is struct Node and the offset of the list

member within it is 8. At runtime, it is quite easy to compute this given a
pointer (ptr) to a struct list head.

Listing C.4: Example of code that uses the list entry macro

struct abc* current = ... ;

struct abc* next = list_entry (current ->list.next , struct

abc , list);

Listing C.4 shows a code snippet that uses the list entry macro where
struct abc is the linked list node. The list entry macro is simply a syn-
onym of container of – their signatures are identical. The current node that
we are considering is current. To find the next node (the next one after
current), which is again of type struct abc, all that we need to do is invoke
the list entry macro. In this case, the pointer (ptr) is current->list.next.
This is a pointer to the struct list head object in the next node. From this
pointer, we need to find the starting address of the encapsulating abc structure.
The type is struct abc and the member is list. The list entry macro inter-
nally calls offsetof, which returns an integer. This integer is subtracted from

© Smruti R. Sarangi 484

the starting address of the struct list head member in the next node. The
final result is a pointer to the encapsulating object.

Such a mechanism is a very fast and generic mechanism to traverse linked
lists in Linux. It is independent of the type of the encapsulating object. These
primitives can also be used to add and remove nodes from the linked list. We
can extend this discussion to create a linked list that has different kinds of
encapsulating objects. Theoretically, this is possible as long as we know the
type of the encapsulating object for each struct list head on the list.

C.1.2 Singly-Linked Lists

Listing C.5: The hlist based singly-linked list
source : include/linux/types.h#L182

struct hlist_head {

struct hlist_node *first;

};

struct hlist_node {

struct hlist_node *next , **pprev;

};

Let us now describe singly-linked lists that are frequently used in kernel code.
Here the explicit aim is a one-way traversal of the linked list. An example is a
hash table where we resolve collisions by chaining entries that hash to the same
entry. Linux uses the struct hlist head structure (shown in Listing C.5). It
points to a node that is represented using struct hlist node.

This data structure has a next pointer to another hlist node. Sadly, this
information is not enough if we wish to delete the hlist node from the linked
list. We need a pointer to the previous entry as well. This is where a small
optimization is possible, and a few instructions can be saved. We actually
store a pointer to the next member of the previous node in the linked list.
This information is stored in the field pprev. Its type is struct hlist node

**. The advantage of this is that we can directly set it to a different value
while deleting the current node. We cannot do anything else easily, which is
the explicit intention here. The conventional solution in this case is to store a
pointer to the previous hlist node. Any delete method needs to first fetch this
pointer, compute the address of its next member, and then reassign the pointer
to a different value. The advantage of the pprev pointer is that we save on the
instruction that computes the address of the next pointer of the previous node.

Such data structures that are primarily designed to be singly-linked lists are
often very performance efficient. Their encapsulating objects are accessed in
exactly the same way as the doubly-linked list struct list head.

C.2 Red-Black Tree

A red-black (RB) tree is a very efficient data structure for searching data – it is
a special kind of BST (binary search tree). As the name suggests, there are two
kinds of nodes: red and black. It is a balanced binary search tree, where it is

https://elixir.bootlin.com/linux/v6.2.12/source/include/linux/types.h#L182

485 © Smruti R. Sarangi

possible to insert, delete and search items in logarithmic time. We can ensure
all of these desirable properties of the tree by following these simple rules:

1. A node is either red or black.

2. The leaf nodes are special. They don’t contain any data. However, they
are always presumed to be black. They are also referred to as sentinel
nodes.

3. A red node never has a red child. Basically, red nodes are never adjacent.

4. Any path from the root to any leaf node has the same black depth. The
black depth of a leaf node is defined as the number of black nodes that are
crossed while traversing the tree from the root to the leaf node. In this
case, we are including both the root and the leaf node.

5. If a node has exactly one non-leaf child, then the child’s color must be
red.

Traversing a red-black tree is quite simple. We follow the same algorithm as
traversing a regular binary search tree. The claim is that the tree is balanced
– the height of the tree is O(log(n)). Specifically, the property that this tree
guarantees is as follows.

Point C.2.1

The maximum depth of any leaf is at most twice the minimum depth.

This is quite easy to prove. As we have mentioned, the black depth of all
the leaves is the same. Furthermore, we have also mentioned that a red node
can never have a red child. Assume that in any path from the root to a leaf,
there are r red nodes and b black nodes. We know that b is a constant for all
paths from the root. Furthermore, every red node will have a black child (note
that all leaves or sentinel nodes are black). Hence, r ≤ b. The total depth of
any leaf is r+ b ≤ 2b. This basically means that the maximum depth is at most
twice the minimum depth b.

This vital property ensures that all search operations always complete in
O(log(n)) time. Note that a search operation in an RB tree operates in exactly
the same manner as a regular binary search tree. Insert and delete operations
also complete in O(log(n)) time. They are however not very simple because we
need to ensure that the black depth of all the leaves always stays the same, and
a red parent never has a red child.

This requires a sequence of recolorings and rotations. However, we can prove
that at the end, all the properties hold and the overall height of the tree is always
O(log(n)).

C.3 B-Tree

A B-tree is a generalization of a binary search tree. It is a k-ary tree and is
self-balancing. In this case, a node can have more than two children; quite
unlike a red-black tree. This is also a balanced tree and all of its operations

© Smruti R. Sarangi 486

are realizable in logarithmic time. The methods of traversing the tree are very
similar to traversing a classical binary search tree. It is typically used in systems
that store a lot of data and quickly accessing a given datum or a contiguous
subset of the data is essential. Hence, databases and file systems tend to use
B-trees quite extensively.

Let us start with the definition of a B-tree of order m. It stores a set of keys,
which can optionally point to values. The external interface is similar to a hash
table.

1. Every node has at most m children.

2. The root needs to contain at least one key.

3. It is important that the tree does not remain sparse. Hence, every internal
node needs to have at least ⌈m/2⌉ children (alternatively ⌈m/2⌉−1 keys).

4. If a node has m children, it needs to store m− 1 keys. These m− 1 keys
partition the space of keys into m non-overlapping regions. Each child
stores keys for the region that belongs to it. It is assigned a key space.

5. All the leaves are the same level.

C.3.1 The Search Operation

5 7 9 11 14 17 2631

All opera�ons happen
in O(log(n)) �me

42 8 16 2510

126

Figure C.1: Example of a B-tree

Figure C.1 shows an example of a B-tree of order 3 (m = 3). In a B-tree, we
also store the values associated with the keys. These values could be stored in
the node itself or there could be pointers within a node to point to the values
corresponding to its keys. There are many ways of implementing this. We
shall not focus on this aspect because the storage of values is not central to the
operation of a B-tree.

