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Abstract—Within-die parameter variation poses a major chal-
lenge to high-performance microprocessor design, negatively
impacting a processor’s frequency and leakage power. Addressing
this problem, this paper proposes a microarchitecture-aware
model for process variation—including both random and sys-
tematic effects. The model is specified using a small number of
highly intuitive parameters. Using the variation model, this paper
also proposes a framework to model timing errors caused by
parameter variation. The model yields the failure rate of microar-
chitectural blocks as a function of clock frequency and the amount
of variation. With the combination of the variation model and
the error model, we have VARIUS, a comprehensive model that is
capable of producing detailed statistics of timing errors as a func-
tion of different process parameters and operating conditions. We
propose possible applications of VARIUS to microarchitectural
research.

I. INTRODUCTION

AS high-performance processors move into 32-nm tech-
nologies and below, designers face the major roadblock

of parameter variation—the deviation of process, voltage, and
temperature (PVT [1]) values from nominal specifications.
Variation makes designing processors harder because they have
to work under a range of parameter values.

Variation is induced by several fundamental effects. Process
variation is caused by the inability to precisely control the fab-
rication process at small-feature technologies. It is a combina-
tion of systematic effects [2]–[4] (e.g., lithographic lens aber-
rations) and random effects [5] (e.g., dopant density fluctua-
tions). Voltage variations can be caused by drops in the
supply distribution network or by noise under changing
load. Temperature variation is caused by spatially and tempo-
rally varying factors. All of these variations are becoming more
severe and harder to tolerate as technology scales to minute fea-
ture sizes.

Two key process parameters subject to variation are the tran-
sistor threshold voltage and the effective length . is
especially important because its variation has a substantial im-
pact on two major properties of the processor, namely the fre-
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quency it attains and the leakage power it dissipates. Moreover,
is also a strong function of temperature, which increases its

variability [6].
One of the most harmful effects of variation is that some sec-

tions of the chip are slower than others—either because their
transistors are intrinsically slower or because high temperature
or low supply voltage renders them so. As a result, circuits in
these sections may be unable to propagate signals fast enough
and may suffer timing errors. To avoid these errors, designers
in upcoming technology generations may slow down the fre-
quency of the processor or create overly conservative designs.
It has been suggested that parameter variation may wipe out
most of the potential gains provided by one technology genera-
tion [7].

An important first step to redress this trend is to understand
how parameter variation affects timing errors in high-perfor-
mance processors. Based on this, we could devise techniques
to cope with the problem—hopefully recouping the gains of-
fered by every technology generation. To address these prob-
lems, this paper proposes VARIUS, a novel microarchitecture-
aware model for process variation and for variation-induced
timing errors. VARIUS can be used by microarchitects in a va-
riety of studies.

The contribution of this paper is two-fold.
A model for process variation: We propose a novel model
for process variation. Its component for systematic varia-
tion uses a multivariate normal distribution with a spherical
correlation structure. This matches empirical data obtained
by Friedberg et al. [2]. The model has only three parame-
ters—all highly intuitive—and is easy to use. Moreover,
we also model temperature variation.
A model for timing errors due to parameter variation:
We propose a novel, comprehensive timing error model
for microarchitectural structures in dies that suffer from
parameter variation. This model is called VATS. It takes
into account process parameters, the floorplan, and oper-
ating conditions like temperature. We model the error rate
in logic structures, SRAM structures, and combinations of
both, and consider both systematic and random variation.
Moreover, our model matches empirical data and can be
simulated at high speed.

This paper is organized as follows. Section II introduces back-
ground material and provides mathematical preliminaries; Sec-
tion III presents the process variation model; Section IV presents
the model of timing errors for logic and SRAM under parameter
variation; Section V shows a model validation and evaluation;
Section VI presents related work; and Section VII concludes the
paper.

0894-6507/$25.00 © 2008 IEEE
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II. BACKGROUND

In characterizing CMOS delay under process variation, two
important transistor parameters are the effective channel length

and the threshold voltage , both of which are affected by
variation. This section presents equations that show how these
two parameters determine transistor and gate speeds. It also in-
troduces some aspects of probability theory that will feature in
the following sections.

