HPXA: A Highly Parallel XML Parser

Isaar Ahmad
Electrical Engineering
IT Delhi
New Delhi, India
isaar.ahmad @ gmail.com

Sanjog Patil

IIT Delhi

Abstract—State of the art XML parsing approaches read an
XML file byte by byte, and use complex finite state machines to
process each byte. In this paper, we propose a new parser, HPXA,
which reads and processes 16 bytes at a time. We designed most
of the components ab initio, to ensure that they can process
multiple XML tokens and tags in parallel. We propose two basic
elements — a sparse 1D array compactor, and a hardware unit
called LTMAdder that takes its decisions based on adding the
rows of a lower triangular matrix. We demonstrate that we are
able to process 16 bytes in parallel with very few pipeline stalls
for a suite of widely used XML benchmarks. Moreover, for a
28nm technology node, we can process XML data at 106 Gbps,
which is roughly 6.5X faster than competing prior work.

Keywords-XML parser, multibyte input, highly parallel parser

I. INTRODUCTION

Extensible Markup Language(XML) is undoubtedly the de
facto standard for transfer of structured information over the
Internet. XML documents convey structured information in a
self-explanatory manner while maintaining platform indepen-
dence. XML documents need to be parsed into a tree based
structure before they can be effectively accessed and modified
by applications. This is one of the most performance sensitive
operations while processing an XML document. The parse
tree is then handed over to the application for subsequent
processing. Given the large size of XML documents today,
the performance requirements of XML parsers have increased,
necessitating solutions in hardware. Some of these have found
their way into commercial processors as dedicated accelerators
such as the parser in IBM PowerEN [1].

Parsing broadly comprises of the following tasks: well-
formedness checks on the XML document, extracting elements
or tokens, and finally creating and storing the parse tree in
memory. In this paper, we propose a novel XML parser called
HPXA, which is 10-30X faster than state of the art prior work
in terms of throughput (Gb/s). HPXA achieves this by reading
and processing 16 bytes of data at a time; as opposed to prior
proposals that mainly focus on reading the XML document
byte by byte. However, this makes the process of parsing
difficult, as a set of 16 bytes can contain up to 6 XML tags and
also need not be aligned to XML tag boundaries. Moreover, a
conventional stack based approach to construct a parse tree is
hard to parallelize. We propose novel mechanisms to process
up to 6 XML tags in one go, and subsequently show that it is
possible to process large XML files and achieve a CPB (cycles

Electrical Engineering

New Delhi, India
jvl142701 @ee.iitd.ac.in

Smruti R. Sarangi
Computer Science and Engineering
IT Delhi
New Delhi, India
srsarangi@cse.iitd.ac.in

per byte) that is close to the theoretical limit of 1/16 (0.0625).
This is a substantial improvement over prior work as we shall
see in the next section.

II. BACKGROUND AND RELATED WORK
A. Brief Overview of XML Parsing

The quintessential method of XML parsing involves reading
the file byte by byte, delineating character boundaries(for
multi-byte characters), and using complex FSMs to identify
characters marking the beginning and end of tags, attributes,
and content. Incomplete tag values are temporarily buffered,
and then transferred to a permanent location in memory (if
needed). To create a parse tree, we push a start-tag on to a
last-in first-out stack, and pop it out, when its corresponding
end-tag is read.

B. Related Work

Year | Paper CPB Frequency
Through-| (MHz)
put(Gbps

2004 | ZuXA [2] 1 16* 2048

2006 | Wie Lu et | 27[4] | 0.68 2300

al. [3]

2009 | SCBXP [5] | 0.5 1.6-1.8 125

2010 | XPA [4] 1 1.04 130

2012 | PXP [6] 0.2505| 3.992 125

2017 | HPXA 0.0625| 106 833(@28

nm)

* estimated based on CPB and frequency, T only in software

TABLE I: Summary of prior work

ZuXA [2] employs BART-FSM, a programmable state ma-
chine technology to store a large number of state transition
rules, and a novel hash function to quickly find the correct
transition for a given input and current state. It operates
sequentially, with a CPB of 1. XPA [4] is another proposal that
uses the BART-FSM. In comparison, Wie Lu et al. [3] propose
a parallel algorithm, where we first find roughly equal sized
XML sub-trees, and then we parse each sub-tree separately.