In the example, consider the root node. It stores two keys: 6 and 12. All
the keys less than 6 are stored in the leftmost child. The leftmost child is an
internal node, which stores two keys: 2 and 4. Note that both of them are less
than 6. They point to leaf nodes that store a single key each. Note that as per
our definition (order=3), this is allowed. Key 1 is less than 2; hence, it is the

487 © Smruti R. Sarangi

leftmost child. Key 3 is stored in the middle child (between 2 and 4). Finally,
Key 5 is stored in the rightmost child. The same logic applies for the second
child of the root node. It needs to store keys that are strictly greater than 6
and less than 12. We again see a similar structure with the internal node that
stores two keys – 8 and 10. It points to three leaf nodes. Finally, the rightmost
child of the root only stores keys that are greater than 12.

It is easy to observe that traversing a B-tree is similar to traversing a regular
BST (binary search tree). It has O(logm(n)) levels. At each level, the time to
find the pointer to the right subtree takes O(log(m)) time. We are assuming
that we perform a binary search over all the keys. The total time complexity is
thus O(logm(n)log(m)), which is O(log(n)).

C.3.2 The Insert and Delete Operations

In the case of an insert operation, we can traverse the tree from the root till a
leaf. Given that internal nodes can store keys, we can first try to store the key
in an internal node if it has adequate space. Otherwise, the next option is to
store it in a leaf assuming that there is space in the leaves. If this process is
not successful, then we may have to split an internal node into two nodes and
add the key to one of them. There would be a need to remove one of the keys
from them and add it to the parent node. Adding a key to the parent node
is important because we need to split the corresponding key subspace into two
parts.

We need to understand that all these operations do not change the depth of
any leaf. In the worst case, when this cannot be done, a need will arise to split
the root, create two internal nodes and initialize a new parent. This will also
ensure that the depth of all the leaves is the same. It is just that the height of
the tree will increase by one.

Deletion is the reverse process. In this case, we can remove the key as long
as the node still has ⌈m/2⌉ − 1 keys left in it. However, if this is not the case,
then a need will arise to merge two adjacent sibling nodes and move the key
separating the internal nodes from the parent to the merged node. This is pretty
much the reverse of what we did while adding a new key. Here again, a situation
will arise when this cannot be done, and we will be forced to reduce the height
of tree.

The time complexity of both of these operations is O(log(n)).

C.3.3 B+ Tree

The B+ tree is a variant of the classical B-tree. In the case of a B-tree, internal
nodes can store both keys and values, however in the case of a B+ tree, internal
nodes can only store keys. All the values (or pointers to them) are stored in the
leaf nodes. Furthermore, all the leaf nodes are connected to each other using
a linked list, which allows for very efficient range queries. It is also possible to
do a sequential search in the linked list and locate data with proximate keys
quickly.

© Smruti R. Sarangi 488

C.3.4 Advantage of B-Trees and B+ Trees

Let us now look at the advantages of these structures. Given that the asymptotic
time complexity is the same for binary search trees, B-trees and B+ trees,
i.e., (O(log(n))), the advantages of these structures arise due to efficient cache
behavior.

A balanced binary search tree (BST) has roughly log2(n) levels, whereas a
B-tree and its variants have logm(n) levels. They thus have fewer levels mainly
because more information is stored in each internal node. This is where the
design can be made cache efficient. An internal node can be designed in such a
way that its contents fit within a cache block or maybe a few cache blocks. The
node’s contents fully occupy a cache block and no other information is stored in
each cache block. The advantages of these schemes are thus plenty. We end up
fetching fewer cache blocks to traverse the tree as compared to a BST. This is
because a cache block fetch is more productive. There is much more information
in a block in a B-tree. Fetching fewer cache blocks is a good idea. Statistically,
there will be fewer cache misses and the chances of having long memory-related
stalls will be much lower.

It is important to understand that a 64 or 128-byte cache block is the atomic
unit of transfer in the memory system. There is no point in fetching 64 bytes
yet using only 25% of it as is the case in a BST that simply stores two pointers
in each node: one to the left child and one to the right child.

There are other advantages as well. We ideally do not want the data of
two different tree nodes to be stored in the same cache block. In this case,
if different threads are accessing different nodes in the tree and making write
accesses, there is a chance that they may actually be accessing the same cache
block. This will happen in the case of a BST and will not happen with a B-
tree. Due to such conflicting accesses, there will be a lot of misses due to cache
coherence in a BST. The cache block will keep bouncing between cores. Such
misses are known as false sharing misses. Note that the same data is not being
shared across threads. The data is different, yet they are resident in the same
cache block. This problem does not afflict a B-tree and its variants.

Along with reduced false sharing, it is easy to handle true sharing misses as
well. In this case, two threads might be trying to modify the same tree node. It
is possible to lock a node quite easily. A small part of the corresponding cache
block can be reserved to store a multi-bit lock variable. This makes acquiring a
“node lock” very easy.

For a combination of all these factors, B-trees and B+ trees are preferred as
compared to different flavors of balanced binary search trees.

C.4 Maple Tree

The maple tree is a data structure that is commonly used in modern versions of
Linux kernels [Rybczynska, 2021,Howlett, 2021]. It is a variant of the classical
B+ tree with additional restrictions. The maple tree used in the Linux kernel
has hardwired branching factors (max. number of children per node). A non-
leaf node can store a maximum of 10 children (9 keys). Leaf nodes can store up
to 15 entries. They don’t have any children.

The nodes are aligned to cache line boundaries. This eliminates misses due

489 © Smruti R. Sarangi

to false-sharing [Sarangi, 2023]. Furthermore, it is possible to service concurrent
accesses – multiple users can seamlessly operate on different parts of the maple
tree. Each key can either be a single value or can be a range, as is the case for
VM regions (key = start and end addresses).

C.5 Radix Tree

travel
truck
tram

trim trust
trick

tryst
tread
tractor

strings
tr

a u i y ead

vel

m

ctor ck

ck

m
st

st

try

Figure C.2: Example of a radix tree

A radix tree stores a set of keys very efficiently. Each key is represented
as a string (see Figure C.2). The task is to store all the keys in a single data
structure, and it is possible to query the data structure and find if it contains a
given string (key) or not. Here, values can be stored at both the leaf nodes and
internal nodes.

The algorithm works on the basis of common prefixes. The path from the
root to a node encodes the prefix. Consider two keys “travel” and “truck”.
In this case, we store the common prefix “tr” at the root node and add two
children to the root node: ‘a’ and ‘u’, respectively. We proceed similarly and
continue to create common prefix nodes across keys. Consider two more keys
“tram” and “tractor”. In this case, after we traverse the path with the prefix
“tra”, we create two leaf nodes “ctor” and “m”. If we were to now add a new
key “trams”, then we would need to create a new child “s” with the parent as
the erstwhile leaf node labeled “m”. In this case, both “tram” and “trams”
would be valid keys. Hence, there is a need to annotate every internal node
with an extra bit to indicate that the path leading from the root to that node
corresponds to a valid key. We can associate a value with any node that has a
valid key. In other words, this would mean that the path from the root to the
leaf node corresponds to a valid key.

