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Managing Trace Summaries to Minimize Stalls
During Postsilicon Validation
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Deepak Chauhan, and Sharad Kumar

Abstract— On-chip trace buffers are increasingly being used
for at-speed debug during postsilicon validation. The limited size
of these buffers results in their frequent overflowing. In scenarios
when such overflowing is not desirable, the chip is stalled,
and the state data recorded in these buffers are transferred
off-chip. Such frequent stalling significantly impedes efficient
debugging. We propose a novel scheme to minimize the number
of such stalls using a portion of the trace buffer to also store
summaries of trace messages. We describe an overlapped trace
buffer architecture that uses a reduced number of ports to
capture tapered summaries where both detailed and summary
versions of traces are stored simultaneously. We propose a simple
hardware structure to generate two kinds of trace summaries—
spatial and temporal—as specified by the validation engineer.
We introduce a storage specification language that allows the
validation engineer to unambiguously specify the information
to be captured in these summaries to the debug hardware.
We demonstrate that our proposal significantly reduces the
number of stalls for off-chip transfer of captured traces in four
bug scenarios that are representative of different classes of bugs
encountered during postsilicon validation.

Index Terms— Design-for-debug architecture, postsilicon vali-
dation, trace summaries.

I. INTRODUCTION

THE increasing complexity of processors and systems
on chip (SoCs), coupled with aggressive time-to-

market deadlines, have forced chip manufacturers to adopt
well-planned strategies for postsilicon validation [1], [2].
At-speed debugging using on-chip trace buffers has become
the de facto methodology for postsilicon validation because it
quickly localizes the observed error in long running test cases.
However, frequent overflowing of the limited sized trace
buffers requires the entire chip to be halted in order to transfer
its contents off-chip. Such frequent off-chip transfers are time
consuming and constitute a major impediment to efficient
debugging.
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Fig. 1. High-level schematic of the proposed scheme. (a) Trace buffer
organized as a circular queue. (b) Flexible runtime partition into detailed and
summary buffers.

Several works have attempted to improve the efficiency of
at-speed debugging by reducing the amount of redundant and
irrelevant information captured in the trace buffer. These works
have focused on both: 1) design changes, where redundancy in
the information captured is reduced by carefully choosing sig-
nals for tracing [3], [4], and 2) runtime techniques, where only
traces from relevant regions of execution are captured [5], [6]
and compressed before storing into the buffer [7], [8].

We propose a novel runtime approach to improve the
efficiency of at-speed debug, by storing the summaries of
trace messages before overwriting them with incoming trace
messages, and transfer only these summaries off-chip. The
validation engineer can use the recent on-chip detailed traces
to reconstruct the erroneous state and the off-chip summaries
to infer the activity sequence that led to the erroneous state.
Since the summaries are terser than detailed traces, the activity
history for longer durations can be gathered through a reduced
number of stalls.

We first propose a novel storage mechanism that allows
the validation engineer to choose the amount of space for
storing summaries. We achieve this by reusing the existing
trace buffer through simple hardware extensions as shown
in Fig. 1. Fig. 1(a) shows the default trace buffer pictured
as a circular queue. In our proposed architecture pictured in
Fig. 1(b), the space is partitioned at run time (by configuring
the start and end pointers) into multiple circular buffers, to
simultaneously capture both detailed and summary traces.

We allow the validation engineer to specify the information
that is currently of interest depending on: 1) the debug
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scenario and 2) the relative time of occurrence of events. These
input specifications are used to generate trace summaries by
discarding any information captured in the trace stream that
is no longer relevant. The summary obtained by discarding
irrelevant information present within a trace message is called
spatial summary, and the summary obtained by discarding
irrelevant information that is spread across several trace mes-
sages is called temporal summary. We propose a detailed
design of a trace summarizer that can generate the spatial and
temporal summaries. We also present a specification language
called storage specification language (SSL), which the vali-
dation engineer can use to specify the information that is of
interest to the hardware unambiguously. These specifications
are translated into configurable parameters of the proposed
hardware and are transferred through JTAG ports to various
configuration registers.