A. Transistor Equations

The equations for transistor drain current using the tradi-
tional Shockley model are as follows:

if
if

if
(1)

Here, , where is the mobility and is
the oxide capacitance. In deep submicron technologies, these
relationships are superseded by the alpha power law [8]

if
if

if
(2)

In this equation, and are constants and is given by

The time required to switch a logic output follows from (2).
For most of the switching time, the driving transistor is in the
saturation region [the last case of (2)]. The driver is trying to
pull an output capacitance to a switching threshold (expressed
as a fraction of ) so that the switching time is

(3)

where is typically 1.3 and is the mobility of carriers which,
as a function of temperature ( ), is . As de-
creases, increases and a gate becomes faster. As in-
creases, decreases and, as a result, increases.
However, decreases [9]. The second factor dominates and,
with higher , a gate becomes slower. The Shockley model oc-
curs as a special case of the alpha-power model with .

B. Mathematical Preliminaries

Single Variable Taylor Expansion: The Taylor expansion of
a function about is

(4)

where is the derivative of at .

, of a Function of Normal Random Variables: Consider
a function of normal random vari-
ables with mean and standard deviation

. Multivariate Taylor series expansion [10] yields the
mean and standard deviation of as follows:

(5)

Maximum of Independent Normal Random Variables:
Given independent and identically distributed normal random
variables, each with cumulative distribution function (cdf) ,
we are interested in the distribution of the largest variable.
Define

Extreme value theory [11] shows that the value of the largest
variable follows a Gumbel distribution, whose mean and stan-
dard deviation are

(6)

III. PROCESS VARIATION MODEL

Process variation has die-to-die (D2D) and within-die (WID)
components, with the WID component further subdividing into
random and systematic components. Lithographic aberrations
introduce systematic variations, while dopant fluctuations and
line edge roughness generate random variations. By definition,
systematic variations exhibit spatial correlation and, therefore,
nearby transistors share similar systematic parameter values
[2]–[4]. In contrast, random variation has no spatial correlation
and, therefore, a transistor’s randomly varying parameters
differ from those of its immediate neighbors. Most generally,
variation in any parameter can be represented as follows:

In this paper, we focus on WID variation. For simplicity, we
model the random and systematic components of WID varia-
tion as normal distributions [12]. We treat random and system-
atic variation separately, since they arise from different physical
phenomena. As described in [12], we assume that their effects
are additive. If required, D2D variation can be modeled as an
independent additive variable by adding a chip-wide offset to
the parameters of every transistor on the die. This approach does
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Fig. 1. Correlation of systematic parameters at two points as a function of dis-
tance r between them.

sacrifice some fidelity since, in reality, WID and D2D variations
may not be statistically independent.

A. Systematic Variation

We model systematic variation using a multivariate normal
distribution [10] with a spherical spatial correlation structure
[13]. For that, we divide a chip into small, equally sized rect-
angular sections. Each section has a single value of the system-
atic component of (and ) that is distributed normally
with zero mean and standard deviation , where the latter
is different for and . This is a general approach that
has been used elsewhere [12]. For simplicity, we assume that
the spatial correlation is homogeneous (position-independent)
and isotropic (not depending on the direction). This means that,
given two points and on the chip, the correlation of their sys-
tematic variation values depends only on the distance between
and . These assumptions have been used by other authors such
a Xiong et al. [14].

Assuming position independence and isotropy, the correla-
tion function of a systematically varying parameter is

By definition, (i.e., totally correlated). Intuitively,
(i.e., totally uncorrelated) if we only consider WID

variation. To specify the behavior of between the limits,
we choose the spherical model [13] for its good agreement with
Friedberg’s [2] measurements. Although the correlation func-
tion Friedberg reports is not isotropic, the shape of the function
(as opposed to the scale) is the same on the horizontal and ver-
tical die axes. In both cases, the shape closely matches that of
the spherical model; it is initially linear in distance and then ta-
pers before falling off to zero. Adopting the well-studied spher-
ical model also ensures a valid spatial correlation function as
defined in [14]. Equation (7) defines the spherical function

(r )
otherwise

(7)

Fig. 1 plots the function . The parameter values of a tran-
sistor are highly correlated to those of transistors in its imme-
diate vicinity. The correlation decreases approximately linearly
with distance at small distances. Then, it decreases more slowly.
At a finite distance that we call range, the function converges
to zero. This means that, at distance , there is no longer any
correlation between two transistors’ WID variation values.

