
1

VisSched: An Auction based Scheduler for Vision
Workloads on Heterogeneous Processors

Diksha Moolchandani, Graduate Student Member, IEEE, Anshul Kumar, José F. Martı́nez, Senior Member, IEEE,
and Smruti R. Sarangi, Member, IEEE

Abstract—With the growth of edge computing, application-
specific workloads based on computer vision are steadily migrating
to edge cloudlets. Scheduling has been identified to be a major
problem in these cloudlets. In this paper, we propose a generic
architectural solution, VisSched, that leverages the fact that most
vision workloads share similar code kernels (such as library code
for linear algebra), and as a result they tend to exhibit similar
phase behavior. This allows us to create an auction theory based
scheduling mechanism, where we give each thread a replenishable
virtual wallet, and threads are scheduled based on the amounts
that they bid for executing on a free core. We show that in 20-40%
of the cases, our scheduling algorithm is theoretically optimal, and
in the remaining cases, it reaches a global optimum obtained using
Monte Carlo simulations 90-95% of the time. Our results for the
MEVBench vision workloads show a 17% higher performance and
a 14% lower ED2 as compared to the nearest competing algorithm
in the literature.

Index Terms—scheduling, auction theory, asymmetric multi-
cores, hardware scheduler

I. INTRODUCTION

Today’s computing landscape is characterized by the fol-
lowing trends: traditional scaling based on Moore’s law has
stopped, instead of increasing the number of cores on the chip
the focus has moved to creating bespoke systems, and because
of the proliferation of mobile/IoT/edge-computing applications
there is a lot of stress on new types of workloads. Many
of these new workload suites [1], [2], [3] are tailored for a
specific genre of applications such as computer vision, self
driving, IoT data processing, analytics, edge computing, etc.

Unlike traditional benchmark suites such as Spec and Parsec
that have very little code in common, these workload suites
share code kernels to a much larger extent. For example,
analytics applications share sub-routines for performing con-
volutions, computing dot products, and computing the result
of tanh or sigmoid functions. The conventional approach to
increase the performance of such workloads is to design a
bespoke accelerator that can accelerate the common parts such
as CNN accelerators for speeding up inferencing.

Manuscript received April 18, 2020; revised June 12, 2020; accepted July 6,
2020. This article was presented in the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems 2020 and appears as part
of the ESWEEK-TCAD special issue.

Diksha Moolchandani is with the School of IT, Indian Insti-
tute of Technology Delhi, New Delhi 110016, India (email: dik-
sha.moolchandani@cse.iitd.ac.in).

Anshul Kumar, and Smruti R. Sarangi are with the Department of Computer
Science and Engineering, Indian Institute of Technology Delhi, New Delhi
110016, India (e-mail: anshul@cse.iitd.ac.in; srsarangi@cse.iitd.ac.in).

José F. Martı́nez is with the School of Electrical and Computer Engineering,
Cornell University, Ithaca, NY, USA (email: martinez@cornell.edu).

We look at this problem from a different angle. All such
suites comprise a multitude of benchmarks that are ideally
suited for different platforms: multicores, GPUs, FPGAs, and
ASICs. It is envisaged that there is a high level task dispatcher
that dispatches tasks to these disparate computing units, and
subsequently a dedicated runtime manages the computations.
For the sake of experimental evaluation, we focus on a subset
of applications in these suites that are known to perform the
best on multicore processors, and show that just by creating
a better scheduler we can gain 17% in performance vis-a-
vis the best state of the art scheduler [4]. Our scheduler
requires a few performance counters and registers per core, and
the scheduling logic is implemented in hardware (0.078mm2

additional area).
1) Scope of our Work: In this paper we studied the behavior

of many such newly proposed workload suites [1], [2], [3], and
concluded that they share library code to a large extent. This
gives us a unique opportunity to design a bespoke scheduler
and also make theoretical guarantees regarding the quality of
the schedule. As an example, we consider popular computer
vision benchmarks in this paper that are primarily based
on computational geometry, and thus do not have effective
CNN implementations. Note that the scope of our work is
generic and is not dependent on a particular platform or a
particular benchmark suite. Our only requirement is that the
set of workloads need to share a common set of code kernels
(libraries), and their execution should be decomposable into a
set of a few distinct types of phases, where the phases have
the same meaning across the benchmarks – let us call such
workloads correlated workloads.

2) Contributions:
Problem: Schedule a set of correlated workloads on a hetero-
geneous processor with a diversity of computational units –
small cores and big cores in our case.

1) We propose a formal clustering based technique to divide
the execution of benchmarks into phases. As long as
these phases are correlated across the benchmarks our
technique is applicable.

2) We give each thread a virtual wallet, and propose an
auction theory based technique for threads to bid for cores
(computational units). Threads have an incentive to save
virtual money for the future, as well as win the bid.

3) We use game theory to show that in roughly 40% of
practical scenarios we make optimal decisions. In the rest
of the cases, our decisions are very close to optimal. To
the best of our knowledge this is the first such approach
for correlated workloads.

2

4) For the MEVBench vision workloads we achieve a 17%
higher performance, and a 14% lower ED2 as compared
to the best competing algorithm [5].

II. AUCTION-BASED SCHEDULING

A. Overview
In any scheduling problem we have t threads and c cores,

where typically t > c. The threads have different requirements
in terms of performance, functional unit usage, and energy
usage. From the point of view of the thread it would like to
execute on the fastest core that is available. However, in such
cases both selfish as well as altruistic decisions are suboptimal,
and can lead to starvation. Traditional graph and ILP based
approaches also have limited value because they tend to take
a global view of the scheduling problem. If we have a large
number of tasks and a large number of potential interactions,
then such problems are intractable, and cannot be solved at
runtime.

Hence, instead of a centralized approach, the distributed
approach is more preferable where the threads and the cores
take local decisions; we need to ensure that in some sense the
decisions are fair and are close to being globally optimal.
Fairness We can define the fairness metric as a ratio of the

time that a set of threads take to execute when other
applications are running, and the time it takes for them
to execute in isolation. This ratio should be bounded by
a small value in most cases.

Optimality In the scheduling problem, optimality is hard to
establish because competing threads of different applica-
tions benefit at the expense of each other. One of the most
widely used metrics/objectives is the Nash equilibrium.

In our algorithm our main focus is to establish that it reaches
a Nash equilibrium. Fairness is established experimentally.

B. Nash Equilibria
A Nash equilibrium is a game-theoretic concept in a setting

where we have multiple players (threads) with strategies and
payoffs or utilities. Assume that each thread has some virtual
money and the strategy is to bid a part of it to win (right to
execute for a limited duration) a core. The utility is defined
as the benefit the thread would derive by running on the
core, which is typically a function of the IPC (instructions
per cycle) [6].

The threads are said to be at a Nash equilibrium when given
that the strategies of the rest of the threads are fixed, no thread
gains by unilaterally changing its strategy. Conceptually, a
Nash equilibrium is a stable operating point, which is a
constrained local maxima. The equilibrium is said to be stable,
where if one of the threads slightly changes its strategy, the
rest of the threads do not deviate from their Nash equilibrium
strategies. This is a local maxima. Note that in any problem
we can have multiple Nash equilibria – we need to choose the
one that maximizes the aggregate utility. In a game that has a
single Nash equilibrium, it is said to be strictly dominant.

Note that Nash equilibria are not always global optima
(e.g: the Prisoner’s dilemma problem [7]); however, for the
purposes of scheduling they have been found to correlate with
experimentally observed optima very well [8].

C. Auction Theoretic Principles

Let thread ti’s wallet balance prior to the auction be Wi. If it
bids all of it, it will not be left with any money for the future.
If it bids too little, it might not win the bid. It thus needs
to bid a fraction µi (and save the rest). This is known as the
proportional bidding scheme in the auction theory literature,
and µi is the strategy for thread i. A thread is aware of the
strategies of other threads but is not aware of their wallet
balance, which varies.

A simple formula for the utility of thread i is (1−µi)Wi if it
wins, and 0 if it loses. Here, the utility of the winner is equal
to the money that it saves, and the loser’s utility is zero. It is
obvious that the winner would like to win by bidding the least
amount. If we have two threads, where Wi and Wj vary from
0 to 1 uniformly, then the globally optimal strategy is µi =
µ j = 0.5. In a multiplayer scenario with different distributions
for each Wi, the optimal set of strategies (µis) needs to be
computed with Monte Carlo simulations accelerated with AI
algorithms.

We complicate this scenario further by adding a winner’s
bonus (additional utility for the winner, Bi) and an auctioneer’s
fee (Fi), which needs to be first deducted from the balance of
the winner. The resultant expression for the utility (Ui) of the
winner is as follows.

Ui(µi) = (1−µi)(Wi−Fi)+Bi (1)

The justification for Fi, and Bi will be provided in Sec-
tion VI. We also give a loser’s subsidy L such that the losing
thread is better equipped to bid in the future. Given this setting
we use the following results from auction theory to establish
optimality.

If the distributions of (W − F) and B are uniform dis-
tributions and are the same, then a globally optimal Nash
equilibrium exists, where the bids are proportional (PB bids)
to the wallet balance (20-40% of time in our evaluations). For
the rest of the cases, a Nash equilibrium does exist; however,
the strategies are not necessarily proportional to the wallet bal-
ance. We experimentally show that even with proportional bids
our solutions are extremely close to experimentally determined
optima 90-95% of the time.