Using a set of four case studies that are representative
of different kinds of bugs encountered during postsilicon
validation, we show that such a tailored trace capture avoids
the need to stall the chip to transfer the contents of the
trace buffer off-chip when temporal summaries are captured.
We observe a reduction in the number of stalls by up to 63%
when only spatial summaries are captured.

The rest of this paper is organized as follows. Section II
outlines the prior research. Section III introduces the specifi-
cation framework of SSL and presents a detailed discussion on
the information captured in spatial and temporal summaries.
Section IV discusses tapered storage and trace buffer architec-
tures to achieve it. Section V describes the hardware design
of the trace summarizer that can generate spatial and temporal
summaries, and Section VII explains the case studies and
results. Our conclusions are given in Section VIII.

II. RELATED WORK

Several works have attempted to reduce the number of stalls
through two broad approaches: 1) increasing the utilization of
the existing buffer through intelligent trace capture [4], [6]
and 2) increasing the size available to capture traces by reusing
architectural components such as caches [9], [10], so that
the adverse effects of capturing irrelevant information are
reduced. Our strategy falls under the former approach, and
is complementary to the latter.

Traces with reduced information captured in them have been
found useful to quickly localize bugs in the past [11]–[13].
In these proposals, traces with reduced information or
execution signatures are used to broadly identify regions of
execution that deviate from the expected behavior initially.
Detailed traces are then captured only in the regions of
execution identified above. Our work is orthogonal to this
because we characterize deviations using sequences of related
events instead of time intervals.

Several previous works have proposed to use traces
with varying amounts of information captured in them for
use in transaction-based debugging [14]–[16]. Under these
approaches, the functionality of the chip is captured as a
sequence of messages exchanged over the interconnect. Trace
messages are generated at different granularities of the mes-
sage exchange and transferred off-chip for further analysis on

TABLE I

FIELDS IN INSTRUCTION TRACE OF LEON3 SoC

compliance to expected behavior. However, these proposals
determine the information to be captured at each granularity
during design time and hence cannot adapt to the changing
requirements during debugging. In contrast to this, our pro-
posal can generate trace messages at different granularities
that are defined at runtime and store messages of different
granularities in the same trace buffer. Moreover, unlike the
above proposals that specifically monitor transactions over
the interconnect, our technique is applicable to debug the
functionality of any module.

Another area of research that uses a sequence of events
for debugging is assertion-based verification. These techniques
define invariants that must be satisfied at all times using a
sequence of events, with strict timing constraints between the
events. A violation of an invariant becomes the starting point
for further investigation [17]–[19]. Several works have been
proposed in the past under assertion-based verification to syn-
thesize hardware from specifications of invariants [17], [18].
The hardware thus synthesized is embedded into the chip
at design-time to check compliance to these invariants
during regular operation. More recent works have used these
invariants as trigger conditions to capture traces into the trace
buffer [19]. Our work differs from these proposals because
the trigger conditions are specified at runtime in our proposed
design. This allows the temporal conditions for triggering trace
summarization and storage to evolve, as more insights into the
bug are available.

Other works have demonstrated the use of aggregates of
event occurrences captured by performance counters to debug
the Core 2 Duo processor [2]. Our technique does not use
summaries in the form of aggregates because identifying
information, which is essential to reconstruct the sequence
of events that led to an erroneous state, is not retained in
such summaries. However, our proposed hardware can be
extended to generate aggregate summaries as well through
minor modifications.

Our proposal is the first work to our knowledge that supports
debugging multiple classes of bugs by offering flexibility to:
1) choose the information to be captured in each trace message
and 2) capture an arbitrary mix of detailed traces and their
summaries to debug observed errors.

III. TRACE SUMMARIES

A. Background

We explain different types of trace summaries generated by
our proposed hardware and their benefits through the instruc-
tion trace generated by an off-the-shelf LEON3 SoC [20].
Table I shows all the information captured in the instruction
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trace, and is representative of the state-of-the-art in at-speed
debug architectures for large SoCs. Only high-level features of
each module (such as PC or opcode in the case of a core) are
traced in case of large SoCs so as to quickly localize the bug
to a module or specific interaction between modules. Further
debugging proceeds using conventional methods such as inter-
active run–stop debugging, logic analyzers, and emulation.

