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Abstract—Virtualization is increasingly being deployed to
run applications in a cloud computing environment. Sadly,
there are overheads associated with hypervisors that can
prohibitively reduce application performance. A major source
of the overheads is the destructive interference between the
application, OS, and hypervisor in the memory system. We
characterize such overheads in this paper, and propose the
design of a novel Triangle cache that can effectively mitigate
destructive interference across these three classes of workloads.
We subsequently, proceed to design the TriKon manycore
processor that consists of a set of heterogeneous cores with
caches of different sizes, and Triangle caches. To maximize the
throughput of the system as a whole, we propose a dynamic
scheduling algorithm for scheduling a class of system and CPU
intensive applications on the set of heterogeneous cores.

The area of the TriKon processor is within 2% of a
baseline processor, and with such a system, we could achieve
a performance gain of 12% for a suite of benchmarks. Within
this suite, the system intensive benchmarks show a performance
gain of 20% while the performance of the compute intensive
ones remains unaffected. Also, by allocating extra area for
cores with sophisticated cache designs, we further improved
the performance of the system intensive benchmarks to 30%.

Keywords-cloud; hypervisor; architecture support for virtu-
alization;

I. INTRODUCTION

As a direct consequence of Moore’s law, the number
of cores per chip is doubling roughly every two years.
Consequently, in the near future we expect to have 32-64
core multicore processors. Researchers have already started
designing processors with 80+ cores [1, 2]. Such processors
are ideally suited for a cloud computing environment that
caters to a large number of users with different needs.
Particularly, in a cloud computing environment such as
Amazon EC2, users are given a platform of their choice,
and are allotted computing and storage resources that can
grow or shrink depending upon the usage. A critical enabling
technology in a cloud is the virtual machine monitor (also
referred to as a hypervisor). The hypervisor is a software
that provides the abstraction of real hardware to an operating
system and applications running on it. It is possible to run
multiple virtual machines on a server, and thus support mul-
tiple operating systems. Each group of users can be assigned
to one operating system. They will be completely oblivious
of other operating systems running on the same physical

machine. In this manner it is possible to isolate sets of users
from each other by creating a secure sandbox for each user.
Moreover, this approach is also very flexible. Users are no
more tied to a particular machine. If a machine is down,
then the virtual machine can seamlessly be moved to another
machine, and the services can be restarted. This process
can be made completely transparent to the user. Lastly,
virtualization allows a great degree of customizability. Users
can install their own libraries, software, and run their own
services without affecting the setup of other users.

It is important to note that there are two kinds of hypervi-
sors — Type 1 or bare metal (run on the physical machine),
and Type 2 (run on a guest operating system). Type 1
hypervisors such as Xen [3] and VMWare ESX [4] are more
efficient, and are thus preferred in large cloud computing
environments. Sadly, virtualization is not a panacea for all
problems. Various studies [5, 6] have analyzed performance
overheads of applications running on a VM. They have con-
cluded that slowdowns can range from 25-34% as compared
to applications running on a non-virtualized system. Our
results also show a similar trend. This is because in the
Xen VM, each system call becomes more complicated with
the the guest operating system making a hypercall to the
hypervisor for processing the system call. This is needed
because guest operating systems are typically not allowed
to access I/O devices directly. They need to bundle users’
requests, and send them to the hypervisor such that it can
take the desired action. Often it is necessary to make several
hypercalls for processing a single system call. Similarly,
interrupt processing routines also get more complicated. An
interrupt needs to be routed from the hypervisor to the guest
operating system, and needs processing at both the levels
(guest OS and hypervisor).

The first category of solutions for mitigating overheads
focus on smarter scheduling [7, 8, 9, 10] of applications
within a VM, and VMs within a multicore processor. These
approaches assume a large multicore processors with dif-
ferent types of cores. Some cores are suitable for running
compute intensive benchmarks and some slower low-power
cores are more suitable for running I/O intensive bench-
marks. A set of applications are scheduled on these cores
to either maximize throughput with power constraints, or
minimize power with throughput constraints. The second



category of solutions [11, 12, 13] focus on modifying the
hypervisor (with or without hardware support) to make it
more efficient. Such schemes try to reduce the number of
context switches between the applications and the guest OS,
or between the guest OS and the hypervisor. Alternatively,
they try to directly give access to the guest OS to some I/O
devices (albeit with security guarantees).

