
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATED (VLSI) SYSTEMS, VOL. XX, NO. X, XXXX 2020 1

A Fast Leakage Aware Green’s Function Based
Thermal Simulator for 3D Chips

Hameedah Sultan and Smruti R Sarangi

Abstract—In this paper we propose a fast thermal modeling
tool, 3DSim, using a Green’s function-based approach. Green’s
function-based approaches have been shown to be faster than the
traditional finite difference-based techniques. Our proposed tool
can model steady state and transient thermal profiles for both 2D
and 3D chips, which may contain multiple active layers and fluid-
carrying microchannels for heat removal. The unique advantage
of our tool is that it models leakage power analytically using a
piecewise linear leakage model, thereby eliminating the need to
iterate multiple times through the leakage-temperature feedback
loop. We use several algebraic techniques and transforms to
compute the thermal profile analytically and thereby speed up the
process of temperature calculation. To the best of our knowledge,
transform-based approaches have not been used before to model
the temperature in 3D chips with microchannels. Our approach
provides a 150X speedup over state of the art thermal simulators,
with an error limited to 5%.

Index Terms—Thermal simulation, Hankel transform, 3D
chips, microchannels, leakage, power, chip level, Green’s function.

I. INTRODUCTION

In modern day chips, temperature is a first order design
constraint. In order to mitigate the effects of high temperature
and to make the design thermally aware, a fast method to
estimate the chip temperature is necessary at various stages of
the design process. Over the complete design cycle, it is often
necessary to conduct hundreds of temperature simulations, and
thus the speed of simulation without a concomitant loss in
accuracy is essential. To the best of our knowledge, ultra-
fast approaches based on Green’s functions for estimating
temperature in 3D chips with microchannels has been an open
problem till now.

3D chips have been proposed to reduce the latency between
processor and memory using embedded DRAM technologies,
and to increase the number of logic layers in a package (in-
creased computational density). In 2D chips, the heat spreader
and the heat sink serve to limit the temperature rise. Sadly, in
3D chips, the dissipation of heat through the spreader and heat
sink is not very effective because of the presence of multiple
layers. As the number of layers increases, there exist layers
farther from the heat sink whose heat cannot be effectively
removed by traditional air cooling. Also the power density

Hameedah Sultan is with the School of Information Technology, Indian
Institute of Technology, Delhi, India, 110016.
E-mail: anz158222@cse.iitd.ac.in

Smruti R Sarangi is with the Department of Computer Science and
Engineering, Joint Professor in Electrical Engineering, Indian Institute of
Technology, Delhi, 110016.
E-mail: srsarangi@cse.iitd.ac.in

Manuscript received Month dd, 2020; revised Month dd, 2020.

is higher in 3D chips. Consequently, temperature becomes
a limiting factor. Several approaches have been suggested to
remove the heat generated in 3D chips. These include etching
fluid-carrying microchannels under each power dissipating
layer, thermo-electric cooling, and intelligent via placement.
The most promising solution out of these is to dissipate
the excess heat in 3D chips by incorporating fluid-carrying
microchannels [1]. Sadly, to model the temperature profile
of such complicated scenarios using the traditional finite
difference based approach is difficult. We need to take into
account the physics of heat transfer, fluid mechanics, and the
effect of the leakage-temperature feedback loop. Hence, in this
paper our aim is to use the ultra-fast Green’s function-based
approaches that have hitherto been shown to work in the case
of 2D chips.

The Green’s function is defined as the impulse response
(thermal profile) of a unit power source. Once the impulse
response has been obtained, the temperature profile for any
given power profile can be obtained by simply convolving
the Green’s function with the power profile. Green’s function
based methods are significantly faster than traditional finite
difference or finite element based methods. This is because
unlike the finite difference method, where the solution has
to be obtained for the entire heat transfer path, in these ap-
proaches it is just sufficient to take the power dissipating layers
in to account. Furthermore, convolution is a faster operation
than matrix multiplication. Additionally, the grid size in the
finite difference approach has to be small enough such that
the derivative can be replaced by a difference operation across
adjacent grids, whereas the grid size in the Green’s function
approaches is the resolution at which the output thermal profile
is needed (usually the size of functional units). This reduces
the complexity of the problem enormously, resulting in a
significant speedup.

Along with computing the temperature of a 3D-chip we
take the leakage-temperature feedback loop into account as
well. Computing leakage is far more difficult in 3D chips
because different layers influence each other. Most thermal
simulators [2], [3], [4] follow an iterative approach (compute
temperature → compute leakage → recompute temperature
→ ...), which is time consuming. Moreover, this process
has prohibitive overheads wile computing transient thermal
profiles. Sadly, it is not possible to ignore this step because
according to Huang et al. [5], ignoring leakage power can
lead to a temperature estimation error of at least 4-7◦C for a
processor at the 130 nm technology node.

Finally, we simulate the effect of microchannels as well.
Other than the work by Yan et al. [6], none of the other



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATED (VLSI) SYSTEMS, VOL. XX, NO. X, XXXX 2020 2

3D thermal simulators model leakage power in chips with
microchannels. Yan et al. [6] use an iterative solver based on
the multigrid method, which is far slower than our approach.
The reason our approach is fast is because we propose closed-
form analytical solutions that incorporate the effects of both
leakage and microchanels. We do not need multiple iterations.

Our main contributions are briefly summarized as follows:
1) We propose an analytical framework for computing the

leakage aware thermal profile for both steady state and tran-
sient temperature estimation in 3D chips. Our approach is
based on Green’s functions, and hence it is at least 150X faster
than state of the art numerical approaches.
2) Our simulator analytically accounts for leakage power

using several approximations and complex transforms. For
improved modeling accuracy, it assumes a piece-wise linear
model of leakage.
3) We introduce a new way of adapting the proposed method

for anisotropic systems, such as for a chip with microchannels.
We also propose a set of corrections to obtain an accurate
estimate of the edge and corner effects that arise in 3D chips
with microchannels.

We compare our results with a commercial CFD software,
Ansys Icepak, as well as state of the art open-source tools
(HotSpot [7] and 3D-ICE [3]).

The rest of the paper is organized as follows. In Section II
we provide the relevant background. In Section III we describe
our basic thermal modeling framework. In Section IV we adapt
our method to account for the anisotropicity in microchannels,
and complete this by describing our piecewise linear leakage
modeling approach in Section V. In Section VI we evaluate our
algorithm and compare it with other state of the art methods.
We describe the related work in Section VII and then conclude
in Section VIII.

II. BACKGROUND

A. Power Dissipation in a Chip

1) Dynamic Power: Dynamic power is dissipated when
switching activity happens on a chip. In older technologies,
dynamic power used to be the dominant cause of power dissi-
pation, but in newer technologies, leakage power is becoming
increasingly significant.

2) Leakage Power: The subthreshold leakage power, Pleak,
is exponentially dependent on temperature and is given by the
simplified BSIM 4 [8] model:

Pleak ∝ v2T ∗ e
VGS−Vth−Voff

η∗vT (1− e
−VDS
vT ) (1)

where, vT is the thermal voltage (kT/q), Vth is the threshold
voltage, Voff is the offset voltage in the sub-threshold region
and η is a constant.

However, using an exponential model in thermal modeling
is very expensive. Moreover, the operating range of real ICs
usually stays limited to 40 - 80◦C . In [9], it was shown that
the error in leakage power computed using a linear model
stays limited to 10%, which translates to a 1.33% error in
temperature. Using a piecewise linear leakage model further
reduces the error to 0.33%. Similar results were obtained ex-
perimentally in [10], [11], [12]. Hence leakage power is always

modeled by a linear or a piecewise linear approximation in the
thermal modeling domain [6], [10], [11], [13]. We too use a
linear leakage power model to begin with, given by Equation 2.

Pleak = Pleak0 + β(T − Tamb), (2)
where, Tamb is the ambient temperature, Pleak0 is the leakage
power at ambient temperature, and β = dPleak

dT is a function
of the electrical characteristics of the chip such as threshold
voltage, and supply voltage.

To further improve upon the accuracy, we then modify our
proposed method for a piecewise linear leakage model.

B. Thermal Modeling

1) Fourier Heat Equation: Heat transfer in a chip is gov-
erned by the Fourier’s law of heat conduction:

∇. (κ∇T ) + q̇ = Cv
∂T

∂t
, (3)

where T is the temperature, Cv is the volumetric specific heat,
and t represents time.

