
Virtual Base Station Pool: Towards A Wireless Network
Cloud for Radio Access Networks

ZhenBo Zhu
IBM Research China

Beijing, China
zhuzb@cn.ibm.com

Qing Wang
IBM Research China

Beijing, China
wangqing@cn.ibm.com

Yonghua Lin
IBM Research China

Beijing, China
linyh@cn.ibm.com

Parul Gupta
IBM Research India

Bangalore, India
parulgupta@in.ibm.com

Shivkumar
Kalyanaraman

IBM Research India
Bangalore, India

shivkumar-k@in.ibm.com

Hubertus Franke
IBM Research US

Yorktown Heights, NY, USA
frankeh@us.ibm.com

ABSTRACT
The mobile Internet has seen tremendous progress due to the
standardization efforts around WiMAX, LTE and beyond.
There are also early trends towards adoption of software ra-
dio and a growing presence of general purpose platforms
in wireless networking. Such platforms are programmer-
friendly and with recent advances on multi-core and hy-
brid architectures, allow signal processing, network proces-
sor class packet processing, wire-speed computation and ser-
ver-class virtualization capabilities for software radio realiza-
tions of 3G and 4G wireless stacks. Software radio over IT
platforms will enable the virtualization of base stations and
consolidation of virtual base stations into central pools (a
local “cloud site”) with fiber connectivity to towers, which
we call a Wireless Network Cloud (WNC). A Virtual base
station (BS) pool supporting multiple BS software instances
over a general OS and IT platform is an important step to-
wards the realization of the larger WNC concept. This paper
introduces the first TDD WiMAX SDR BS implemented on
a commodity server, in conjunction with a novel design of
a remote radio head (RRH). We also present the first work-
ing prototype of a virtual BS (VBS) pool, exploring the
systems challenges in supporting a VBS pool on multi-core
IT platforms. The results from our VBS pool prototype for
WiMAX verify that these solutions can meet system require-
ments including synchronization, latency and jitter.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless Com-
munication

General Terms
Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’10, May 17–19, 2010, Bertinoro, Italy.
Copyright 2010 ACM 978-1-4503-0044-5/10/05 ...$10.00.

Keywords
Wireless network cloud, virtual base station

1. INTRODUCTION
Wireless network infrastructures (e.g. base stations, gate-

ways) and telecom IT infrastructures, like data centers, bil-
ling servers, service delivery platform middlewares, have tra-
ditionally not intersected. However, in other networking
contexts, IT platforms have recently been considered to re-
place custom platforms that are based on FPGAs, DSPs etc.
For instance, soft-switches in telephony and control-plane
processing in data networking (eg: routing and signaling)
have been consolidated in blade server computational plat-
forms [1][2][3], while data-plane packet processing is per-
formed on network processors. Similar trends are emerg-
ing in 4G wireless where the control plane elements like the
Mobility Management Entity (MME), Policy and Charging
Rules Function (PCRF) etc will be supported on general
purpose servers, traditionally used for IT applications.

Software Radio offers the opportunity for the MAC and
PHY layers in wireless network stacks to be consolidated on
multi-core servers that offer rich programming environments
and a large community of developers. Specifically, large-
volume, low-unit cost hybrid IT systems will offer multi-
cores, massive multi-threading, sufficient I/O throughput
and accelerators for signal processing to meet the require-
ments of such mixed-mode workloads. We expect these key
capabilities and accelerators to become integrated a single
System-on-Chip (SoC) processor. Equally important, with
IT systems increasingly providing capabilities for virtualiza-
tion, we can realize concepts such as virtual base stations
and allow the support of multiple virtual operators on com-
mon infrastructures with robust isolation support. However,
realizing software radio on these platforms involves shifts in
programming styles: using massive parallelism while ensur-
ing real-time performance, tackling issues of OS and non-OS
jitter, and leveraging accelerators.

Though backhaul from base stations to the core is ex-
pected to remain a constraint in several geographies, the
long-term solution to backhaul capacity demand is to lay
fiber or provide metro-ethernet capacity to towers. The com-
bination of fiber-to-towers and virtualization via software
radio allows a more radical deployment approach: physi-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2016604.2016646&domain=pdf&date_stamp=2011-05-03

Figure 1: Wireless Network Cloud

cally unbundle the base stations into virtual base stations
(VBS) implemented on IT platforms, pooling them at lo-
cal “cloud” sites and connect them to shared Remote Radio
Heads (RRH) attached to the towers.

This new network architecture for next-generation wire-
less access networks, called the wireless network cloud (WNC)
was proposed in [4], and is also illustrated in Figure 1. As
described in [4], WNC supports (a) multiple wireless stan-
dards over a low cost platform, (b) mobile virtual network
operator (MVNO) network-sharing models, and (c) integra-
tion of both the service plane along with the wireless data-
and control-planes for workload balancing in different dis-
tricts. Ultimately this increases system resource utilization
and decreases capital investment requirements. The lead-
ing operator in China, China Mobile, also has articulated a
similar C-RAN vision from an operator perspective [5], not-
ing that a ”cloud” infrastructure to support the RAN could
reduce costs for operators.

We envision a three-step migration from the traditional
view of software radio to the concept of a wireless network
cloud:

Step 1 : Single BS implemented on an IT platform.
Step 2 : A Virtual base station pool supporting multiple

software BS instances over an IT platform without addi-
tional hypervisor and VM support.