We try a different approach in this paper. We start out
by recognizing that the loss in performance due to virtu-
alization has two reasons. The first is that the hypervisor
steals actual CPU time, and the second is that hypervisor
routines displace application and guest OS lines from the
caches. This causes destructive interference in the caches
and reduces performance. In this paper, we propose the
TriKon' processor that has a novel memory system, which
is designed to solve the problem of destructive interference.
In specific, we make four contributions. (1) We characterize
a set of system and CPU intensive benchmarks and study
their memory behavior in terms of the interaction between
the application, guest OS, and the hypervisor. (2) Based on
the results of our characterization studies, we propose the
design of a new kind of cache called a triangle cache. The
triangle cache is actually a set of three small caches that can
trade data between each other. The aim is to appropriately
balance the memory requirements of the application, guest
OS, and hypervisor. (3) We experimentally prove that a
triangle cache is primarily required for instructions, and
interference at the L1 cache is less of an issue. (4) We
propose the TriKon architecture that has 32 cores, and
different cores have different configurations for their L1
and I caches. Some have small caches, some have large
caches, and some have triangle caches. We show that using
a sampling based scheduling algorithm, it is possible to
improve the performance of a suite of benchmarks by 12%
over a homogeneous baseline system with 32 cores and a
conventional memory system. In this case the area of the
TriKon processor is within 2% of that of the baseline system.
We further show that it is possible to get an improvement
in performance of 16% and 18%, if we increase the area of
the TriKon processor by 5% and 10% respectively.

We begin by studying the various characteristics of our
benchmarks in Section III, and then based on our charac-
terization, we design our TriKon processor and the triangle
cache in Section IV. We evaluate the performance of our
scheduling algorithm in Section V, and finally conclude in
Section VI.

II. RELATED WORK

The major focus of hypervisor research has been to mit-
igate or analyze the performance overheads in a hypervisor
with everyone agreeing on the fact that virtualization has the
potential to be used in large scale systems in the future and
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there is a need to look for solutions to bring its performance
on par with a non-virtualized system. Xen is one such
hypervisor which is being widely used and is our focus in
this paper.

A. Analysis and Mitigation of Performance Overheads of
Hypervisors

Menon et al. [5] and Cherkasova et al. [6] have analyzed
the overheads of the open source Xen hypervisor. The
authors of [5] have designed a tool, Xenoprof, which can
be used to measure the performance overhead of applica-
tions running on Xen. They demonstrate a roughly 20%
decrease in system throughput for networking applications.
Cherkasova et. al. [6] designed a similar tool for measuring
the overhead of CPU usage and found a 4-20% overhead.
Our conclusions are similar.

SplitX [11] dedicates a core (or set of cores) for running
hypervisor tasks. The communication between the guest
and the hypervisor cores happens through an inter-processor
interrupt based mechanism that does not require the appli-
cation to switch its context. ELI [12] assigns some devices
to the guest so that the guest does not need to invoke
the hypervisor to process interrupts from the devices. It
also proposes exitless mechanisms to pass messages from
the guest operating system to the hypervisor without a
context switch. Elvis [13] uses this exitless mechanism and
also dedicates a set of cores for hypervisors. It proposes
a novel shared memory based communication mechanism
between the guest OS and the hypervisor. Jin et al. [14]
have considered page coloring based approaches to partition
the shared L2 cache among various virtual machines for
eliminating the interference in the shared cache among the
cores’ data and instructions. We did not find a substantial
benefit by dedicating a set of cores for the hypervisor tasks
because it took a lot of time to transfer data between
the cache of the core that invoked the hypervisor to the
core that is running the hypervisor. Secondly, page coloring
based approaches were also not very beneficial because the
memory footprint of a hypervisor keeps changing with time,
and additional flexibility is essential.

B. Scheduling of Hypervisor Tasks

Most of the related work in scheduling hypervisor tasks
is in scheduling tasks on a large multicore processor with
different types of cores (known as an asymmetric multicore
processor). Kwon et al. [10] have designed an asymmetry
aware scheduler for the Xen hypervisor where they make the
default Xen scheduler aware of the underlying asymmetry
between the cores and subsequently use various heuristics
such as IPC and utilization for arriving at a scheduling
decision. Fedorova et al. [15] propose to use fast cores for
CPU intensive tasks and slower (low power) cores for I/O
intensive tasks. Li et al. [8] have designed a heterogeneity
aware scheduler, AMPS, which has advanced load balancing
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Figure 1: Simulation framework

features. For finding the suitability of an application to a
core, proposals either use predictive models [8], or use a
sampling based approach, where the application is run on a
set of cores to find the best fit [7].