In this paper, we express as a fraction of the chip’s length. A
large implies that large sections of the chip are correlated with
each other; the opposite is true for small . As an illustration,
Fig. 2 shows example systematic variation maps for chips
with and . These maps were generated by the
geoR statistical package [15] of [16]. In the case,
we discern large spatial features, whereas in the one,
the features are small. A distribution without any correlation

appears as white noise.
The process parameters we are concerned with are and
. A former ITRS report [17] projected that the total

of would be roughly half that of . Lacking better data,
we make the approximation that ’s is half of ’s

. Moreover, the systematic variation in causes sys-
tematic variation in . Most of the remaining variation
is due to completely random (spatially uncorrelated) doping ef-
fects. Consequently, we use the following equation to generate
a value of the systematic component of in a chip section
given the value of the systematic component of in the same
section. Let be the nominal value of the effective length and
let be the nominal value of the threshold voltage. We use

(8)

B. Random Variation

Random variation occurs at a much finer granularity than sys-
tematic variation—at the level of individual transistors. Hence,
it is not possible to model random variation in the same explicit
way as systematic variation, by simulating a grid where each
section has its own parameter value. Instead, random variation
appears in the model analytically. We assume that the random
components of and are both normally distributed with
zero mean. Each has a different . For ease of analysis, we
assume that the random and values for a given transistor
are uncorrelated.

C. Values for and

Since the random and systematic components of and
are normally distributed and independent, the total WID varia-
tion is also normally distributed with zero mean. The standard
deviation is as follows:

(9)

For , the 1999 ITRS [17] gave a design target of
for year 2005 (although no solution existed);

however, the projection has been discontinued since 1999. On
the other hand, it is known that ITRS variability projections
were too optimistic [18], [19]. Consequently, for , we use

. Moreover, according to empirical data from
[20], the random and systematic components are approximately
equal in 32-nm technology. Hence, we assume that they have
equal variances. Since both components are modeled as normal
distributions, (9) tells us that their standard deviations
and are equal to of the mean. This
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Fig. 2. Systematic V variation maps for chip with � = 0:1 (left) and � = 0:5 (right).

value for the random component matches the empirical data of
Keshavarzi et al. [21].

As explained before, we set ’s to be half of ’s.
Consequently, it is 4.5%. Furthermore, assuming again that the
two components of variation are more or less equal, we have
that and for are equal to of
the mean.

To estimate , we note that Friedberg et al. [2] experimentally
measured the gate-length parameter to have a range close to half
of the chip length. Hence, we set . Through (8), the same

applies to both and .

D. Impact on Chip Frequency

Through (3), process variation in and induces varia-
tion in the delay of gates and, therefore, variation in the delay of
critical paths. Unfortunately, a processor structure cannot cycle
any faster than its slowest critical path can. As a result, proces-
sors are typically slowed down by process variation. To motivate
the rest of the paper, this section gives a rough estimation of the
impact of process variation on processor frequency.

Equation (3) approximately describes the delay of an inverter.
Substituting (8) into (3) and factoring out constants with respect
to produces

(10)

Empirically, we find that (10) is nearly linear with respect to
for the parameter range of interest. Because is normally

distributed and a linear function of a normal variable is itself
normal, is approximately normal.

Assuming that every critical path in a processor consists of
gates, and that a modern processor chip has thousands of

critical paths, Bowman et al. [7] compute the probability distri-
bution of the longest critical path delay in the chip .
Then, the processor frequency can be estimated to be the inverse
of the longest path delay .

Fig. 3. Probability distribution of relative chip frequency as a function of V ’s
� =�. We use V = 0:150 V at 100 C, 12 FO4s in the critical path, and
10 000 critical paths in the chip.