The advantage of such a structure is that we can store a lot of keys very
efficiently and the time it takes to traverse it is proportional to the number
of letters within the key. Of course, this structure works well when the keys
share reasonably long prefixes. Otherwise, the tree structure will not form, and
we will simply have a lot of separate paths. Hence, whenever there is a fair
amount of overlap in the prefixes, a radix tree should be used. It is important

© Smruti R. Sarangi 490

to understand that the lookup time complexity is independent of the number of
keys – it is theoretically only dependent on the number of letters (digits) within
a key.

Insertion and deletion are easy. We need to first perform a lookup operation
and find the point at which the non-matching part of the current key needs to
be added. There is a need to add a new node that branches out of an existing
node. Deletion follows the reverse process. We locate the key first, delete the
node that stores the suffix of the string that is unique to the key and then
possibly merge nodes.

There is a popular data structure known as a trie, which is a prefix tree
like a radix tree with one important difference: in a trie, we proceed letter by
letter. This means that each edge corresponds to a single letter. Consider a
system with two keys “tractor” and “tram”. In this case, we will have the root
node, an edge corresponding to ‘t’, then an edge corresponding to ‘r’, an edge
corresponding to ‘a’, so on and so forth. There is no point in having a node
with a single child. We can compress this information to create a more efficient
data structure, which is precisely a radix tree. In a radix tree, we can have
multi-letter edges. In this case, we can have an edge labeled “tra” (fuse all
single-child nodes).

C.5.1 Patricia Trie

A Patricia trie or a Patricia tree is a special variant of a radix tree, where
all the letters are binary (0 or 1). Similar to a radix tree, it is a compressed
data structure. We do not have an edge for every single binary bit in the
key. Instead, we have edges labeled with multiple bits such that the number of
internal nodes is minimized. Assume a system with only two keys that are not
equal. Regardless of the Hamming distance between the two keys, the Patricia
Trie will always have three nodes – a root and two children. The root node
will store the shared prefix, and the two children will contain the non-shared
suffix of the binary keys. Incidentally, Patricia stands for Practical Algorithm
To Retrieve Information Coded In Alphanumeric.

C.6 Augmented Tree

This kind of data structure is very useful for representing information stored in
a bit vector.

Let us elaborate. Assume a very long vector of bits. This is a reasonably
common data structure in the kernel particularly when we consider page alloca-
tion. Assume a system that has a million frames (physical pages) in the physical
address space, and we need to manage this information. We can represent this
with a bit vector that has a million 1 bit-sized entries. If the value of the ith

entry is 1, then it means that the corresponding physical page is free, and the
value 0 means that the corresponding physical page has been allocated.

Now a common operation is to find the first physical page that has not been
allocated such that it can be allocated to a new process. In this case, we need
to find the location of the first 1 in the bit vector starting from a given position
and proceeding towards the right. On the same lines, we can have an analogous
problem where the task is to find the first 0 in the bit vector. Regardless of

491 © Smruti R. Sarangi

1 0 1 1 1 0 0 0

1 1 1 0

1 1

1

Does this sub-
tree have a free

entry?

Possible to find the next free entry in O(log(n)) �me

We can also store
mul�ple bits in

each leaf node or
internal node.

Figure C.3: Example of an augmented tree

whether we are searching for a 0 or 1, we need a data structure to locate such
positions efficiently.

A naive algorithm is to of course start traversing the bit vector from the
lowest address to the highest address and terminate the search whenever a 0 or
1 is found. If we reach the end of the bit vector and do not find the entry of
interest, then we can conclude that no such entry exists. Now, if there are n
entries, then this algorithm will take O(n) time, which is too slow. We clearly
need a much faster algorithm, especially something that runs in O(log(n)) time.

This is where an augmented tree is very useful. We show an example in
Figure C.3. We treat the single-bit cells of the bit vector as leaf nodes. Adjacent
cells have a parent node in the augmented tree. This means that if we have n
entries in the bit vector, then there are n/2 entries in the second last level of the
tree. This process continues towards the root (in a similar fashion). We keep on
grouping adjacent internal nodes, and create a parent for them until we reach
the root. We thus end up with a balanced binary tree if n is a power of 2. The
greatness of the augmented tree lies in the contents of the internal nodes. To
explain this, let us start with the root. Assume that we are searching for the
next position that stores a ‘1’.

If the root node stores a 1, it means that at least a single location in the
bit vector stores a 1. This is a very convenient trick because we instantly know
if the bit vector contains all 0s, or it has at least one position that stores the
bit 1. Each of its children is the root of a subtree (contiguous region in the bit
vector). It stores exactly the same information as the root. If the root of the
subtree stores a 0, then it means that all the bit vector locations corresponding
to the subtree store a 0. If it stores a 1, then it means that at least one location
stores a 1.

Now let us consider the problem of locating the first 1 starting from the
lowest address (from the left in the figure). We first check the root. If it
contains a 1, then it means that there is at least a single 1 in the bit vector.
We then proceed to look at the left child. If it contains a 1, then it means that
the first half of the bit vector contains a 1. Otherwise, we need to look at the
right child of the root. This process continues recursively until we reach the
leaf nodes. At each stage we prefer the left child over the right child. We are

© Smruti R. Sarangi 492

ultimately guaranteed to find a position that contains 1 if the root contains 1
(there is an entry in the bit vector that contains it).

This is a very fast process and runs in logarithmic time. Whenever we change
a value from 0→ 1 in the bit vector, we need to walk up the tree and convert all
0s to 1 on the path. However, when we change a value from 1→ 0, it is slightly
tricky. We need to traverse the tree towards the root, however we cannot blindly
convert 1s to 0s. Whenever, we reach a node on the path from a leaf to the root,
we need to take a look at the contents of the other child and decide accordingly.
If the other child contains a 1, then the process terminates right there. This is
because the parent node is the root of a subtree that contains a 1 (via the other
child). If the other child contains a 0, then the parent’s value needs to be set to
0 as well. This process terminates when we reach the root.

C.6.1 Bloom Filters

A Bloom filter is used to check for set membership. It answers queries of the
kind,“Is element x a member of set S?” Its operating principle is quite simple
– it is an extension of hashing. Before we proceed further, we need to note
that it is a probabilistic data structure. There can be false positives but no
false negatives. This means that if an answer to a membership query is in the
affirmative, then the element may be present or may not be present. However,
if the answer is negative, then the element is not present in the set for sure.