III. CHARACTERIZATION

A. Experimental Setup

[ Sr.No. | Name [ Benchmark Suite [ Type

1. apache [16] Network server/client

2. bodytrack Parsec Computer vision

3. calculix SPEC CPU 2006 | Finite element analysis
4. cpu_sb Sysbench Prime numbers

5. fileio_sb Sysbench Random read/write ops
6. fmm Splash2 N-body simulation

7. iozone Iozone File read/writes

8. memory_sb | Sysbench Sequential mem. access
9. mummer BioBench Genome realignment
10. mysql_sb Sysbench OLTP database workload
11. netperf [17] Network performance
12. pbzip2C [18] Parallel compression
13. pbzip2D [18] Parallel decompression
14. radiosity Splash2 Diffuse calculations

15. specjbb SPECjbb 2005 Java app. server

16. threads_sb Sysbench Multithreaded scheduler

Table I: List of benchmarks

1) Benchmarks: We show a list of all the benchmarks

in Table I. We have chosen a suite of 16 benchmarks from
the BioBench [19], Sysbench [20], Splash2 [21], Parsec [22],
Specjbb2005, and SpecCPU2006 [23] suites. We have a mix
of both CPU intensive and I/O intensive benchmarks.

2) Architectural Simulation: The simulation framework
for our evaluations is described in Figure 1. We use the
full system emulator, Qemu [24], to get a trace of executed
instructions, branch outcomes, and memory addresses for
the entire system consisting of the applications, guest OS,
and the Xen hypervisor. We instrumented Qemu to write
the traces to a file. We also modified the guest kernel
(Debian/Squeeze 6.0.1) to generate specific interrupt signals
on a CPL switch and DOM(domain/privilege level) switch.
In order to emulate a multi-core system for a multi-threaded
benchmark, we use used the smp (simultaneous multi-
processor) mode in Qemu.

Parameter Value Parameter Value
Cores 16 Technology 22nm
Frequency 3.2GHz Vaa 1v
Pipeline
Retire Width 4 Integer RF (phy) 160
ROB Size 168 Predictor GaG
IW Size 54 Bmispred penalty 14 cycles
LSQ Size 64 Float RF (phy) 160
iTLB 128 entry dTLB 128 entry
Integer ALU 4 units Int ALU Latency 1 cycles
Integer Mul 1 unit Int Mul Latency 2 cycles
Integer Div 1 unit Int Div Latency 4 cycles
Float ALU 2 units Int ALU Latency 2 cycles
Float Mul 1 unit Int Mul Latency 4 cycles
Float Div 1 unit Int Div Latency 8 cycles
L1 i-cache, d-cache
Write-Mode Write-Back Block Size 64
Associativity 8 Size 32 kB
Latency 3 cycles
Coherence Directory based MOESI (fully mapped, 256 KB, 8-way)
Shared L2
Write-Mode Write-Back Block Size 64
Associativity 8 Size 4096 kB
Avg. Latency 28 cycles
Main Memory and NOC
Latency 200 cyc Memory Controllers 2
NOC 2-D Mesh Flit Size 16 bytes
Routing XY Router + Hop latency 3 cycles
Xen Version 4.0.1
DomU OS Debian GNU/Linux 6.0.1 squeeze
Dom0 OS Debian GNU/Linux 6.0.1 squeeze

Table II: Details of the baseline system
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Figure 2: Instruction mix (app, OS, hypervisor)

We subsequently, feed the traces to the Tejas [25] simula-
tor that is a detailed cycle accurate simulator for multicore
processors. We use the sequential mode (for enhanced ac-
curacy). The details of our simulated system are shown in
Table II. We have a private L1 cache at each core and a
shared L2 cache with a directory for coherence.