Fig. 3 shows the probability distribution of the chip fre-
quency for different values of ’s . The frequency
is given relative to a processor without variation .
The figure shows that, as increases: 1) the mean chip
frequency decreases and 2) the chip frequency distribution gets
more spread out. In other words, given a batch of chips, as ’s

increases, the mean frequency of the batch decreases
and, at the same time, an individual chip’s frequency deviates
more from the mean.

Such frequency loses may be reduced if the processor is
equipped with ways of tolerating some variation-induced
timing errors. As a possible first step in this direction, the rest
of the paper presents a model of variation-induced timing errors
in a processor. In future work, we will examine how such errors
can be tolerated. In the rest of the paper, we do not use Bowman
et al.’s [7] critical path model any more.
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Fig. 4. Example critical path delay distributions (a) before variation in pdf form
and after variation in (b) pdf and (c) cdf form. Dark parts show error rate.

IV. TIMING ERROR MODEL

This section presents VATS, a novel model of variation-in-
duced timing errors in processor pipelines. In the following, we
first model errors in logic and then in SRAM memory.

A. General Approach

A pipeline stage typically has a multitude of paths, each one
with its own time slack—possibly dependent on the input data
values. This work makes two simplifying assumptions about the
failure model.

Assumption 1: A path causes a timing fault if and only if it is
exercised and its delay exceeds the clock period. Note that this
fault definition does not account for any architectural masking
effects. However, architectural vulnerability factors (AVFs) [22]
could be applied to model these masking effects if desired.

Assumption 2: Each stage is tightly designed so that, in the
absence of process variation, at least one path has a delay equal
to the clock period . This provides a prevariation base case
against which to make delay comparisons.

In the following, path delay is normalized by expressing it as
a fraction of . Our model begins with the probability den-
sity function (pdf) of the normalized path delays in the pipeline
stage. Fig. 4(a) shows an example pdf before variation effects.
The right tail abuts the abscissa and there are no timing
errors.

As the pipeline stage paths suffer parameter variation, the pdf
changes shape: the curve may change its average value and its
spread [e.g., Fig. 4(b)]. All the paths that have become longer
than 1 generate errors. Our model estimates the probability of
error as the area of the shaded region in the figure. Al-
ternatively, we can efficiently compute using the cdf of the

normalized path delays by taking the difference between 1 and
the value of the cdf as shown in Fig. 4(c). In general, if we clock
the processor with period , the probability of error is

cdf

In the event that race-through errors are also a concern,
cdf gives the probability of violating the minimum hold
time . However, we will not consider hold-time violations in
the rest of the paper.

B. Timing Errors in Logic

We start by considering a pipeline stage of only logic. We
represent the logic critical path delay in the absence of variation
as a random variable , which is distributed in a way similar
to Fig. 4(a). Such delay is composed of both wire and gate delay.
For simplicity, we assume that wire accounts for a fixed fraction

of total delay. This assumption has been made elsewhere
[23]. Consequently, we can write

(11)

We now consider the effects of variation. Since variation typ-
ically has a very small effect on wires, we only consider the
variation of , which has a random and a systematic com-
ponent. For each path, we divide the systematic variation com-
ponent into two terms: 1) the average value of it
for all the paths in the stage —which we call the
stage systematic mean—and 2) the rest of the systematic vari-
ation component —which we call
intrastage systematic deviation.

Given the high degree of spatial correlation in process
and temperature variation, and the small size of a pipeline
stage, the intrastage systematic deviation is small. Indeed, in
Section III-C, we suggested a value of equal to 0.5 (half of the
chip length). On the other hand, the length of a pipeline stage is
less than, say, 0.1 of the length of a typical four-core chip. There-
fore, given that the stage dimensions are significantly smaller
than , the transistors in a pipeline stage have highly correlated
systematic and systematic values. Using Monte Carlo
simulations with the parameters of Section III-C, we find that
the intrastage systematic deviation of has a

, while the variation of across the pipeline
stages of the processor has a . Similarly,
varies much more across stages than within them.