In the case of microchannels, the heat equation for the fluid
layer is given by:

∇ · (k∇T ) + q̇ = Cv
∂T

∂t
+ Cv~u.∇T, (4)

where ~u is the fluid velocity along the microchannel.
Traditional thermal simulators solve this differential equa-

tion using the finite difference method, and invoke the analogy
between thermal and electrical circuits to convert this into an
RC circuit. The second term on the right hand side arises
because of the fluid flow; it is modeled as a voltage controlled
current source [3]. The heat transfer between the solid and
fluid layers is modeled by a conductance, g, whose value is
given by:

g = hf × l × w, (5)

where hf is the vertical heat transfer coefficient, and l and
w are the length and width of the microchannel layer respec-
tively. The vertical heat transfer coefficient, hf , is given by:

hf =
kfluid ×Nu

dh
, (6)

where, kfluid is the conductivity of the fluid, Nu is the Nusselt
number, which is equal to the ratio of the convective and
conductive heat transfer across the solid-fluid boundary, and
dh is the hydraulic diameter = 2hl

h+l . (h is the height of the
microchannel layer.) A higher Nusselt number indicates more
active convection. The Nusselt number has known empirical
forms for a variety of geometries. For forced convection, it is
a function of the Reynolds number (a dimensionless number
governing the transition between laminar and turbulent flow)
and the Prandtl number (another dimensionless number which
is constant for a fluid and a fluid state).

In this paper, instead of relying on the slower finite differ-
ence or finite element methods, we shall use the much faster
Green’s function-based approach.

2) Green’s Function: Instead of discretizing the heat equa-
tion, it is also possible to analytically solve it for a set of
boundary conditions when an impulse power source is applied
as the input. The solution thus obtained is the Green’s function.
The temperature profile corresponding to any arbitrary input is



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATED (VLSI) SYSTEMS, VOL. XX, NO. X, XXXX 2020 3

then given by the convolution of the Green’s function with the
power profile (distribution of power within a chip) as follows:

T = G ? P (7)
Here, T is the temperature profile (change in temperature), ?
is the 2-D convolution operator, G is the Green’s function, and
P is the power map.

The main focus of our technique is the speed of computation
while considering leakage power. The method of re-iterating
till convergence consumes a lot of time, especially for transient
analysis. Zhou et al. [14] show that ignoring temperature-
dependent leakage in modern-day chips can result in a 32%
error. Furthermore, they also show that a 20% reduction
in peak temperature can be obtained by simply modeling
temperature-dependent leakage during the floorplanning phase
without any overheads. However, it increases the floorplanning
run time by 56%. Hence, often where speed is of utmost
importance, researchers either ignore leakage, or make very
crude approximations, compromising heavily on accuracy.
Thus there is a strong need for a fast algorithm that can provide
the steady state as well as the transient temperature profile
while incorporating the effects of leakage in a modern 3D
chip with microchannels.

We consequently devised a novel set of algebraic techniques
to compute the leakage-aware Green’s function in a 3-D chip.
We then use a combination of several mathematical techniques
to provide an analytical solution to a complex set of equations.
Finally, we compare our results against those obtained using
commercial CFD software, and competing approaches.

III. METHODOLOGY

TABLE I: Glossary

Symbol Meaning

l Active silicon layers in the chip
n Number of grids along any direction

fspil Green’s function for layer i when the source is in layer l
fspLil Leakage aware Green’s function for layer i with source in

layer l
fspresil Residual Green’s function for layer i with source in layer l
T Temperature rise above the ambient temperature
β Temperature dependence of leakage power
t Time
h Hankel domain variable
s Laplace domain variable

A. Model of the Chip

We assume that the 3D chip has l active layers. Beneath each
active layer, there is a microchannel and a thermal interface
material (TIM) layer. We discretize each layer into an n × n
grid. The complete model of the chip is shown in Figure 1a for
a chip with a heat sink. The chip with microchannels is shown
in Figure 1b, and a glossary of the terms used is presented in
Table I.

B. Overview of our Thermal Modeling Approach

Green’s function based thermal modeling involves three
main steps [2]:

¶ Obtain the Green’s functions.
· Convolve the Green’s functions with the power profile.
¸ Apply corrections to the edges and corners. The side walls

of a chip are adiabatic in nature, which prevents heat from
flowing across these boundaries. Ziabari et al. [2] use the
method of images from electromagnetics to account for
the adiabatic boundaries. They extend the power matrix by
padding it with zeros making it three times its original size,
and then place image sources (a source on the other side of
the boundary at the same distance) across the boundaries.

We propose to augment this process by introducing three
new steps, and modifying the procedure to account for the
edge and corner effects:

¶ After obtaining the Green’s functions, we then modify
them by solving a set of equations to obtain the leakage
aware Green’s functions for both the steady state and the
transient case.

· In the case of anisotropic systems such as chips with
microchannels, directly using the Green’s functions ob-
tained in Step (1) leads to large errors in the downstream
regions1 of the chip. We propose the use of a residual
Green’s function, which removes these errors.

¸ We also propose a modified approach to account for
edges and corners in chips with microchannels. Here,
the upstream and downstream boundaries along the flow
of the fluid are no longer adiabatic in nature, since the
fluid carries heat along with it. As a result, the total
heat incident at the boundaries is not reflected back,
rather it gets damped exponentially. Hence, we place
image sources across the boundaries and convolve it with
the modified Green’s functions that are damped by an
exponential function.

¹ Finally, we propose a framework for leakage modeling
using piecewise-linear models.

An overview of our approach is shown in Figure 1c.
In this section, we describe our thermal modeling approach

for a homogeneous chip-heatsink structure without microchan-
nels. In Section IV, we shall adapt this approach to accom-
modate for the anisotropicity introduced by microchannels. We
shall then move on to describe our piecewise linear thermal
modeling approach in Section V.

C. Obtaining the Green’s Functions without Leakage
The Green’s functions can be theoretically calculated, ob-

tained from thermal sensors in the chip, or estimated using
a thermal simulator. Theoretical computation of the Green’s
functions is very complex, because of the presence of multiple
layers and the interaction between conductive and convective
heat transfer. A lot of assumptions have to be made to make a
theoretical computation possible, which leads to large errors in
temperature estimation [2]. As a result, most modern Green’s
function based thermal simulators obtain the Green’s functions
empirically [2], [11], [12], since this needs to be done only
once for a given geometry. We too adopt the same approach.
The empirical approaches are either direct measurement using
thermal sensors, or using slow FEM-based thermal simulators.

1A microchannel flows from upstream regions to downstream regions



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATED (VLSI) SYSTEMS, VOL. XX, NO. X, XXXX 2020 4

(a) 3D chip with heat sink

Microchannels

Thermal Interface Material (TIM 4)

chip layer 4

Thermal Interface Material (TIM 3)

chip layer 3

chip layer 2

chip layer 1

Connection to
ambient

Connection to
package

Thermal Interface Material (TIM 2)

Thermal Interface Material (TIM 1)

(b) 3D chip with microchannels

Calculate leakage aware Green's
functions using the 3DSim

approach

Apply corrections for edges and
corners: 

Convolve the modified Green's
function with the modified power

profile

Final Temperature Profile

Obtain Green's functions without
leakage

Obtain residual
Green's functions

Calculate leakage
aware residual

Green's functions

Use modified
method for edge

and corner
correction

If microchannels
present

Basic Approach

Calculate multiple
leakage aware Green's

functions,fspL,m for each
leakage segment m

Piecewise linear 
leakage model

Split power matrix into
multiple matrices for each

leakage segment, convolve
with corresponding fspL,m 

Estimated Temperature
Profile

(c) Overview of our approach

Fig. 1: Model of the chip and our modeling approach

One might argue that the leakage aware Green’s functions
can directly be obtained and stored. However, obtaining the
leakage aware functions takes a long time (of the order of sev-
eral hours) using FEM (or FDM) simulators, and the process
is extremely expensive for transient temperature computation.
Even if we slightly vary the parameters such as the supply
voltage, operating frequency, or the threshold voltage, we will
have to recompute these functions. Studying the effects of
varying these parameters on power and performance is a very
popular approach in computer architecture and EDA research.
Hence, computing leakage aware Green’s functions using
conventional techniques is not practical. An additional benefit
of a fast analytical method for calculating these functions is
that we can simulate on-chip process variation and resultant
leakage power variation. The computation time for these tasks
using conventional software is prohibitive.

D. 3D Leakage Aware Green’s Function

1) Steady State Solution: When a dynamic power source,
Pdyn is applied to a 2D chip, a corresponding leakage power
Pleak is dissipated. The final temperature rise T is given by:

T = fsp ? (Pdyn + ∆Pleak), (8)
where fsp is the heat spreading function or the Green’s
function.

Now, let us assume we have an l-layer chip. We apply a
unit impulse source at the center of layer k. We will have a
total of l2 Green’s functions, corresponding to impulse sources
applied to layers 1 through l. The Green’s functions or the
heat spreading function in layers 1 to l are denoted by fsp1k,
fsp2k, ... fsplk. fspik denotes the effect in layer i, when a
point source is applied in layer k. We denote the corresponding
temperature rise in layer i by Tik. Tik is affected by the

dynamic power dissipated by layer k, as well as the leakage
sources created in all the layers. We assume a linear leakage
model for the time being, ∆Pleakik = βTik. This corresponds
to the leakage sources created in layer i due to the dynamic
source in layer k. We extend Equation 8 to an l-layer chip:

T1k =fsp11 ? βT1k + fsp12 ? βT2k + ...

+ fsp1k ? (Pdyn + βTkk) + ...+ fsp1l ? βTlk
...

Tlk =fspl1 ? βT1k + fspl2 ? βT2k + ...