Skeleton CAM based XML Parsing(SCBXP) [5] uses FIFO
queues at the start to buffer short strings, which are checked
for well-formedness and stored in a CAM. The CAM is
used to skip well-formedness checks for strings that have
already been verified to be XML compliant. Subsequently, the

characters are sent to multiple FSMs to parse the tree. The
CPB is close to 0.5 because we still cannot process many
tags in parallel. The Parallel Speculative DOM based Parser
(PXP) [6] breaks an XML document into similar sized sub-
documents. These are then parsed on parallel hardware units
to create sub-trees, and then merged to form the final parse
tree. Splitting the document in roughly equal sizes sometimes
requires significant computational effort. The last line shows
the numbers for HPXA (at least 6X higher throughput).

II1. DESIGN DETAILS
A. Overview of the Parse Tree

The HPXA hardware is an in-order pipeline. It takes a
generic XML file as input (16 bytes at a time), and stores
the final parse tree in memory. If there is any syntax error in
the file, then it promptly flags the error, and the process of
parsing stops. The tree structure consists of nodes for each
token extracted from the XML document. A sample XML
document and a view of the corresponding tree are shown in
Figure 1.

<root>
<tagl attl = "vall" att2 = "val2">
<chd1>some_very_very_long_content</chd1>
<chd2/>
<chd3/>
<[tagl>
<[root>

() Compine)

chd3

some_very_very_long_content

(b) Cremsrs)

@ Tag Node
@ Content Node
O Virtual Node
@ Attribute/Value Node

(C) Parse Tree (stored in memory)

Fig. 1: Sample XML document and corresponding parse tree

Let us discuss the format of the output using the example in
Figure 1. For now, assume that the enclosed content in dotted
boxes is not a part of the XML file nor its associated parse
tree. We presume one top level tag-pair that encapsulates all
the rest of the tag-pairs. We refer to this tag pair as the root
node of the tree. The root has one child tag, which is tagl. We
refer to each such node as a tag node. fagl has two attributes,
attl and att2, and two child tag-pairs, chdl and chd2. We
create a node for each attribute, and each child tag-pair, and
attach it as a child to the parent node. Let us now consider
the first child, chdl, which has some content (no children).

We create a linked list of content nodes to store the content.
Each content node in our example can store 8 characters, and
thus we create a list of 3 content nodes to store the content
for the tag node chdl. Using linked lists to store data helps
us manage storage space efficiently. Let us now consider the
content in the boxes with dotted lines. We add an extra child
chd3 to the node fagl. In principle, each tag node in an XML
file can have any number of child tag-pairs. However, we need
to have a limited amount of space in each tag node for child

pointers. We assume a maximum of 4 nodes. We thus need
to use a similar linked list based approach as we had done to
store content. We create a virtual node, ver!, that is a child of
tagl. All the remaining children of tag! will now be added to
the sub-tree rooted at verl.

We thus have the following kind of nodes in our tree:
tag, content and virtual. This is a standard approach and is
also a part of the DOM standard, and such virtual nodes are
called vnodes. Any tree traversal needs to be aware of virtual
nodes and not interpret them as regular nodes. Furthermore,
it needs to adjust the depth information (distance from the
root) correctly, and take virtual nodes into account. These are
straight forward modifications.

Here, are the list of fields in each node (assigned a location
in memory). A token type field specifies one of 6 types: start
tag name, end tag name, attribute name, attribute value, empty
tag and content. The depth field indicates the node’s distance
from the root node. The node’s content is stored as an 8 byte
packet in the content field. Pointers to the node’s children
are stored as a set of four pointers. As previously discussed,
we may need to create linked lists of content or virtual nodes.
Each node has fields containing the address of the next content
node and the next virtual node, which contain valid memory
addresses (if there is a need). We also have a 2-bit HBT (head
body tail) field to interpret the nature of nodes. For example,
if a tag node is a head, then it means that it is not a virtual
node. However, if it is a body or tail, then it means that it is
a virtual node. We use another set of HBT flags for content
nodes also.