The random component of ’s variation is estimated
from the fact that we model a path as FO4 gates connected
with short wires. Each gate’s random component is indepen-
dent. Consequently, for a whole -gate path, ’s is

, where is the standard deviation of
the delay of one FO4 gate. If we take as representative
of high-end processors, the overall variation is small. It can be
shown that ’s . Finally, has no random
component.
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We can now generate the distribution of with variation
(which we call and show in Fig. 4(b)) as follows. We
model the contribution of in the stage as a factor
that multiplies . This factor is the average increase in gate
delay across all the paths in the stage due to systematic variation.
Without variation, .

We model the contribution of the intrastage system-
atic deviation and of the random variation as , a
small additive normal delay perturbation. Since
combines ’s intrastage systematic and random ef-

fects, . For our parameters,
. Like , should multiply

as shown in (12). However, to simplify the computation and
because is clustered at values close to one, we prefer to
approximate as an additive term as in

(12)

(13)

Once we have the distribution, we numerically inte-
grate it to obtain its cdf [Fig. 4(c)]. Then, the estimated
error rate of the stage cycling with a relative clock period
is

cdf (14)

1) How to Use the Model: To apply (13), we must calcu-
late , , , and for the prevailing variation con-
ditions. To do this, we produce a gridded spatial map of process
variation using the model in Section III-A and superimpose it
on a high-performance processor floorplan. For each pipeline
stage, we compute from the pipeline stage’s temperature and
the systematic and maps. Moreover, by subtracting the
resulting mean delay of the stage from the individual delays in
the grid points inside the stage, we produce the intrastage sys-
tematic deviation. We combine the latter distribution with the
effect of the random process variation to obtain the dis-
tribution. is assumed normal.

Ideally, we would obtain a per-stage and through
timing analysis of each stage. For our general evaluation, we
assume that the LF adder in [24] is representative of processor
logic stages and set [23]. Additionally, we derive
pdf using experimental data from Ernst et al. [25]. They
measure the error rate of a multiplier unit as they reduce its
supply voltage . By reducing , they lengthen path delays.
Those paths with delays longer than the cycle time cause an
error. Our aim is to find the pdf curve from their plot of

[a curve similar to that shown in Fig. 5(a)].
Focusing on (13), Ernst’s experiment corresponds to an

environment with no parameter variation, so . Each
corresponds to a new average and, therefore, a new

distribution. We compute each using the
alpha-power model (3) as the ratio of gate delay at and gate
delay at the minimum voltage in [25] for which no errors were
detected.

Fig. 5. (a) Error rate versus voltage curve from [25] and (b) corresponding
pdf .

At a voltage , the probability of error is equal to the prob-
ability of exercising a path with a delay longer than one clock
cycle. Hence, . If we use (13)
and define , we have

. Therefore

cdf (15)

Letting , we have cdf .
Therefore, we can generate cdf numerically by taking suc-
cessive values of , measuring from Fig. 5(a), com-
puting , and plotting , which is

cdf . After that, we smooth and numerically differ-
entiate the resulting curve to find the sought function pdf .
Finally, we approximate the pdf curve with a normal dis-
tribution, which we find has and [a curve
similar to that shown in Fig. 5(b)].

Strictly speaking, this pdf curve only applies to the cir-
cuit and conditions measured in [25]. To generate pdf for
a different stage with a different technology and workload char-
acteristics, one would need to use timing analysis tools on that
particular stage. In practice, Section V-A shows empirical evi-
dence that this method produces pdf curves that are usable
under a range of conditions, not just those under which they
were measured.

Finally, since and are normally distributed,
in (13) is also normally distributed.

C. Timing Errors in SRAM Memory

To model variation-induced timing errors in SRAM memory,
we build on the work of Mukhopadhyay et al. [26]. They con-
sider random variation only and use the Shockley current
model. We extend their work to account for random and sys-
tematic variation of both and and use the more accurate
alpha-power current model. Additionally, we describe the ac-
cess time distribution for an entire multiline SRAM array rather
than for a singe cell.