+ fsplk ? (Pdyn + βTkk) + ...+ fspll ? βTlk

Since Pdyn is a delta function and the convolution of any
function with a delta function is the function itself, we arrive
at the following set of equations:

T1k =fsp1k+β(fsp11 ? T1k+fsp12 ? T2k+fsp13 ? T3k
+ ...+ fsp1l ? Tlk)

...

Now, to simplify the convolution operations and replace
them with multiplications, we compute the 2-D Fourier trans-
form on both sides. After simplifying, we obtain a set of
simultaneous linear equations in F(T1k), F(T2k), ... F(Tlk),
where F denotes the Fourier transform operator. To solve this
system of equations, we used Mathematica [15]. The number
of terms in the resulting equation is very large. To reduce
the number of terms, we ignore all second and higher order
leakage terms, i.e. terms where the exponent of β is greater
than one.

We rearrange the terms to arrive at an analytical solution,
which can be used directly to obtain the final temperature
profile (Equation 9). We call this method 3DSimF.

F(T1k) =

F(fsp1k) + β(F(fsp13)F(fsp3k)− F(fsp33)F(fsp1k)
+ ...+ F(fsp1l)F(fsplk)− F(fspll)F(fsp1k))

1− β (F(fsp11) + F(fsp22) + ...+ F(fspll))
(9)



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATED (VLSI) SYSTEMS, VOL. XX, NO. X, XXXX 2020 5

After computing the inverse Fourier transform of Equation 9,
we can obtain the leakage aware Green’s function. However,
to calculate the final temperature profile, we would again need
to compute its inverse transform. Hence we store our result in
the transform domain itself.

Thus, we divide the calculation of leakage aware Green’s
functions into two sub-stages. In the first sub-stage we com-
pute the transform of the heat spreading functions. In the sec-
ond sub-stage we use Equation 9 to calculate the leakage aware
Green’s functions in the transform domain. The advantage of
this approach is that whenever β changes (as a result of varying
the supply voltage or the threshold voltage, or by performing
voltage-frequency scaling), we will have to re-run only the
second sub-stage, that is, the calculation of the final Green’s
functions.
Utilizing symmetry to reduce an O(n2) problem to an
O(n) problem: The method discussed above (3DSimF)
requires computing a 2-D transform, which is computationally
expensive. To further speed-up the computation we describe
another variant of our approach, 3DSimH, that uses the Hankel
transform (H).

A 1-D zero order Hankel transform is equivalent to a 2-
D Fourier transform for a radially symmetric function. The
Hankel transform uses Bessel functions as its basis functions.
Thus the 2-D problem (O(n2) points) is reduced to a single
dimension (O(n) points). The Hankel transform is defined as:

H(f(r)) = H(h) =

∫ ∞
0

f(r)J0(hr)rdr (10)

Here J0 is a Bessel function of the first kind of order 0, h
is the Hankel transform variable and H denotes the Hankel
transform operator.

Using the Hankel transform in place of the Fourier trans-
form in Equation 9 we arrive at:
H(T1k) =

H(fsp1k) + 2πβ(H(fsp13)H(fsp3k)−H(fsp33)H(fsp1k)
+ ...+H(fsp1l)H(fsplk)−H(fspll)H(fsp1k))

1− 2πβ (H(fsp11) +H(fsp22) + ...+H(fspll))

...

(11)

However, this method does not apply to chips with mi-
crochannels since the thermal profile is no longer radially
symmetric. Thus for chips with microchannels, 3DSimF will
have to be used. The rest of the approach remains the same
as in 3DSimF. We collectively refer to both of these variants
as 3DSim, and differentiate only when necessary.

2) Transient Solution: To calculate the transient profile, we
add a capacitive term, which captures the temperature rise with
time (as done in [11]). Without any loss of generality, let us
assume that the source is present in layer 2, and the chip has
four active layers.

T12 = fsp12 + β (fsp11?T12 + fsp12?T22 + fsp13?T32 + fsp14?T42)−

C1

(
fsp11?

∂T12

∂t
+ fsp12?

∂T22

∂t
+ fsp13?

∂T32

∂t
+ fsp14?

∂T42

∂t

)
...

(12)

We note that the non-capacitive terms on the right hand
side of Equation 12 comprise the steady state response. Let
us call this T12ss (ss → steady state). We first compute the
Hankel transform to convert the convolution operations to mul-
tiplication. This results in a set of differential equations. We

then compute the Laplace transform in the time domain. This
enables us to convert the differential equations to algebraic
equations and we get a set of four linear equations. Upon
simplification, we arrive at:

L(H(T12)) =L (T12ss)−
2πC1

1− 2πβfsp11
×(

H(fsp11)L
(
H
(
∂T12

∂t

))
+H(fsp12)L

(
H
(
∂T22

∂t

))
+

H(fsp13)L
(
H
(
∂T32

∂t

))
+H(fsp14)L

(
H
(
∂T42

∂t

)))
...

(13)
where L is the Laplace transform operator.

Using properties of the Laplace transform, setting the tem-
perature rise at t = 0 to be zero, and solving further, we arrive
at Equation 14.

sL(H(T12)) = T12ss − s2
2πC1

1− 2πβfsp11
(H(fsp11)L(H(T12))+

H(fsp12)L(H(T22)) +H(fsp13)L(H(T32)) +H(fsp14)L(H(T42)))

...
(14)

where s is the Laplace transform variable.
Let f11 = 2πC1

1−2πβfsp11 , which is constant across time.
The ideal approach would be to solve the set of equa-

tions in Equation 14 for L(H(T12)), calculate the inverse
Laplace transform, followed by the inverse Hankel transform.
However, the complexity involved quickly makes the problem
intractable, even using numerical techniques.

Hence, we ignore the terms that have a minimal contribution
to the computed temperature field. We only incorporate the
first and second order effects produced by the current and
adjoining layers (ignore tertiary effects). This gives us two
capacitive terms for each layer:

sL(H(T12)) =T12ss − s2f11 (H(fsp11)L(H(T12)) +H(fsp12)L(H(T22)))

...

Solving these, we get,

L(H(T12)) =
T12ss + sf22H(fsp22)T12ss − sf11H(fsp12)T22ss

s(−1− f11H(fsp11)s− f22H(fsp22)s+

f11f22H(fsp12)H(fsp21)s
2 − f11f22H(fsp11)H(fsp22)s

2)

Next we ignore the secondary feedback effects, (all terms
except the first and third terms in the denominator, since
the source is in layer 2), and calculate the inverse Laplace
transform:

H(T12) =H(T12ss)−
H(T22ss)f11H(fsp12)e

−t
f22H(fsp22)

f22H(fsp22)
(15)

Now, to calculate the final leakage aware transient Green’s
function, we compute the inverse Hankel transform of Equa-
tion 15:

T12 = T12ss − finv, where

finv = H−1

(
H(T22ss)f11H(fsp12)e

−t/(f22H(fsp22))

f22H(fsp22)

)
...

finv = H−1

H(T2ss)C1(1− 2πβH(fsp22))H(fsp12)e
−t

f22H(fsp22)

C2(1− 2πβH(fsp11))H(fsp22)


(16)



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATED (VLSI) SYSTEMS, VOL. XX, NO. X, XXXX 2020 6

This equation is still too complex to be calculated analyt-
ically. To compute finv, we divide the range (0,∞) into
two parts - (0, ε) and (ε,∞). We further note that at lower
frequencies (h < ε),

finvε0 =

∫ ε

0

C1

C2
H(T22ss)e−

t
f22H(fsp22)J0(hr)hdh (17)

where finvε0 is the value of finv between 0 and ε.
Since ε → 0, the product hr → 0, and thus J0(hr) → 1.

At h→ ε, f22 = f220 = 2πC2

1−2πβH(fsp22)|h=0
,

Also, since δ(h)/h � βT when h < ε, we can ignore
all the leakage terms. We can thus approximate H(T22ss) =
H(fsp22) = H(fsp22)|h=0δ(h)/h . Thus we have,

finv
ε
0 =

∫ ε

0

H(fsp22)|h=0
δ(h)

h
e

− t

f220H(fsp22)|h=0
δ(h)
h hdh

=
(H(fsp22)|h=0)

2f220

ε2t

(
1− e

−tε2
f220H(fsp22)|h=0

) (18)

Next we compute finv between (ε,∞). We note that the
ratio of the terms (1−2πβH(fsp22)H(fsp12)

(1−2πβH(fsp11)H(fsp22)
is close to 1, when

h > ε, (where h is the Hankel transform variable, and ε→ 0).
So we replace this by a correction factor equal to 1.1 (based
on empirical results).

finv
∞
ε = H−1

(
1.1×

H(T22ss)C1e
−t/(f22H(fsp22))

C2

)
(19)

where finv∞ε is the value of finv between ε and ∞. As h
increases, finvε0 → 0, and finv∞ε will dominate. The final
transient Green’s function can be found using Equation 20.

T12 = T12ss − finvε0 − finv∞ε
...