III. RELATED WORK

The broad area of scheduling can be divided into two
classes: application specific – exact task durations are known,
and hence graph based approaches can be used; and general
purpose – task durations can be variable, and thus heuristics
are needed. We chose the best-performing prior work from the
latter category for comparison.

A. Scheduling on Heterogeneous Cores

CAMP [6] runs those applications on fast cores that get
maximum speedup when run on a fast core with respect to
a small core. This speedup is defined as the utility factor,
and this forms the basis of the core allocation. Similar works
by Koufaty et al. [9] and Shelepov et al. [10] find the bias
of an application towards cores based on its relative speedup

3

on a big core vis-a-vis a small core, or use profiling to pre-
calculate the affinity of applications for cores. Another popular
approach is BIS [11] that schedules bottlenecks in the code
(code responsible for the maximum number of wait cycles)
on the fast cores. Joao et al. [5] (UBA) extended this work by
accelerating the lagging threads in addition to the bottlenecks
identified in BIS such that the reduction in the total execution
time is maximized. COLAB [12] uses a regression model to
find the core affinity, then it schedules the threads on the basis
of the bottlenecks (similar to BIS). The scheduling quantum
is set with the objective of maximizing fairness. AdaMD [4]
adopts an adaptive model that periodically assigns free cores to
under-performing applications determined using an ML model.
These approaches are unfortunately not tailored for correlated
workloads.

B. Market Mechanisms for Scheduling of Heterogeneous Tasks

Wang et al. [13] proposed XChange, a market mechanism
based on supply-demand model, in which the users bid for
resources in a dynamic market setting, where the prices vary
based on resource contention and utility. The approach works
well when we have a choice of multiple resources in every
resource allocation round (not true in our case and hence
we do not compare with them). In comparison, Guevara et
al. [14] provided a market mechanism to allocate a single
resource, where the bids are decided based on task deadlines.
This approach is only relevant for soft real time workloads.

Another work by Pereira et al. [15] allows cores to bid
for the tasks, where the strategy of a core is its frequency
setting. The utility is derived from the variation of the energy
consumption as a result of changing the frequency setting. In
comparison, we have tasks with unknown completion times
and in our setting, tasks bid for a core (the reverse problem).

C. Auction Theory for Job-shop and Network Scheduling

In a typical job-shop scheduling problem we have a set of
jobs and a set of resources. The jobs can have an execution
order between them. The aim is to typically minimize the
makespan (total execution time) of the schedule. Tang et
al. [16] wrote a seminal paper in this area: Whenever a job bids
for a time slot on a machine (resource), its price is decided
on the basis of the number of competing bidders. A bidder
has some virtual money – it needs to pay some money to
run on a machine and pays a penalty if it loses the bid. It
tries to maximize the amount of virtual money it holds. Zeng
et al. [17] extended this work for a flexible job scheduling
problem, which involves multiple sets of jobs that are mutually
independent. It thus has a two-level auction process: first
decide the set of jobs, and then decide the job itself (from the
winning set). Bukchin et al. [18] have specialized this problem
for a 2-machine scenario.

Liang et al. [19] applied auction theory for allocating
resources to different service types in 5G network slicing.
They formulate the problem as an auction where the bidders
are the service types and the items to be auctioned are the
network resources. The bid for a service type is decided on the
basis of its bandwidth requirement. The payment for a resource

is decided on the basis of the usage of the resource. Ding et
al. [20] applied auction theory to grid computing networks.
The grid resources are auctioned and the grid users bid on the
basis of the price, memory and speed of the grid resources.

The flavor of all related work is more or less the same –
decide a utility function and compute or adjust the bid amount
based on it. Our work is however novel and different in many
aspects. The differences are as follows.

Our novel contributions:
1) Our first innovation is identifying, understanding, and

characterizing phases in correlated workloads. We pro-
pose a method to identify such phases at run time and
effectively capture their execution characteristics (see
Section IV).

2) The novelty lies in the way we create our bidding
functions (combination of miss rates, core costs, cache
costs), the way in which we create proportional bids, and
how we use them to prove the optimality of the auction.

3) We are not aware of other works that propose a loser’s
subsidy and auctioneer’s fee (the way we have defined
them).

4) Another novel aspect of our design is storing the pre-
computed optimal bid values in a pattern table and using
them at run time. No other paper has characterized the
search space as we do – we have demonstrated that our
search space is mostly convex with localized regions that
are concave.

IV. CHARACTERIZATION OF WORKLOADS

A. Experimental Setup

Parameter Value Parameter Value
Cores 16 (10 small + 6 big) Technology 14 nm

Big cores 6 Small cores 10
Processor Cores

Big core Small core
Issue Width 4 Issue Width 2

Pipeline Type Out-of-order Pipeline Type In-order
Frequency 3.1 GHz Frequency 1.55 GHz

L1 i-cache, d-cache (Private caches)
Write-Mode Write-Back Block Size 64 bytes
Associativity 4 Size 32 KB

Latency 4 cycles (for Big core), 2 cycles (for Small core)
Shared L2

Write-Mode Write-Back Block Size 64 bytes
Associativity 8 Bank Size 256 KB

Latency 20 cycles #Banks 16
Main Memory and NoC

Latency 200 cyc. Memory Controllers 2
NoC 2D torus Flit Size 16 bytes

Routing X-Y Router + Hop latency 3 cycles

TABLE I: Details of the baseline system (source [21])

We used a full-system cycle-approximate architectural
simulator, Tejas [22], for all the simulations. It has been
rigorously validated with native multicore hardware (for both
in-order and out-of-order processors). It is bundled with the
popularly used Orion 2.0 and McPat 1.0 tool sets for simu-
lating power and energy of the NoC and cores respectively.
We simulate the MEVBench suite (e.g: feature extraction,
corner detection, decision trees, augmented reality) of vision
benchmarks (adapted for multicores) [1], and assume an
edge-computing setting, where we simulate a bespoke system

4

running on the edge that receives requests from mobile users,
runs vision workloads on them, and returns the result. We
collected traces from the Qemu virtual machine to simulate
the networking stack of the Linux 4.2 kernel.

Our simulation setup (see Table I) is similar to Intel’s
QuickIA architecture, where we have two kinds of cores: a
large out-of-order core and a small in-order core (typically
used for vision benchmarks). The small core’s frequency is
half of the big core’s frequency in our setup (similar to [23]).

Fig. 1: Clustering of all the phases across the benchmarks

We define performance as a quantity that is inversely
proportional to the simulated execution time of a single bench-
mark. For a set of benchmarks, it is inversely proportional
to the instruction throughput. We also evaluate fairness that
captures latency-sensitivity, contention, and starvation.

B. Characterization of the MEVBench Suite

1) Phase Behavior: The aim here is to establish that in cor-
related workloads we have a few distinct types of phases. We
start with defining the following instruction classes: ALU, SSE
(vector instructions), memory, instructions in the networking
code (ALU and memory). We divided the execution of each
workload into chunks of 100k-cycle intervals, and collected
5000 such data points per workload. These data points across
the workloads were represented as a multi-dimensional vector,
where each dimension contains the percentage of a particular
class of instruction. We then classified these vectors using K-
Means clustering, and then visualized the clustering results in
2-D by projecting the vectors to a lower dimension using the
t-SNE algorithm. Figure 1 shows five distinct clusters. They
have been named on the basis of the most frequently occurring
instruction class.

Similar experiments on other correlated workload suites
such as Cortexsuite [3], self-driving workloads [2] yielded
similar results (not shown due to lack of space). We see distinct
clusters, where each cluster represents a particular phase.

a) Correlation of Phases across Benchmarks: To validate
the quality of the clusters, we plot the Silhouette score for
the clusters. The Silhouette score is a standard technique to
calculate the efficiency of clustering. A Silhouette score of
‘1’ indicates that the samples are correctly classified into the
clusters that they are most related to. It may be observed
(see Figure 2(a)) that the silhouette scores are high (roughly

0.0 0.2 0.4 0.6

0.8

0.6

0.8 1.0

NE
T-A

LU

AL
U

ME
M

AL
U

SS
E

S
IF

T

SURF

-0.2

(a) (b)

0.0

0.2

0.4

NE
T-M

EM

ME
M

ME
M

AL
U

SS
E

SS
E

NE
T

NE
T

Silhouette score

C
lu

s
te

r
ty

p
e

Fig. 2: (a) Silhouette plot of the clusters, (b) Phase-wise
correlation of Sift and Surf

80%) indicating that the data is indeed separable into distinct
clusters. Each plot is an irregularly shaped trapezoid because
different points in a cluster have different Silhouette scores.

Figure 2(b) shows a representative example where we plot
the pair-wise correlation between different phases of two
benchmarks: Surf and Sift. We observe that intervals corre-
sponding to the same phase behave very similarly (correlation
above 0.9) across the benchmarks. We also established a
correlation (0.7-0.8) between the phase and the IPC of an
interval. Hence, the phase information can be used as a proxy
for IPC. Summary: The existence of phase behavior and the
correlation of phases across benchmarks may help us simplify
our scheduling decisions.