Mukhopadhyay et al. [26] describe four failure modes in the
SRAM cell of Fig. 6: Read failure, where the contents of a cell
are destroyed when the cell is read; Write failure, where a write
is unable to flip the cell; Hold failure, where a cell loses its state;
and Access failure, where the time needed to access the cell is
too long, leading to failure. The authors provide analytical equa-
tions for these failure rates, which show that for the standard
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Fig. 6. Read from 6T SRAM cell, pulling right bitline low.

deviations of considered here, Access failures dominate and
the rest are negligible. Because Access failures are the dominant
errors and have no clear remedy, they are our focus. According
to [26], the cell access time under variation on a read is

(16)

where and are the and of the AXR access
transistor in Fig. 6, and and are the same parameters
for the NR pull-down transistor in Fig. 6. We now discuss the
form of this function , first using the Shockley-based model
of [26] and then using our extension that uses the alpha-power
current model. Finally, we use to develop the delay distribu-
tion for a read to a variation-afflicted SRAM structure
containing a given number of lines and a given number of bits
per line.

1) Using Shockley Model: The model in [26] uses
the traditional Shockley long channel transistor equations. Con-
sider the case illustrated in Fig. 6: a read operation where the
bitline BR is being driven low. Transistor AXR is in saturation
and transistor NR is in the linear range. Equating the currents
using Kirchoff’s current law

(17)

In the Shockley model (1), we have replaced with ,
where is a constant and is the effective length of the
respective transistor. Equation (17) is a quadratic equation in

. We can thus find and subsequently the function .
2) Using Alpha-Power Model: We now use the

more accurate alpha power law [8] to find . By
equating currents as in (17), we have

(18)

Fig. 7. Error versus degree of expansion of z.

Fig. 8. Error-rate for example 64-line SRAM structure assuming continuous
model (dashed line) or discrete one with fixed read latencies (solid line).

As in (17), constants have been folded into and . To solve
for , perform the following transformation:

(19)

Let and expand using
the Taylor series (4). Typical values of are near 0.25, so we
compute the expansion about that point. Fig. 7 plots the error
versus the degree of the expansion. Depending on the accuracy
desired, we can choose the appropriate number of terms, but for
most practical purposes, a degree of 2 is sufficient, making (18)
a quadratic equation in

Now, we can easily solve for and find a closed form analytic
expression for .

3) Error Rate Under Process Variation: We now have an an-
alytic expression for the access time of a single SRAM
cell under variation using (16). It is a function of four variables:

, , , and . A six-transistor memory cell
is very small compared to the correlation range of and
(Section III-A). Therefore, we assume that the systematic com-
ponent of variation is the same for all the transistors in the cell
and even for the whole SRAM bank. Now, using multivariate
Taylor expansion (5), the mean and standard deviation

of can be expressed as a function of the and
of each of these four variables.
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Fig. 9. The 90% confidence intervals for P in (a) 64-line SRAM and in (b) 64K-line SRAM as a function of relative frequency f .

In reality, an SRAM array access does not read only a single
cell but a line—e.g., 8–1024 cells. The time required to read an
entire line is then the maximum of the times required
to read its constituent cells. To compute this maximum, we use
(6), which gives us the mean and standard deviation of the line
access time in terms of the cell access time distribution.

follows the Gumbel distribution, but we approximate it
with a normal distribution.

The access to the memory array itself takes only a fraction
of the whole pipeline cycle—logic structures such as sense

amplifiers, decoders, and comparators consume the rest. Sec-
tion IV-B has already shown how to model the logic delays.
Consequently, the total delay to read a line from an SRAM in
the presence of variation is the sum of the normal dis-
tributions of the delays in the memory array and in the logic. It
is distributed normally with

(20)

(21)

Then, the estimated error rate of a memory stage cycling with
a relative clock period is

cdf (22)

Note that this model is only an approximation, since it pro-
vides a curve for that is continuous. In reality, an SRAM
structure has relatively few paths and, as a result, a stepwise
error curve is more accurate. For example, assume that we have
a 64-line SRAM structure where the slowest line fails at some
period . If we assume that all lines are accessed with equal fre-
quency, the probability of error jumps instantaneously from 0 to
1/64 at . Fig. 8 shows the curve for accesses to a 64-line
SRAM as a function of . The dashed curve corre-
sponds to the model of (22); the solid line corresponds the case
when we consider that each line has a different read latency and
assume that it is fixed. We have generated these latencies by
sampling the distribution.