B. Instruction Mix

Figure 2 shows the breakup of instructions between
the application, OS, and hypervisor. The OS instructions
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Figure 3: Number of Syscalls, Interrupts, Hypercalls

include both the Dom0 (part of the OS that runs with
the hypervisor’s privilege level) and DomU kernel instruc-
tions. It must be noted that all the benchmarks with a
high fraction of OS instructions also have a significant
amount of hypervisor activity. iozone, fileio_sb, netperf,
memory_sb, and threads_sb have a very low fraction of
application instructions (< 10%). apache and mysql_sb
have 25-30% application instructions. Benchmarks such
as mummer, pbzip2C, pbzip2D, and specjbb have 75-
80% application instructions. The rest of the applications:
bodytrack, calculiz, cpu_sb and radiosity, are fairly CPU
intensive.

C. Characterization of OS/Hypervisor Events

Let us now try to understand the overhead. Figure 3 shows
the number of system calls, interrupts, and hypercalls (calls
made by the guest OS to the hypervisor) for a representative
run of 100,000 instructions for each benchmark. It is impor-
tant to note that the y-axis is in the log scale, and the third
bar shows the cumulative sum of system calls and interrupts.
The system intensive benchmarks have a very high number
of system calls and interrupts with iozone reporting as
many as 10,000 system calls and interrupts. In contrast,
the compute intensive applications have significantly lesser
number of system calls and interrupts with most benchmarks
registering less than 10 system calls.

D. Instruction Cache Evictions

There are two negative aspects of the hypercalls. The
first is that they steal CPU time, and the second is that the
hypervisor code displaces application/OS code and data from
the caches [26]. This causes cache pollution, and results in
slowdowns. Our main aim in this paper is to reduce this
destructive interference.

Figure 4 shows the number of evictions per 1000 appli-
cation instructions. We need to understand that we can have
nine types of evictions as shown in Figure 4. For example,
the AppOS category refers to the OS lines that are evicted
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B AppOS BN OSApp BN OSHyp [ HypOS

Evictions/1000 instructions

Figure 4: Evictions in the Instruction Cache
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Figure 5: Evictions in the Data Cache

by the application. Similarly, the HypOJS category refers to
the OS lines evicted by the hypervisor. We see that in system
intensive benchmarks, most of the evictions (15-30/1000)are
in the OSOS category. The next two contributors are the
OSHyp and HypOS categories (5-10/1000). For CPU in-
tensive benchmarks the eviction rate is very low (< 2/1000).
We further need to note that in benchmarks with moderate
amount of system activity such as apache, mysql_sb and
specjbb, AppApp evictions account for less than 20% of the
total evictions. We can thus conclude that it is necessary to
design a sophisticated memory system that avoids collisions
between the OS, hypervisor, and application instructions.

E. LI Data Cache Evictions

Figure 5 shows the evictions in the L1 data cache. The
scenario of cache line evictions in the data cache is quite
dissimilar to the evictions in the instruction cache. Here, the
application, and the operating system displace lines mostly
belonging to their own context. There is less interference
between the application, the OS, and the hypervisor.

Evictions due to the application have more than a 60%
share in the more CPU intensive applications such as
bodytrack, pbzip2C, and specjbb. For four benchmarks



(cpu_sb, fmm, radiosity, threads_sb), the data cache
misses in our representative run are very small given the
high degree of temporal locality in these benchmarks. For
4 system intensive benchmarks namely apache, fileio_sb,
iozone, and netper f, the number of evictions due to the
OS is the major source (3-7/1000) of cache line evictions.

The other important point to note here is that the absolute
number of evictions in the data cache is roughly about half
the number for that of the instruction cache (0-20 versus
3-45). This suggests that the the amount of destructive
interference in the data cache due to guest OS and hypervisor
data is minimal as compared to the instruction cache. Hence,
we need to focus our efforts on optimizing the instruction
cache in the TriKon processor.

IV. IMPLEMENTATION

As we observed in Section III, there is a significant
amount of interference between the application, OS and
hypervisor in the instruction cache. To prevent this, we
would ideally want each context (application, OS, hypervi-
sor) to have a separate cache. However, substituting a single
instruction cache with three caches of the same size will
have a prohibitive area overhead. Additionally, there might
be phases in the application execution where the instruction
footprint of a particular context exceeds the capacity of its
designated cache due to which there is a high penalty to
fetch the cache line from the lower level cache.