1) Sample Debug Scenario: We use the following debug
scenario to discuss our proposed enhancements: the validation
engineer has established through previous attempts that timing
issues occur when an instruction at a particular PC follows a
multicycle operation within two cycles and further suspects
that the state of the flip-flop holding the status of trap
is responsible for the inexplicable behavior. Therefore, at
present, the primary interest is only in understanding the
behavior of trap in relation to PC and opcode under the
aforementioned timing constraint between PC and opcode.
Every other information present in the trace is irrelevant at
this juncture of debugging the error.

B. Storage Specification Language

In our proposed methodology, the validation engineer
expresses the required information to the debug hardware
using the SSL. The debug hardware uses the information
passed on by the validation engineer in the specification
to discard information from the detailed traces to generate
summaries.

The grammar of the SSL is given below.

An SSL statement can either be an action (store/notify)
statement or an assignment. The store statement indicates the
debug hardware to store the list of trace signals specified
by Signals as indicated by Timer. The timer allows for
two modes: 1) sporadic mode and 2) continuous mode. Under

the sporadic mode, the trace signals available at the inputs
are written into the trace buffer only when the Condition
holds, and the corresponding store statements use the when
construct. The store statements for the continuous mode use
the from and until constructs to mark the trace boundaries.

Similarly, an assignment permits the specification of inter-
mediate expressions, which makes SSL store statements more
readable. For every occurrence of label, the LHS of the
operator := is replaced with the RHS to get the final store
statement.

The Condition can either be the label or a possibly
aggregate temporal sequence, where individual sequences are
boolean expressions of events, connected using a temporal
operator. Each boolean expression can be associated with a
repetition operator [*low:high],[*count] that specifies
the range for which the boolean expression must hold true
starting from the current cycle. Four operators ;(consecutive
sequences), | (alternative sequences), && (sequences occur
and have identical start and end cycles), and within
(sequence inclusion) are considered temporal operators in SSL
(taken from SERE [21]). There are two other operators
in SSL: 1) a NOT() operator that negates the result of the
Condition and 2) a set operator that supports runtime
definition of events (discussed later in this section).

An example SSL specification for the aforementioned debug
scenario when only on-chip event triggers are used to filter
irrelevant information is shown below. Fig. 2(a) shows the
information stored into the trace buffer corresponding to the
input specification.

Since event triggers only use the information present in
the traces to either start or stop tracing, but do not discard
information at runtime, constructs other than all are not
supported by them.

C. Spatial Summary

A spatial summary is generated by selectively filtering
out irrelevant information present within a particular trace
message. This feature of a debug hardware overcomes the
shortcoming of standard event triggers that forced it to capture
unnecessary fields along with relevant information. This is
achieved by allowing the validation engineer to specify the
fields of interest to the debug hardware through the SSL spec-
ification as shown below. Fig. 2(b) shows the information that
will be captured as part of the spatial summary generated
for the debug scenario under consideration for the input
specification.

An area-efficient hardware design to achieve such runtime
filtering is discussed in Section V-A.

Filtering out irrelevant information can significantly reduce
the number of stalls when used in conjunction with event
triggers where only relevant fields of trace generated within the
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Fig. 2. (a) Data captured by event triggers. (b) Data captured by a spatial summary that discards fields other than 1, 4, and 5. (c) Data captured only
when a specified temporal relationship between fields 1 and 4 is satisfied. (d) Reduction in captured information when a combination of spatial and temporal
summaries is used. (e) Compressing the captured contents further.

regions of activity demarcated by event triggers are captured
for storage into the trace buffer. The SSL specification that
leverages a combination of event triggers and online filters is
shown below.

D. Temporal Summary

The combination of event triggers and online filters can still
capture some irrelevant information within the trace buffer.
This happens because the debug hardware stores execution
traces as and when they are generated. Such eager storage into
the trace buffer leads to capturing irrelevant information either
when only a part of an event sequence of interest occurs, but
not the complete sequence, or when the entire sequence occurs,
but the timing relationship between the events does not hold.
An example of this is the trace sequence stored into the trace
buffer when the instruction at 0xabcd1234 does not occur
within two cycles of the multicycle instruction. The region of
execution thus demarcated between the multicycle operation
and the instruction at 0xabcd1234 could potentially span
several thousand cycles, during which the SoC may stall
multiple times to dump traces off-chip.