Step 3 : Wireless network cloud built with a large scale
VBS pool (with hypervisor and VM support), and with
capabilities to deliver elasticity of service provisioning and
pricing to users and operators.

The first two steps are the focus of this paper where we
enable single and multiple SDR VBS instances over an IT
platform to meet strict real-time and latency requirements
necessary for the wireless system. We present the first ex-
perimental proof point of the VBS pool on an IT platform.
This paper’s contributions are in the following areas:

• The first realization of virtual base stations that can be
mapped flexibly onto pools of underlying IT platforms
while meeting real-time constraints.

• Analysis of the performance constraints of PHY and
MAC layers respectively and optimization of VBS per-
formance to meet the stringent real-time requirements
of jitter, latency etc.

• The first demonstration of an ERRH based WiMAX
BS prototype with MAC and PHY stacks running on
a commodity server, running test workloads comprised
of simultaneous web-browsing, video and VoIP ses-
sions, and support for timing on both the uplink (UL)
and downlink (DL), as required in a TDD WiMAX BS.

Though this paper also assumes an Ethernet-Based
Remote Radio Header (ERRH) that enables the SDR
BS concept over an IT platform, we do not elaborate
on this entity in this paper. We plan to describe the
a novel Time Division Duplex (TDD) method under-
lying the design and implemenation of the ERRH in a
separate paper.

Beyond the concept of VBS pools, the wireless network
cloud allows elastic capacity provisioning, faster mobility
management, novel interference management and coopera-
tive MIMO techniques to be used. Some of these techniques
are practically infeasible with the standard basestations-on-
towers architecture (and the proprietary DSP/FPGA de-
signs) due to the latencies and overheads involved in coor-
dination[6]. In future work, we will support these features
that become possible due to the proximity of virtual base
stations in the wireless network cloud architecture.

The rest of the paper is organized as follows. Section
II presents the proposed structure of VBS pool and high-
lights the system design challenges. Section III presents our
VBS pool prototype design along with the ERRH design.
Section IV dives deeper into the individual components and
describes the chosen design for each. Section V presents per-
formance evaluation of the VBS pool prototype at the com-
ponent level and the End to End system level and Section
VI describes a DEMO application system over our VBS pool
prototype running a mixed workload. Section VII presents
related work and Section VIII concludes the paper.

2. VIRTUAL BASE STATION POOL STRUC-
TURE AND CHALLENGES

This section describes the virtual base station pool struc-
ture and important system challenges in implementing this
concept on IT platforms. Subsequent sections describe so-
lutions to these issues.

2.1 Virtual Base Station Pool Structure
Figure 2 shows the structure of a virtual base station pool.

It consists of three parts: remote radio head (RRH), the
physical processing nodes and networks, and virtual base
station (VBS) instances.

In our proposed architecture, the novel ERRH is used.
RRHs deployed in the market today transmit the digitized
waveforms to the base station through an interface such as
Common Public Radio Interface (CPRI) [7] or Open Base
Station Architecture Initiative (OBSAI) [8]. These are es-
sentially customized layer 2 protocols running over a time-
division multiplexing (TDM) link. A general-purpose IT
platform will not have TDM interfaces and hence will re-
quire additional hardware design to interconnect with cur-
rent RRHs. Further, these protocol designs only support
point-to-point, point-to-multipoint and chain topologies[7],
whereas our new ERRH can leverage the rich switched metro
Ethernet topologies available on the market. The ERRH de-
vices deployed on towers are connected to the virtual base

Figure 2: Structure of VBS pool

station pool via 1 Gigabit Ethernet (GbE) or 10 GbE links
over optical fibers. More generally, we propose to have a
group of RRHs connected to a group of VBSes (in a pool)
via a switched metro Ethernet network for higher availabil-
ity, and for dynamic workload allocation. Compared with
frequency division duplex (FDD) mode, in order to work
with TDD-mode selected in this paper, RRHs will have to
overcome higher challenges on timing control and synchro-
nization. The high level architecture of VBS pool could
also support the traditional TDM RRHs, but it needs extra
hardware component (e.g. PCIe adaptor card) to convert
the CPRI/OBSAI interface to PCIe data, which is not the
focus of this paper.

The VBS pool operates over a set of IT servers with multi-
core general purpose processors (GPP). A hybrid processing
pool can be made available to match the workload of base
station stack components. For example, Intel x86 and IBM
POWER processors are well matched to the computation -
intensive portions such as the physical (PHY) layer. Proces-
sors like IBM PowerEN and Sun Niagara, which are heavily
multi-threaded (and PowerEN has several accelerators), are
well suited for network processing, e.g. MAC and transport
layers.

The internal network between processing nodes can be a
1 GbE, 10GbE or Infiniband, optimized for low-latency and
jitter. This network will be used to carry all the data, control
and timing signals.

The functions of a base station (PHY, MAC, and trans-
port layer, etc.) can be implemented in software using one or
more software instances, referred to as a virtual base station
instance. In a VBS pool, we envision two deployment scenar-
ios for virtual base stations over physical resources(Figure
2):

Scenario 1: The physical GPP node can be flexibly shared
by multiple virtual base station instances. Any VBS in-
stance will be deployed on the same GPP node.

Scenario 2: The processing resources from two or more
GPP nodes can be abstracted and combined together to
support a single base station instance. For example, the
PHY layer of a VBS (VBS-PHY) and the MAC layer of a
VBS (VBS-MAC) can be run on two different GPP nodes.