In reality, the random component of variation affects the read
latency of each of the lines of the structure. Consequently,
given a relative clock period , we cannot readily compute

the number of lines that have a . How-
ever, suppose that we are able to determine that any one in-
dividual line has a probability to have .
This is cdf . In this case, we can compute a confi-
dence interval to bound . Specifically, the number of lines

that have follows the binomial distribution
. Let us call its cdf .

Taking the inverse of the binomial cdf provides a confidence
interval for . For example, the following gives a 90% con-
fidence interval:

(23)

This means that the number of lines in the SRAM that can
be accessed without error is between and

with 90% probability. These two boundaries are
numbers between 0 and .

The expression is the fraction of lines in the SRAM
that can be accessed without error at . Assuming that all lines
are accessed with equal frequency, this is the probability of
error-free execution of an SRAM read at . We define this func-
tion as cdf . The bounds for cdf for a
90% confidence interval are then

(24)

The estimated error rate of the memory stage cycling with a
relative clock period is then

(25)

Fig. 9 shows for a 90% confidence interval as a function
of . Charts (a) and (b) correspond to an SRAM with
64 lines and 65 536 lines, respectively. In both cases, the line has
64 bits. Each chart has two curves, which bound the 90% con-
fidence interval. For example, in Chart (a), if we select a given

, the intersections to the two curves ( and ) give
the 90% confidence interval for at this .

The figure shows that the confidence interval of is narrow
for large SRAMs. Consequently, for large SRAMs, it may make
sense to discard this interval-based computation altogether and,
instead, use the continuous cdf to approximate .
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Fig. 10. Relative mean access time (��� ) for��� equal to 1.3 and 2.0. Latter
corresponds to Shockley model.

This is accomplished by explicitly enforcing an instantaneous
transition from to

otherwise
(26)

4) Comparing Shockley and Alpha-Power Models: In Fig.
10, we plot the mean access time for the Shockley
model (dotted line) and for the alpha-power model (solid line).
Access times are normalized to the one given by the Shockley
model at 85 C. From the figure, we see that the mean access
time differs significantly for the two values of . More impor-
tantly, it can be shown that is around 3.5% of the mean
for the Shockley model and around 2% of the mean for the
alpha-power model. Consequently, with decreasing , the mean
and standard deviation of the access time decrease.

V. EVALUATION

A. Empirical Validation

To partially validate the VATS model, we use it to explain
some error rate data obtained empirically elsewhere. We vali-
date both the logic and the memory model components. For the
former, we use the curves obtained by Das et al. [27], who re-
duce the supply voltage of the logic units in an Alpha-like
pipeline and measure the error rate in errors per cycle. They re-
port curves for three different : 45 C, 65 C, and 95 C. Their
curves are shown in solid pattern in Fig. 11.

To validate our model, we use the 65 C curve to predict the
other two curves. We first determine from the 65 C curve
through the procedure of Section IV-B1. Recall that we generate
the pdf numerically and then fit a normal distribution. We
then use to predict the 95 C and 45 C curves as fol-
lows. We generate a large number of values. For each ,
we compute as discussed in Section IV-B1. Process vari-
ation is small in the dataset—since the latter corresponds to a
180-nm process. Consequently, we set to zero. Knowing
the distribution, we use (13) for each to compute
the distribution. Finally, we plot the
pairs from our model as dashed lines in Fig. 11 along with the
measured values (solid lines). From the figure, we see that the

Fig. 11. Validating logic model by comparing measured and predicted number
of errors per cycle.

Fig. 12. Validating memory model by comparing measured and predicted frac-
tion of accesses that fail.

predicted curves track the experimental data closely. One source
of the disagreement between the two is the normal approxima-
tion of , which is assumed for simplicity.

To validate the memory model, we use experimental data
from Karl et al. [28]. They examine a 64-KB SRAM with 32-bit
lines comprising four different-latency banks and measure the
error rate as the supply voltage changes. We assume that all
cells have the same value of the systematic process variation.
Using the measured for each bank, we find
using the method of (20) and (21) in Section IV-C3. The orig-
inal data is shown in solid pattern in Fig. 12, and the prediction
is displayed as a dashed line. From the figure, we see that the
predicted and measured error rate are close.