1 1 1 1

Key

Array of m bits

Map a key to k
different bit posi�ons
using k hash func�ons

Ini�ally all the bits are 0

H1 H2 H4H3

Hash func�on

Set to 1

Figure C.4: A Bloom filter

This is achieved as follows (refer to Figure C.4). A key is associated with
k different hash functions. Each hash function maps the key to a position in a
large array that contains m bits. While adding a key, we just set the bits at all
the mapped bit positions to 1 as shown in the figure. Note that all the elements
of the bit vector are initialized to 0.

While searching for a key, we compute the values of the k different hash
functions. Next, we inspect the bits at all the k corresponding bit positions. If
all of them are 1, then the key may be present in the set. The reason we use
the phrase “may be” is because it is possible that half the bits were set because
of key x and the rest half were set because of another key y. It is not possible
to find out if this is indeed the case. Hence, the answer that we get in this case
is a probabilistic “Yes”.

However, when one of the bits is 0, we can be sure that the associated key
is definitely not present. If it is actually present, all the bits would have been

493 © Smruti R. Sarangi

1 for sure. We shall find very interesting uses for such data structures in the
kernel.

Note that such a data structure has numerous shortcomings. We cannot
delete entries. Naively setting the k bits associated with a key to 0 will not
work. It is possible that there are multiple keys that map to a subset of these
bits. All of them will get removed, which is something that we clearly do not
want. One option is to store a counter at each entry instead of a bit. When a
key is added to the set, we just increment all the associated counters. This is
fine as long as we do not have overflows. One of the important reasons for opting
for a Bloom filter is its simplicity and compactness. This advantage will be lost
if we start storing large counters in each entry. With this approach removing a
key is very easy – we just decrement the associated counters. Nevertheless, the
overheads can be sizable and the benefits of compactness will be lost. Hence,
counters are normally not used in Bloom filters.

The other issue is that bits get flipped in only one direction, 0 to 1. They
never get flipped back because we do not do anything when an element is re-
moved. As a result, the Bloom filter becomes full of 1s with the passage of time.
There is thus a need to periodically reset the bits.

© Smruti R. Sarangi 494

Bibliography

[Arcangeli, 2010] Arcangeli, A. (2010). Transparent hugepage support. In KVM
forum, volume 9.

[Aupy et al., 2019] Aupy, G., Gainaru, A., and Fèvre, V. L. (2019). I/o schedul-
ing strategy for periodic applications. ACM Transactions on Parallel Com-
puting (TOPC), 6(2):1–26.

[Axboe, 2004] Axboe, J. (2004). Linux block io—present and future. In Ottawa
Linux Symp, pages 51–61.

[Barham et al., 2003] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris,
T., Ho, A., Neugebauer, R., Pratt, I., and Warfield, A. (2003). Xen and the
art of virtualization. ACM SIGOPS operating systems review, 37(5):164–177.

[Belady et al., 1969] Belady, L. A., Nelson, R. A., and Shedler, G. S. (1969).
An anomaly in space-time characteristics of certain programs running in a
paging machine. Communications of the ACM, 12(6):349–353.

[Ben-Ari, 2006] Ben-Ari, M. (2006). Principles of Concurrent and Distributed
Programming. Addison-Wesley, 2nd edition.

[Bharadwaj, 2017] Bharadwaj, R. (2017). Mastering Linux Kernel Develop-
ment: A kernel developer’s reference manual. Packt Publishing Ltd.

[Bjørling et al., 2013] Bjørling, M., Axboe, J., Nellans, D., and Bonnet, P.
(2013). Linux block io: Introducing multi-queue ssd access on multi-core
systems. In Proceedings of the 6th international systems and storage confer-
ence, pages 1–10.

[Cai et al., 2022] Cai, M., Shen, J., Zhang, T., Huang, H., and Ye, B. (2022).
Sigguard: Hardening vulnerable signal handling in commodity operating sys-
tems. In 2022 41st International Symposium on Reliable Distributed Systems
(SRDS), pages 237–249. IEEE.

[Community,] Community, K. D. Rcu concepts. Online. Available at: https:
//docs.kernel.org/RCU/index.html.

[Corbet, 2010] Corbet, J. (2010). The case of the overly anonymous anon vma.
Online. Available at: https://lwn.net/Articles/383162/.

495

https://docs.kernel.org/RCU/index.html
https://docs.kernel.org/RCU/index.html
https://lwn.net/Articles/383162/

© Smruti R. Sarangi 496

[Corbet, 2014] Corbet, J. (2014). Locking and pinning. Online. Available at:
https://lwn.net/Articles/600502/.

[Corbet, 2021] Corbet, J. (2021). Clarifying memory management with page
folios. Online. Available at: https://lwn.net/Articles/849538/.

[Corbet, 2022] Corbet, J. (2022). A memory-folio update. Online. Available
at: https://lwn.net/Articles/893512/.

[Corbet et al., 2009] Corbet, J., Rubini, A., and Korah-Hartman, G. (2009).
Linux Device Drivers: Where the Kernel Meets the Hardware. Shroff Educa-
tion.

[Cormen et al., 2009] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein,
C. (2009). Introduction to Algorithms. MIT Press, third edition.

[Corporation, 2024a] Corporation, I. (2024a). Intel 64 and IA-32 Architectures
Software Developer’s Manual Volume 3: System Programming Guide. Con-
sists of Volumes 3A, 3B, 3C, and 3D.

[Corporation, 2024b] Corporation, I. (2024b). Intel 64 and IA-32 Architectures
Software Developer’s Manual Volume 4: Model-Specific Registers.

[Davis and Burns, 2011] Davis, R. I. and Burns, A. (2011). A survey of hard
real-time scheduling for multiprocessor systems. ACM computing surveys
(CSUR), 43(4):1–44.

[de Oliveira et al., 2022] de Oliveira, D. B., Casini, D., and Cucinotta, T.
(2022). Operating system noise in the linux kernel. IEEE Transactions on
Computers, 72(1):196–207.

[de Olivera, 2018] de Olivera, D. B. (2018). Avoid schedule() being called
twice, the second in vain. Online. Available at: https://www.mail-archive.
com/linux-kernel@vger.kernel.org/msg1740572.html.

[Fornai and Iványi, 2010a] Fornai, P. and Iványi, A. (2010a). Fifo anomaly is
unbounded. Acta Univ. Sapientiae, 2(1):80–89.

[Fornai and Iványi, 2010b] Fornai, P. and Iványi, A. (2010b). Fifo anomaly is
unbounded. arXiv preprint arXiv:1003.1336.

[Graham, 1969] Graham, R. L. (1969). Bounds on multiprocessing timing
anomalies. SIAM journal on Applied Mathematics, 17(2):416–429.

[Herlihy and Shavit, 2012] Herlihy, M. and Shavit, N. (2012). The Art of Mul-
tiprocessor Programming. Elsevier.