V. DESIGN

Multicore hardware

Application
partitions

 OS
partitions

HW
scheduler

Partition
sizing

1

2

Scheduler
Partitioning
logic

OS

Fig. 3: Overview of the design

Figure 3 shows the overall design of the system. We modify
the OS to partition the cores between the hardware scheduler
and the OS scheduler (similar to [24], [25], [26]). This OS-
level partitioning allows us to create a custom hardware
scheduler. The OS partitions the cores into two parts such
that the applications execute in the first partition and the OS
routines execute in the second partition. In order to allow
scheduling of the applications at fine-grained intervals, we
deploy a hardware scheduler for the first partition.

We propose to use a hardware scheduler because the typ-
ical (worst-case) phase change interval for our applications
is 31.25− 62.5µs, which is far lower than a typical OS
time slice (1-10ms) [27]. For such fine-grained intervals, the
performance benefits of scheduling are reasonable only if the
context switching overheads are insignificant as compared to
the granularity of scheduling. This is not the case in our setting
and thus software schedulers will not prove to be useful [28],
[29], [30]. Specifically, Li et al. [31] analyzed the cost of a
context switch in different scenarios and quantified it to be
44.1µs to 1496.1µs. This overhead is minimal for a typical

5

OS time slice, however for our fine-grained task scheduling,
this overhead is prohibitive. Our hardware implementation is
able to perform scheduling and context switching within 67ns,
which is small enough to maintain the performance benefits
of fine-grained scheduling.

Our hardware scheduler maintains two queues: one for
running tasks and one for ready tasks. It also maintains the
context information of the tasks (PC and register state). The
scheduler manages the context, performs context switching,
and invokes the auction controller to find the next task that
needs to be run on a free core. If the OS wants to run some
process on any of the cores in the application partition, it
sends a message to the hardware scheduler. This is a standard
approach followed in prior work [24], [25], [32], [33].

Our main contribution in this paper is the design of the
auction controller and the algorithm it uses. We use a standard
hardware scheduler design [25], [33].

VI. IMPLEMENTATION

We created a scheduling scheme, VisSched, using the key
insights gathered in Section IV on a system with 10 small cores
and 6 big cores (determined to be a Pareto-optimal configura-
tion in the energy-performance space in Section VII-E). The
high-level flow of the scheduling algorithm is as follows: ¶
Find an initial phase-core mapping. Since the number of
phases is lower than the number of cores, each phase is allotted
a set of cores (core set). · Determine the first assignment
of threads to cores. ¸ After a thread finishes its scheduling
quantum on a core, predict the thread’s upcoming phase, and
put it in the ready queue of the mapped core set. ¹ Perform an
auction for the currently freed core among the threads in the
ready queue of its core set. º Assign the new winner thread
to this core. » Go to ¸. ¼ After a certain time, recalculate
the phase-core mapping.

Figure 4 shows an overview of the hardware scheduler and
the structures used. These will be discussed in detail in the
upcoming sections.

 Phase counters
Si, Mi, Ii, Ai

Ready Queue

Threads

Phase Table
Phase to Core
Mapping

Core-set2

ph.1
ph.2
ph.3
ph.4

Cores

Core_1

Core_n

Thread_1

Running queue

Wallet_1
Wallet_2

Wallet_n

Wallet Table

Core-set1

Core-set3
Core-set4

Register States

Reg. State_1

Reg. State_2

Reg. State_n

Miss-rate reg._1

Miss-rate reg._n

Auction Controller

Memory Pattern table

{

Fig. 4: Hardware Scheduler

A. Mapping the Set of Cores to Phases: Steps ¶, · and ¼

We consider four distinct phases: SSE, memory, compute,
and network (networking code). At the outset we map the set

of cores (allotted to the application partition) to the phases in
the following priority order: 4 big cores for SSE tasks; 1 big
and 3 small cores each for ALU and memory tasks; and 4 small
cores for network tasks. We define a 100,000 cycle interval,
and based on the instruction mix we determine its phase
(explained in Section VI-B). Every 100 million cycles (1000
intervals), we recompute this mapping based on the relative
proportions of executed phases (φs : φm : φn : φc, where φs is a
counter for SSE phases, φm for memory phases, φn for network
phases, and φc for compute phases). The mapping information
is stored in a Phase Table that is a 4-entry structure (one entry
for each phase) with each entry being 16 bits, one per core,
i.e., the ith bit in this entry indicates if the ith core is mapped
to it. Note that we never let a core go idle; if it does not
have enough threads in its corresponding phase, we schedule
a thread belonging to another phase.

B. Predicting the Phase of the Next Interval: Step ¸

It is easy to identify the network phases on the basis of
library calls or system call invocations. For the rest of the three
phases, we use three instruction counters (ALU Ai, memory
Mi, and SSE Si). The weighted average of these counters over
the previous five (determined empirically) intervals is used
to decide the phase for the upcoming interval. The rules are
shown in Table II in decreasing order of their preference. Here,
Ii denotes the total number of instructions in the ith interval.
The intuition for the equation for the memory phase is that
we wish to accord additional priority to memory instructions
because they involve multiple operations (memory + addition),
and miss rates have a large effect on performance.

Condition Inference
∑

5
i=1

Mi
Ii

> ∑
5
i=1

Ai+Si
2Ii

Memory phase

∑
5
i=1

Si
Ii
> ∑

5
i=1

Ai
Ii

SSE phase
default Compute phase

TABLE II: Heuristics for phase prediction

Since the total number of instructions per interval can vary,
weighting the counters with the number of instructions in the
respective interval increased the accuracy of our results (shown
in Table VII in Section VII-D).

C. Auctioning process: : Steps ¹ and º

Table III shows the mapping of terms between our equation
for utility (Equation 1) and the architectural metrics.

Broad principles: ¶ A memory-bound thread should be
discouraged from running on a faster core. We found that
in our suite of benchmarks, the marginal utility of running
such threads on fast cores is minimal. · A CPU-bound thread
should be encouraged to run on a faster core. ¸ There should
be no starvation. ¹ Each waiting thread should have an
incentive to bid and win. º Threads should not overspend
on the bidding process such that they can use the remaining
amount in future auctions. These are in accordance with
standard auction rules.

We now discuss the intuition behind the mappings: auction-
eer’s fee (F), bonus (B), wallet balance (W), loser’s subsidy

6

(L), and the bidding strategy (µ1 . . .µN) (N is the number of
bidders).

Meaning Example VisSched

Balance W W
15 bits, Initialized to Wbase = 5000

Auctioneer’s fee F κC
κ is a constant, C is a combination of the core cost and cache
cost

Bid µ(W −F) µ(W −κC)

Bonus B λ × IPC/energy(mJ)+Wbase

The winner’s bonus is IPC/energy (normalized with a constant λ

+ a constant amount (Wbase))

Utility (1−µ)(W −F)+B (1−µ)(W −κC)

+ λ × IPC/energy(mJ) + Wbase

Loser’s subsidy L L
L = 0.1∗Wbase⇒ L = 500

New wallet Wwinner = (1−µ)(Wold −F)+B
balance Wloser =Wold +L

Parameter Values λ = 100, κ = 500, CB = 1000, CL = 250

TABLE III: Terms and definitions

1) The Auctioneer’s Fee (F): The Auctioneer’s fee captures
the cost of migrating a thread from one core to another core.
We model two kinds of costs: the core cost and the cache
cost. The core cost captures the overhead of a context switch.
If a thread is bidding for the core on which it was previously
running, then the core cost is zero. Otherwise it is CB for the
big core, and CL for the small core, where CB = 4∗CL (ratio
of IPCs on the two cores observed in our simulations).

The cache cost is zero if a thread is bidding for the same
core on which it previously ran, otherwise it is meant to be
commensurate with the cycles that are lost in cache misses
when the thread is migrated to a new core. We formulate the
cache cost as a sum of three components: L1 cost, L2 cost,
and I-cache cost. The L1/I/L2 cost is the arithmetic mean
of the L1/I/L2 cache miss rates recorded over the last five
phases (stored in a shift register). We discourage a thread with
high L1/I miss rates from migrating because regardless of its
behavior (steady on a core or migrating), it is nevertheless
memory-bound at the moment and thus should not move
to a new core. Similarly, we can justify the I-cache cost.
Analogously, high L2 miss rates indicate that it is memory-
bound and thus should be given a chance to benefit from
enhanced locality at the L1 level.

The final cost, C, is a sum of the core and cache costs
(appropriately normalized using the constant κ).

2) Bonus: IPC vs IPC/Energy: The bonus (defined in
Section II) can be made proportional to the thread’s IPC (as
in previous works) because intuitively it is the advantage that
a thread will derive if it gets access to a core. However, this
would lead to unfair schedules in our setting of heterogeneous
multicores because the scheduler will only prefer big cores.
Note that the average energy usage in a small core is 60-70%
lower than a big core (results not shown due to a lack of
space).

We thus make the bonus proportional to IPC/energy, which
is not decidedly better for any particular type of core in our
simulations (also observed by [34], [35], [36]). It still captures

our original intention because we find a positive correlation
between IPC and IPC/energy values for 10/11 benchmarks
(values range from 0.8 to 0.99). Note that if the correlation
between two sets of values is between 0.75 and 1, the sets are
considered to be highly correlated. The only exception is Sift
because of the preponderance of SSE instructions.