(20)

E. Convolution with the Power Profile

In the online stage of our algorithm, these leakage aware
Green’s functions are convolved with the power map to obtain
the leakage aware full chip thermal profile. Since we have
saved the leakage aware Green’s functions in the transform
domain itself, we compute the Fourier transform of the power
source, multiply them and take the inverse Fourier transform.
For a 3D chip, the effects of sources in all layers have to be
accumulated. Thus we use Equation 21.

Ti = F−1
(
F(fspLi1)F(P1) + F(fspLi2)F(P2) + ...+

F(fspLil)F(Pl)
) (21)

where, Pi represents the dynamic sources in layer i, fspLi1
represents the leakage aware Green’s function for layer i
because of a source in layer l and Ti represents the complete
temperature rise in layer i.

Full Chip Transient Thermal Profile: To compute the full
chip transient thermal profile, we can use an approach similar
to Ziabari et al. [2], after substituting the leakage aware
Green’s function in place of the basic Green’s function. Each
convolution operation is also replaced by multiple convolution
terms as per Equation 21. The basic idea here is that at any

time instant t, we need to convolve the power profile of the last
k time instants with the corresponding Green’s functions and
add them up. Here k is the number of time intervals beyond
which the impulse response falls below 5% of its peak value.

Alternatively, we propose another approach that relies on
the step response rather than the impulse response.

Instead of modeling the power profile as a series of delta
functions, we model them using step functions. At any time
instant, we subtract the power value in the previous time
instant from the power for the current time instant. This
difference maybe negative as well, signalling a decay in
temperature. The difference is then convolved with a slice of
the leakage aware step response corresponding to that time
instant. At any time instant, we do this for the last k time
steps and add them to get the temperature profile for that
time instant. After k time steps, the thermal contribution of
the power value at time t − k (=P (t − k) ? fsp(t − k))
would saturate to its steady state value. Thus if we replace
fsp(t − k) with the steady state value, we do not need to
add the effects of sources beyond k time steps. In practice,
we slightly overestimate the temperature beyond k ms until
the corresponding power sources actually achieve steady state.
However this error is limited to 5%, and vanishes very quickly.

F. Corrections for Edges and Corners

An important aspect of Green’s function based approaches
is the modeling of adiabatic boundaries accurately. For this
reason, we use the method of images (similar to Ziabari et
al. [2]). We extend the power matrix to twice its original
size by padding it with zeros. Next we replace the adiabatic
boundaries with image sources on the edges – for every source
x units away from the boundary, we place a source −x units
away from the boundary (on the other side) . The extended
power matrix is then convolved with the leakage aware Green’s
functions.

G. Techniques used for Further Speed-up

A continuous Hankel transform requires the calculation of
the Bessel function for each value of r. To further speed-up
the simulation, we use the technique proposed by Johnson [16]
to compute the discrete Hankel transform (Equation 22):

H(j0,k) ≈
1

j0,N+1
2

N∑
n=1

2

J2
1 (j0,n)

f(j0,n/j0,N+1)J0(j0,kj0,n/j0,N+1)

(22)
where j0,k is the kth root of the Bessel function, and N is

the defined range of the function whose Hankel transform is
to be computed. To avoid computing the roots of the Bessel
function in each iteration, we pre-compute the roots and store
them in a look-up table.

IV. MODIFIED THERMAL MODELING APPROACH FOR
MICROCHANNELS

In this section, we describe the modifications that we make
to our basic approach in order to account for anisotropic
systems. Although we describe our method for microchannels,



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATED (VLSI) SYSTEMS, VOL. XX, NO. X, XXXX 2020 7

our approach can accommodate the anisotropicity introduced
by through-silicon-vias.

The heat spreading function is no longer isotropic (same in
all directions) in the presence of microchannels, as can be seen
in Figure 2. To account for the anisotropicity, we propose the
use of a residual Green’s function, which we describe next.

Captured by the 
Green's function

Not captured =>
Residual Green's

Function

Upstream

Downstream

Fluid flow

(a) (b)

L

L/2

Padded region 1

Padded region 2

}Central portion = 
Final temperature 

value

(c)

Fig. 2: Handling the anisotropicity in the Green’s function

A. Residual Green’s Functions for Chips with Microchannels

In the case of anisotropic systems such as chips with
microchannels, the Green’s function is skewed in one direction
because the fluid carries heat along its flow, resulting in
a higher temperature rise downstream (Figure 2, where we
assume the fluid to flow from the upper (upstream) region to
the bottom (downstream region)). Consequently the tempera-
ture rise does not drop to zero at the downstream boundary.
However, the Green’s function (conventionally obtained by
applying a power to the center of the chip) captures the thermal
information only till the edge of the chip, i.e. till a distance
of L/2 from the power source. Here L is the length of the
chip. Thus the thermal information captured by the Green’s
function is incomplete. So to capture the complete information,
we modify the conventional Green’s function approach in the
following manner.

We apply a source to the upper (upstream) edge of the
chip. The resultant temperature rise is shown in Figure 2(b).
To capture the complete thermal information, we consider
two functions: the conventional Green’s function (source at
the center), and an additional residual Green’s function. The
residual Green’s function is obtained by measuring the temper-
ature rise along the complete microchannel when the source
is present at the upstream edge of the chip, and removing
the thermal information already present in the conventional
Green’s function (source at the center). We will now describe

this process mathematically. For a unit power source applied
at the edge, the temperature rise using the Green’s function is
given by:

T edge12 = fsp12 ? δ(x, y − L/2)

= fsp12(x, y − L/2)
(23)

The actual temperature rise obtained is fspedge12 . Thus the
residual Green’s function is given by:

fspres12 = fspedge12 − T edge12 (24)
When a source is applied in the upstream region (Fig-

ure 2(c)), a part of the temperature rise ends up in the zero-
padded region (region 2). An additional temperature rise is
contributed by the image source (described in more detail
in the next section). The central part of the sum of the two
temperature profiles is finally extracted, leaving the spurious
temperature rise behind in the zero padded region.

To make the residual Green’s function leakage aware, we
use the method described in Section III. While calculating the
full chip thermal profile, the residual Green’s function is also
convolved with the power profile and the final thermal profile
is obtained by adding it to Equation 21.

B. Corrections for Edges and Corners

We modify the method of images to make it applicable
to chips with microchannels (Figure 3). In this method, the
adiabatic boundaries are replaced by image sources across the
boundary. At the adiabatic chip boundaries, the entire heat
spreads back along the silicon layer. However, in chips with
microchannels, the boundaries are not completely adiabatic,
rather some of the heat is carried away by the microchannels
under the chip, and only a part of the heat spreads back along
the silicon layer. To account for this effect, we adopt the
following approach: We divide the chip into small segments.
Some heat is lost to the underlying fluid by each segment lying
in the path of the heat spreading back from the boundary. The
amount of heat lost by a segment at a distance of r from the
edge is given by:

Plost(r) ∝
r

n

= f
r

n
,

(25)

where f is the constant of proportionality.

n segments

r

Fluid 
Flow

Adiabatic boundary

Fig. 3: Edge effects in chips with microchannels



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATED (VLSI) SYSTEMS, VOL. XX, NO. X, XXXX 2020 8

Hence the amount of heat that reaches a segment at a
distance of r from the edge is given by:

Pn(r) =

(
1− fr

n

)n
∗ Pref , (26)

where Pref is the amount of heat that would reach this
segment if the boundaries were perfectly adiabatic.

As is normally done, let us assume that the length of each
segment tends to 0, and thus we have a very large number of
such segments. We thus have:

Pn(r) = lim
n→∞

(
1− fr

n

)n
∗ Pref

= e−fr ∗ Pref
(27)

Thus we see that the heat spreading back along the silicon
layer is effectively damped by an exponential function.

The image sources on the inlet and outlet edges are con-
volved with the damped Green’s functions, and added to the
full chip thermal profile, while the image sources not on the
microchannel inlet or outlet edges are convolved with the
regular Green’s functions.

V. PIECEWISE LINEAR LEAKAGE MODEL

We model the leakage power using an M -segment piecewise
model over the entire operating range of the chip (refer
to [9]). Let the temperature-dependent coefficient of leak-
age power (β) for each of the M temperature segments
be β0, β1..., βM−1. Our piecewise linear leakage temperature
computation consists of the following steps:
1) We first compute the leakage aware Green’s functions for

each of these segments, and store them separately.
2) Next, we compute an approximate thermal profile by con-

volving the power profile with the Green’s functions (assuming
a baseline leakage power).
3) Based on the approximate thermal profile obtained, we

split the power profile into separate matrices, where each
matrix has power numbers corresponding to the locations on
the chip where the temperature lies in a particular segment.
4) Finally we convolve each power matrix with the corre-

sponding leakage aware Green’s function, and add them to
obtain the full chip piecewise leakage aware thermal profile.
An overview of our approach is shown in Figure 4.

We first describe how we obtain the leakage aware Green’s
functions for each temperature segment. For easier under-
standing of the proposed solution, we will describe the 2-D
piecewise leakage model first, and later extend it to 3D chips.

The temperature rise is given by:

T = fsp ? (Pdyn + Pleak) (28)
Let us assume that the dynamic power consumption is zero

initially. The leakage power in the chip is at the baseline level,
β0. Next, we apply a unit power source at the center of the
chip. The temperature of the chip rises above the ambient
temperature, resulting in a higher value of β at the center.