In a hybrid resource pool, such mapping will provide better
processing efficiency.

2.2 Challenges
This section describes the challenges in realizing the VBS

pool structure shown in Figure 2. The main challenges to
address are VBS - ERRH synchronization and realtime con-
trol.

Synchronization among base stations is a very strict re-
quirement especially in wireless TDD systems [9]. In wire-
less TDD system, data transmission and reception are time
multiplexed on the air. All base stations have to start their
data transmission and reception phases exactly at the same
time, and correspondingly, the mobile stations receive and
transmit data at those same timespots. A lack of such tight
synchronization results in radio interference and the commu-
nication quality will significantly degrade even to the point
where communication channels fail. Usually, an accurate
synchronized clock (e.g. GPS signal) is used at each RRH,
which gives each base station a global reference timing. On
the base station, all the data transmitted through the down-
link (DL) and uplink (UL) needs to be synchronized with the
RRH clock, the VBS - ERRH synchronization in our case.

In 4G wireless standards like Wimax and LTE, to ensure
strict real time guarantees to the application layer, the stan-
dards usually define a very strict round-trip latency in wire-
less Layer 1 and Layer 2. Thus, the wireless frame can not
be processed much earlier than the transmission timespot.
To avoid timing synchronization failure, it is also typically
required that at least 99.99% of frames be processed within
the specified deadline. Hence frames should arrive at the
RRH right on the timespot they have to be transmitted to
the air (at best a little bit earlier) .

In the VBS pool structure, there are two kinds of latency.
The first kind is the computational latency for a single soft-
ware instance, e.g. the UL or DL of the PHY layer. The
PHY layer is computationally intensive yet requiring high
I/O throughput. We need to ensure that the processing com-
pletes within the frame deadline despite this computational
load. The second kind of latency is the communication la-
tency between VBS instances. In scenario 2 of Figure 2, the
frame of one VBS instance will move from the VBS-PHY on
one processing node to the VBS-MAC mapped onto another
processing node. When the VBS instance is thus split across
multiple nodes, the overhead associated with data queueing
and movement can be close to a millisecond and can have
impact on meeting realtime requirements. Moreover, in our
VBS structure with ERRHs, we use Ethernet to transmit
data between ERRHs and general-purpose servers support-
ing the VBS instances. A significant challenge is to overcome
jitter inside the operating system and between the VBS in-
stance and ERRH introduced by Ethernet. Unlike a custom
design using DSPs or FPGAs, the VBS workload on a gen-
eral purpose processor (GPP) is multi-threaded and runs
over a general-purpose operating system, which may not
have real-time features. Consequently, interrupt handling
and thread-level scheduling at the OS-level causes jitter, es-
pecially when the CPU utilization is high. Controlling this
OS jitter while maintaining real-time performance at high
utilization levels is a key technical challenge. The rest of the
paper addresses these challenges for the VBS pool prototype
together with achieved performance results.

Figure 3: Ethernet based Remote Radio Header

3. VIRTUAL BASE STATION POOL PRO-
TOTYPE DESIGN

In this section, we describe the design of Virtual Base
Station pool prototype.

The VBS pool prototype is designed to be modular and
open. It consists of RRH interface layer, wireless stack
layer, data communication layer and some other supporting
libraries. By selecting different interfaces and different mod-
ules, it can support different VBS pool scenarios, multiple
wireless communication protocols, multiple physical GPP
nodes and multiple radio-headers with different connection
interfaces. The software stack of the VBS pool can be im-
plemented on a single IT server (eg: x86 or POWER), or a
cluster thereof interconnected by Gigabit Ethernet(GbE).

To connect the Virtual Base Station pool prototype to
general IT interfaces, we designed and implemented a new
Ethernet-based time-division duplex (TDD) Remote Radio
Header as shown in Figure 3. The ERRH consists of a radio
front-end and a new ERRH adapter board. The radio front-
end contains components such as RF, IF and base band A/D
converter (ADC, 14-bit, 92.16MSPS). The radio front-end
transmits and receives the radio signals through antennas in
the TDD mode. It supports up to 10MHz signal bandwidth.

The ERRH adapter board uses high performance FPGAs
and provides:

Interface translation: Low Voltage Differential Signal (LVDS)
interface is used to connect ERRH adapter and radio front-
end. Gigabit Ethernet interfaces are provided for the base
band data transmission to the host. Using this ERRH adapter,
the RRH appear as a Ethernet Node and flexibly connect to
the VBS Pool via a switched Ethernet network.

TDD timing control: The ERRH adapter board fully con-
trols the Tx/Rx data channels on the adapter board and
the radio front-end, and ensures the ERRH to operate ac-
curately in TDD mode.

Timing synchronization with VBS through Ethernet: The
ERRH adapter board provides a mechanism to synchronize
the virtual BS in TDD mode. It also tolerates the jitter
introduced by Ethernet and adjusts the synchronization in
runtime.

Hardware configuration: The ERRH adapter board pro-

Figure 4: Hardware configuration

Figure 5: System profile

vides the control interface of the ERRH. The host applica-
tion can configure the ERRH via Ethernet.

The physical interface between the ERRH and the VBS
in our prototype system involves a GbE link to setup a bi-
directional data logical link to transmit the I/Q data be-
tween VBS and RRH, and a bi-directional control logical
link to configure the VBS and control the RRH. Both the
data and control signaling are transmitted in a packet for-
mat over Ethernet. Our protocol includes identifiers and
timing information along with the data and commands.