[Howlett, 2021] Howlett, L. (2021). The maple tree, a
modern data structure for a complex problem. On-
line. Available at: https://blogs.oracle.com/linux/post/

the-maple-tree-a-modern-data-structure-for-a-complex-problem.

[Huang et al., 2016] Huang, J., Qureshi, M. K., and Schwan, K. (2016). An
evolutionary study of linux memory management for fun and profit. In 2016
USENIX Annual Technical Conference (USENIX ATC 16), pages 465–478.

https://lwn.net/Articles/600502/
https://lwn.net/Articles/849538/
https://lwn.net/Articles/893512/
https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1740572.html
https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1740572.html
https://blogs.oracle.com/linux/post/the-maple-tree-a-modern-data-structure-for-a-complex-problem
https://blogs.oracle.com/linux/post/the-maple-tree-a-modern-data-structure-for-a-complex-problem

497 © Smruti R. Sarangi

[Humphries et al., 2021] Humphries, J. T., Natu, N., Chaugule, A., Weisse, O.,
Rhoden, B., Don, J., Rizzo, L., Rombakh, O., Turner, P., and Kozyrakis,
C. (2021). ghost: Fast & flexible user-space delegation of linux scheduling.
In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, pages 588–604.

[Karger et al., 1999] Karger, D. R., Stein, C., and Wein, J. (1999). Scheduling
algorithms. Algorithms and theory of computation handbook, 1:20–20.

[Koopman and DeVale, 2002] Koopman, P. and DeVale, J. (2002). The excep-
tion handling effectiveness of posix operating systems. IEEE Transactions on
Software Engineering, 26(9):837–848.

[Krishna and Shin, 2017] Krishna, C. M. and Shin, K. G. (2017). Real-Time
Systems. McGrawHill Education.

[Lameter and Kumar, 2014] Lameter, C. and Kumar, P. (2014). this cpu oper-
ations. Online. Available at: https://docs.kernel.org/core-api/this_

cpu_ops.html.

[Lehoczky, 1990] Lehoczky, J. P. (1990). Fixed priority scheduling of periodic
task sets with arbitrary deadlines. In [1990] Proceedings 11th Real-Time
Systems Symposium, pages 201–209. IEEE.

[Leis et al., 2023] Leis, V., Alhomssi, A., Ziegler, T., Loeck, Y., and Dietrich,
C. (2023). Virtual-memory assisted buffer management. Proceedings of the
ACM on Management of Data, 1(1):1–25.

[License, 1989] License, G. G. P. (1989). Gnu general public license, version 2.

[Liu, 2002] Liu, J. (2002). Real Time Systems. Pearson Education.

[Lozi et al., 2016] Lozi, J.-P., Lepers, B., Funston, J., Gaud, F., Quéma, V.,
and Fedorova, A. (2016). The linux scheduler: a decade of wasted cores.
In Proceedings of the Eleventh European Conference on Computer Systems,
pages 1–16.

[Lu et al., 2015] Lu, H., Saltaformaggio, B., Kompella, R., and Xu, D. (2015).
vfair: latency-aware fair storage scheduling via per-io cost-based differenti-
ation. In Proceedings of the Sixth ACM Symposium on Cloud Computing,
pages 125–138.

[Madieu, 2022] Madieu, J. (2022). Linux Device Driver Development: Every-
thing you need to start with device driver development for Linux kernel and
embedded Linux. Packt Publishing Limited.

[Mall, 2009] Mall, R. (2009). Real-time systems: theory and practice. Pearson
Education India.

[McKenney, 2003] McKenney, P. (2003). Reader-writer locking/rcu
analogy. Online. Available at: https://www.usenix.org/legacy/

publications/library/proceedings/usenix03/tech/freenix03/full_

papers/arcangeli/arcangeli_html/node7.html.

https://docs.kernel.org/core-api/this_cpu_ops.html
https://docs.kernel.org/core-api/this_cpu_ops.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix03/tech/freenix03/full_papers/arcangeli/arcangeli_html/node7.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix03/tech/freenix03/full_papers/arcangeli/arcangeli_html/node7.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix03/tech/freenix03/full_papers/arcangeli/arcangeli_html/node7.html

© Smruti R. Sarangi 498

[McKenney, 2008] McKenney, P. (2008). Hierarchical rcu. Online. Available
at: https://lwn.net/Articles/305782.

[McKenney, 2007] McKenney, P. E. (2007). What is rcu, fundamentally? On-
line. Available at: https://lwn.net/Articles/262464/.

[Mejia-Alvarez et al., 2018] Mejia-Alvarez, P., Leyva-del Foyo, L. E., and Diaz-
Ramirez, A. (2018). Interrupt Handling Schemes in Operating Systems.
Springer.

[Menage, 2004] Menage, P. (2004). Control groups. Online. Avail-
able at: https://www.kernel.org/doc/Documentation/admin-guide/

cgroup-v1/cgroups.rst.

[Molnar, 2006] Molnar, I. (2006). Runtime locking correctness validator. On-
line. Available at: https://www.kernel.org/doc/html/latest/locking/

lockdep-design.html.

[Park and Shen, 2012] Park, S. and Shen, K. (2012). Fios: a fair, efficient flash
i/o scheduler. In FAST, volume 12, pages 13–13.

[Pelner and Pelner, 2010] Pelner, J. and Pelner, J. (2010). Minimal Intel Ar-
chitecture Boot Loader.

[Popek and Goldberg, 1974] Popek, G. J. and Goldberg, R. P. (1974). Formal
requirements for virtualizable third generation architectures. Communica-
tions of the ACM, 17(7):412–421.

[Rapoport, 2019] Rapoport, M. (2019). Memory: the flat, the discontiguous,
and the sparse. Online. Available at: https://lwn.net/Articles/789304/.

[Ren et al., 2024] Ren, Z., Doekemeijer, K., and Trivedi, A. (2024). A system-
atic configuration space exploration of the linux kyber i/o scheduler. In Com-
panion of the 15th ACM/SPEC International Conference on Performance
Engineering, pages 167–173.

[Rezgui et al., 2014] Rezgui, A., White, M., Rezgui, S., and Malik, Z. (2014).
Evaluation of linux i/o schedulers for big data workloads. In 2014 IEEE
Fourth International Conference on Big Data and Cloud Computing, pages
227–234. IEEE.

[Rybczynska, 2021] Rybczynska, M. (2021). Introducing maple trees. Online.
Available at: https://lwn.net/Articles/845507/.

[Sarangi, 2021] Sarangi, S. R. (2021). Basic Computer Architecture. White
Falcon Publishing, 1st edition edition.

[Sarangi, 2023] Sarangi, S. R. (2023). Next-Gen Computer Architecture. White
Falcon, 1st edition edition.