B. Example Error Curves

As one example of the uses of our model, we apply it to esti-
mate the error rate of the logic and memory stages of an AMD
Opteron processor as we increase the frequency. After gener-
ating a and variation map according to our variation
model, we apply the timing error model to compute the error
rate versus frequency for each pipeline stage. A stage is clas-
sified as either memory dominated or logic dominated. For the
logic-dominated stages (e.g., the decoder and functional units),
we use the error model of Section IV-B. For the memory-dom-
inated stages (e.g., the caches), we use (26) of the noncontin-
uous model in Section IV-C3. Because we do not have actual
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Fig. 13. Estimated error rates of memory and logic pipeline stages in AMD
Opteron.

net-level data for the microprocessor, the critical path distribu-
tion of each logic stage is assumed to match that of the multiplier
in [25]. Fig. 13 shows the results, where the frequency is nor-
malized to the one that the processor without process variation
can deliver.

In the figure, each line corresponds to one pipeline stage.
We see that memory stages have steeper error curves than the
logic ones. This is due to the small number of lines in the struc-
tures; when the clock frequency exceeds the speed of the slowest
line, the error rate undergoes a step change from zero to a rela-
tively high number. On the other hand, logic error onset is more
gradual. We envision a situation where architects and circuit de-
signers will use such error curves to design processors that can
tolerate timing errors.

C. Tradeoffs in Model

Perhaps the main shortcoming of VATS is the loss of precision
due to two main simplifications: 1) the use of normal approxi-
mations and 2) the assumption that wire delay is not affected
by variation and accounts for a fixed fraction of logic delay.
Section V-A has argued that the loss of accuracy is small in prac-
tice. The approximations in VATS make it easier to apply it in
the early stages of design, when architects must estimate varia-
tion effects at a high level.

VI. RELATED WORK

Agarwal et al. [29] proposed a simple correlation model for
systematic variation based on quad-tree partitioning. The model
is widely used [12], [30]. It is computationally efficient, but no
analytical form for the correlation structure is given, and it is not
clear how well the model matches measured correlation data.
The spherical correlation function used in this paper has been
chosen to match empirical measurements but has the disadvan-
tage that generating random instances for Monte Carlo simula-
tion is more computationally intensive.

Mukhopadhyay et al. [26] proposed models for timing errors
in SRAM memory due to random variation. They consider
several failure modes. As part of the VATS model, we extended
their model of Access time errors by: 1) also including sys-
tematic variation effects; 2) also considering variation in ;
3) modeling the maximum access time of a line of SRAM rather
than a single cell; and 4) using the alpha-power model that uses
an equal to 1.3.

Memik et al. [31], [32] modeled errors in SRAM memory due
to crosstalk noise as they overclock circuits. They use high de-
grees of overclocking—twice the nominal frequency and more.
In the less than 25% overclocking regime that we consider, such
crosstalk errors are negligible. For very small feature-size tech-
nologies, however, the situation may change.

Ernst et al. [25] and Karl et al. [28] measured the error rate
of a multiplier and an SRAM circuit, respectively, by reducing
the voltage beyond safe limits to save power. They plot curves
for error rate versus voltage. In this paper, we outlined a proce-
dure to extract the distribution of path delays from these curves
and validated parts of our model by comparing it against their
curves.

VII. CONCLUSION

Parameter variation is the next big challenge for processor
designers. To gain insight into this problem from a microarchi-
tectural perspective, this paper made two contributions. First, it
developed a novel model for process variation. The model uses
three intuitive input parameters and is computationally inexpen-
sive. Second, the paper presented VATS, a novel model of timing
errors due to parameter variation. The model is widely usable,
since it applies to logic and SRAM units and is driven with in-
tuitive parameters. The model has been partially validated with
empirical data. The resulting combined model, called VARIUS,
has been used to estimate timing error rates for pipeline stages
in a processor with variation.
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