4. VIRTUAL BASE STATION POOL PRO-
TOTYPE IMPLEMENTATION

This section describes the Virtual Base Station Pool Pro-
totype implementation. Figure 4 shows our VBS pool pro-
totype implementation in the first stage. Two IBM X3650
servers with 2 way Intel X5355 processors are used as the
hardware platform of the VBS pool prototype that supports
multiple VBSes (including different scenarios of VBS real-
izations).The Linux OS is selected for the VBS pool. GbE
links are used to connect the server with the RRHs and each
other. Laptops are used as the mobile station which runs a
full function of mobile station software stack.

The VBS pool can in principle support different wireless

Figure 6: Multiple VBS on single physical node

communication protocols. We have implemented the IEEE
802.16e (Mobile Wimax) standard in the VBS for our cur-
rent prototype. The system profile complies with 802.16e
standard [10] and WiMAX forum suggestions[11]. The sys-
tem profile details are provided in Figure 5.

4.1 VBS Pool Framework
The VBS pool framework is designed to support multiple

VBS instances on a single server node. And for each VBS
instance, the framework is also designed to initialize, con-
nect, and invoke different software stack layers to operate as
an integrated VBS. It also controls the synchronization and
TDD timing of each VBS.

VBSes operation
Because one VBS will connect with a dedicated RRH, mul-

tiple VBSes on a single server node can be treated as sep-
arated processing channels linking to their dedicated data
interfaces on that RRH. Thus, to support multiple VBS in-
stances, as shown in Figure 6, the VBS Pool framework pro-
vides separate RRH interfaces to each VBS instance via a
Hardware Abstract Layer. Each VBS instance will run as
a process within the Linux system independently. To avoid
resource conflicts on the same server node, the resource man-
agement component of the VBS Pool framework within each
server node provides the physical resource allocation to each
VBS in the pool.

The VBS pool framework is also introduced to handle a
single VBS instance. To maximize flexibility, the frame-
work only links each software (SW) component and con-
trols the initialization and startup phase of each VBS. The
framework provides the data interface - the blocking / non-
blocking FIFO queues that can be used between software
threads or processes on the same server node. It also pro-
vides the network data link via Ethernet to support hybrid
processing among different server nodes (scenario 2 of Figure
2). Each SW component has its own threading model; it is
self-managed and driven by the data traffic it actually sees.
With the VBS pool framework, the SW components can be
integrated into one or more VBS instances on a single node

Figure 7: An example of WiMAX VBS framework

(scenario 1) or spread out across nodes (scenario 2). The
VBS pool framework does not maintain an accurate timing
clock itself. The accurate timing clock information is em-
bedded into the data stream from the ERRH interface. The
framework helps maintain the VBS synchronization with the
timing clock from the ERRH.

Figure 7 shows an example of the VBS framework for a
single VBS instance. The VBS controller is used to initialize
every components. The Timing and Synchronization Con-
troller is a component to read/write data from/to the ERRH
interface and is also used to keep the TDD timing in the VBS
and synchronization with ERRH. The Process pre phy com-
ponent prepares the data for the ranging and PHY block
and it can be implemented to handle the ranging and PHY
components in parallel or in sequence. The adapter layer
provides the library for the MAC layer to convert the data
format to/from the MAC layer.

VBS - ERRH Synchronization There are two different
types of synchronization needed in our VBS pool, one is
the synchronization between the Base Station and Mobile
Station, the other is the synchronization between the VBS
and the ERRH. The first kind of synchronization is obtained
by physical layer techniques like ranging in UL and preamble
synchronization in DL. We will discuss the second kind of
synchronization challenges and our proposed mechanism in
this part.

Since the ERRH owns an accurate reference timing from
GPS, it provides the TDD control in the RRH. The VBS
needs to synchronize with the ERRH and has to run under
the same TDD referene timing.

However, since VBS is a software implementation on Linux,
there can be unpredictable jitter in VBS processing and data
transmission due to OS or Ethernet network interference.
Compared to FPGA/DSP based BS system with accurate
reference clock and hard real-time processing guarantee, the
synchronization is a much bigger challenge for wireless com-
munication systems in our software solution, especially for
the TDD mode used in our system.

Figure 8: Mechanism for VBS and ERRH synchro-
nization

We propose a new mechanism in Figure 8 that adjusts the
timing synchronization dynamically.

From the view of the VBS, in the UL Rx side, no accurate
timing synchronization is required. Since the ERRH controls
the TDD timing, it will transmit the UL data to the VBS at
the right time. The VBS UL data path is set to the Ethernet
data-driven mode. Once Ethernet data packets are received
by the VBS, the VBS will start the UL processing with no
delay.

In the DL Tx side, accurate timing synchronization is re-
quired between the VBS and ERRH. According to the TDD
timing model, the first data block from the VBS is expected
to arrive at the RRH just at the start time of the DL timing
slot. In case of arrival delays, there will be data loss for the
DL frame transmission. In contrast, if it arrives too early,
there will be delays further up in the DL stack.

In our system, since the ERRH has the reference timing
of the system, it is used to trigger the VBS DL processing
before every DL timing slot by an Ethernet packet. The
timing trigger is adjusted in the runtime. At the beginning,
an initial value will be set in the ERRH to indicate at what
time the Ethernet packet trigger should be transmitted. The
VBS DL waits for the Ethernet packet trigger, and once it
is received, it starts the DL processing and transmits the
DL frame to the ERRH. The RRH monitors the arrival of
the DL frame, measures the time difference between the ar-
riving time and the TDD DL timing slot, and adjusts the
next timing trigger. The adjustment will consider the differ-
ent penalties for the DL transmission being too late or too
early. The default timing values for the ERRH and VBS are
set based upon the Ethernet topology between the VBS and
its peer Ethernet RRH.