B. Overview of the Architecture

The Lexical Analysis Stage(LAS) verifies data at the byte-
level and ensures the conformity of the characters to existing
standards (see Figure 2). Additionally, it marks the location
of the delimiter characters such as ‘<’, and >’. Subsequently,
the Token Extractor Stage (TES) tokenizes the inputs and
creates start tag, end tag, attribute name/value, and content
tokens. After checking them, we create nodes (data structures
in memory) in the Node Creation Stage. This stage provides
its output to two stages: the Virtual Content Node Stage
(VCNS) creates a linked list of content nodes as described
in Section III-A, and the Tree Constructor starts building the
XML parse tree. This stage embeds a Virtual Node Constructor
Stage that creates virtual nodes.

C. Lexical Analysis Stage (LAS)

A simple approach to this task involves a sequential byte-
by-byte traversal as shown in Figure 3. This approach marks
all the positions containing delimiters, and this requires N
steps for NV characters. Now, in HPXA, we mark the location
of each delimiter in the 16 byte array, A, using a 16-bit bit
vector, where the 7*" bit being set indicates that the byte A[i]
is the end of a delimiter character (see Figure 4). Note that the
I's in the bit vector are sparsely located (interspersed with Os).
We wish to create an array (Arr_pos (sorted position array)
in Figure 4) that just contains the positions of these 1s. This

XML data Invalid Content Content Nodes
stored in Character Error WFC Error NodeStage @ © © @
memory
X’:‘L,Eata Lexical E_I)Et:(a'cmd Tag Nodes + Memory
28 okens Virtual
Lexical XMLData | token < Nimwal System
Analysis |E---EE-EE]| Extraction Creation Tree Builder
/ Stage Stage Stage
o0 00O

mes created

® ® ® Nodes but no edges

Fig. 2: Architecture of HPXA

[lefolcl-Tola]m[m]a]<[/]o]o] -]

W |
p Y

Fig. 3: Slow sequential search
123456 78 9101112131415
Characters|<|a|b|c|>|g|a|m|m|a|<|/|a|b|C|>|

Position 0

1 !
Delimiterlllolololl|0|0|0|0|0|0|1|0|0|0|1|

//

arpos [0 af11]1s[o[o[o]ofofofo]ofo]o]o]0]

1D Compactor

arr_delims [<[>[<[>[o[o[o[ofo[o[o]ofo]o]o]0]

arbis [1]1]1]1]oo]ofofo[o[o]o]o[o]o]o]

Fast search

Fig. 4: Parallel delimiter search in HPXA

will help us locate the ends of tags very easily. We create a
new piece of hardware to solve this problem, which we refer
to as a compactor.

The compactor contains 4 units. We break the 16-byte set,
into four consecutive blocks, where each block is assigned
to an unit of the compactor. In each unit, we use a very
small lookup table to populate a 2-entry 1D array with the
positions of the last bytes of any tags that it may find. The
next step is to merge the outputs of the 4 units. We use a tree
structured hardware that combines the outputs of the units in
a hierarchical fashion.

D. Token Extraction Stage

We can have a maximum of 6 tokens per cycle. Each token
is processed by a token extractor unit. This unit looks up
a pair of successive delimiter pairs in the arrays (output of
LAS), and reads all the bytes between them. Let us refer
to these group of bytes as chunks. At this point, we have
extracted three kinds of chunks: (tag name + several attribute
name/value pairs), end tags, and content. The end tags and the
content chunks are valid tokens. Note that these chunks can
easily be identified based on the values of the delimiters that
enclose them. Now, there is a need to further break the chunk
of bytes that contains the start tag name and attribute/value
pairs. For doing this, we pass this chunk through a block of
specialized hardware that starts out with marking the locations
of the * *, ‘=" and ‘" characters. We then use a compactor

to get their exact locations. Then, we check if the start tag
name is valid using well-formedness rules extracted from the
XML 1.0 specification. We then proceed to extract the attribute
name/value pairs. It is easily possible to do that because
we know the locations of their beginning and end (from the
compactor). At this point, we check these new tokens for well-
formedness, and try to mark duplicates. These new tokens are
then merged with the previously generated tokens (end tag and
content) to form a single token stream.