Thus, our aim is to design a memory system that (a)
provides an abstraction of a separate cache to the application,
OS, and hypervisor, (b) simultaneously minimizes the area
overhead, and (c) allows each context to use the free space in
other caches, if its instruction footprint exceeds the capacity
of its designated cache.

A. Advanced OS Cache

Let us start by proposing to have two caches instead
of a single instruction cache: an application cache for the
application, and a separate cache for the OS/Hypervisor.
This scheme helps us in completely eliminating the inter-
ference between the working sets of the application and
the OS/Hypervisor. Although this naive cache structure is
guaranteed to have a better performance than the baseline
design, this approach is evidently wasteful. Clearly, the
application, the OS, and hypervisor are not all running at
the same point of time. Hence, most of the time, only one
cache is being used. Secondly, we are doubling the area of
the L1 cache (instruction or data).

To avoid such problems, we had proposed the advanced
OS cache scheme in our prior work [26]. This scheme
proposes two caches. Memory requests from the application
go to the application cache, and memory requests from the
OS go to the OS cache. However, if the working sets of the
application or OS exceed their respective cache sizes, then it
is possible for them to steal some lines from the other cache.

For example, if the application needs to evict a line from the
application cache, then it sends it to the OS cache. Any read
access issued by the application first searches the application
cache, and then the OS cache. We had implemented this
method for the L2 cache, and demonstrated speedups for a
suite of multi-threaded programs.

B. Triangle Cache

1) Design: In this paper, we propose the triangle cache
that extends the advanced OS cache scheme by incorporating
three caches (one each for the hypervisor, OS, and applica-
tion). Secondly, we design a more elaborate protocol that
supports different sizes for each constituent subcache, and
novel methods to search, replace, and evict blocks.

Access Protocol : The access protocol uses the CPL
(current privilege level) bits to route the request to the
appropriate sub-cache in the triangle cache. In x86 based
systems the application, guest OS, and the hypervisor run at
privilege levels 3, 1, and O respectively.

If the current privilege level is equal to 3, then the memory
request of the core is routed to the application cache. If there
is a hit, then the data is supplied to the core. Otherwise, it is
necessary to check the rest of the caches. Naively checking
the rest of the caches on every miss will lead to a lot of
contention and wasteful consumption of dynamic power.
Hence, we propose an optimization.

Along with the data and tag arrays of each sub-cache, we
maintain an array called the set-array. The set-array contains
an entry for each set in the sub-cache. Each entry contains
information that lets the memory system decide whether
there is a possibility of the other sub-caches having a line
that belongs to this set. The entry is organized as follows. Let
us explain this with an example illustrated in the Figure 6.
Let us assume that the application cache has 1 set with 4
lines, the OS cache has 4 sets with 1 line each, and the
hypervisor cache has 2 sets with 2 lines each. Each cache
has the same cache line size. We observe that each set in
the application cache maps to 4 sets in the OS cache and
2 sets in the hypervisor cache. Thus, we create an entry in
the set-array (corresponding to the application cache) with 6
sub-entries as shown in the Figure 6. Each sub-entry maps
to one set of the OS or hypervisor cache and is a single bit
0/1. Each bit indicates whether the corresponding set in the
OS or hypervisor cache contains an application line or not.
In a similar manner we have set-arrays in the rest of the
sub-caches.

If all the entries in the set-array are O, then the request
can be directly sent to the L2 cache. If one of the entries
is equal to 1, then the request is directly sent to that cache.
Note that it is not necessary to compute the index of the
tag array in the target sub-cache that the request has been
sent to. This is because this computation is already done.
Now, if the data is not available in the target sub-cache,
then we can declare a L1 miss. Now, let us assume that
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the set-array indicates that the line might be present in both
the sub-caches. It is then necessary to check the sub-caches
in a certain order. We use the order shown in Figure 7.
For the application cache, we check the hypervisor cache
first, and the OS cache later. The reason for this is that
there is a large amount of destructive interference between
application and OS lines as compared to application and
hypervisor lines (see Figure 4). Note that the scheme shown
in Figure 7 represents a static scheme. We can make the
scheme dynamic by monitoring the destructive interference
between different classes of lines. In our experiments, a
dynamic scheme was not found to be significantly better;
hence, we preferred the static approach as shown in Figure 7.