T = fsp+ fsp ? (βT ) (29)
= fsp+ fsp ? (β0T + (β1 − β0)T δ(x, y)) (30)
= fsp+ fsp ? (β0T + (β1 − β0)T |x=0,y=0) (31)

Fig. 4: Overview of our piecewise linear leakage modeling
approach

Let us denote the maximum temperature rise by Tmax.
Here we make a simplifiying assumption that fsp|x=0,y=0 ≈
T |x=0,y=0 = Tmax. Then we have:

T = fsp+ fsp ? (β0T + (β1 − β0)Tmax) (32)
Taking the Fourier transform on both sides and simplifying,
we get:

F(T ) =
F(fsp)(1 + Tmax(β1 − β0))

1− β0F(fsp)
= αF(T |β0), (33)

where T |β0 is the temperature rise when a single segment
linear leakage model with coefficient equal to β0 is used, and
α = (1 + Tmax(β1 − β0)).

Using a similar method, we can derive the Green’s functions
for a 3D chip:

F(Tmi2 ) = αi,mF(T 0
i2|β0

), (34)
where, F(Tmi2 ) is the piecewise leakage aware Green’s

function for the mth leakage segment and the ith layer,
αi,m = (1 + Tmax,i2(βm − β0)) and T 0

i2|β0 is the leakage
aware Green’s function for the ith layer assuming a baseline
leakage power.

Next, we obtain the full chip temperature profile using the
method described in Section III-D1. Based on this estimated
thermal profile, we divide the power profile into M matrices,
where each matrix has power values corresponding to each
temperature segment. Finally, we convolve each power matrix
with its corresponding leakage aware temperature matrix to
obtain the full chip thermal profile.

VI. EVALUATION

A. Architecture of the 3D Chip
We evaluate our algorithm for two different chips: 3D chip

with heat sink and a 3D chip with microchannels (same
configuration as [3]).



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATED (VLSI) SYSTEMS, VOL. XX, NO. X, XXXX 2020 9

TABLE II: Parameters of the chip

Parameter Value
No. of layers, l 4
No. of grid points per layer ,n 16
Die size 100 mm2

Die thickness 0.15 mm
TIM thickness 0.02 mm
Spreader thickness 3 mm
Microchannel width 50 µm
Microchannel height 100 µm
Prandtl number 0.7085
Fluid velocity 0.75 m/s and 1 m/s

1) 3D chip with Heat Sink: We consider a 3D chip com-
prising four active layers of silicon with a layer of thermal
interface material in between them. Each layer of silicon has
the dimensions: 1cm×1cm×0.015cm and has 16×16 = 256
grid points (deemed to be enough by [11]). The top layer is
attached to a heat spreader which is attached to a heat sink. The
top layer of the spreader can be thought of as an isothermal
surface (since it is attached to the heat sink), while all other
external surfaces of the chip are adiabatic. The parameters of
the chip are listed in Table II.

2) 3D chip with Microchannels: The 3D chip with mi-
crochannels consists of four active layers of silicon, un-
derneath which there is a microchannel layer and thermal
interface layer. The microchannel layer has alternating silicon
walls and fluid carrying channels. 100 microchannels of 50 µm
each are present that carry water in them. The fluid velocity
is constant along the channel. The height of the microchannel
layer is 100 µm. We use the same configuration as [3].

B. Setup
We use the commercial CFD simulator, Ansys Icepak, for

thermal simulation. It is based on the Fluent CFD package.
Multilevel meshing has been used to separately mesh the chip
and the spreader.

Our routines are written in R and Matlab for computing and
manipulating the Green’s functions. We begin by applying a
1 W point power source at the center of the chip at grid
point (9, 8) (9th grid point in the x-direction, and the 8th

grid point in the y-direction) to obtain the Green’s function
without leakage from Ansys Icepak. We do this for each layer.
Next we employ our proposed methodology to compute the
leakage aware Green’s functions. To validate our results, we
need to calculate the corresponding Green’s functions with
leakage from Icepak. We iteratively calculate the leakage of
each core, apply an equivalent amount of additional power
to emulate leakage, and re-run the simulation. All our results
have been obtained on an Intel i7 (2.8 GHz) desktop PC with
8 GB RAM running 64-bit Windows 8.

For the transient version, it is extremely difficult to calculate
the leakage aware Green’s functions using a thermal simulator
like Icepak. This is because in order to obtain the leakage con-
verged temperature profile, we need to calculate the additional
leakage power based on the temperature at a given time instant,
and re-iterate till the power-temperature values converge. In a
transient setting, where the temperature changes, we pretty
much need steady state (leakage-converged) solutions at each

point in time. This is prohibitively expensive. Hence, for
validating our results, we do this activity for a fixed number of
chosen points in time, and interpolate the results in between.

C. Error Metric

We report the mean absolute error across all layers of a chip,
along with the maximum temperature rise. In most cases, we
report the percent error relative to the maximum temperature
rise of a layer. Other works in temperature estimation often
report the error relative to the mean temperature in ◦C [17],
which under-represents the error.

D. Results for 3D Chip with Heat Sink

1) Steady State Results: Accuracy: Our method involves
two stages: the pre-compute stage which is off-line, in which
we calculate the leakage aware Green’s functions, and the
compute stage, which is online, in which we convolve the
Green’s function with the power profile.

Pre-compute stage: We found that the maximum error in
calculating the Green’s functions using the Fourier transform
was 0.2 ◦C in all cases. In terms of percentage, the maximum
error was limited to 3%. Using Hankel transforms, the percent-
age errors were lower in some cases and higher in others. The
average error was 5.5%. Since the Hankel transform is the 1D
equivalent of a 2D Fourier transform for radially symmetric
functions, the use of either of these two transforms should
yield the same results. However we observe that the Hankel
transform based approach has a higher error since there are
sophisticated packages available for computing the Fourier
transform, whereas the code for the Hankel transform has
been implemented by us and thus there are more issues with
precision. We found out that the process of calculating the
Hankel transform and the inverse Hankel transform yields an
error between 1-7%, with an average error of 4%. To correct
for these numerical errors, we added a correction factor of
1.04. This reduced our average error to less than 3.5%.

Compute stage: We computed the thermal profiles for two
test cases.
Test case 1: This is a simple test case in which each layer has
a single power source other than the middle layer, which has
two power sources. The power profile is described in Table III.
The error in the total temperature profile was limited to 0.46◦C
using Fourier transforms and 1.5◦C using Hankel transforms.
The maximum temperature rise was 28.2◦C (5% error).

TABLE III: Location and magnitude of dynamic power
sources on the chip in test case 1

Grid point Layer Power (W)
(12,5) Layer 1 1 W
(6,5) Layer 2 3 W
(9,8) Layer 2 1 W
(9,8) Layer 3 2 W
(12,13) Layer 4 4 W

Test case 2: We also tested our chip on a real floorplan
consisting of one core layer (Alpha 21264) and 3 memory
layers. The power values were taken from the 3D test case in



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATED (VLSI) SYSTEMS, VOL. XX, NO. X, XXXX 2020 10

Dynamic Power profile

Grids along x direction

G
ri
d
s
 a

lo
n
g
 y

 d
ir
e
c
ti
o
n

 

 

5 10 15

5

10

15
0.1

0.2

0.3

0.4

0.5

0.6

(a) Dynamic power dist., layer 1, test case 2

Grids in x direction →

G
ri
d
s
 i
n
 y

 d
ir
e
c
ti
o
n
 →

 

 

4 8 12 16

4

8

12

16
10

15

20

25

30

35

40

(b) Calculated thermal profile, layer 1

Grids in x direction →

G
ri
d
s
 i
n
 y

 d
ir
e
c
ti
o
n
 →

 

 

4 8 12 16

4

8

12

16
10

15

20

25

30

35

40

(c) Actual thermal profile, layer 1

Fig. 5: Power and thermal profiles for test case 2 for a chip with heat sink

HotSpot [7]. The power profile and the corresponding thermal
profiles are shown in Figure 5. The maximum error here too
was limited to 5%. We can see that the calculated and actual
thermal profiles match very well.

Speed:
3DSimF pre-compute stage: Computing the Fourier transform
of all the 16 spreading functions and calculating the leakage
aware Green’s functions in the transform domain requires
0.6 ms. These functions are then stored to be used later in
the online stage.
3DSimF Compute stage: The runtime of the online compute
stage is 0.4 ms.
3DSimH pre-compute stage: To compute the Hankel transform
of the Green’s functions we need 0.96 s. The higher compu-
tation time needed to calculate the modified Green’s functions
using Hankel transforms is because we need to compute the
results of Bessel functions. However, since this part is offline,
and does not need to be computed again unless the parameters
change, the higher simulation time is not a problem. Then,
for the second sub-stage, it takes an additional 85 µs to
calculate the leakage aware functions in the domain of Hankel
transforms. Here, we have an 82X speedup as compared to
3DSimF. This is due to the fact that the size of the problem
is reduced by an order of magnitude, and since we calculate
16 Green’s functions, we have significant savings in time.
3DSimH Compute stage: The running time of the compute
stage is 0.4 ms for 3DSimH (almost the same as 3DSimF).
The results are summarized in Table IV.