Temporal summary is generated by discarding information
that is deemed irrelevant after examining compliance to the
specified temporal property, instead of eagerly storing the
traces into the trace buffer. All the trace messages that resulted
in triggering a constituent event of the specified sequence
are written into the trace buffer as part of the temporal
summary. The intervening trace messages that did not trigger
an event of interest are discarded as the information contained
in them is irrelevant. The property of interest captures both
the sequence of events and the timing relationship between
the constituent events, and is represented using a temporal

expression. Fig. 2(c) shows the temporal summary stored into
the trace buffer for the SSL statement shown below.

example_1 represents a sequence that begins when MCI
is 1 indicating the occurrence of a multicycle instruction. The
second term captures the scenario where PC takes the value
of 0xabcd1234 within the next two cycles. This sequence
captures cases when an instruction at a particular PC follows a
multicycle instruction within two cycles. The second statement
indicates that the detailed trace messages must be stored as and
when this sequence is observed.

Fig. 2(d) shows the benefits of using a combination of
spatial and temporal summaries as specified by the SSL
statement given below.

1) Runtime Definition of Events: There may be debug
scenarios where temporal relationships between the field
values in the trace messages need to be checked. An example
scenario may be that the validation engineer is interested only
in cases where the tag of a read request issued does not match
that of the response or if the response itself is delayed. In this
case, the debug hardware should check for violations against
all the values that the tag field takes. In this scenario, the value
against which an event should be triggered changes over time
as the execution proceeds. We propose two constructs that
specify when to update the value against which an event is
triggered and what the new value should be, unambiguously
to the debug hardware.

1) set Command: This command is used to dynamically
update the value against which the trigger condition
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inside the conventional event trigger is set. The event
triggers would then trigger events when the input field
takes the most recently updated value. This command is
always associated with the occurrence of an event and
is treated as a side effect to the occurrence of the event.
This command is delimited using a pair of “\” symbols.
The value updated by set is the corresponding value of
the field in the trace message that triggered the condition
(MCI==1).

2) ’ Suffix: This symbol is suffixed to a field name to
denote the value that was used to update the event trigger
most recently. This is useful to statically define events in
SSL statement even when the exact value of the field is
not known beforehand. For example, PC’ refers to the
value that was used to configure the event trigger most
recently through a set command.

The debug scenario considered above is captured in the SSL
statement shown below, and uses the above operators.

Fig. 2(e) illustrates the benefits of further compressing the
captured traces. It also shows that the proposed summaries
are complementary to runtime techniques such as compres-
sion [8] that aim to reduce stalls without discarding irrelevant
information.

In the absence of suitable support from the debug hardware
to generate trace summaries, the proposed manipulations such
as filtering of information from trace messages and checking
for compliance to temporal properties would be done during
off-chip analysis [15], by which time significant resources
would have already been invested in storing and transferring
the traces off-chip. Not only would this contribute to delays
in the postprocessing algorithms, but also the resulting stalls
could interfere with the bug detection process.

IV. ARCHITECTURAL CONSIDERATIONS

A. Tapered Storage

When debugging an observed error, the validation engineer
uses two types of information: 1) an activity log that gives
a quick overview of the execution and helps assess if the
execution proceeds as expected and 2) changes made to
the internal state just prior to the execution deviating from
the expected behavior, so as to determine the cause of such
deviation. A debug methodology is defined by the mechanism
it uses to capture these two kinds of information.

We observe that the activity log is a subset of the
detailed state information, and therefore, capturing only the
detailed state information can help create the activity log [22].
However, this may lead to a significant increase in trace
volume. Therefore, we propose to use summaries of detailed
trace messages corresponding to the expected execution path.
Trace volume is reduced through: 1) summarizing only the
activity that occurred sufficiently in the past and 2) summa-
rizing only the trace messages that follow specified invariants.

Fig. 3. Split architecture.

The first technique implicitly assumes that the operations
occurring sufficiently in the past would correspond to expected
executions and that the symptoms of erroneous behavior would
be captured in the detailed trace messages generated most
recently. Under this assumption, the former method generates
trace summaries of the detailed trace messages that are further
in the past, which can be used as activity logs. The second
technique does not make any such assumption, and uses an
invariant specified by the validation engineer using SSL to
decide whether or not the execution follows a correct path.