Real-time Control
There are some particular designs and optimizations in

the VBS pool framework to control the overall jitter and
latency, and improve the precision of the synchronization
between the ERRH and VBS.

The VBS pool framework provides the interface between
SW components. It defines the operations of the SW com-
ponents to the data interface. Hence, the SW component
works in a data-driven mode and the latency caused by data
transmission between the data interfaces is minimized.

When the VBS framework initializes and starts up each
SW component, it specifies the dedicated hardware resources
to the SW components considering workload and jitter sen-
sitivity of the component. Because most components tend

Figure 9: Jitter tracing for UL frame receiving
through Ethernet

to have a steady workload given the parameter configura-
tion, the hardware resource sharing of the SW components
and the system jitter control can be more balanced.

In Linux, hardware interrupts and softIRQs interrupt run-
ning applications, which introduces jitter and latency for
data processing and data transmission. To mitigate these
real-time OS challenges, we use the following methods in
Linux:

Pre-emptable real-time kernel patch: generally available,
in this kernel patch, all softIRQs are handled by kernel
threads or system processes. They are scheduled by the
Linux scheduler and can be preempted by other kernel threads
or system processes.

Optimize the Linux scheduler and application priority :
Based on the experiment in [12], we adjusted the strategy
of the scheduler and reset the priority of each thread within
the VBS pool system. It provides the threads in user space
with the best real-time performance.

Core isolation: All device interrupts and visible daemon
processes are moved to dedicated physical CPU cores. The
key threads of VBS pool applications are bound to other
physical CPU cores.

Linux uncertainty reduction: We removed all the unnec-
essary daemons and service in the Linux System to reduce
the uncertain impact from other jobs in Linux.

Figure 9 shows the latency traces we measured in our sys-
tem before and after the real-time optimization. The la-
tency between the HW interrupt rise (packet arrives) and
the packet received by the Receive Packet Monitor in VBS
(shown in Figure 8) is logged. We define 20% above the
average latency is the threshold of acceptable jitter. Be-
fore the optimization, on average, every 7.45 packets will
have one packet exceed the acceptable threshold. And the

Table 1: Algorithm for Key PHY Components
Module Algorithm

Channel coding CC, tail biting and zero padding

Modulation 16QAM, 64QAM, QPSK

Ranging Auto correlation

Channel estimation Linear interpolation

STC decoder (MatrixA) Zero Forcing

STC decoder (MatrixB) Zero Forcing and MMSE

Demodulation Hard, Soft, CSI (channel state

information) mode

Channel decoding Viterbi, soft decision (4 bit)

Synchronization Van de Beek algorithm [13]

maximum latency is about 1278.6% (12x) over the average
latency. After the optimization, on average, every 172 pack-
ets will have one packet exceed the acceptable threshold and
the maximum latency can be reduced to 54.6% over the av-
erage latency. Note that 1/172 is not related to 99.99% we
discussed about the VBS challenges. 99.99% is the required
successful rate of frame synchronization. Here we only dis-
cuss the efficiency of jitter control on the assumption that
20% above the average latency is the threshold of acceptable
jitter.

4.2 PHY
A standard compatible WiMAX PHY transmitter is im-

plemented according to the system parameters defined in
Figure 5. Most of the modules of WiMAX PHY transmitter,
such as the randomizer, subcarrier allocation, interleaver,
modulation etc, have been defined in the IEEE 802.16e stan-
dard whereas the design of the receiver algorithms is open.
We selected algorithms considering the tradeoff between sys-
tem performance and computation complexity. The selected
algorithms are listed in Table 1.

For the PHY layer, the processing latency is a vital factor
for system performance. When the algorithms of each mod-
ule are selected, we should optimize each module for the
computation workload reduction to satisfy the processing
time and throughput requirements. The techniques of Sin-
gle Instruction Multiple Data (SIMD), look up table, data
and structure alignment and loop unrolling are used to op-
timize the PHY layer processing.

Figure 10: Multithreaded architecture of Wimax
MAC (a)Downlink (b)Uplink

Figure 11: Model for handling multiple MAC layers

4.3 MAC
In our prototype, we implemented the Point to Multipoint

(PMP) WiMAX MAC layer for Mobile WiMAX. We present
a multi-threaded software implementation of WiMAX MAC
layer. In order to realize an efficient MAC layer, our design
is multithreaded to parallelize the workload, efficient con-
current data structures to improve thread scalability, mini-
mum memory copy policy within the MAC layer to reduce
memory overhead and thread pooling to reduce thread cre-
ation and destruction overhead. Figure 10 shows the multi-
threaded design of UL and DL of the Wimax MAC layer.

To improve the real-time performance of the MAC layer,
we optimized the MAC processing flow and reduced the av-
erage processing latency. Moreover, we used multi-threading
to accelerate the MAC processing in parallel, and work steal-
ing [14] is used in the multi-thread implementation.