To compute the same functions using Ansys Icepak, we re-
quire 2-3 hours, depending on the number of iterations needed
for convergence. We also calculated the leakage converged
temperature values for a similar configuration using the latest
version of Hotspot [7], and found the execution time to be
0.22 s (as compared to 1 ms for 3DSim). Using 3D-ICE,
the execution time is 1.1 s to compute the leakage converged
thermal profile (for acceptable accuracy, a grid size of 32×32
had to be used in 3D-ICE). Therefore, our algorithm provides
a 220− 1100X speedup as compared to other state of the art
thermal simulators for steady state analysis of 3-D chips. The
accuracy is either similar or better in some cases (Table IV).

TABLE IV: Speed and accuracy of popular simulators (steady
state)

Simulator Chip-Heatsink Chip-Microchannel
Time Error (◦C ) Time Error (%)

Ansys 2 hours – 3.5 hours –
Hotspot 0.22 s 1.4 [7] – –%
3D-ICE 1.1 s 1.6 1.67s 3.4%
3DSimF 0.001 s 1.5 0.0035s 4%

Test Case Total power Fluid vel. Max. Temp.
Rise (◦C )

Error
(◦C )

Error
(%)

Test case 1 9 W 1 m/s 16.74 0.04 0.2
Test case 2 31 W 1 m/s 16.68 0.14 0.8
Test case 3 64.3 W 1 m/s 12.54 0.26 2.1
Test case 4 64.3 W 0.75 m/s 13.73 0.25 1.8

TABLE V: Test cases used for evaluating chips with mi-
crochannels

2) Transient Results: For the transient temperature profile,
the error obtained using our algorithm was limited to 6%.
The execution time to obtain the leakage converged Green’s
functions depends on the number of points in time for which
the simulation needs to be done. For 100 points between 0
and 0.05 s, the CPU execution time remains limited to 3.5 s.
As discussed earlier, obtaining the leakage converged Green’s
functions using simulators such as Hotspot and 3D-ICE is
prohibitively expensive since multiple iterations must be run
for each point in time.

E. Results for 3D Chip with Microchannels

1) Steady State Results: Green’s functions: To obtain the
residual Green’s function using Ansys Icepak, we use the same
approach that was used to obtain the Green’s function (with
source applied at the edges of every layer).

Pre-compute stage: Next, we calculate the leakage aware
Green’s functions for all layers using our algorithm. Our
algorithm takes 3.5 ms to calculate all these Green’s functions,
with an error limited to 3%. We also calculate the leakage
aware residual Green’s functions, which takes an additional
3.5 ms. We do this for all leakage segments in the piecewise
linear leakage model. We also obtain the damped Green’s



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATED (VLSI) SYSTEMS, VOL. XX, NO. X, XXXX 2020 11

Grids in x direction →

G
rid

s
 in

 y
 d

ire
c
tio

n
 
→

 

 

4 8 12 16

4

8

12

16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Power distribution, layer 1

Grids in x direction →

G
rid

s
 in

 y
 d

ire
c
tio

n
 
→

 

 

4 8 12 16

4

8

12

16

1

2

3

4

5

6

7

(b) Thermal profile, layer 1

Grids in x direction →

G
rid

s
 in

 y
 d

ire
c
tio

n
 
→

 

 

4 8 12 16

4

8

12

16
0

0.5

1

1.5

2

2.5

3

(c) Power distribution, layer 4

Grids in x direction →

G
rid

s
 in

 y
 d

ire
c
tio

n
 
→

 

 

4 8 12 16

4

8

12

16

2

4

6

8

10

12

14

16

(d) Thermal profile, layer 4

Fig. 6: Power and thermal profiles for test case 2 for layers 1 and 4 for a chip with microchannels

functions for each layer, which takes an additional 0.3 ms.
Thus the total time spent in the pre-compute stage is 7.3 ms.
Compute stage: Using these Green’s functions, we calculate
the leakage aware full chip thermal profile for multiple test
cases. The first two test cases are for the chip described in
Section VI-A. In the third test case, we evaluate our algorithm
on a real floorplan with one core layer and three memory
layers. In the fourth test case, we vary the velocity of the fluid.
A summary of the various test cases is shown in Table V.
The simulation time of our algorithm is 1.2 ms when a
single segment leakage model is used, and 3.5 ms when a 3-
segment piecewise linear leakage model is used. To compute
the same leakage aware thermal profile, Ansys Icepak requires
3-4 hours, while 3D-ICE takes 1.67 s. Thus our algorithm
provides a 477X speedup over 3D-ICE in the online part of
thermal computation (150X speedup if the pre-compute time
is included as well). Additionally our algorithm enables a
tradeoff between simulation time and accuracy through the
piecewise linear model.
Test Case 1: In this case we applied one power source to each
layer of the 3D chip, except the layer closest to the ambient,
where we apply two power sources. The total power applied
to the chip is 9 W . The mean absolute error of our algorithm
is limited to 0.04◦C (maximum temperature rise of 16.7◦C ).
Test Case 2: In this case the total power applied to the chip
is 31 W with multiple power sources in each layer. The
mean absolute error of our algorithm is limited to 0.14◦C
for a maximum temperature rise of 16.68◦C . The power and
thermal profiles for each layer are shown in Figure 6.
Test Case 3: Here we have a core layer consisting of the
processor Alpha21264 and 3 memory layers with uniform
power dissipation. The total power dissipated by the core layer
is 48.9 W , while the total power dissipated by the 3D chip
stack is 64.3 W . Using our algorithm the mean absolute error
is obtained to be 0.26◦C for a maximum temperature rise of
12.54◦C (Figure 7).

The temperature here is lower than test case 1 and 2, despite
the total power being higher because a large fraction of the
total power (48.9 W) is concentrated on the core layer, which
is closest to the ambient, and has a better heat dissipation path.
The power density for the remaining layers (5W/cm2) is also
lower than test case 1, where the power density is as high as
768W/cm2.
Test Case 4: Next we change the fluid velocity to 0.75 m/s,

and keep the power profile the same as test case 3. The mean
absolute error obtained in this case is 0.25◦C for a maximum
temperature rise of 13.73◦C .

2) Transient Results: Pre-compute stage: We first com-
pute the transient leakage aware Green’s functions from the
steady state Green’s functions using the method outlined in
Section III. The time taken to compute the transient thermal
profile is 54 ms, for all the four layers (20 points in time:
2.7 ms× 20 = 54 ms). The maximum error is limited to 5%.
The calculated transient leakage aware Green’s function and
the corresponding function obtained from Icepak are shown in
Figure 9a.

Compute stage: Step Response: We need an additional 15 ms
to compute the full chip thermal profile.

Test cases 1 and 2: We validate our algorithm for the floorplan
of the Alpha21264 processor. The transient temperature profile
using our algorithm and that obtained from Icepak for one of
the grid locations are shown in Figure 9b. The error in this
case was limited to 6%.

Next, we demonstrate the temperature profile corresponding
to a power profile consisting of three power sources in a layer.
The power profile and the corresponding temperature profile
for layer 3 are shown in Figure 8.

To validate our results, we obtain the reference values from
Icepak for 8-10 time instants only. To compute the leakage
converged temperature values from Icepak, we had to set the
mesh to the coarsest setting possible, otherwise our system ran
out of memory. Even then, it took over 10 hours to obtain the
full chip thermal profile from Icepak.

Compute stage: Time-varying Power Source: We compute
the full chip transient thermal profile for test case 1, using
the approach described in Section III-E. The calculated and
the observed transient thermal response (using Icepak) at the
center of the chip are shown in Figure 10. An average error
of 1.9% is observed against the data from Ansys Icepak. The
execution time for 80 time points is 300 ms.

Yan et al. [6] implement their algebraic multigrid precon-
ditioned iterative solver in C++ and achieve a 9X to 139X
speedup over Hotspot. In comparison, our approach provides
a 477X speedup in the steady state, when implemented in
Matlab. If our algorithm is implemented in C++, we can have
much larger speedups owing to our analytical approach.