The simultaneous storage of detailed trace messages and
brief activity logs of successful operations is called tapered
storage. We propose three different trace buffer architectures
for implementing tapered storage: 1) split; 2) unified; and
3) overlapped to store tapered summaries.

B. Split Architecture

Fig. 3 shows the split architecture where the detailed traces
and their summaries are stored in separate trace buffers.
The detailed trace messages are marked in blue and the
summaries are marked in green. The space in the detailed
trace buffer (DTB) is regulated using two thresholds. When
the number of trace messages in the DTB exceeds the higher
threshold, the summarizer makes space for incoming messages
by generating summaries and storing them into the summary
trace buffer (STB); it stops doing so when the available space
falls below the lower threshold. The sizes of the DTB and
STB are frozen at design time.

C. Unified Architecture

Fig. 4 shows the unified architecture for storing tapered
summaries. This architecture allows the validation engineer to
configure the sizes of the DTB and STB as per the requirement
of the debug scenario. This is achieved by merging the
two trace buffers into a single physical buffer. In steady
state, new trace data is written into the DTB, and the oldest
detailed trace is simultaneously summarized and written into
the STB in the same clock cycle. The architecture retains
the two thresholds of the split architecture to maintain flow
control between the DTB and STB. This architecture requires
a trace buffer with three ports to support online operation of
the summarizer: two write ports (one each to store incoming
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Fig. 4. Unified architecture.

Fig. 5. Overlapped architecture.

detailed traces and summaries generated by the summarizer)
and one read port to read detailed trace messages into the
summarizer. This leads to an increased area overhead of the
unified architecture.

D. Overlapped Architecture

Figs. 1(b) and 5 show the overlapped architecture. This
architecture retains the flexibility of the unified architecture
but reduces the area overhead by discarding the dedicated read
port of the unified architecture. The overlapped architecture
generates and stores the summaries simultaneously with the
detailed trace messages being written to the DTB. This avoids
the need for the summarizer to separately read the detailed
trace message again later. Both the DTB and STB operate as
regular circular buffers and the oldest message is overwritten
by the incoming ones. If overwriting is not desirable, the
system is stalled and the contents of only the STB are
transferred off-chip. We transfer the contents of the DTB
off-chip only after an error is detected.

V. HARDWARE DESIGN

Fig. 6 shows the high-level design of the proposed
summarizer. The detailed trace messages are input into the
spatial summarizer and a staging buffer. Similarly, the output
of the spatial summarizer is forwarded into the temporal
expression checker (TEC) and a different staging buffer. The
TEC checks whether the trace messages meet the specified

Fig. 6. High-level design of trace summarizer (for the overlapped
architecture).

Fig. 7. High-level design of our proposed spatial summarizer on the LEON3
processor.

temporal condition or not. The two staging buffers, one for the
detailed trace messages and the other for its spatial summaries,
are used as temporary storage until a decision on whether
or not to write them into the trace buffer is available from
the TEC. The staging buffer itself is configured as a circular
queue, and the oldest entries are overwritten in the case of
an overflow. An entry is made into the staging buffer only
when the input trace message triggers an event indicating
the possibility of it being part of the specified sequence. The
contents of the appropriate staging buffer are flushed into the
trace buffer if the specified temporal condition is met and
discarded otherwise. The following trivial modifications are
made for split or unified architecture: 1) the valid signal
to the staging buffer is ANDed with the trigger signal shown
in Figs. 3 and 4 and 2) a staging buffer is not required for
detailed traces.

A. Spatial Summarizer

Fig. 7 shows the hardware design of the spatial summarizer
for the pipeline traces. The fields of the detailed trace messages
are classified into primary and secondary fields. The primary
fields contain only identifying information of the detailed trace
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Fig. 8. Design of the online filter.

message, which is essential to reconstruct the sequence of
events during off-chip analysis. Therefore, they are made part
of every summary and are transferred unchanged to the output.
The ID of the instruction that is currently being processed by a
stage (fetch, decode, etc.) of the in-order pipeline is a primary
field because it helps reconstructing the activity sequence in
the pipeline.