3) Wallet balance (W), and Loser’s subsidy (L): We ini-
tially assign a wallet balance to every thread, say Wbase, to bid
for their first auction. For the subsequent auctions, this wallet
balance varies depending on whether the thread has won or lost
the last auction. For a winning thread, the new wallet balance
is equal to its utility in the last auction round. Recall that the
utility in a round is the sum of the remaining wallet balance
(savings) and the bonus in that round (see Equation 1). Thus
to maximize the utility, each bidder will want to maximize
its savings to bid higher in the next round (ensuring º), and
will also be tempted to get the bonus amount (ensuring ¹).
The wallet balance of the loser is updated by adding a loser’s
subsidy (L) to its old balance. This prevents starvation in the
long run (ensuring ¸). We formally prove that our algorithm
is theoretically starvation-free in Section VI-E.

D. Auctioning process: The working
We propose to use a hardware structure called an auction

controller and a small region in memory called the pattern
table (PT) to perform the tasks explained in Section VI-C.

1) Auction Controller: An auction is triggered whenever
there is a phase change in some thread or when the thread at
the head of the ready queue waits for more than 10 ms (10 ×
length of a scheduling quantum in Linux). A dedicated unit,
the auction controller performs the auction, and finds a new
task to run on the free core, and sends this information to the
hardware scheduler to schedule the task on the core.

When a thread changes its phase, the core sends a message
to the auction controller via the NoC. This contains the id of
the core (4 bits), the thread id (5 bits), IPC in the last phase
(1 byte in fixed point format), the energy consumed in µJ (4
bytes) in the last phase, and the costs (3∗40 bits). The auction
controller maintains a wallet table that is a 32-entry table that
contains the wallet balance for each thread (starting balance:
Wbase). It gets the list of competing threads from the ready
queue of the core-set. After deducting the scaled cost κC from
the wallet balance W of each competing thread, it reads the
strategy (µ1 . . .µN) from the pattern table (PT), computes the
bids for each bidding thread, and performs the auction. The
winning thread’s wallet balance is updated as per the rules
in Table III. Note that the bonus is credited to the winner’s
account when it goes for auction the next time because of its
dependence on IPC and energy in the previous phase.

2) Pattern Table (PT) for Storing Strategies: Consider the
general problem where we have k threads bidding for a single
core. Each thread would like to maximize its expected utility
(see Equation 1) when (W − F) and B vary according to
predefined distributions (see Section II). Given k pairs of these
distributions for k threads, the aim is to compute the strategy
µ1 . . .µk such that the system reaches a Nash equilibrium. If
there are many equilibria we need to choose the one that
maximizes the aggregate utility.

7

Since this problem is computationally hard, a practical
approach to solve this problem is to store pre-computed
strategies in a lookup table. Indexing this lookup table is non-
trivial because we need to find a way to compactly represent
a pair of distributions. To solve this problem, let us leverage
the fact that we have 4 types of well-defined phases in our
program, and each pair of distributions (W − F and B) is
expected to be very well correlated with the type of the phase
(also established experimentally). We can thus use the 2-bit
phase id as a proxy for the pair of distributions. Hence, in an
example system with 8 bidders, we create a 16-bit (2 bits per
bidder) vector that stores the phases of all the bidding threads.

Ph_id1 Ph_idn μ1 μnR C #n}}

} } }
1-bit 1-bit

3-bits n*8 bits

n*2 bits

rebid
core-type

of bidders

phase ids of n bidders

bidding strategy

Fig. 5: A row of the PT (pattern table)

Default PT New B and W-F
distributions

Collect samples
of B and W-F

New PT

PT creation
 algorithm

 Dist.
converged?

No

Stop

Yes

Fig. 6: Method of generating the PT

We can further generalize this representation by storing one
additional bit (core-type bit) to represent the core type: big
or small. If the thread that was running on a core decides
to rebid immediately, let us store its phase id as the first
phase id. To compute the migration cost correctly we store
one more bit to indicate if the thread that was just running is
rebidding or not (rebid bit). We also need 3 bits to indicate
the number of competing bidders (between 1 to 8). We thus
have a 21-bit vector, which fully describes an 8-bidder system
(see Figure 5). For this system we need to compute the Nash
equilibrium strategy: µ1 . . .µ8. We thus create a table that
stores the strategy for each unique combination of inputs. Even
though we have 21 bits we need not have 221 rows in the
PT. After taking the unique combinations into account, we
calculated the size of the table to be 32 KB.

a) Populating the Pattern Table: To populate each row of
the pattern table, we need to know the distributions of (W−F)
and B for each phase-〈core type〉 combination. Then we can
compute the strategy: µ1 . . .µ8. This is done periodically at
run-time (see Figure 6). We first start with a default PT (µ =
0.5 for all the combinations) and then iteratively arrive at a
stable PT. The steps are as follows: ¶ Collect 1000 samples
of B and (W −F) for each phase-〈core type〉 combination.
· Run the PT creation algorithm (say once a day when the
servers are undergoing routine maintenance) ¸ Check if the
distributions for B and (W −F) converge, else go back to step
¶. The process stops after the distributions converge.

For step ·, we need to find a solution that is at the Nash
equilibrium for each entry of the PT – the computations for
each entry can be done concurrently. We use a variant of a
simple hill climbing based approach where we greedily move
towards a local minima. We start at a random solution S

(µ1 . . .µk), compute its divergence and then keep randomly
perturbing a µ value (keeping other µ values unperturbed) by
0.01 till the divergence stops reducing (local minima). The
divergence V is defined as follows. First, let us define the
utility U j for the jth thread in solution S as per Equation 1.
Let us replace µ j in S with a set of values in (0,1) in steps
of 0.01, and find the largest utility U ′

j (for solution S′). If
U ′

j > U j we set the deviation D j = µ ′j−µ j, else we set it to
0, where µ ′j is the value of µ for the jth bidder in the solution
S′. The divergence V (S) = ∑ j D j; the lower the divergence,
the better it is; it is 0 at a Nash equilibrium. We define the
aggregate utility as the sum of the individual utilities.

We again start at a new random point and repeat the same
process. The solution converges to the Nash equilibrium after
150-200 iterations. Populating the entire PT will take 16
minutes on the simulated asymmetric multicore system, and
collecting all the samples of W −F and B takes less than a
second. We typically require 3 iterations to reach a convergent
distribution. These iterations can be distributed over time to
introduce minimal disruption in a running system.

In most cases, these distributions were well-approximated
as uniform distributions (verified using the KS test [37], our
distribution shows a D-value of 0.15-0.20). Generally, as long
as these distributions can be weakly approximated (0 < D <
0.5) as a uniform distribution, our algorithm gives near-optimal
results (true for most workloads).

E. Starvation

The new wallet balance of the winner thread is as follows.
Wnew = (1−µ)(Wold−F)+B

If Wold � F and Wold � B, then Wnew <Wold because 0 <
µ < 1. This means that there is a wallet threshold τ such that
if Wold > τ , the wallet balance decreases after a thread wins.

We claim that the sum S of wallet balances in a k-thread
system is bounded. If this is true, then we cannot have a
perpetual loser (starvation) because its wallet balance will
approach infinity due to the continuous accumulation of the
loser’s subsidy, L. Hence, assume our hypothesis is false.
Consider a point where S� F , S� B, S� L and ∀i,S� τi.
Here, τi is the wallet threshold for thread i.

There has to be one thread i whose wallet balance is at
least S/k. Either it wins the next bid or another thread, j,
wins the next bid whose balance satisfies the inequality (1−
µ j)Wj > (1−µi)S/k. We ignore F and B here because they are
insignificant. In both cases, the wallet balance of the winning
thread is far greater than the thresholds τi and τ j. Hence, the
sum of balances will decrease by max(µiWi,µ jWj)− (k−1)L.
This is strictly positive because of our assumptions. Thus, we
can choose a value of S above which the sum of balances
will decrease in every round regardless of the winner. Let
this be Sτ . The sum can only exceed this value because of
the bonus and loser’s subsidy in the previous round, which is
bounded by B+(k− 1)L. In the current round, the sum will
again decrease by an amount that is far great than this number.
We can thus claim that the sum of wallet balances is bounded
by Sτ +B+(k−1)L. This proves that we have no perpetual
loser.

8

VII. EVALUATION

We evaluate the workloads on a 16-core system with
moderate loading of 1.25X (25% more threads than cores).
Over-subscription has been used to evaluate the efficacy of
scheduling in prior work [21], [38], because if we have an
excess of resources, there is no need for efficient scheduling.
For all our evaluations, the optimal number of threads for each
multithreaded workload is taken from reference [1]. We have 7
multithreaded benchmarks and 4 single-threaded benchmarks
(Boost, ObjRec, FaceDet, AugRel). The latter are run only as
a part of a bag.

To ensure that all the schemes under consideration are on a
level playing field, we ensure the following: ¶ all the schemes
are scheduled with the same granularity/time quantum, · the
baseline multicore architecture is the same, ¸ all the schemes
are evaluated with over-subscription, ¹ we simulate all the
time and energy overheads, º wherever possible, we augment
the existing schemes to make them better and more suitable
for the vision workloads, » when we use the term energy, it
refers to the energy consumed by the entire system.