[Singh and Sarangi, 2020] Singh, S. S. and Sarangi, S. R. (2020). Softmon: A
tool to compare similar open-source software from a performance perspec-
tive. In Proceedings of the 17th International Conference on Mining Software
Repositories, page 397–408.

https://lwn.net/Articles/305782
https://lwn.net/Articles/262464/
https://www.kernel.org/doc/Documentation/admin-guide/cgroup-v1/cgroups.rst
https://www.kernel.org/doc/Documentation/admin-guide/cgroup-v1/cgroups.rst
https://www.kernel.org/doc/html/latest/locking/lockdep-design.html
https://www.kernel.org/doc/html/latest/locking/lockdep-design.html
https://lwn.net/Articles/789304/
https://lwn.net/Articles/845507/

499 © Smruti R. Sarangi

[Stoakes, 2025] Stoakes, L. (2025). The Linux Memory Manager. No Starch
Press.

[Taylor, 2011] Taylor, R. (2011). Implementation of a linux kernel module to
stress test memory subsystems in x86 architecture.

[Thangaraju, 2003] Thangaraju, D. B. (2003). Linux signals for the application
programmer. Linux Journal, 2003(107):6.

[Zimmer et al., 2021] Zimmer, V., Banik, S., and Regupathy, R. (2021). Early
platform hardening technology for slimmer and faster boot. US Patent App.
17/109,081.

Index

restore rt, 156
switch to, 108

, 262

Abstract Syntax Tree, 467
anon vma, 316
anon vma chain, 319
Anonymous Memory Region, 80
Anonymous Pipes, 425
APIC, 121

I/O APIC, 122
LAPIC, 122

arch spinlock t, 208
ASID, 306
Atomic Instructions, 168
Atomicity, 181
Augmented Tree, 490

B+ Tree, 487
B-Tree, 485
Ballooning, 446
Banker’s Algorithm, 240
Barriers, 193
Base-Limit Scheme, 283
Belady’s Anomaly, 292
Best Fit, 284
BFQ Scheduler, 397
Binary, 469
Binary Translation, 440
Block, 377
Block Devices, 384

register, 384
Block I/O, 388
Bloom Filters, 492
Boot Block, 402
Bottom Half, 104, 133
Bounded Priority Inversion, 265
BSS Section, 38

Buddy Allocator, 341
Busy Waiting, 168

CAS, 179
cgroup, 250
Cgroups, 455
Chain Blocking, 265
Character Devices, 398
Chipset, 54
Circular Wait, 172
CISC ISA, 26
Compare and Swap, 179
Compatibility Problem, 36
Compiler, 467
Compiler Pass, 467
Concurrent Algorithms

lock free, 188
obstruction freedom, 187
progress guarantees, 187
wait freedom, 188

Concurrent Programs, 180
theory, 180

Condition Variables, 190, 191
Containers, 82
Context, 31
Context Inconsistency, 217
Context Switch, 99

interrupt, 104
process, 101
thread, 103
types, 101

Copy-on-Write, 93
copy process, 95
Core, 26
CPL Bit, 28
CPU Virtualization, 438
CR3, 299
Critical Section, 166

500

501 © Smruti R. Sarangi

Current Privilege Level, see also CPL
Bit

Cylinder, 371

Daemons, 140
Data Race, 169

concurrent access, 170
conflicting access, 170

Data Races, 164
Data Section, 38
Data Striping, 371
Data Structures, 481
Dead Code, 467
Deadline Monotonic Scheduling, 263
Deadline Scheduler, 258, 396
Deadlock Avoidance, 175
Deadlock Conditions, 172
Deadlock Prevention, 174
Deadlock Recovery, 175
Deadlocks, 171
Device Drivers, 385
Dining Philosopher’s Problem, 172
Direct Memory Access, 57
Directory, 400
DLL, 478
DMA, 57
DMS Algorithm, 263
Dynamic Binary Translation, 136
Dynamic Linking, 476
Dynamically Linked Library, 478

Earliest Deadline First Algorithm, 232
EDF Algorithm, 232, 260
Elasticity, 436
Elevator Scheduling, 393
Elevator Scheduling Algorithm, 395
ELF, 479
enum zone type, 311
Exception, 29
Exception Handling, 136
Exceptions, 134
Exec System Calls, 96
Executable, 469
exFAT File System, 418
Ext4 File System, 413
Extents, 414
External Fragmentation, 40, 284

False Sharing, 488
FAT File System, 418

Fence, 186
Fence Instruction, 169
Fetch and Increment, 178
FIFO Page Replacement, 292
FIFO Scheduling, 235
File, 381
File Descriptor, 422
File Path, 403
File Pointer, 383
File Systems, 400
File-Backed Memory Region, 80
finish task switch, 108
First Fit, 284
Flash, 375
Floating Gate Transistor, 375
Folios, 303
Fork System Call, 90
Fragmentation, 41
Frame, 44
Futex, 198

Generic Disk, 391
Global Symbol Table, 387
Grace Period, 225
Guest OS, 435

Happens-before Relationship, 170
Hard Disks, 365
Hard Link, 404
Hardware Context, 99
Hardware-Assisted Virtualization, 446
Hash Tree, 417
Header File, 470
Heap, 38
Highest Locker Protocol, 267
Hold and Wait, 172
Huge Pages, 303
Hypercall, 442
Hypervisor, 436
Hypervisors, 437

I/O APIC, 123
I/O Port, 363
I/O Ports, 55
I/O Request Queues, 393
I/O Scheduling Algorithms, 395
I/O System, 53, 358
IDR Tree, 86
IDT, 121
IDT Table, 130

© Smruti R. Sarangi 502

idt table, 130
Indirect Block, 414
Indirect Blocks, 413
init, 90
Inline Function, 74
inode, 401, 408
Inter-Process Communication, 295
Inter-processor Interrupt, 34, see IPI
Internal Fragmentation, 40, 284
Interrupt, 29
Interrupt Context, 133, 139
Interrupt Descriptor Table, 121
Interrupt Handler, 104
Interrupt Path, 131
Interrupt Stack, 72
Inverted Page Table, 50
IPC, 295
IPI, 34, 124
iret, 106
IRQ, 122, 124
IRQ Domain, 129
irq handler t, 142

Jiffy, 34
Journaling, 420
Jump Table, 476

Kernel Memory Allocation, 340
Kernel Mutex, 212
Kernel Panic, 136
Kernel Stack, 71, 73
Kernel Threads, 97
kmem cache, 84
KSW Model, 231
kswapd, 329
kthreadd, 90
Kyber Scheduler, 397