A subset of the secondary fields is chosen using an online
filter that selects any k lines out of n input lines. The
straightforward technique to achieve this is to use k n-to-1
multiplexers (MUXes). This allows the validation engineer to
select any bit of the input at any of the k output positions.
However, this design may lead to prohibitively high area
overheads when the number of input lines is large; we propose
an alternative design that minimizes this overhead by imposing
the constraint that the order of bits within a field remains
unchanged, though the relative order of the fields could be
programmed by the validation engineer. Permutation of fields
is important to enable compaction before further on-chip
processing such as compression [22]. Only the number of bits
in the output and the trace signals appearing at the inputs are
fixed at design time.

Fig. 8 shows the hardware design of the online filter. The
output of each multiplexer (MUX) is a bit of the summary.
The relative order of fields at the input of each MUX is the
same across all MUXes, that is, any bit of input field 0 will
appear only on input line 0 of all the MUXes. This gives a
consistent way of specifying which field should be selected
at a particular MUX. Since we allow for the relative order
of the fields to change, a particular bit within a field can
potentially occur at any output MUX. We use a DeMUX to
select at runtime one output MUX to which a particular bit
within the field should go. Fig. 9 illustrates an example of
the permutations between fields 2 and 4 at the output. Such
permutations allow the width of the filtered trace to be smaller
than the number of output bits of the online filter. For example,
if the validation engineer is only interested in two fields of
1 bit each, then these two fields can be made to appear at the
first two lines of the output. The remaining lines of the output
need not be written to the trace buffer.

Fig. 9. Illustration of working of the online filter.

B. Temporal Summarizer

Fig. 10 shows the internal blocks of the TEC along with
other modules of the summarizer. Several works in the past
have synthesized Property Specification Language properties
and Sequential-extended Regular Expression (SEREs) into
hardware by constructing an equivalent finite automaton [18],
[23]. We leverage the aforementioned works that generate an
equivalent automaton for the specified temporal expression and
use it to program a generic state transition table present inside
the summarizer. This transition table checks for the occurrence
of specified sequences of events. We create a dedicated unit for
the repetition operator and capture the other temporal operators
through suitable state-transition tables.

The internal blocks of the TEC can be grouped into:
1) front-end event generation that includes the spatial sum-
marizer, event triggers, and the boolean expression tree;
2) the repetition counters; and 3) the controller. We discuss the
functioning of the internal blocks in the following paragraphs.
The spatial summaries generated by the spatial summarizer are
passed into the event triggers where the values of the fields are
matched against preset values to detect the events of interest.
The triggers convert multibit trace values into 1-bit events,
which in turn helps restrict the overall area consumed by our
proposed hardware. The event triggers can be reprogrammed to
detect different events at runtime through the set command.
The set command sets the value against which future events
should be triggered to the current value of the field.

It is possible that the field selected by the spatial summarizer
is wider than the input size of event triggers. We handle
such cases using multiple event triggers, with each trigger
tracking different portions of the field selected by the spatial
summarizer. An event is said to occur only when all the
triggers that are tasked with detecting matches of different
bits of the output field fire simultaneously.

We use a boolean expression tree to check if all the triggers
fired simultaneously, which is the logical AND of the outputs
from the corresponding triggers. Fig. 11 shows a possible
implementation of the boolean expression tree where the
design of each node is shown in Fig. 12. Each node of this
reduction tree can either perform logical operations AND/OR

between the inputs or forward the inputs as is to the outputs
if no such operations are required. In addition to detecting
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Fig. 10. Design of the temporal summarizer.

Fig. 11. Boolean expression tree.

Fig. 12. Boolean expression evaluator node.

events on the fields that are wider than the input width of event
triggers, the boolean expression tree is also used to compute
any boolean operations that the validation engineer may have
specified in the input.

The outputs of the boolean expression tree indicate the
events (and the logical combinations between them) that have
occurred at a particular instance of time. These are used to
drive three key activities within the TEC.

1) Indicate whether or not the input trace message (and the
corresponding spatial summary) should be written into
the staging buffer.

2) Request the repetition counter to start counting so that
the number of cycles that have elapsed since the occur-
rence of this event is known.

3) Notify the FSM so that it can request the repetition
counter that is counting the cycles elapsed since the
occurrence of the previous event in the sequence, to stop
counting.