A. Performance and ED2

S
p
e
e
d
u
p
 (

%
)

140

120

100

80

60

40

20

0

160

fast
hog

kn
n

orb sif
t

su
rf

sv
m

mean

SLICC AdaMD CAMP COLAB UBA VisSchedBIS

111
124

Fig. 7: Perf. comparison: 20 threads on 16 cores

1) Homogeneous Workloads: We compare the performance
(defined in Section IV-A) of VisSched with six state-of-the-art
scheduling schemes (see Figure 7): SLICC [38], CAMP [6],
BIS [11], UBA [5], AdaMD [4], and COLAB [12]. Table IV
shows the details of competing work. We have also highlighted
(in bold) the augmentations that were done for UBA and BIS
(also see the third column). Note that in general, comparing
any two scheduling schemes is hard because there are multiple
parameters at play. Nevertheless, the following reasons make
our scheme perform well: ¶ we recognize the existence of
distinct phases and their homogeneous behavior across the
workloads in the suite, · we leverage this behavior to propose
an auction theoretic framework, ¸ in most cases our schedule
is near-optimal, ¹ our suite has no clearly identifiable bottle-
necks such as barriers, which are exploited in the competing
works [5], [11], º using a replenishable virtual wallet allows
us to ensure better fairness and get productive mappings.

On an average, we perform 13% better than the best of the
other schemes for a load of 1.25X oversubscription. Figure 7
shows the speedup when 4 instances of the same multi-
threaded workload (4 instances, 5 threads each) are scheduled
on a 16-core system. We need 5 threads to accommodate
4 child and 1 master thread [1]. Let us analyze the two
exceptions: HoG and SVM. The auction results (see Table VII)

for both the benchmarks show that they have the least migra-
tion to auction ratios. This is an artefact of our scheduling
algorithm, which never prefers to keep a core idle, and retains
the previously executing thread even if it has changed its phase
– this leads to an unproductive mapping even though the core
utilization is improved. We see this effect in HoG and SVM,
because the distribution of phases across the threads is very
non-uniform at any given point in time.

Technique Functionality Remarks

SLICC [38] Exploits the similarity of code based No utility metric to exploit
on the i-cache footprints. the asymmetry of cores

CAMP [6] Calculates the utility of every application Utility is not aware of
to schedule on asymmetric cores. the thread behavior

BIS [11] Accelerates bottlenecks. Our
augmentations include accelerating
the longest waiting phases*. Our applications do

UBA [5] Accelerates bottlenecks, and lagging not have clearly
threads with a high utility metric. Our identifiable bottlenecks
augmentations include the acceleration
of phases* with high utility metrics.

AdaMD [4] Accelerates the under-performing Not aware of
threads found using an ML model the thread behavior

COLAB [12] Enqueues the tasks on the basis of their Our applications do
core affinity but schedules them on the not have clearly
basis of bottlenecks identifiable bottlenecks

* Phases in BIS and UBA refer to the phases that we identified in Section IV-B1

TABLE IV: Description of the competing techniques

2) Bag-of-task Workloads:

fas
t

ho
g

kn
n

orb sif
t

su
rf

sv
m

bo
os

t
ob

jre
c

fac
ed

et

au
gre

l

Bag1 X X X X
Bag2 X X X X
Bag3 X X X X
Bag4 X X X X
Bag5 X X X X
Bag6 X X X X X
Bag7 X X X X X X

The first five configurations contain multi-threaded work-
loads (5 threads each) and the last two configurations contain
a mix of multi-threaded and single-threaded workloads in the
bag. Figure 8 shows the performance of a heterogeneous bag-
of-tasks based workload. We outperform the next best tech-
nique (AdaMD) by 17%. Let us analyze a few representative
benchmark specific trends. The only difference in Bag4 and
Bag5 is that Sift is swapped with SVM. However, Bag5 has
a higher speedup (4%) because of the presence of SVM that
has a smaller working set and hence a lesser migration cost.
This gets accounted for in its penalty and hence it migrates at
a faster rate between cores with lesser degradation in IPC as
compared to Sift.

Table V shows the L2 MPKI and L1 hit-rates for all the bags
under different scheduling schemes. The numbers in Table V
and Figure 8 are very well correlated. A high performance is a
consequence of low L2 MPKI and high L1 hit-rate. The only
exception is Bag7. In Bag7, UBA has the lowest L2 MPKI and
is expected to perform well, however it is not able to capture
the locality of data in the L1 cache and has a low L1 hit-rate.
Thus, it performs sub-optimally.

Finally, we compare the ED2 of all the scheduling algo-
rithms for the bag-of-task workloads in Figure 9 and observe
a very good correlation with Figure 8. We achieve 14% lower
ED2 than the closest competing scheme, AdaMD. This is pri-
marily because we optimize for both energy and performance.

9

S
p

e
e
d

u
p

 (
%

)

140

120

100

80

60

40

20

0

Bag1
Bag2

Bag3
Bag4

Bag5
Bag6

Bag7
mean

110
127

SLICC AdaMD CAMP COLAB UBA VisSchedBIS

Fig. 8: Perf. comparison for a bag-of-tasks:20 threads on
16 cores

E
D

^
2

 N
o
rm

a
liz

e
d

2.5

2.0

1.5

1.0

0.5

0.0

Bag1
Bag2

Bag3
Bag4

Bag5
Bag6

Bag7
mean

SLICC AdaMD CAMP COLAB UBA VisSchedBIS

Fig. 9: Normalized ED2 (w.r.t SLICC) for a bag-of-tasks:20
threads on 16 cores

Proposal Bag1 Bag2 Bag3 Bag4 Bag5 Bag6 Bag7
L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1

MPKI hit MPKI hit MPKI hit MPKI hit MPKI hit MPKI hit MPKI hit
rate rate rate rate rate rate rate

SLICC [38] 10.5 89.5 6.86 89 8.32 92.5 9.22 93.46 8.23 94.11 9.44 94.07 9.72 91.86
AdaMD [4] 8.4 91.6 5.23 92.4 4.6 92.8 6.2 94 5.1 95.5 6.49 96 8.12 91.3

BIS [11] 9.55 91.8 4.94 92.6 5.77 94.7 6.43 94.2 5.5 96.07 8.95 94.4 8.89 91.25
CAMP [6] 10.67 90.41 7.27 90.76 7.59 93.23 8.61 94.07 6.95 94.32 8.81 94.14 8.89 91.25

COLAB [12] 9.85 90.13 6.16 90.5 5.67 91.4 7.47 93.3 6.23 94 8.39 93.9 7.83 91.9
UBA [5] 9.52 90.28 5.70 91.64 5.04 92.74 6.32 94.92 5.61 95.89 8.05 94.45 4.78 88.29
VisSched 7.76 92.08 4.5 91.05 4.44 94.14 6.94 95.17 4.95 96.08 7.4 95.21 7.67 91.34

TABLE V: Cache statistics for the bag-of-task workloads

B. Fairness

We use the same fairness metric as used in XChange [13].
First, let us define the slowdown ratio (SR) – ratio of IPCs
of the threads of the same application when run in a bag, and
when run individually. The fairness is defined as SRmin/SRmax
for the threads in a bag (should ideally be 1). Closer is the
fairness to 1, the better it is. As shown in Figure 10, VisSched
has the highest fairness (mean: 0.6); all the other schemes
saturate at 0.49. The primary reason for a good fairness is a
better scheme for managing the bidding capacity (B and L).

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Fa
ir
n
e
ss

0.8

Ba
g1

Ba
g2

Ba
g3

Ba
g4

Ba
g5

Ba
g6

Ba
g7

me
an

SLICC BIS UBACAMP COLAB VisSchedAdaMD

0.6

Fig. 10: Fairness for the bag-of-task workloads

C. Setting the Parameters

We use six constants in our algorithm: Wbase, λ , κ , CB, CL
(CB : CL ratio has already been fixed to 4 based on our ob-
servations from the experiments), and L. One of the constants
has to be set arbitrarily, and the rest have to be calibrated
with respect to it, because in our formulation only the relative
values matter. We use the concept of Nash equilibria to set
these parameters.

We consider these parameters as players and the payoff is
defined in the same way for all the players – the net perfor-
mance of the system. The Nash equilibrium point represents
a stable point where unilaterally changing any parameter does
not lead us to a better performance. In fact we found that this
parameter combination is very stable and deviations in the

values of the parameters gave us a solution where we were
strictly worse off.

D. Other Statistics

1) VHDL Synthesis Results and Area Overheads: The area
overheads for the additional hardware structures are shown in
Table VI. In a typical 200−300mm2 die, the area overhead of
the hardware scheduler is very little: 0.078mm2. The overheads
of the rest of the registers and performance counters are
negligible.