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATED (VLSI) SYSTEMS, VOL. XX, NO. X, XXXX 2020 12

Grids in x direction →

G
rid

s
 in

 y
 d

ire
c
tio

n
 
→

 

 

4 8 12 16

4

8

12

16

0.1

0.2

0.3

0.4

0.5

0.6

(a) Power distribution in core layer

Grids in x direction →

G
rid

s
 in

 y
 d

ire
c
tio

n
 
→

 

 

4 8 12 16

4

8

12

16

2

4

6

8

10

12

(b) Temperature map from Icepak

Grids in x direction →

G
rid

s
 in

 y
 d

ire
c
tio

n
 
→

 

 

4 8 12 16

4

8

12

16

2

4

6

8

10

12

(c) Calculated temperature map

Fig. 7: Power and temperature map for test case 3 for a chip with microchannels

0

10

20

0

10

20
0

1

2

3

 

Grid Points →Grid Points →

 0

0.5

1

1.5

2

2.5

3

(a) Power distribution in layer 3

0

10

20

0

10

20
0

10

20

30

 

Grid Points →Grid Points →

 

0.5

1

1.5

2

2.5

3

(b) Temperature rise at 0.5 ms

0

10

20

0

10

20
0

10

20

30

 

Grid Points →Grid Points →

 

2

4

6

8

10

12

14

(c) Temperature rise at 2.5 ms

0

20

40

0

20

40
0

10

20

30

 

Grid Points →Grid Points →

 

5

10

15

20

25

30

(d) Temperature rise at 7.5 ms

Fig. 8: Power and temperature map, transient

0 0.05 0.1 0.15 0.2
0

1

2

3

4

5

6

Time (ms)→

T
e
m

p
e
ra

tu
re

 R
is

e
 (

K
)→

 

 

Calculated

Icepak

(a) Transient Green’s function,
layer 2

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Time (ms)→

N
o
rm

a
liz

e
d
 T

e
m

p
e
ra

tu
re

 R
is

e
 (

K
)→

 

 

Calculated

Icepak

(b) Transient temperature pro-
file, center grid, layer 4

Fig. 9: Transient temperature map for test case 1

0 20 40 60 80
0

1

2

3

4

Time (ms)→

P
ow

er
 d

is
si

pa
tio

n 
(W

)→

(a) Transient power

0 20 40 60 80
5

10

15

Time (ms)→

T
em

pe
ra

tu
re

 R
is

e 
(K

)→

Calculated
Icepak

(b) Transient thermal profile

Fig. 10: Transient power and thermal distribution, layer 4

F. Scalability Analysis of the Proposed Approach

To demonstrate the scalability of our algorithm to different
grid sizes, we have carried multiple experiments using 3D-
ICE. We have used test case 3 of chip with microchannels and
simulated grid sizes of 4×4, 8×8, 16×16, 32×32 and 64×64.
We report the execution time of our 3DSim algorithm and the
3D-ICE algorithm as well as the mean absolute error relative to
3D-ICE in Table VI. Our results show that we have a minimum

speedup of 350X over 3D-ICE, and the gain improves as we
move to finer grid sizes (upto 18000X at a 64× 64 grid).

TABLE VI: Scalability to different grid sizes (steady state)

Grid Size 3DSim Time (s) 3DSim 3DICE Time (s)

Pre-compute Compute Error
(K)

Without
leakage

With
leakage

64× 64 0.072 s .015 s 0.22 67s 274s
32× 32 .025 s .0042 s 0.21 2.9s 22.6s
16× 16 .0075 s .0012 s 0.24 0.32s 1.6s
8× 8 .0032 s .0005 s 0.60 0.05s 0.35s
4× 4 .002 s .00034 s 1.96 0.03s 0.12s

G. Error Upon Using a Linear Leakage Model

Using a linear leakage model, we get a 5% error in temperature
with the mean absolute error becoming 0.275K, from 0.25K
in the piecewise linear leakage case. Whether this much error
is acceptable or not will depend on the application.

VII. RELATED WORK

A. Thermal Modeling of 2D Chips

For 2-D chips, a wide variety of techniques have been
proposed for temperature simulation, which are fast as well
as accurate [11], [18], [19]. Most temperature simulation
techniques solve the Fourier’s law of heat conduction using
a finite element or finite difference based approach [18].
However, such methods are slow and the accuracy depends
on the granularity of meshing.

The popular Hotspot [20] simulator uses the analogy be-
tween electrical and thermal circuits to construct an RC circuit,
and then solves the resulting equations to get the thermal
profile. To close the leakage-temperature loop, the authors
suggest iterating multiple times till convergence.



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATED (VLSI) SYSTEMS, VOL. XX, NO. X, XXXX 2020 13

Power Blurring is a Green’s function based approach [2],
where additional corrections are applied for edges and corners
as well as the pyramid structure of the chip. The transient
profile is modeled as well. But this method is not applicable
to 3D chips, and models leakage iteratively.

Sarangi et al. [11] derive a leakage aware Green’s function
for 2D chips using a linear model of leakage. To convert the
2-D convolution to 1-D multiplication, they use the Hankel
transform. At runtime, they convolve the total power profile
with the Green’s function to obtain leakage aware full chip
temperature values. To obtain the transient temperature profile,
they incorporate a thermal capacitance. This is the work
closest to our area, but this method is for 2D chips, and
owing to the multiple heating effects in both lateral and
vertical directions, this method cannot be trivially extended
to 3D chips. We consequently developed a novel technique to
realistically approximate the Green’s functions in a 3-D chip.

B. Modeling of Leakage Power Without Explicitly Iterating

Wang et al. [13] assume a linear leakage model, where the
reference temperature in the Taylor expansion is updated when
the node temperature differs from it by 10◦C . They then
reduce computations using a model order reduction technique.
In comparison our transform based approach is much faster.
Additionally, the authors have not modeled microchannels.
Zhang et al. [21] use a piecewise linear leakage model in
a finite element setup. They then use the exact Newton’s
method by partially linearizing the resulting equations. While
their method is capable of modeling detailed geometries, they
have not modeled microchannels and the method is still slow.
Moreover, the finite element method is highly sensitive to the
meshing, and altering the meshing even slightly may result
in non-convergence. Yan et al. [6] assume a linear leakage
model where the Taylor series expansion is carried out around
a different reference temperature for each grid in the model.
They then solve the corrected linearized equation using the
algebraic multigrid method. However their solution is still
iterative, and they consider the steady state only.

C. Thermal Modeling of 3D Chips

A limited number of techniques have been proposed for 3-D
chips. MTA [22] uses the finite element method to compute the
detailed thermal profile for complex 3D geometries. However,
while being capable of accounting for detailed geometries, the
tool is too slow for runtime applications. Additionally, such
detailed structures are rarely of much use to the end user.

D. Thermal Modeling of Chips with Microchannels

Coskun et al. [23] model microchannels and TSVs by
considering variable thermal resistivities for each grid cell
in the mesh (created as a part of the finite difference based
approaches). However, their method is slow and has limited
accuracy. Mizunuma et al. [24] consider two wake functions
for the temperature spreading effect due to microchannels.
They do not model the transient thermal profile.

3D-ICE [3] is the most popular thermal simulator that mod-
els microchannels. Here, the effect of microchannel cooling is
incorporated by adding a convective term for the heat exchange

by the fluids. The additional term is modeled as a temperature
controlled heat source, which translates to a voltage controlled
current source in the equivalent RC circuit. We have compared
our results against those obtained using 3D-ICE in Section VI,
where we demonstrate that our method provides a 477X
speedup over 3D-ICE. Qian et al. [25] account for the entrance
effects at the inlet of microchannels. They also model TSVs
by modifying the conductivity of the corresponding grid cells.
Feng and Li [26] adapt this method to GPUs, but they do not
model the transient problem. Liu et al. [27] solve this problem
using a GPU-accelerated GMRES solver and demonstrate a
significant speedup. However, all of these methods require
specialized computational resources, whereas our algorithm
requires a single core.

E. Machine Learning based Thermal Modeling
Juan et. al [28] propose a regression based framework to

obtain the maximum temperature in a 3D IC in the presence
of variation using a combination of the leakage power of each
layer. Sridhar et al. [29] use a single layer neural network
to predict future temperatures using the current temperature
and power values as input for a 3D IC with microchannels.
They implement the online part of their technique on a GPU.
However they do not model leakage power. Other methods
use feature selection over a large set of features to predict
future temperatures [30], [31] Sadiqbatcha et. al [32] use an
LSTM based model to augment the thermal sensor readings,
followed by DCT for compression. Wang et. al [33] use
a variant of RNN, echo state networks (ESN) to learn the
relationship between power and temperature, while capturing
the non-linear dependence of leakage power on temperature
and avoiding the long term dependencies problem. However,
they do not model 3D chips.

A major limitation of all machine learning based methods
is that they are extremely sensitive to the training input.
Additionally the large amount of training data needed by these
algorithms can not always be obtained, especially considering
leakage power. Getting the current temperature or performance
counter readings quickly at runtime is challenging too, since
there are several preprocessing steps involved before this data
can be used. Also, such measurements are prone to noise and
measurement delays. Thus our focus has been on analytical
thermal models in this work.

VIII. CONCLUSION

In this work, we propose a fast analytical method to model
the temperature profile of a 3D chip, which includes the effects
of leakage and microchannels. We incorporate a piecewise
linear leakage model for improved accuracy. We compared our
results with a commercial CFD simulator as well as state of the
art thermal modeling tools. Our approach yields a significant
speedup with an accuracy comparable to other state of the art
tools. The high speedup is because we adapt a Green’s based
function approach, and obtain a closed form solution, which
seamlessly incorporates the effect of leakage; this eliminates
the need to perform multiple iterations for leakage-temperature
convergence and essentially converts a 3-D problem to a
primarily 1-D problem.