The outputs of the boolean expression tree are used to
decide whether or not the input trace message and its
spatial summary should be stored into the corresponding

staging buffers. This decision is taken by the str gen unit
and depends on the output of the boolean expression tree and
whether the negation operator NOT() is specified against the
condition. If the result of the condition is not negated, str gen
requests the staging buffer to store the trace message and its
spatial summary into the respective buffers when at least one
of the outputs of the boolean expression tree is high. If the
result is negated, all the messages are written to the staging
buffer and the decision to write them to the trace buffer is
deferred to the TEC.

We associate a repetition counter with each output of the
boolean expression tree, which counts the number of clock
cycles that have elapsed since the occurrence of an event, until
any of the following three conditions occur: 1) the value of the
field changes in a subsequent trace message; 2) it is explicitly
stopped by the control Finite State Machine (FSM); or 3) the
count exceeds the range of cycles specified. In all the three
cases, the repetition counter asserts a fail signal only if the
final count is not within the range specified by the validation
engineer. The control FSM can notify the repetition counter
associated with the most recent event to stop counting, as it
has the knowledge of whether an event of interest (or a logical
combination of events) is detected by the event triggers in the
current cycle.

The control FSM stores the state-transition table that accepts
(or rejects) an input trace sequence. Our implementation of the
transition table is as follows: the index into the transition table
encodes the current state and the corresponding row stores
the transitions to the next state on all possible inputs. The
actual inputs are used to read the appropriate bits from the
row corresponding to the current state. An action unit stores
the microcode that dictates the action to be performed on
transitioning to the current state.

A fail handler masks the fail signal from being passed
on to the action unit, and is used to control the behavior of the
TEC when the input trace sequence does not match the speci-
fied sequence. This is required to handle negations of temporal
conditions that are specified using the NOT() operator. The
action unit checks the eventual fail state before triggering
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the specified action.
The input specification is used to program the summarizer

by writing the transition table, the action table, and the
fail handler suitably. Since the proposed unit implements
a microprogrammed control logic, the action to be taken
on transitions between states is changed by overwriting the
entries in the transition table and the action unit across runs.
We explore the use cases of dynamic reprogramming in a
future work.

C. Programming the Summarizer

We briefly explain the steps to translate SSL statements into
binary code using the SSL statement below.

The order in which the secondary signals are mentioned
in the input statement is the order in which they appear
in the spatial summary. The primary fields such as PC are
always available at the first few lines of the output because
they bypass the online filter. The secondary fields in the
example, MCI and TRAP, are available at the first two lines
of the output of the online filter. The values against which
triggers are defined are used to program the appropriate event
triggers where the particular fields are available. In our case,
the two events (MCI==1) and (PC==0xab) are available
at the outputs of Event Triggers 1 and 2, say E1 and E2,
respectively. The operators mentioned in the input that match
either BINARY_OP or the ! operator from the grammar are
used to program the boolean expression tree. Similarly, the
repetition counts that match Rep_Count in the grammar are
used to program the repetition counters. These structures are
bypassed in our example.

These translations convert the input Condition into an
expression involving internal signals such as E1 and E2.
A simple state-transition table is generated along the lines
of [18], and the same is written into the control FSM.
A state-machine with three states is derived in our example.
The action table controls the commands to be issued when
the FSM transitions into the accepting state. The controller
can issue three different commands: 1) flush the contents of
the staging buffer into trace buffer; 2) notify an ID on the
network; and 3) set the value of the trace signal mentioned
against set in the event triggers. The bit corresponding to
the accepting state in the fail handler is set to 1 in the case of
the NOT() operator.

Fig. 10 shows the paths (marked in red) along which the
binary code thus generated is transferred to different modules
of the summarizer.

D. Limitations

The simplicity of the current design imposes the following
limitations on the capabilities of the summarizer. All of these
limitations can be overcome with additional hardware.

1) Only four events are detected by this design in order
to limit the size of the event trigger datapath and con-
trol FSM. This is often sufficient because the temporal

summaries are used quite deep into the debug process
when the region and conditions of interest have been
considerably narrowed down by the validation engineer.

2) An event cannot be part of multiple boolean expressions
because the inputs to the boolean tree are mutually
exclusive.