To merge these streams, we do the following. Before
splitting we record the relative order of the chunks using a
counter. The other end-tag and content chunks are buffered
till all later chunks containing start tags are fully tokenized.
We then use this counter to reorder the tokens.

E. Node Creation Stage(NCS)

This stage receives the following tokens: start tag, end tag,
content, empty tag, attribute name/values. Based on the token
types, we create a data packet for the corresponding node. We
have a stream of nodes now, which need to be assigned a depth
level. The depth level is defined as the distance of a node from
the root of the parse tree (root has a depth of 0). We have a
depth processor (one for each of the 6 possible nodes arriving
in a cycle). We create a lower triangular matrix, R, where row
i corresponds to the i*" node in the node stream (the earliest
node is numbered 1). The i*” column for a start and end tag
are assigned value V;, which can take either of three values:
+1 in case of start tag, -1 in case of end tag, and O as the
default value. For attribute and content nodes we assign 1 to
R;;, and the rest of the columns are assigned 0. The depth of
any node, ¢, is the sum of the existing depth of the latest node

) <i
in the last batch plus > 7= Ri;.

F. Parse Tree Builder

HPXA aims to construct the tree in a single pass, and in a
depth-first manner. Once the memory location and depth of a
node have been calculated (at the end of the Node Creation
Stage), the final task required to complete tree construction
is to create an edge between every node and its parent. It
consists of the following operations: (1) identify the parent,
(2) add the current node’s memory address in the parent’s
node data structure. A traditional one-node-at-a-time approach
uses a last-in-first-out stack. When we encounter a start tag we
push the memory address of its node on the stack, and when
we encounter an end tag we pop the entry. The top of the
stack is always the parent of any tag nodes that we read. This
approach needs to be parallelized. We assume a stack with 8
entries. In every cycle, we will have up to 6 nodes coming,

and all of them might need to access (peek, push, and pop)
the stack. Each node might find its parent either in the current
batch of nodes, or at the top of the stack. For each node, we
have a node processor (logic unit), whose task is to find its
parent. From the point of view of the stack, it needs to find
its new state that it will reach at the end of the current set of
operations. We have 8 stack processors to find the next state
for the stack (one for each stack entry).

1) Node Processor: It searches for the latest node with a
depth (i — 1) (¢ is the depth of the current node). It scans
the previous nodes in the current batch of nodes, and then
scans the stack (top down). Then a priority encoder is used
to find the matching parent node. This process gives us the
id, location, and memory address of the parent. Note that this
operation is conducted in parallel for 6 nodes at a time.

2) Stack Processor: The i'" stack processor looks at all
the nodes that are above the current node (towards the stack
top), and all the nodes in the current batch of nodes. There
are three choices: (1) either the node is popped, (2) it remains
as is, or (3) its content changes. If there is any entry in the
new batch of nodes with a depth lower than the depth(i) of
this entry, then the node will get popped (situation (1) or (3)).
Else, we have situation (2). We differentiate between (1) and
(3) as follows. If the depth of the last node in the current batch
of nodes is lower than 7, then the node is popped(situation 1),
otherwise we have situation (3). Now for situation (3) the node
that will occupy this level is the latest node at depth level ¢ in
the current batch of nodes. For situation (3) we create a 8x6
matrix (8 entries in the stack, and max. 6 nodes per cycle),
A. A;; is 1 if node j has a depth level ¢. From each row, we
select the j** node such that A;; =1, and j is maximized.
We have a similar 8x8 matrix for the pop operations.

3) Creation of Edges and Virtual Nodes: We have 14 edge
processors — one for each stack level, and one for each node
in the current batch of nodes. Each edge processor collates
all the children of a node, and creates tree edges. It uses a
compactor to identify and linearly arrange a node’s children.
The pointers to the children are arranged as an array in each
node. In the case that a node has more than 4 children, the
edge processor immediately creates a new virtual node, and
adds the child nodes to the subtree of the newly created virtual
node.