However, for the VBS Pool scenario 2 (Figure 2), usu-
ally multiple MAC instances need to be supported on one
processing node. Considering the multi-threaded software
implementation of our MAC, if a dedicated system pro-
cess is used for each logical MAC instance, massive software
threads will be host on the node. In our study, nearly all
the tasks have a relatively light computation workload, but
some of them are very sensitive to jitter and latency. This
places pressure on the OS scheduler. Therefore, we also pro-
posed a new model that efficiently supports multiple MAC
instances on single processing node.

Shown in Figure 11, one MAC process can handle multi-
ple logical MAC instances in the new model, where common
working threads are used. Each common working thread
can handle the same tasks belonging to different MAC in-
stances. The processing is driven by the input data. We
divided the MAC processing tasks into two groups based on
their real-time requirements. The set of tasks that needs to
observe strict deadlines, like DL scheduling, packing, frag-
mentation and encryption, will be allocated more working
threads, higher priority and dedicated hardware resource.
The set of tasks with more relaxed deadlines of a tens of
milliseconds or more, like ARQ and MAC management, will
have limited working threads and hardware resources.

Figure 12: Average frame processing latency using
64QAM modulation.

5. PERFORMANCE EVALUATION
The performance of our VBS pool prototype is evaluated

in two dimensions: component performance and end-to-end
system performance. Recall that we use the notion of a VBS
framework that links software components together and con-
trols the timing and start up of the VBSs. Each software
component has its own implementation model. Therefore,
we evaluate the performance of each component first and
then measure the overall system performance. The metrics
of interest are maximum throughput supported, process-
ing latency and the scalability of multiple VBS instances
as the number of general purpose processor (GPP) cores
is increased. The server used for our experiments is an
IBM x3650 server with two Intel Clovertown processors @
2.66GHz (8 physical cores in total).

5.1 MAC and PHY Component Evaluation
In this section, the performance of PHY and MAC are

evaluated separately.
Two experiments are designed for MAC stack performance

evaluation. Single MAC instance experiments measure the
throughput and latency for one MAC instance in a VBS,
and the multiple MAC instances experiment measures how
the number of MAC instances supported in a VBS pool scale
with increase in the number of cores.

Single MAC Instance: To better illustrate the effective-
ness of optimization methods described in previous sections,
we measure the single MAC performance for 20MHz band-
width and 64QAM modulation. This configuration supports
a payload throughput of over 30 Mbps and hence has a
bigger computational load. Figure 12 shows the average
frame processing latency for the base configuration without
any optimizations and the optimized configuration with all
the software stack and Linux OS optimizations enabled de-
scribed in earlier sections. We observe that frame latency
in the base configuration does not decrease with increase in
the number of cores as one would expect, pointing to high
thread synchronization overhead and OS jitter. Though, the
optimizations successfully reduced the average frame latency
to about a third of the base values.

Multiple MAC Instances: In this experiment, we host
multiple MAC instances, including UL and DL processing,
on a single server. The system profile we defined in Figure5
is configured as the experiment parameters. The system re-
quirement is that at least 99.99% of frames must finish their
processing within the 5 millisecond frame duration deadline.
The results reveal that each CPU core can support up to 4

MAC instances while meeting this requirement, and that it
scales ideally with six CPU cores supporting a total of 24
MAC instances.

The PHY layer performance is also evaluated under the
profile defined in Figure 5. In this experiment, the goal is
to find the maximum PHY layer throughput supported on a
multi-core GPP platform. We enabled from one up to eight
UL(DL) instances of PHY layer, each of which was bound
to a dedicated CPU core.

The results for both UL and DL reveal that one core of
an Intel Clovertown processor can support PHY layer UL
processing at 5.06Mbps, or DL processing at 51.27Mbps.
The scale-up ratio for PHY layer processing is close to linear
at 7.98 for 8 cores.

5.2 Virtual BS Pool Performance Evaluation
The end-to-end performance of VBS instances in the VBS

pools is evaluated for the two topologies (scenarios) previ-
ously described in Figure 2.

The first scenario evaluates the case of one physical server
node being shared by several base station instances. The
MAC layer and PHY layer are processed on the same server
in sequence. The second scenario evaluates the case of het-
erogeneous processing resources combined together to sup-
port multiple base station instances.

Considering the different workload characteristics of MAC
and PHY layers, the hybrid architecture (scenario 2) can
improve resource utilization by leveraging different architec-
tures best suited for different workloads. For example, some
GPP nodes can focus on the processing of multiple MAC
instances and other GPP nodes can focus on the process-
ing of multiple PHY instances. The important issue in this
scenario is the communication latency between two server
nodes. We use two IBM X3650 servers to simulate two dif-
ferent server nodes in hybrid architecture. In this topology,
data from MAC to PHY (and vice versa) has to be commu-
nicated from one set of nodes to another, adding latency to
the system. Our focus of testing this topology is to iden-
tify the latency overhead of such additional data traffic, and
whether it is within acceptable limits.

The experiment results are shown in Figure 13. For both
scenarios, the hardware resources are allocated fairly. One
VBS will use two physical CPU cores of the multi-core sys-
tem. We tested the cases of one and two VBS instances
on the multi-core system. They have very similar average
latency.

We also tested the WiMAX stack configured with 2ms
frame duration, where the total number of OFDMA sym-
bols is 19, and the DL:UL ratio is selected as 13:6. The VBS
with 2ms frame duration configuration has a much shorter
average latency than the VBS with 5ms frame duration con-
figuration. This is because both the PHY stack and MAC
stack have fewer packets or symbols to be processed in each
frame, and the frame to be buffered between the layers and
interfaces also have a shorter time duration. Thus, the VBS
processing latency for each frame has an obvious relationship
with the frame duration.