Eviction and Replacement Policy : We use a replace-
ment policy, which gives higher priority to native lines than
to foreign lines (e.g. the application sub-cache will try to
evict a cache line belonging to the hypervisor/OS before
evicting an application line). The algorithm for evicting a
line is as follows. If we evict a line from its native sub-
cache (e.g. the application line in the case of application
sub-cache), then we send it to the sub-cache that is its first
preference (as shown in Figure 7). If it is evicted from there
also, then we send it to the second preference of its native
sub-cache. When we evict a foreign line, we check the rest
of the lines in the set to find out if all the foreign lines of
the same class are evicted. If it is the case, then we set the
corresponding bit to O in the set-array of the native sub-cache
of the evicted foreign line.

Cache Coherence : Since instructions are typically not
written to in the middle of the execution of the program, the
need for cache coherence is minimal (unless we have self
modifying code). However, to support just-in-time compil-

ers, we propose to make the triangle cache participate in the
MOESI based directory protocol in the following fashion.
When a cache receives an invalidate request, it first checks
the native cache of a line, and checks the sibling sub-caches
if necessary. If it finds the entry, it invalidates it. Other
directory events are processed in a similar fashion.
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Figure 8: Variations in the size of the caches in the triangle
cache

2) Area Overhead: The cache in our baseline design is
a 32 KB, 8 way associative cache (referred to as 32x8).
Having three big (32x8) caches in a triangle cache represents
a large area overhead. Hence, we experiment with one big
cache, and two small caches (32x4) connected in a triangle
configuration for the instruction cache. To justify this design
decision, we consider other variants of triangle caches, and
perform simulations to understand their execution time(see
Figure 8). The performance is normalized to a baseline
design without triangle caches. appBig (design that we
choose) represents the case when the application cache is big
and the others are small. In the allBig configuration, all the
caches have the 32x8 configuration. Different configurations
have different latencies (obtained using Cacti 5.3). We ob-
serve that the appBig configuration is the best (outperforms
allBig by 2%).

Let us now compare the triangle cache (appBig) with the
advanced OS cache [26], and a triangle cache without the
provision of migrating lines between the sub-caches (triple
cache). Figure 9 shows the results normalized to the per-
formance of the baseline design. The triangle cache clearly
performs better for all the benchmarks especially for the OS
intensive ones with iozone reporting a 45% improvement in
performance. This is due to the large working set of the OS,
and the high degree of destructive interference between the
OS and the application. For other OS intensive benchmarks
too, the average performance increase is more than 15%.
We show the hit rate for various sub-caches in the triangle
scheme in Table III. The high performance of netper f and
tozone can be attributed to the fact that a large number
of OS and hypervisor requests overflow to the application



Benchmark App Cache OS Cache Hypervisor Cache
App [ DomU OS [ Hypervisor | App [ DomU OS [ Hypervisor [ App [ DomU OS | Hypervisor

apache 87.80 4.36 5.92 0.00 74.86 0.23 2.23 14.28 97.00
bodytrack 99.36 9.77 19.34 85.58 95.49 47.44 75.76 65.81 98.79
calculix 99.89 28.54 57.23 34.76 91.80 2.57 33.79 22.92 96.76
cpu_sb 100.00 73.00 88.04 0.61 95.17 3.71 4.87 73.59 98.92
fileio_sb 99.21 42.13 53.88 0.21 92.24 0.78 0.59 17.04 97.42
fmm 100.00 41.49 77.32 3.91 97.17 4.01 2.06 80.49 99.19
iozone 99.91 94.06 92.12 0.00 86.13 0.00 0.00 51.29 98.75
memory_sb 99.98 80.62 59.77 6.57 98.85 1.22 1.93 59.67 99.85
mummer 99.99 39.24 86.96 5.95 93.29 0.44 0.00 51.63 97.08
mysql_sb 92.46 3.22 36.40 2.59 92.25 17.73 7.96 22.31 98.13
netperf 99.94 89.51 70.96 0.00 70.45 0.00 0.00 60.00 99.68
pbzip2C 99.99 73.14 92.18 4.24 95.24 5.23 0.86 63.98 97.67
pbzip2D 99.99 67.05 52.52 1.21 94.46 1.42 1.37 51.42 97.71
radiosity 100.00 43.25 64.42 17.05 96.84 20.71 7.75 75.87 99.08
specjbb 97.24 3.64 5.97 14.82 92.86 13.21 15.00 21.51 97.63
threads_sb 99.75 95.56 89.72 5.55 98.72 5.34 19.09 66.58 99.90

Table III: Instruction cache hit rate for various environments in the different caches
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Figure 9: Comparison of a system with a triangle cache with other alternatives

cache with most of them being hits.