Mapping counters 4*10 bits (4 for φs,φm,φc,φn)
Phase counters (phase prediction) 4*5*20 bits per application

(4 for Si,Mi,Ai, Ii, 5 for history)
Miss-rate shift register 3*40 bits per application (3 for I,L1,L2)
Phase table 4*16 bits (for 16 cores)
Wallet table 32*15 bits (for 32 applications)
ahr 5 bits
Hardware Scheduler 0.078mm2

Tool Cadence RTL Compiler
UMC 14 nm (scaled using [39])

TABLE VI: Area overheads of the hardware structures

Bench- Phase Same phase # bids # core # auctions
mark pred. auctions lost migr-

rate(%) for 1.25X(%) (avg,max) -ations
(1) (2) (3) (4) (5) (6)
Orb 85 25 (4,13) 987 2545
KNN 91 40 (4,21) 1024 3514
Fast 93 26 (4,55) 797 3144
Sift 90 22 (5,33) 322 2633
Surf 92 28 (4,12) 610 2427
SVM 87 12 (2,6) 12 1506
HoG 88 22 (5,37) 161 2564

TABLE VII: Phase prediction, and the auction process for
200M instruction run

2) Phase Characterization and Distributions: The second
column of Table VII shows the phase prediction accuracy for
all the simulated intervals in each benchmark. We predict
the phase using the heuristics shown in Table II, and then
compare it with the phase obtained by finding the cluster that
an interval belongs to (based on its instruction mix). Recall

10

N1

N2

Fig. 11: Search space for 2 bidders

P1

Fig. 12: Constrained search space
for 4 bidders

0.8 0.85 0.90 0.95 1.00 1.05 1.10

0.85

0.90

0.95

1.00

N
o
rm

a
liz

e
d
 p

e
rf

o
rm

a
n
ce

Normalized ED^2

14sc

15sc

13sc

12sc

10sc

7sc
5sc

6sc

0sc

1sc

3sc
4sc

8sc

9sc

11sc

2sc

Fig. 13: Sensitivity of VisSched w.r.t/
bid and small core counts

that we characterized clusters based on the instruction mix,
and finding the membership of an interval is tantamount to
finding the cluster that has the closest instruction mix. The
phase prediction accuracy ranges from 85-93%.

3) Results for Hill Climbing: Now as discussed in Sec-
tion II, for the case of k symmetric bidders (same phase)
a unique Nash equilibrium exists, and the bids are a linear
function (PB bids) of the wallet balance. We find that in
roughly 20-40% of the cases (column (3) in Table VII) we
have this case. In these cases, we can compute the optimal
solution analytically (µ = (k− 1)/k), and hill climbing need
not be used. For the general case of asymmetric bidders, let
us characterize the search space.

A greedy algorithm like hill climbing always reaches the
global minima if the surface of the search space is convex. A
convex surface has a positive second derivative. Alternatively
a function f is convex if for all points x1 and x2 in its domain,
and ∀λ ∈ (0,1): f (λx1 +(1−λ)x2)≤ λ f (x1)+(1−λ) f (x2).
Let the LHS be η1 and the RHS be η2; we can treat the
ratio ω = (η1−η2)/η1 as a measure of the non-convexity of
a point. For example, the inner surface of a cup is a convex
surface; however, if there is a small bump, then the surface is
non-convex at that point.

Figure 11 shows a plot of the divergence (defined in
Section VI-D2) for different values of µ1 and µ2 (2 asymm.
bidders). We can quickly conclude the following: ¶There
exists a Nash equilibrium at N1(0.52,0.37), ·there is one more
local minima at N2 (0.02,0.02), which is trivial and should be
ignored, and ¸the surface is mostly convex with some bumps
(zoomed in for the case of 4 bidders in Figure 12, each point
contains the best configuration for all values of (µ3,µ4)).

We performed Monte Carlo simulations with all our distri-
butions and never found the non-convexity ratio(ω) to be more
than 5.6%, and the bumps are localized, which means that even
the most randomized hill climbing searches can route around
such points, and are expected to reach the global minima.
We compared our hill climbing results with values obtained
from exhaustive simulations (4-bidders), we reached the global
minima 90-95% of the time.

4) Auction Process: Columns (4), (5), and (6) in Table VII
show the number of bids lost, core migrations and auctions
in a sample 200 million-instruction run. An auction happens
roughly once every 100k cycles, the probability of a core
migration is around 25% per auction. Whenever an auction
happens, we have on average 2-5 bidders (in 1.25X threads to
core ratio), and because we do not have starvation, the number

of times a thread can lose an auction is bounded (6-55 times).

E. Justification for the Mix of Cores

Normalized energy

0.975

1.000

1.025

1.050

1.075

1.110

N
o
rm

a
liz

e
d
 s

lo
w

d
o
w

n

Pareto curve

1.150

1.125 3.0

2.5

2.0

1.5

1.0

1fc

2fc

3fc

4fc

5fc

6fc

8fc

9fc

7fc
10fc

11fc

12fc

13fc 15fc
14fc

0.75 0.80 0.85 0.90 0.95 1.00

1fc

CAMP UBA

12fc

2fc

15fc

3fc

4fc

5fc 14fc 13fc
8fc 10fc

11fc
6fc

7fc

9fc

N
o
rm

a
liz

e
d
 s

lo
w

d
o
w

n

Normalized energy

Pareto curve

0.6 0.7 0.8 0.9 1.0

Fig. 14: Energy vs slowdown for different combinations of
fast (fc) and slow cores (sc) (normalized to 16fc)

Figure 14 shows a slowdown vs energy plot for all possible
mix of cores (fc→ fast core, and sc→ slow core) in a 16-core
asymmetric multicore system with 1.25X oversubscription for
two scheduling schemes across the spectrum: UBA and CAMP.
Note that in the figure we only show the number of fast cores
to improve readability, e.g, 5fc means that we have 11 slow
cores as well. The dashed line is a Pareto-optimal front. A
configuration is said to be Pareto optimal if there is no other
configuration that uses lower energy for the same slowdown,
or has a lower slowdown for the same energy, or both. For
both the plots we computed an intersection between the Pareto
optimal sets and found two configurations: (6fc,10sc) and
(4fc,12sc). We chose (6fc,10sc) because of its lower slowdown.

F. Sensitivity to the Big and Small Core Counts

We have shown the sensitivity results for big/small core
counts in Figure 13. A small core is denoted by sc and a big
core is denoted by fc. The Pareto-optimal front is shown in
the figure. Any point towards the top-left is a “good point”. It
has a high performance and a low ED2. The point closest to
the top-left is the (10sc,6fc) combination that we have chosen.

G. Extending VisSched to include DVFS

We extended our scheme to incorporate basic DVFS mech-
anism with two V-f levels (similar to [40]) – (1.5 GHz, 0.9
V) and (3.1 GHz, 1.25V) [41]. Our scheme can be very easily
extended to also incorporate other DVFS techniques and more
DVFS settings.

11

S
p

e
e
d

u
p

 (
%

)

No constraint Power_cnst2Power_cnst1

100

80

60

40

20

0

fast hog
orbknn

sif
t

su
rf

sv
m

mean

Fig. 15: Perf. comparison of VisS-
ched with DVFS under different
power constraints

180

 Bag1
 Bag2

 Bag3
 Bag4

 B
ag5

 Bag6
 m

ean

160
140

120

100
80

60

40

20
0

S
p
e
e
d
u
p
 (

%
)

BIS_accel UBA_accel VisSched_accel

Fig. 16: Perf. comparison of VisS-
ched with state-of-the-art (accelera-
tor included in all the schemes)

S
p

e
e
d

u
p

 (
%

)

250

200

150

100

50

0

Disp
ar

ity

Lo
ca

liz
at

io
n

M
ot

io
nE

st
.

M
SE

R

Pa
th

Pl
an

.

PC
A

RBM

Im
gS

eg
m

en
t.

Sp
ee

ch
Re

c.

Im
gS

tit
ch

Te
xt

ur
eS

yn
th

.

Tr
ac

ki
ng

m
ea

n

156

196

AdaMDCOLAB VisSched

Fig. 17: Performance of Cortexsuite [3]
and self-driving applications: 20 threads
on 16 cores

The quintessential use of DVFS is as follows. We define
a power constraint for each thread. The threads are regu-
larly monitored (every 100,000 cycles): if a thread’s power
consumption is 33% lower than the power constraint and
there exists a higher voltage-frequency level, the underlying
core may switch to that level. Similarly, if a thread’s power
consumption violates (exceeds) the power constraint, it is
switched to a lower DVFS setting. This is the conventional
mechanism; it needs to be modified in our case. The aim is to
maximize performance subject to a power constraint.

Since the scheduling granularity in VisSched is 100,000
cycles (≈ 30µs), which is similar to the time required to
switch between two DVFS levels, it is inefficient to perform
a voltage-frequency change on every context switch. Hence,
we add a constraint that the thread should have executed on
the same core for at least three consecutive phases before we
change the V-f level (DVFS setting). Second, while bidding
we incorporate a cost that is proportional to the difference in
the two frequencies – current frequency of the core that we are
bidding for, and the last safe frequency (at which the power
constraint was not violated) for the thread for the given core
type. If the cost is 0, then it means that we do not need to
change the DVFS settings (this is desirable).

In Figure 15, the first bar corresponds to the default case
(no power constraint). We consider two power constraints –
Power cnst1 and Power cnst2 – per thread. All the workloads
run at the higher setting to begin with. Power cnst1 corre-
sponds to roughly 2W per thread and is a tighter constraint
than Power cnst2 that corresponds to roughly 4W per thread.
We achieve a performance degradation of 24% at 2W and 19%
at 4W as compared to an unconstrained system. Table VIII
shows the percentage of the number of times the power
constraints are violated (averaged across all the threads). In
all such cases we transition to the lower setting. This ensures
that the overall power consumption of a thread across any
substantial window of time (> million cycles) is within the
power constraint (also experimentally verified). In almost
all DVFS schemes such transient violations in the power
constraint do occur and that is why we need to transition to a
lower DVFS setting.

H. Extending VisSched to include a LACore accelerator

The easiest way to incorporate a custom hardware in VisS-
ched is to allow the SSE phases to run on custom accelerators.