We use a small coalescing write buffer (16-entry, 64 byte
line size, fully assoc.) to reduce the bandwidth to memory.
Once all the 4 nodes in a 64 byte line are fully written (all
their fields are updated), the block is ready to be written to
memory. We assume a multibanked SRAM memory that can
accept 2 blocks per cycle.

1V. EVALUATION
A. Setup

The code for HPXA was written in Verilog (version 16.20),
and was compiled and synthesized on the Cadence RC com-
piler for the UMC 28nm technology node. The final design had
25 pipeline stages. We used a standard set of 9 XML bench-
marks from the Univ. of Washington XML data repository [7].

These files have up to 5 nesting levels, and significantly vary
in terms of size, the number and nature of attributes/tags. We
dumped their hex-code in a file arranged as 16 byte chunks,
and provided this file as an input to our parser. We gave a
global clock signal as input along with the reset and start
signals. The active low reset signal resets all the pipeline
registers, FSM state and all previously active buffers. The start
signal lets HPXA know when to start reading the XML data
and start the parsing operation. To calculate the CPB values,
the number of global clock cycles is calculated from the time
the start signal goes high till all the tokens are extracted.

We ran all our experiments on a system with four Intel
i5 cores running at 3.3 GHz, 8 GB Ram, and Ubuntu Linux
14.04.

B. Results

Using the Cadence RTL Compiler, the area for HPXA was
calculated to be 33066m? , with a maximum clock frequency
of 833 MHz for a 28 nm technology node.

Benchmark | File Size | Element count | Depth | Cycles taken CPB
region 787 B 21 3 87 0.1016
nation 4.47 KB 126 3 316 0.0689
Ubid 19.7 KB 342 5 1300 0.0639

321gone 23.8 KB 311 5 1563 0.0637
Yahoo 24.6 KB 342 5 1611 0.0637
supplier 28.5 KB 801 3 1859 0.0635
Ebay 34.6 KB 156 5 2253 0.0633
reed 277 KB 10546 4 17,751 0.0625
UWM 2.3 MB 66729 5 146,126 0.0625

TABLE II: CPB values for benchmarks

Table II shows the performance of the HPXA accelerator
for different benchmarks. We observe that with increasing file
sizes (beyond 200 KB), the CPB value stabilizes to 0.0625
(1/16), and there are almost no stalls in the pipeline (can only
be caused by the memory system).

V. CONCLUSION

In this paper, we designed HPXA, which is a highly parallel
XML parser. Unlike prior work, it can process 16 bytes of data
at one time. As a result our mean CPB is at least 4X more than
that of competing work and our XML processing throughput
is 6-25 times higher.

REFERENCES

[1]1 A. Krishna, T. Heil, N. Lindberg, F. Toussi, and S. VanderWiel, “Hard-
ware acceleration in the ibm poweren processor: Architecture and perfor-
mance,” in PACT, 2012.

[2] J. Van Lunteren, T. Engbersen, J. Bostian, B. Carey, and C. Larsson, “Xml
accelerator engine,” in Workshop on High Performance XML Processing,
2004.

[3] W. Lu, K. Chiu, and Y. Pan, “A parallel approach to xml parsing,” in
ICGC, 2006.

[4] Z. Dai, N. Ni, and J. Zhu, “A 1 cycle-per-byte xml parsing accelerator,”
in FPGA, 2010.

[5] F. El-Hassan and D. Ionescu, “Scbxp: An efficient hardware-based xml
parsing technique,” in SPL, 2009.

[6] M. Jianliang, S. Zhang, T. Hu, M. Wu, and T. Chen, “Parallel speculative
dom-based xml parser,” in HPCC-ICESS, 2012.

[71 “Uw xml data repository,” http://aiweb.cs.washington.edu/research/
projects/xmltk/xmldata/www/repository.html, [Online; accessed 29-
August-2017].