LAPIC, 124
Latent Entropy, 109
Lazy TLB Mode, 307
Legal Sequential Execution, 181
Lehoczky’s Test, 262
Likely Statement, 109
Linear Address, 51
Linearizability, 182
Linker, 469, 473
Linux

memory management, 78
versions, 14

List Scheduling, 238
Liu-Layland Bound, 261
Loader, 479
Lock, 166
Lock Inversion, 217
Lock-free Algorithm, 179
Lock-Free Algorithms, 188
Lockdep Mechanism, 216
Logical Address, 51
Lost Wakeup Problem, 191
LRU Algorithm, 289

Makespan, 230
Maple Tree, 488
Mean Completion Time, 229
Memory Barrier, 169, 186
Memory Consistency, 183
Memory Map, 38
Memory Model, 183
Memory Virtualization, 442
Memory-Mapped I/O, 56, 364
Message-Signaled Interrupts, 123
MGLRU Algorithm, 325
Modules, 386
Monitor Lock, 250
Motherboard, 54
Mount Point, 404
Mounting a File System, 403
Multi-level Flash Cell, 376
Multi-Threaded Process, 66
Multicore, 25
Multicore Scheduling, 236
Mutex, 198
Mutual Exclusion, 172

Named Pipes, 427
Namespaces, 82, 452
Nested Paging, 443
Next Fit, 284
Nice Value, 77
No Preemption, 172
Non-blocking Algorithm, 179
Non-Blocking Algorithms, 180
Nonvolatile Memories, 380
Northbridge Chip, 54
NP, 237
NP-complete, 237
NUMA

node, 313
NUMA Machine, 308

503 © Smruti R. Sarangi

NVM Devices, 310

Object File, 469
Obstruction-Free Algorithms, 187
Open File Table, 422
Optimal Page Replacement, 288
Overlap Problem, 37

P/E Cycle, 376
Page, 44, 376
Page Cache, 383, 412
Page Cost Function, 288
Page Fault, 48
Page Management, 314
Page Reclamation, 329
Page Table, 44, 298
Page Table Entry, 299
Page Walk, 328
Paravirtualization, 441
Pass through Virtualization, 449
Patricia Trie, 490
PCID, 306
Per-CPU Region, 74
Phasers, 193
Physical Address, 41
Physical Memory, 308
pid, 81

allocation, 88
Pipes, 425
Platter, 367
Pool, 84
Popek and Goldberg, 437
Port Connector, 363
Port Controller, 363
Port-Mapped I/O, 55, 56, 362
Preemptible RCU, 228
Preemption, 70
prepare task switch, 107
Priority Ceiling Protocol, 269
Priority Inheritance Protocol, 264
Priority Inversion, 264
Process, 66, 67

creation, 90
destruction, 90

Process Context, 139
Process Descriptor, 66
Process Group, 86
Process Id, see pid
Program Order, 184

Programmable Interrupt Controller, see
APIC

Properly-Labeled Programs, 171
Pthreads, 176
PTrace, 89

Queues, 194

Radix Tree, 489
RAID, 371
RCU, 218

grace period, 225
Read Disturbance, 379
Reader-Writer Lock, 191
Reader-writer Lock, 202
Real-Time Scheduler, 258
Real-Time Systems, 259
Real-Time Task, 75
Red-Black Tree, 484
Refault, 326, 334
Register File, 26
Registers, 26

general purpose, 27
privileged, 27

Regular File, 400
Relaxed Consistency, 186
Relocation Table, 473
Reverse Mapping, 314
Rings, 28
RISC ISA, 26
RMS Algorithm, 261
Rotational Latency, 370
runqueue, 250

schedule function, 247
Scheduling, 228
Scheduling Classes, 248
sec:container, 451
Second Blocking, 265
Sections, 311
Sector, 367
Seek Time, 370
Segmentation

x86, 52
Segmented Memory, 51
Semaphore, 199
Semaphores, 189
Sequential Consistency, 184
Session, 86
Shadow Page Table, 444

© Smruti R. Sarangi 504

Shadow Paging, 444
Shared Library, 478
Shortest Job First Algorithm, 231
Shortest Remaining Time First Algo-

rithm, 233
Shrinking the Memory Footprint, 329
Signal, 29
Signal Delivery, 147
Signal Handler, 30
Signal Handlers, 145
signalfd Mechanism, 153
sigreturn, 156
SIGSTOP, 70
Single Core Scheduling, 231
Single-Threaded Process, 66
Size Problem, 37
Slab Allocator, 345
Slub Allocator, 347
SMP, 205
Soft Link, 404
Soft Page Fault, 49, 290, 292, 328
Softirq, 138
Softirq Context, 139
Softirq Interrupt Context, 141
Software Context, 100
Sony Memory Stick Driver, 397
Southbridge Chip, 54
Spin lock, 168
SRTF Algorithm, 233
SSDs, 375
Stack, 38
Stack Distance, 285
Stack Property, 287
Stack-based Algorithms, 287
Standard C Library, 473
Static Linking, 473
Storage Devices, 365
struct address space, 411
struct bio, 395
struct blk mq ctx, 393
struct blk mq hw ctx, 393
struct block device, 391
struct dentry, 410
struct device, 389
struct device driver, 389
struct device physical location, 390
struct free area, 342
struct gendisk, 391
struct hlist head, 484
struct hlist node, 484

struct idr, 84
struct inode, 409
struct irq desc, 127
struct irqaction, 128, 142
struct k sigaction, 153
struct list head, 482
struct mm struct, 79
struct mutex, 212
struct nsproxy, 455
struct page, 302
struct pglist data, 313
struct pid, 81, 85
struct pid namespace, 84
struct raw spinlock, 208
struct rcu data, 227
struct rcu node, 227
struct rcu state, 227
struct request, 394
struct request queue, 392
struct rq, 250
struct rt sigframe, 155
struct sched class, 248
struct sched entity, 251, 252
struct sched info, 77
struct sigaction, 153
struct sighand struct, 152
struct signal struct, 151
struct sigpending, 154
struct sigqueue, 154
struct sigset t, 151
struct task struct, 67
struct thread info, 67
struct ucontext, 155
struct upid, 85
struct urb, 399
struct work struct, 144
struct worker pool, 144
struct workqueue struct, 144
struct zone, 313
Stub Function, 476
Superblock, 403
Swap Space, 48
Swappiness, 332
Symbol Table, 473
Symmetric Multiprocessor, 205
Synchronization, 164
sysret, 106
System Call, 29
System Calls, 117

505 © Smruti R. Sarangi

Task, 67
Task Priorities, 75
Task States, 69
Test-and-set, 168
Test-and-set Instruction, 168
Text Section, 38
Thrashing, 338
Thread, 67
Thread Local Storage, 103
thread info, 67
Threaded IRQ, 138
Threaded IRQs, 142
Tiers, 336
TIF NEED RESCHED, 247
Timer Interrupts, 32
TLB, 47, 305
Top Half, 104, 133
Track, 367
Transfer Latency, 370
Translation Lookaside Buffer, see TLB
Trap and Emulate, 439
Tree RCU, 227
TTAS Lock, 167
Two-Phase Locking, 174