Benchmark %Violation %Violation Linear algebra
at 2W at 4W kernel

Fast 24 8.7 convolution
HoG 20 14 vector add.
KNN 15 4.6 vector add.
Orb 24.1 9.27 convolution
Sift 12 7.52 vector mult.
Surf 25 13 vector operations
SVM 6.38 2.9 dot product

TABLE VIII: Average number of violations of the power
constraint and the linear algebra kernels

This is a valid approach because the SSE phases capture the
dominance of vector instructions, which are typically a part
of linear algebra kernels. We assume an accelerator similar to
LACore [42] (linear algebra core) that is reported to achieve a
3.43X speedup over optimized x86 code for general purpose
linear algebra kernels. We incorporate such an accelerator in
our system (parameters taken from the original paper and
appropriately scaled for the 14 nm technology node). We
map the linear algebra kernels (shown in fourth column of
Table VIII) to the accelerator.

Figure 16 shows the performance improvement of VisSched
with the accelerator over UBA and BIS (with the accelerators).
We did not have to modify the bidding scheme in VisSched to
incorporate such accelerators. We modeled the accelerator as a
specialized core in UBA and BIS with its unique features. We
achieved a 36% improvement over the next best scheme, BIS
(with the accelerator). The reasons for outperforming UBA and
BIS in this case are the same as the scenarios in which we
did not have such an accelerator – more productive mapping
of tasks, and a holistic view.

I. Generality of the Scheme

We show that our contributions are not simply limited
to the MEVBench suite of benchmarks. We compare our
scheme with two recent schemes, AdaMD and COLAB, for
Cortexsuite [3] and self-driving applications [2]. Figure 17
shows that we achieve nearly 40% performance improvement
over the next best scheme, AdaMD. We also achieve 38%
ED2 improvement over AdaMD (not shown due to lack of
space)”. This improvement is more than MEVBench because
of the presence of more same-phase auctions (40-60%) in the
Cortexsuite workloads.

12

VIII. CONCLUSION

In this paper we propose a generic architectural solution
called VisSched that leverages the phase behavior of vision
workloads to create an auction theory based scheduling mech-
anism. For 20-40% of the cases, all the bidders are in the
same phase, and thus the PB bids are optimal. For the rest
of the cases, which involve asymmetric bidders, we show that
the search space is nearly convex and that a non-trivial Nash
equilibrium exists. Nevertheless, the Nash equilibrium in that
scenario is at least a locally optimal solution, which we are
able to find 90-95% of the time, and our experiments show
that they yield good results. Our auction framework provides
a higher degree of fairness than competing mechanisms, and
at the same time delivers both an increase in performance
(17%) and a decrease in ED2 (14%). We also show that DVFS
schemes and the accelerators can be incorporated trivially in
our framework without any significant changes to the auction
process.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers
for their valuable comments. They thank Sudhanshu Gupta of
University of Rochester for helping with the characterization
experiments. They thank Dr. Rajshekar Kalayappan of IIT
Dharwad and Priyanka Singla of IIT Delhi for helping with
the Tejas simulator and providing feedback on various parts
of the paper.

REFERENCES

[1] J. Clemons, H. Zhu, S. Savarese, and T. Austin, “Mevbench: A mobile
computer vision benchmarking suite,” in Proc. IEEE Int. Symp. on
Workload Characterization (IISWC), 2011, pp. 91–102.

[2] Y. Wang, S. Liu, X. Wu, and W. Shi, “Cavbench: A benchmark suite
for connected and autonomous vehicles,” in Proc. IEEE/ACM Symp. on
Edge Computing (SEC), 2018, pp. 30–42.

[3] S. Thomas, C. Gohkale, E. Tanuwidjaja, T. Chong, D. Lau, S. Garcia,
and M. B. Taylor, “Cortexsuite: A synthetic brain benchmark suite,” in
Proc. IEEE Int. Symp. on Workload Characterization (IISWC), 2014,
pp. 76–79.

[4] K. R. Basireddy, A. K. Singh, B. M. Al-Hashimi, and G. V. Merrett,
“Adamd: Adaptive mapping and dvfs for energy-efficient heterogeneous
multi-cores,” Proc. IEEE Trans. on Computer-Aided Design of Inte-
grated Circuits and Systems, 2019.

[5] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, “Utility-based
acceleration of multithreaded applications on asymmetric cmps,” ACM
SIGARCH Computer Architecture News, vol. 41, no. 3, pp. 154–165,
2013.

[6] J. C. Saez, M. Prieto, A. Fedorova, and S. Blagodurov, “A comprehensive
scheduler for asymmetric multicore systems,” in Proceedings of the 5th
European conference on Computer systems. ACM, 2010.

[7] M. J. Osborne and A. Rubinstein, A course in game theory. MIT press,
1994.

[8] A.-H. Mohsenian-Rad, V. W. Wong, J. Jatskevich, and R. Schober, “Op-
timal and autonomous incentive-based energy consumption scheduling
algorithm for smart grid,” Innovative smart grid technologies (ISGT),
pp. 1–6, 2010.

[9] D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in heterogeneous
multi-core architectures,” in Proc. ACM 5th European conference on
Computer systems, 2010, pp. 125–138.

[10] D. Shelepov, J. C. Saez Alcaide, S. Jeffery, A. Fedorova, N. Perez,
Z. F. Huang, S. Blagodurov, and V. Kumar, “Hass: a scheduler for
heterogeneous multicore systems,” ACM SIGOPS Operating Systems
Review, vol. 43, no. 2, pp. 66–75, 2009.

[11] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, “Bottleneck identi-
fication and scheduling in multithreaded applications,” ACM SIGARCH
Computer Architecture News, vol. 40, no. 1, pp. 223–234, 2012.

[12] T. Yu, P. Petoumenos, V. Janjic, H. Leather, and J. Thomson, “Colab:
a collaborative multi-factor scheduler for asymmetric multicore proces-
sors,” in Proc. ACM/IEEE 18th Int. Symp. on Code Generation and
Optimization, 2020, pp. 268–279.

[13] X. Wang and J. F. Martı́nez, “Xchange: A market-based approach to
scalable dynamic multi-resource allocation in multicore architectures,” in
Proc. IEEE 21st Int. Symp. on High Performance Computer Architecture
(HPCA), 2015.

[14] M. Guevara, B. Lubin, and B. C. Lee, “Navigating heterogeneous
processors with market mechanisms,” in Proc. IEEE Int. Symp. on High
Perf. Computer Architecture (HPCA), 2013, pp. 95–106.

[15] D. Pereira, A. Ilic, and L. Sousa, “On boosting energy-efficiency
of heterogeneous embedded systems via game theory,” in Proc. 8th
Workshop and 6th Workshop on Parallel Programming and Run-Time
Management Techniques for Many-core Architectures and Design Tools
and Architectures for Multicore Embedded Computing Platforms, 2017,
pp. 19–24.

[16] J. Tang, C. Zeng, and Z. Pan, “Auction-based cooperation mechanism
to parts scheduling for flexible job shop with inter-cells,” Applied Soft
Computing, vol. 49, pp. 590–602, 2016.

[17] C. Zeng, J. Tang, Z. Fan, and C. Yan, “Auction-based approach for
a flexible job-shop scheduling problem with multiple process plans,”
Engineering Optimization, vol. 51, no. 11, pp. 1902–1919, 2019.

[18] Y. Bukchin and E. Hanany, “Decentralization cost in two-machine job-
shop scheduling with minimum flow-time objective,” IISE Transactions,
vol. 52, pp. 1–17, 2020.

[19] L. Liang, Y. Wu, G. Feng, X. Jian, and Y. Jia, “Online auction-
based resource allocation for service-oriented network slicing,” IEEE
Transactions on Vehicular Technology, vol. 68, no. 8, pp. 8063–8074,
2019.

[20] L. Ding, L. Chang, and L. Wang, “Online auction-based resource
scheduling in grid computing networks,” Int. Journal of Distributed
Sensor Networks, vol. 12, no. 10, pp. 1–12, 2016.

[21] P. Kallurkar and S. R. Sarangi, “Schedtask: a hardware-assisted task
scheduler,” in Proc. 50th Annual IEEE/ACM Int. Symp. on Microarchi-
tecture, 2017, pp. 612–624.

[22] S. R. Sarangi, R. Kalayappan, P. Kallurkar, S. Goel, and E. Peter, “Tejas:
A java based versatile micro-architectural simulator,” in Proc. 25th Int.
Workshop on Power and Timing Modeling, Optimization and Simulation
(PATMOS), 2015, pp. 47–54.

[23] D. Shelepov and A. Fedorova, “Scheduling on heterogeneous multicore
processors using architectural signatures,” in Proc. Workshop on the
Interaction between Operating Systems and Computer Architecture,
2008, pp. 21–25.

[24] R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanovic, and J. Kubiatowicz,
“Tessellation: Space-time partitioning in a manycore client os,” in Proc.
1st USENIX conference on Hot topics in parallelism, 2009, pp. 10–10.

[25] D. Gregorek, J. Rust, and A. Garcia-Ortiz, “Dracon: A dedicated
hardware infrastructure for scalable run-time management on many-core
systems,” IEEE Access, vol. 7, pp. 121 931–121 948, 2019.