Comparing the first and second scenario results, about
3ms delay is added to the round-trip latency by a physical
switch between two platforms (i.e. between scenario 1 and
scenario 2 in the figure). Note that the increase in end-to-
end round trip latency of 3 ms to a base end-to-end latency
of up to 25-40 ms is acceptable. Thus, the end-to-end perfor-

Figure 13: VBS pool performance evaluation

Figure 14: Application DEMO system

mance results show that the VBS pool prototype can meet
the basic requirements of Radio Access Networks. With low-
latency switches and interface cards, this latency could be
further reduced.

6. APPLICATION DEMO SYSTEM BASED
ON VBS POOL PROTOTYPE

Based on our VBS pool prototype, an application demo
system is designed and implemented to demonstrate the
VBS pool prototype. Three applications, the bidirectional
VoIP application, Web Browsing application and bidirec-
tional Video Phone application are setup on the prototype
system.

In this application system, multiple VBSs are setup on
the IBM X3650 server. The software based mobile station
is connected to the VBS via a 2.55GHz radio link. It can
connect with the SIP phone and video phone in the Inter-
net for the VoIP call and bidirectional video call. It can
also access the web through the radio link. For the VoIP
application, the SIP signaling is used to establish the VoIP
call which is bidirectional G.711 encoded streams over IP.
For the video phone application, a bidirectional H.264 en-
coded 352*288 format video @ 15fps is used. The round-trip
delays and quality expectations of the VoIP and video are
satisfactory. The system is monitored with a tool that we
have custom developed called I-view to analyze the system
utilization and radio signal in runtime.

7. RELATED WORK
General purpose processors for Software radio have been

discussed for several years. With the emergence of more
powerful multi-core architectures and new instruction sets,
GPPs are becoming more capable of handling wireless base
band processing. Compared with traditional BS which are
based on complex multi-architecture platforms comprising a
mix of ASICs, network processors, DSPs or FPGAs, GPP
based BSs are more scalable and flexible. This has led
to new SDR platforms being developed by various groups.
[15] compares several popular architectures and proposes
a new multi-core architecture called SODA, which meets
the requirements for W-CDMA and 802.11a systems. [16]
presents the multi-core GPP based Sora software radio plat-
form for 802.11a/g systems and solves many design chal-
lenges in meeting the processing and latency requirements of
these systems. [16] is closest to our work; however, it targets
a single terminal or access point in Wifi based LANs whereas
we target TDD BS system and BS pooling with RRHs for
4G wireless broadband in wide area networks. This is an
intermediate step in the realization of the wireless network
cloud and the design challenges are quite different because of
the need to support TDD timing, TDD RRHs and multiple
base station instances on a shared platform.

Besides work by research communities, there also exist
commercial SDR solutions based on GPP platforms, like
Vanu’s multiran solution [17]. This is a cost-effective option,
since the expense of antennas, electronics, and backhaul can
all be shared among operators. Such commercial deploy-
ments reflect the industry acceptance for GPPs used in BS
design. However, Vanu’s solution is for 2G and FDD sys-
tems , where the system requirements are far more relaxed,
no matter for throughput or timing control.

Focusing now on prior work on component level imple-
mentations and optimizations. For the MAC layer, the typi-
cal workload involves multi-task control and massive packet
processing. The papers [18][19] consider network proces-
sors, based on Intel IXPTM 2xxx series of processors, and
general-purpose processors based on the generic Intel Archi-
tecture. Design issues and inherent challenges are discussed
for both platforms, while implementation details and per-
formance evaluation are presented only for the IXP plat-
form. However, the latency and real-time issues are critical
here and are not discussed with results in [18]. In addi-
tion, our experiments with multiple BS instances show that
the MAC layer throughput supported by multi-core servers
scales much higher than with network processors. Network
processors are notorious for being hard to program and do
not offer the same ease, flexibility and availability of pro-
gramming skills as for development targeted towards a gen-
eral purpose processors.

Finally, ideas similar to the WNC concept, i.e. of hav-
ing distributed antennas with centralized computation for
the wireless access network, were introduced earlier in [20].
But this concept was not developed into a system or an
implementation. In VBS pool or WNC system, the long-
distance link between the RRH and the baseband process-
ing unit (BBU) is a fundamental requirement for centralized
processing. As discussed, traditionally industry standards
like CPRI and OBSAI are used for the optical fiber connec-
tion between RRH and BBU. To enable such a connection,
we would need to develop extra hardware modules in IT
servers to handle the conversion between CPRI/OBSAI and
IT platform interfaces (e.g. PCIe or Ethernet), which is
not economical. Considering Ethernet ports are commonly

available in commodity servers, we use those to carry the
data between RRH and BBU server. With the throughput
of Ethernet increasing to 100Gb/s, the bandwidth of Ether-
net is not an issue. In this paper, we demonstrate a working
prototype of TDD Eth-RRH with Ethernet interface, dis-
cuss the system design challenges and propose, implement
and evaluate corresponding solutions.