Unbounded Priority Inversion, 265
Unix File System, 407
Unlock, 166
Unmount, 404
User Context, 139
User Thread, 97

vector irq, 132
Virtual Address, 41
Virtual File System, 406
Virtual Machine, 28, 435
Virtual Memory, 35, 39, 42
Virtualization, 435
vm area struct, 80
VMM, 436
vruntime, 253

Wait-Free Algorithms, 188
Wait-Free Queue, 196
Weak Memory Models, 185
Wear Leveling, 378
Work Queue, 138
Work Queues, 142
Worker Pool, 142
Working Set, 294

Worst Fit, 284
Write Amplification, 379
WS-Clock Algorithm, 290
WS-Clock Second Chance Algorithm,

291

x86 Assembly, 461
floating point registers, 463
instructions, 464
memory operands, 465
registers, 461

Zombie Task, 71
Zone, 367
Zones

sections, 304

	Introduction
	Types of Operating Systems
	The Linux OS
	Versions, Statistics and Conventions

	Organization of the Book

	Basics of Computer Architecture
	Cores, Registers and Interrupts
	Multicore Systems
	Inside a Core
	Registers
	Interrupts, Exceptions, System Calls and Signals

	Memory System
	Memory Map of a Process
	Virtual Memory
	Address Translation System
	Segmented Memory

	I/O System
	Overview
	Port-Mapped I/O
	Memory-Mapped I/O
	DMA

	Summary and Further Reading
	Summary
	Further Reading

	Processes
	The Process Descriptor
	The Notion of a Process
	struct task_struct
	struct thread_info
	Task States
	Kernel Stack
	Task Priorities
	Computing Actual Task Priorities
	sched_info
	Memory Management
	Storing Virtual Memory Regions
	The Process ID
	Namespaces
	File System, I/O and Debugging Fields

	Process Creation and Destruction
	The Fork Mechanism
	The exec Family of System Calls
	Kernel Threads

	Context Switching
	Hardware Context
	Types of Context Switches
	Details of the Context Switch Process
	Context Switch Process: Kernel Code

	Summary and Further Reading
	Summary
	Further Reading

	System Calls, Interrupts, Exceptions and Signals
	System Calls
	Life of a Library Call
	The OS Side of Things
	Returning from a System Call

	Interrupts and Exceptions
	APICs
	IRQs
	Kernel Code for Interrupt Descriptors
	IRQ Domains
	IDT and APIC Initialization Process
	The Interrupt Path
	Exceptions

	Softirqs, Threaded IRQs and Work Queues
	Softirqs
	Threaded IRQs
	Work Queues

	Signal Handlers
	Example of a Signal Handler
	Signal Delivery
	Kernel Code
	Entering and Returning from a Signal Handler

	Summary and Further Reading
	Summary
	Further Reading

	Synchronization and Scheduling
	Synchronization
	Data Races
	Design of a Simple Lock
	Theory of Data Races
	Deadlocks
	Pthreads and Synchronization Primitives
	Theory of Concurrent Programs
	Progress Guarantees
	Semaphores
	Condition Variables
	Reader-Writer Lock
	Barriers and Phasers

	Queues
	Wait-Free Queue
	Queue with Mutexes
	Queue with Semaphores
	Queue with Semaphores but No Busy Waiting
	Reader-Writer Lock
	Linux Message Queues

	Concurrency within the Kernel
	Kernel-Level Locking: Spinlocks
	Kernel Mutexes
	Kernel Semaphores
	The Lockdep Mechanism
	The RCU (Read-Copy-Update) Mechanism

	Scheduling
	Space of Scheduling Problems
	Single Core Scheduling
	Multicore Scheduling
	Banker's Algorithm
	Scheduling in the Linux Kernel
	Completely Fair Scheduling (CFS)
	Deadline and Real-Time Scheduling

	Real-Time Systems
	Types of Real-Time Systems
	EDF Scheduling
	RMS Scheduling
	DMS Scheduling
	Priority Inheritance Protocol (PIP)
	Highest Locker Protocol (HLP)
	Priority Ceiling Protocol (PCP)

	Summary and Further Reading
	Summary
	Further Reading

	The Memory System
	Traditional Heuristics for Page Allocation
	Base-Limit Scheme
	Classical Schemes to Manage Virtual Memory
	The Notion of the Working Set
	Shared- Memory-Based Inter-Process Communication

	Virtual and Physical Address Spaces
	The Virtual Memory Map
	The Page Table
	Pages and Folios
	Managing the TLB
	Partitioning Physical Memory

	Page Management
	Reverse Mapping
	The MGLRU Algorithm for Page Replacement
	Thrashing

	Kernel Memory Allocation
	Buddy Allocator
	Slab Allocator
	Slub Allocator

	Summary and Further Reading
	Summary
	Further Reading

	The I/O System, Storage Devices and Device Drivers
	Basics of the I/O System
	The Motherboard and Chipset
	Layers in the I/O System
	Port-Mapped I/O
	Memory-Mapped I/O

	Storage Devices
	Hard Disks
	RAID
	SSDs
	Nonvolatile Memories

	Files and Devices in Linux
	Devices in Linux
	Notion of Files

	Block Devices
	Registering a Block Device
	Drivers and Modules
	The Block I/O System
	I/O Scheduling
	A Simple Block Device Driver

	Character Devices
	File Systems
	Tree-Structured Layout of a File System
	Mounting a File System
	Soft Links and Hard Links
	Virtual File System
	Structure of an inode
	Ext4 File System
	The exFAT File System
	Journaling File Systems
	Accessing Files in Linux
	Pipes

	Summary and Further Reading
	Summary
	Further Reading

	Virtualization and Security
	Basics of Virtualization
	Overview
	Types of Hypervisors
	CPU Virtualization
	Memory Virtualization
	Hardware-Assisted Virtualization
	I/O Virtualization

	Containers
	Namespaces
	Cgroups
	Overlay File System

	Summary and Further Reading
	Summary
	Further Reading

	The X86-64 Assembly Language
	Registers
	Basic Instructions

	Compiling, Linking and Loading
	The Process of Compilation
	Compiler Passes
	Dealing with Multiple C Files
	The Concept of the Header File

	Linker
	Static Linking
	Dynamic Linking
	The ELF Format

	Loader

	Data Structures
	Linked Lists in Linux
	struct list_head
	Singly-Linked Lists

	Red-Black Tree
	B-Tree
	The Search Operation
	The Insert and Delete Operations
	B+ Tree
	Advantage of B-Trees and B+ Trees

	Maple Tree
	Radix Tree
	Patricia Trie

	Augmented Tree
	Bloom Filters