[26] M. Vetromille, L. Ost, C. A. Marcon, C. Reif, and F. Hessel, “Rtos
scheduler implementation in hardware and software for real time appli-
cations,” in Proc. IEEE 17th Int. Workshop on Rapid System Prototyping
(RSP’06), 2006, pp. 163–168.

[27] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance impact
estimation (pie),” in Proc. 39th Annual Int. Symp. on Computer Ar-
chitecture (ISCA), 2012, pp. 213–224.

[28] X. Tan, J. Bosch, D. Jiménez-González, C. Álvarez-Martı́nez,
E. Ayguadé, and M. Valero, “Performance analysis of a hardware accel-
erator of dependence management for task-based dataflow programming
models,” in Proc. IEEE Int. Symp. on Perf. Analysis of Systems and
Software (ISPASS), 2016, pp. 225–234.

[29] S. Kumar, C. J. Hughes, and A. Nguyen, “Carbon: architectural support
for fine-grained parallelism on chip multiprocessors,” ACM SIGARCH
Computer Architecture News, vol. 35, no. 2, pp. 162–173, 2007.

[30] D. Sanchez, R. M. Yoo, and C. Kozyrakis, “Flexible architectural support
for fine-grain scheduling,” ACM SIGARCH Computer Architecture News,
vol. 38, no. 1, pp. 311–322, 2010.

[31] C. Li, C. Ding, and K. Shen, “Quantifying the cost of context switch,”
in Proc. Workshop on Experimental Computer Science, 2007.

[32] J. Lee, C. Nicopoulos, H. G. Lee, S. Panth, S. K. Lim, and J. Kim,
“Isonet: Hardware-based job queue management for many-core archi-
tectures,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems,
vol. 21, no. 6, pp. 1080–1093, 2012.

[33] D. Gregorek, C. Osewold, and A. Garcia-Ortiz, “A scalable hardware
implementation of a best-effort scheduler for multicore processors,” in

13

Proc. IEEE Euromicro Conference on Digital System Design, 2013, pp.
721–727.

[34] J. C. Mogul, J. Mudigonda, N. Binkert, P. Ranganathan, and V. Tal-
war, “Using asymmetric single-isa cmps to save energy on operating
systems,” IEEE Micro, vol. 28, no. 3, pp. 26–41, 2008.

[35] F. Afram, Dynamic core splitting for improving energy efficiency. State
University of New York at Binghamton, 2010.

[36] M. Malik and H. Homayoun, “Big data on low power cores: Are low
power embedded processors a good fit for the big data workloads?”
in Proc. 33rd IEEE Int. Conf. on computer design (ICCD), 2015, pp.
379–382.

[37] H. Hassani and E. S. Silva, “A kolmogorov-smirnov based test for com-
paring the predictive accuracy of two sets of forecasts,” Econometrics,
vol. 3, no. 3, pp. 590–609, 2015.

[38] I. Atta, P. Tözün, A. Ailamaki, and A. Moshovos, “Slicc: Self-assembly
of instruction cache collectives for oltp workloads,” in Proc. 45th Annual
IEEE/ACM Int. Symp. on Microarchitecture, 2012, pp. 188–198.

[39] W. Huang, K. Rajamani, M. R. Stan, and K. Skadron, “Scaling with
design constraints: Predicting the future of big chips,” IEEE Micro,

Diksha Moolchandani received a bachelor’s degree
in electronics and communication engineering from
Indian Institute of Information Technology Jabalpur,
Jabalpur, Madhya Pradesh, India.

She is currently a Research Scholar with the
School of IT, Indian Institute of Technology Delhi,
New Delhi, India. Her current research interests
include architectures for computer vision, hardware
design, and neural network accelerators. She is a
student member of the IEEE.

Anshul Kumar received the Ph.D. degree in Com-
puter Aided Design of Digital Systems from Indian
Institute of Technology Delhi, New Delhi, India
and is currently an Emeritus Professor with the
Computer Science and Engineering Department at
IIT Delhi. He has held visiting appointments at
USC, University of Edinburgh, KTH Stockholm, and
EPFL.

Prof. Kumar’s current research interests are VLSI
synthesis, embedded systems design methodology
and high performance computer architectures and

he has published more than 100 research papers in reputed journals and
proceedings of refereed international conferences. He has been a consultant
to Gateway Design Automation (now Cadence Design Systems), Technology
Parks Ltd, ST Microelectronics and Poseidon Design Systems. Prof. Kumar
has been associated with the annual International Conference on VLSI Design
since its inception in 1985 and has served as its General Co-Chair in 2009.

Prof. Kumar co-founded the start-up company called Kritikal Solutions
and served as its Hon. Chairman, Hon. Director and Mentor. He serves as
the Technical Advisory Board Member of a start-up company VirtuQ. He
received the ACM Transaction on Design Automation of Electronic Systems
(TODAES) 2007 Best Paper Award.

vol. 31, no. 4, pp. 16–29, 2011.
[40] E. Castillo, M. Moreto, M. Casas, L. Alvarez, E. Vallejo, K. Chronaki,

R. Badia, J. L. Bosque, R. Beivide, E. Ayguade et al., “Cata: criticality
aware task acceleration for multicore processors,” in Proc. IEEE Int.
Parallel and Distributed Processing Symp. (IPDPS), 2016, pp. 413–422.

[41] M. Nejat, M. Manivannan, M. Pericàs, and P. Stenström, “Coordinated
management of dvfs and cache partitioning under qos constraints to
save energy in multi-core systems,” Journal of Parallel and Distributed
Computing, 2020.

[42] S. Steffl and S. Reda, “Lacore: A supercomputing-like linear algebra
accelerator for soc-based designs,” in Proc. IEEE Int. Conf. on Computer
Design (ICCD), 2017, pp. 137–144.

José F. Martı́nez received a bachelor’s degree from
the Universidad Politécnica de Valencia, and MS and
PhD degrees in computer science from the Univer-
sity of Illinois at Urbana-Champaign. He is currently
Professor of Electrical and Computer Engineering
and Associate Dean for Diversity and Academic
Affairs in the College of Engineering at Cornell
University, Assistant Director for the DARPA/SRC
Center for Research in Intelligent Storage and Pro-
cessing in Memory (CRISP).

Prof. Martı́nez was a recipient of two IEEE Micro
Top Picks papers a HPCA Best Paper award, MICRO and HPCA Best Paper
nominations, an NSF CAREER award, two IBM Faculty awards, and one
of the inaugural Distinguished Educator awards by the Computer Science
Department of the University of Illinois at Urbana-Champaign.

Prof. Martı́nez currently serves as an elected member of ACM SIGARCH’s
Board of Directors, and as General Co-chair of ISCA 2021. Previously, he
served as Chair of the IEEE Computer Society’s Transactions Operating
Committee (2017), as Editor in Chief of IEEE Computer Architecture Letters
(2013-2016), as Program Co-chair of MICRO 2009, Program Chair of HPCA
2016, and General Co-chair of ISCA 2020. He is a Senior Member of the
IEEE.

Smruti R. Sarangi (M’16) received the B.Tech.
degree in computer science from the Indian Institute
of Technology Kharagpur, Kharagpur, India, and
the M.S. and Ph.D. degrees from the University
of Illinois at UrbanaChampaign, Champaign, IL,
USA.

He is currently an Usha Hasteer Chair Professor
with the Computer Science and Engineering Depart-
ment, Indian Institute of Technology Delhi, New
Delhi, India, where he holds a joint appointment
with the Department of ELectrical Engineering and

the School of Information Technology. He has published extensively in peer
reviewed conferences and journals, holds 5 U.S. patents, and has filed 3
Indian patents. He has authored the popular undergraduate textbook on com-
puter architecture entitled Computer Organisation and Architecture (McGraw-
Hill). His current research interests include processor reliability, architectural
support for operating systems, and processors for the Internet of Things. Dr.
Sarangi is a member of the ACM and IEEE.

	Introduction
	Scope of our Work
	Contributions

	Auction-Based Scheduling
	Overview
	Nash Equilibria
	Auction Theoretic Principles

	Related Work
	Scheduling on Heterogeneous Cores
	Market Mechanisms for Scheduling of Heterogeneous Tasks
	Auction Theory for Job-shop and Network Scheduling

	Characterization of Workloads
	Experimental Setup
	Characterization of the MEVBench Suite
	Phase Behavior

	Design
	Implementation
	Mapping the Set of Cores to Phases: Steps ❶, ❷ and ❼
	Predicting the Phase of the Next Interval: Step ❸
	Auctioning process: : Steps ❹ and ❺
	The Auctioneer's Fee (F)
	Bonus: IPC vs IPC/Energy
	Wallet balance (W), and Loser's subsidy (L)

	Auctioning process: The working
	Auction Controller
	Pattern Table (PT) for Storing Strategies

	Starvation

	Evaluation
	Performance and ED2
	Homogeneous Workloads
	Bag-of-task Workloads

	Fairness
	Setting the Parameters
	Other Statistics
	VHDL Synthesis Results and Area Overheads
	Phase Characterization and Distributions
	Results for Hill Climbing
	Auction Process

	Justification for the Mix of Cores
	Sensitivity to the Big and Small Core Counts
	Extending VisSched to include DVFS
	Extending VisSched to include a LACore accelerator
	Generality of the Scheme

	Conclusion
	References
	Biographies
	Diksha Moolchandani
	Anshul Kumar
	José F. Martínez
	Smruti R. Sarangi