C. Small and Big Caches

We also consider the impact of having large caches (64x8)
and small caches (32x4) in our system. We compare them
with the triangle and advanced OS cache. We want to create
a system that is a mix of cores with small, large, and triangle
caches such that its area is roughly equal to that of our
baseline system.

Figure 9 shows the comparison in the execution time of
small and large caches against the triangle and advanced OS
cache normalized to the baseline design. Compute intensive
applications such as pbzip2 D, bodytrack, and calculiz have
acceptable performance with small caches and thus can be
scheduled on such a core. For the OS intensive applications
such as apache, iozone, fileio_sb, and mysql_sb, large

caches are able to give sufficient performance improvements.
Note that large caches are smaller than triangle caches as we
shall show in Section V. Hence, they can be considered a
worthy alternative for some benchmarks.

V. HETEROGENEOUS SYSTEM DESIGN

A. Scheduling Algorithm

Let us now outline the details of a hardware based
scheduling algorithm that takes into account the heterogene-
ity of cores. Our basic algorithm is SampleAndSchedule
[7]. The execution of the application is divided into two
phases namely Sample and Schedule. We start with a
random assignment of threads to cores. During the Sample
phase, each thread is run on each type of core for at least one
epoch. The IPC of each <thread,core>> mapping is recorded
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Figure 10: Performance overhead of thread migration

Size Assoc | Latency Area

(KB) (Cycles) | (mm?)
16 4 2 0.326
16 8 4 0.569
32 4 3 0.361
32 8 4 0.641
64 4 3 0.606
64 8 4 0.704

Table IV: Area and latency

at the end of every epoch. After the sampling phase is over,
the global scheduler needs to decide the optimal mapping
of threads to cores. We order the <thread,core> tuples in
descending order of improvement in terms of relative IPC
with respect to a baseline core. We pick the best mapping
and if this mapping is unavailable due to a lack of cores,
we move to the next mapping.

The epoch period for the sampling phase determines the
efficacy of the scheduling algorithm. After each epoch,
threads are migrated from one core to another. Once a
thread switches from one core to another, its data needs
to be transferred to the new core. Figure 10 shows this
migration overhead (in terms of loss in IPC due to the
transfer of cache lines) as a function of the epoch size. We
observe that an epoch size of less than 1 ms is not advisable.
These observations are in line with the conclusions drawn
by Craeynst et al. [27]. We choose an epoch size of 3 ms.

B. System Setup

Table IV mentions the area, and latency of different L1
cache configurations that we have used for our experiments.
The numbers have been calculated using Cacti 5.3 [28].
Scaling to 22nm technology is done using the techniques
described in [29].

We have evaluated four different core designs : Small,
Baseline, Big, and Triangle. The detailed design of the
Baseline core is shown in Table II. Other core designs differ
from the Baseline core only in respect of the configuration

Core Type Size | Assoc
(KB)
Baseline (I/D cache) 32 8
App (I cache) 32 8
Triangle OS (I cache) 32 4
Hypervisor (I cache) 32 4
D cache 32 8
Small (I/D cache) 32 4
Big (I/D cache) 64 8
Design Area Baseline | Small | Triangle | Big
Overhead (%)
Baseline - 32 - - -
Design A 2 - 13 13 6
Design B 5 - 10 15 7
Design C 10 - 0 22 10

Table V: Design Space: Heterogeneous System

of the instruction and data cache. The cache configuration
of each core design is shown in Table V.

We consider three core designs for our heterogeneous
system, TriKon: Small, Big and Triangle. The Triangle
core design is suited for applications, which experience a
significant amount of destructive interference between the
hypervisor, application, and OS. The Big core design is
suited for applications, which have a large memory footprint
and are unable to accommodate their working set in the
baseline cache. The Small core design has cores with
smaller level 1 caches, and it is suited for compute intensive
applications with small working sets. It does not provide
extra performance benefits, but it dissipates less power and
consumes lesser area than the other 2 cache designs. We use
a system of cores with varying cache sizes to ensure that the
proposed heterogeneous system has roughly the same area
as the baseline design.