8. CONCLUSION & FUTURE WORK
In this paper we have proposed the structure of a Vir-

tual Base Station (VBS) pool as a step towards realizing
the broader notion of a wireless network cloud (WNC). The
broader WNC concepts applies IT computational platforms,
virtualization, pooling and cloud principles to a radio access
networks (RAN) that is subject to stringent real-time con-
straints. Specifically, in this paper we have shown the feasi-
bility of virtual base station stacks (MAC and PHY) using
software radio, and for the first time demonstrated the idea
of virtual base stations run over pooled multi-core IT plat-
forms connected to remote radio heads. A prototype system
has been designed to demonstrate end-to-end applications
running over such a virtual base station pool. The real-time
nature of base station operation and synchronization be-
tween virtual base station instances and the TDD Eth-RRH
are examples of challenges addressed in this paper.

Applying cloud and virtualization principles more com-
prehensively to the radio access networks involves many
more issues beyond the real-time computational and pool-
ing issues of wireless stacks explored in this paper. The
basic cloud model needs to be extended to more robustly
solve large-scale synchronization, jitter and system laten-
cies when a large number of virtual instances are pooled
(eg: a city with a thousand towers is served by a small
handful of pooled sites). Further, the promise of the cloud
is to leverage statistical multiplexing gains, while allowing
real-time elastic allocation and fine-grained pay-as-you-go
pricing for users (i.e. virtual RAN operators). This im-
plies the need to provision on-demand capacity to hotspots
rapidly and provide pricing based upon dynamically pro-
visioned capacity etc. Beyond the usual promise of virtu-
alization, the wireless network cloud involves base station
instances being physically close to each other. This prox-
imity and real-time data/information sharing allows power-
ful next-generation interference management techniques (eg:
cooperative MIMO, cooperative base-station scheduling, co-
operative spectrum management including cognitive radio)
and faster, seamless handoff for mobile users. We are in the
process to build and demonstrate systems based on these
advanced concepts.

9. ADDITIONAL AUTHORS
Smruti Sarangim, IBM Research India,Bangalore, India

10. REFERENCES
[1] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,

J. Rexford, G. Xie, J. Zhan H. Yan, and H. Zhang. A
clean slate 4d approach to network control and
management. ACM SIGCOMM Computer
Communication Review, 35(5), 2005.

[2] H. Yan, D. A. Maltz, T. S. E. Ng, H. Gogineni,
H. Zhang, and Z. Cai. Tesseract: A 4d network control
plane. In NSDI, 2007.

[3] T. V. Lakshman, T. Nandagopal, R. Ramjee,
K. Sabnani, , and T. Woo. The softrouter
architecture. In ACM SIGCOMM Workshop on Hot
Topics in Networking, 2004.

[4] Y. Lin, L. Shao, Z. Zhu, Q. Wang, and R. Sabhikhi.
Wireless network cloud: Architecture and system
requirements. IBM Journal of Research and
Development, 54(1), Feb 2010.

[5] China Mobile Research Institute. C-ran: The road
towards green ran. White Paper. Ver 1.0.0. April,
2010.

[6] P. Gupta, A. Vishwanath, S. Kalyanaraman, and Y. H.
Lin. Unlocking wireless performance with cooperation
in co-located base station pools. In Comsnets, 2010.

[7] CPRI. Cpri specification v4.0 (2008-6-30). [online].
available: http://www.cpri.info/downloads/CPRI_v_

4_0_2008-06-30.pdf.

[8] http://www.obsai.org/.

[9] Timing and synchronization in wimax networks.
[online]. available:
http://www.chronos.co.uk/pdfs/tel/symmetricom/

Timing_and_Sync_in_WiMAX_Networks.pdf.

[10] IEEE 802.16 Working Group. Draft standard for local
and metropolitan area networks– part 16: Air
interface for broadband wireless access systems,
p802.16rev2/d2. Dec. 2007.

[11] WiMAX Forum. Mobile system profile 3- release 1.0
approved specification (revision 1.7.1: 2008-11-07)
http://www.wimaxforum.org.

[12] P. De, V. Mann, and U. Mittal. Handling os jitter on
multicore multithreaded systems. In IPDPS, 2009.

[13] M. Sandell, J. van de Beek, and P. Borjesson. Ml
estimation of time and frequency offset in ofdm
systems. IEEE Trans. Signal Processing,
45:1800–1805, July 1997.

[14] M. M. Michael, M. T. Vechev, and V. A. Saraswat.
Idempotent work stealing. In PPoPP, 2009.

[15] Y. Lin, Hyunseok Lee, Y. Harel M. Woh, S. Mahlke,
and T. Mudge. Soda: A low-power architecture for
software radio. In Proceedings of International
Symposium on Computer Architecture (ISCA), pages
89–101, Boston, Massachusetts, June 17-21, 2006 2006.

[16] K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang,
Y. Zhang, H. Wu, W. Wang, and G. M. Voelker. Sora:
high performance software radio using general purpose
multi-core processors. In NSDI, 2009.

[17] http://www.vanu.com/solutions/multiran.html.

[18] G. Nair, J. Chou, T. Madejski, K. Perycz, D. Putzolu,
and J. Sydir. Ieee 802.16 medium access control and
provisioning. Intel Technology Journal, 8(3):213–228,
2004.

[19] M. Wu, F. Wu, and C. Xie. The design and
implementation of wimax base station mac based on
intel network processor. Proceedings of International
Conference on Embedded Software and Systems, pages
350–354, 2008.

[20] S. Zhou, M. Zhao, X. Xu, J. Wang, and Y. Yao.
Distributed wireless communication system: A new
architecture for future public wireless access. IEEE
Communications Magazine, 41(3):108– 113, Mar 2003.