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATED (VLSI) SYSTEMS, VOL. XX, NO. X, XXXX 2020 14

ACKNOWLEDGMENT

This work has been partially supported by the Semiconduc-
tor Research Corporation (SRC) under Grant No. 2017-CT-
2735. The first author is supported by Visvesvaraya PhD
Scheme, MeitY, Govt. of India MEITY-PHD-701. The authors
would like to thank Shashank Varshney for his valuable
contributions in Icepak modeling of microchannels.

REFERENCES

[1] T. Brunschwiler, B. Michel, H. Rothuizen, U. Kloter, B. Wunderle,
H. Oppermann, and H. Reichl, “Interlayer cooling potential in vertically
integrated packages,” Microsystem Technologies, vol. 15, no. 1, pp. 57–
74, 2009.

[2] A. Ziabari, J.-H. Park, E. K. Ardestani, J. Renau, S.-M. Kang, and
A. Shakouri, “Power blurring: Fast static and transient thermal analysis
method for packaged integrated circuits and power devices,” VLSI
Systems, IEEE Transactions on, vol. 22, no. 11, pp. 2366–2379, 2014.

[3] A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, and D. Atienza,
“3D-ICE: Fast compact transient thermal modeling for 3D ICs with
inter-tier liquid cooling,” in ICCAD, 2010.

[4] T.-Y. Wang, Y.-M. Lee, and C. C.-P. Chen, “3D thermal-ADI: an efficient
chip-level transient thermal simulator,” in ISPD, 2003.

[5] W. Huang, E. Humenay, K. Skadron, and M. R. Stan, “The need for
a full-chip and package thermal model for thermally optimized IC
designs,” in ISLPED’05. IEEE, 2005, pp. 245–250.

[6] C. Yan, H. Zhu, D. Zhou, and X. Zeng, “An efficient leakage-aware
thermal simulation approach for 3D-ICs using corrected linearized
model and algebraic multigrid,” in DATE. IEEE, 2017, pp. 1207–1212.

[7] R. Zhang, M. R. Stan, and K. Skadron, “Hotspot 6.0: Validation,
acceleration and extension,” University of Virginia, Tech. Rep., 2015.

[8] W. Liu, K. Cao, X. Jin, and C. Hu, “BSIM 4.0.0 technical notes,”
University of California, Berkeley, Tech. Rep. UCB/ERL M00/39, 2000.

[9] H. Sultan, A. Chauhan, and S. R. Sarangi, “A survey of chip-level
thermal simulators,” ACM Computing Surveys, vol. 52, no. 2, p. 42,
2019.

[10] Y. Liu, R. P. Dick, L. Shang, and H. Yang, “Accurate temperature-
dependent integrated circuit leakage power estimation is easy,” in DATE,
2007.

[11] S. R. Sarangi, G. Ananthanarayanan, and M. Balakrishnan, “Lightsim:
A leakage aware ultrafast temperature simulator,” in ASPDAC, 2014.

[12] H. Sultan and S. R. Sarangi, “A fast leakage aware thermal simulator
for 3D chips,” in DATE. IEEE, 2017, pp. 1733–1738.

[13] H. Wang, J. Wan, S. X.-D. Tan, C. Zhang, H. Tang, Y. Yuan, K. Huang,
and Z. Zhang, “A fast leakage-aware full-chip transient thermal esti-
mation method,” IEEE Transactions on Computers, vol. 67, no. 5, pp.
617–630, 2018.

[14] P. Zhou, Y. Ma, Z. Li, R. P. Dick, L. Shang, H. Zhou, X. Hong, and
Q. Zhou, “3D-STAF: scalable temperature and leakage aware floorplan-
ning for three-dimensional integrated circuits,” in ICCAD, 2007.

[15] I. Wolfram Research, “Mathematica,” Illinios, 2012.
[16] H. F. Johnson, “An improved method for computing a discrete hankel

transform,” Computer physics communications, vol. 43, no. 2, pp. 181–
202, 1987.

[17] Y. Yang, Z. Gu, C. Zhu, R. P. Dick, and L. Shang, “ISAC: Integrated
space-and-time-adaptive chip-package thermal analysis,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 26, no. 1, pp. 86–99, 2006.

[18] W. Huang, K. Skadron, S. Gurumurthi, R. J. Ribando, and M. R. Stan,
“Differentiating the roles of IR measurement and simulation for power
and temperature-aware design,” in ISPASS, 2009.

[19] J.-H. Park, S. Shin, J. Christofferson, A. Shakouri, and S.-M. Kang,
“Experimental validation of the power blurring method,” in SEMI-
THERM. IEEE, 2010, pp. 240–244.

[20] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M. R. Stan, “Hotspot: A compact thermal modeling methodology for
early-stage VLSI design,” VLSI Systems, IEEE Transactions on, vol. 14,
no. 5, pp. 501–513, 2006.

[21] C. Zhang, M. Mihajlović, and V. F. Pavlidis, “Adaptive transient leakage-
aware linearised model for thermal analysis of 3-D ICs,” in DATE.
IEEE, 2019, pp. 268–271.

[22] S. Ladenheim, Y.-C. Chen, M. Mihajlović, and V. F. Pavlidis, “The MTA:
An advanced and versatile thermal simulator for integrated systems,”
IEEE TCAD, vol. 37, no. 12, pp. 3123–3136, 2018.

[23] A. K. Coskun, J. L. Ayala, D. Atienza, and T. S. Rosing, “Modeling and
dynamic management of 3d multicore systems with liquid cooling,” in
VLSI-SoC. IEEE, 2009, pp. 35–40.

[24] H. Mizunuma, C.-L. Yang, and Y.-C. Lu, “Thermal modeling for 3D-
ICs with integrated microchannel cooling,” in ICCAD. ACM, 2009,
pp. 256–263.

[25] H. Qian, H. Liang, C.-H. Chang, W. Zhang, and H. Yu, “Thermal
simulator of 3D-IC with modeling of anisotropic TSV conductance and
microchannel entrance effects,” in ASP-DAC 2013.

[26] Z. Feng and P. Li, “Fast thermal analysis on GPU for 3D ICs with
integrated microchannel cooling,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 21, no. 8, pp. 1526–1539, 2013.

[27] X.-X. Liu, Z. Liu, S. X.-D. Tan, and J. Gordon, “Full-chip thermal
analysis of 3D ICs with liquid cooling by GPU-accelerated GMRES
method,” in ISQED. IEEE, 2012, pp. 123–128.

[28] D.-C. Juan, S. Garg, and D. Marculescu, “Statistical thermal evaluation
and mitigation techniques for 3D chip-multiprocessors in the presence
of process variations,” in DATE 2011.

[29] A. Sridhar, A. Vincenzi, M. Ruggiero, and D. Atienza, “Neural network-
based thermal simulation of integrated circuits on GPUs,” IEEE TCAD,
vol. 31, no. 1, pp. 23–36, 2011.

[30] J. M. N. Abad and A. Soleimani, “Novel feature selection algorithm for
thermal prediction model,” IEEE TVLSI, vol. 26, no. 10, pp. 1831–1844,
2018.

[31] K. Zhang, A. Guliani, S. Ogrenci-Memik, G. Memik, K. Yoshii,
R. Sankaran, and P. Beckman, “Machine learning-based temperature
prediction for runtime thermal management across system components,”
IEEE Transactions on parallel and distributed systems, vol. 29, no. 2,
pp. 405–419, 2017.

[32] S. Sadiqbatcha, Y. Zhao, J. Zhang, H. Amrouch, J. Henkel, and S. X.-D.
Tan, “Machine learning based online full-chip heatmap estimation,” in
2020 25th Asia and South Pacific Design Automation Conference (ASP-
DAC). IEEE, 2020, pp. 229–234.

[33] H. Wang, X. Guo, S. X.-D. Tan, C. Zhang, H. Tang, and Y. Yuan,
“Leakage-aware predictive thermal management for multi-core systems
using echo state network,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2019.

Hameedah Sultan Hameedah Sultan is currently
working towards her Ph.D. degree in the School of
Information Technology, Indian Institute of Tech-
nology Delhi. She has done her Master’s in VLSI
Design Tools and Technology, IIT Delhi. Her re-
search interests include architectural-level thermal
and noise modeling, low power design, and appli-
cations of machine learning. She has published 9
papers in reputed conferences and journals so far.

Smruti R. Sarangi Prof. Smruti Ranjan Sarangi
is an Associate Professor in the Computer Science
and Engineering Department at IIT Delhi with a
joint appointment in the Department of Electrical
Engineering. He primarily works in parallel and
distributed architectures and systems. His research
areas cover multicore processors, cyber-security,
emerging technologies, networks on chip, operating
systems for parallel computers, and parallel algo-
rithms. Dr. Sarangi obtained his Ph.D in computer
architecture from the University of Illinois at Urbana

Champaign(UIUC), USA in 2006, and a B.Tech in computer science from IIT
Kharagpur in 2002. He has filed five US patents, five Indian patents, and has
published 99 papers in reputed international conferences and journals. He is
the author of the popular undergraduate textbook on computer architecture
titled, “Computer Organisation and Architecture”, published by McGrawHill.
He is a member of the IEEE and ACM.