We evaluate three different configurations as shown in
Table V: Design A, Design B, and Design C. Design A
has the least area overhead of 2% as compared to a baseline
homogeneous system of 32 cores, whereas Design B and
Design C have an area overhead of 5% and 10% respec-
tively.

C. Evaluation

We consider two sets of applications for our evaluation:
Mizl and Mix2. Each of these application mixes con-
tain a subset of applications from our original list of 16
applications (see Table I). Note that we have both single
threaded as well as multi-threaded applications. Both our
application mixes contain a total of 32 threads (albeit from
different applications). The performance results are shown
in Figure 11 and 12 respectively.

Mizl has a higher number of applications with large
amounts of destructive cache interference and memory foot-
prints. Predictably, as we increase the area budget and
move towards larger/sophisticated cache designs, the overall
performance of the system increases. Since Design A has
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Figure 13: Fraction of time applications spend on different core designs

fewer cores with Triangle caches, benchmarks such as
i0zone, apache and mysql_sb could leverage the Triangle
core design. The average performance improvement for
these benchmarks is 20%. However it was not possible to
allocate T'riangle cores to benchmarks such as netperf,
which was mapped to a Big core in Design A. When we
moved from Design A to Design B, netperf was allo-
cated to T'riangle cores, and consequently its performance
increased by 30%. In contrast, for the compute intensive
benchmarks such as radiosity and bodytrack, nearly the
same performance is observed for all the designs reiterating
the fact that these benchmarks can be scheduled on any core
without any appreciable performance degradation. It must be
noted that few benchmarks benefited when we moved from
Design A to Design B (such as specjbb and netper f).
These benchmarks were primarily system intensive and
required T'riangle caches. However, we do not see an
appreciable improvement when we invest another 5% in the

area overhead and move from Design B to Design C. This
is because all the system intensive benchmarks get cores
with Big or Triangle caches.

In comparison, M142x2 has a higher number of compute in-
tensive applications. Hence, we do not notice any significant
performance variation with increasing area budgets.

D. Mapping of Benchmarks to Cores

Figure 13 shows the fraction of time each benchmark from
the Mizl set of applications spent on different cores of
Design B along with its IPC relative to the Small core.
Application intensive benchmarks such as radiosity and
bodytrack spend most of their execution time on Small
cores. System intensive benchmarks such as iozone, and
netper f need a sophisticated cache design for mitigating
interference and hence they are mapped to a T'riangle core.

Another point to be noted is that benchmarks such as
radiosity, and fileio_sb have their execution times evenly



distributed over multiple core designs, which is due to the
fact that different threads of these benchmarks are mapped to
different core designs and we do not distinguish between the
individual threads in these pie-charts. Also, we can observe
that application intensive benchmarks such as radiosity,
bodytrack, and mummer do not show any appreciable
improvement in relative IPC for any of the core designs.
In contrast, tozone and netper f which are highly system
intensive have an increase of 60% and 92% respectively in
their relative IPC on the T'riangle design.

VI. CONCLUSION

In this paper, we looked at the design of the TriKon
processor for executing applications in an on-chip cloud
environment. We started by characterizing the benchmarks
and depending on their behavior, they were classified into
three basic categories (1) system intensive applications with
high memory interference between the application, OS and
hypervisor, (2) applications with a large memory footprint,
and (3) compute intensive applications. We tackled the
problem of high memory interference by segregating the
memory accesses of the different contexts into three different
caches: application, OS, and hypervisor. We assigned a
cache to each entity and designed a dynamic scheme, which
allows data to flow among sibling caches without significant
amount of destructive interference. We also optimally size
this T'riangle cache, and experimentally demonstrate that it
is required for instructions (not for data).

We proceed to design a processor with Small, Big, and
Triangle cores. We used a sampling based scheduling algo-
rithm to map different application threads to different types
of cores. We designed a heterogeneous system with an area
overhead of 2% and obtained a performance improvement
of 12% for a mix of system, memory, and compute intensive
applications. Among these applications, we observed an
average gain of 20% for the system intensive benchmarks
while the performance of compute intensive benchmarks
remained unaffected. Also, by allocating extra area for the
Triangle and Big cores, we improved the performance of
the same system intensive benchmarks by further 10%.
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