3) If occurrences of event sequences are overlapped, where
the first event from a subsequent occurrence of the
specified sequence is triggered before the last event of
the current occurrence, then the TEC detects only the
most recent occurrence.

4) The number of store conditions that can be issued to
the summarizer at a time depends on the total number
of simultaneous events that being tracked. If each store
condition involves only one event, then four different
store conditions can be issued and the state-transition
table of the control FSM will be an aggregrate of
four individual control FSMs.

VI. EXTENSIONS TO DISTRIBUTED

AND MULTICORE SYSTEMS

The amount of execution trace to collect and transfer
off-chip is higher in distributed or multicore systems, where
debug information may be collected from multiple sources.
A single large trace buffer to capture execution traces from
multiple sources is not scalable due to contention on shared
resources. State-of-the-art designs distribute the on-chip trace
buffers and associate them with individual components such
as cores and accelerators, as well as shared resources such as
the interconnect and memory controller [20]. However, this
naive scheme does not reduce the number of stalls because
the size of each trace buffer continues to be small.

We propose to use the aforementioned summarizer to cap-
ture trace summaries into the trace buffer associated with
different components and the platform. However, a simple
extension that does not support cross triggering (triggering on
events that occur on a different core) can capture irrelevant
information into the trace buffers. We exploit the oppor-
tunities for reducing the number of stalls significantly by
extending our proposed hardware to support efficient cross
triggering. An efficient cross-triggering mechanism is known
to yield significant benefits when debugging hard to repeat
errors [24].

We build on existing proposals and therefore assume the
presence of a reliable interconnect that can carry messages
related to debug events between different debug controllers.
Previous works have proposed two broad approaches for
transferring these messages: 1) use a dedicated lightweight
interconnect [25] and 2) insert markers into payloads being
exchanged over the existing interconnect [26]. Our proposal
is agnostic to the internal details of the communication
infrastructure available and is compatible with both these
approaches. We broadly refer to the underlying communication
infrastructure as debug interconnect.

A. Specification

We use the SSL statement template below to allow a
summarizer to notify its peers about the occurrence of an event
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TABLE II

DETAILS OF TRACES GENERATED BY THE DfD HARDWARE

of their interest, instead of notifying its local trace to store a
trace summary.

The notification ID is an encoding of a unique event
identifier and the destination. In case the debug interconnect
is a simple broadcast medium, the destination is not specified.
The receiver can set an explicit trigger on the notifications it
receives over the debug interconnect (similar to the ones set
on input trace messages) in order to take suitable action as
and when an event of interest occurs on the remote core.

There are debug scenarios where the condition specified on
the remote core holds true for several cycles. An example of
such a specification is shown below.

In this case, sending a new notification for every cycle the
condition holds true can potentially congest the interconnect
by flooding it with redundant messages. Similarly, constantly
asserting a signal between the sender and the receiver until
the specified condition turns false has high area overhead.
We address this issue by sending a separate clear message
to the receiver when the condition that resulted in sending the
first notification message is no longer valid.

B. Storage Architecture

We use a distributed architecture to store trace summaries
and propose to use an STB with each detailed trace that is
associated with a core and the platform. This architecture
overcomes the three disadvantages of a centralized STB as
follows.

1) Runtime partitioning of the available size to capture
detailed and summary traces based on the debug scenario
is now possible because the DTB size is not frozen at
design.

2) Trace loss is minimized by reducing contention between
summaries from multiple cores.

3) Space is utilized efficiently by tagging the core ID
only when transferring the contents off-chip rather than
on every trace summary. The distributed architecture
requires a small additional synchronization hardware to
access the off-chip interconnect when transferring the
contents.

C. Hardware Extensions

The following minor modifications are made to the sum-
marizer to support cross triggering: 1) new output lines

connecting the summarizer to the interconnect are used for
cross triggering; 2) new microinstructions are added to send
notify and clear messages over the debug interconnect; and
3) the inputs from the debug interconnect are connected to an
existing event trigger.

VII. EXPERIMENTS

A. Setup

Our experimental setup consists of a LEON3 SoC with
4 cores (SPARCv8), a memory controller, and an advanced
high-performance bus (AHB). The off-the-shelf LEON3 SoC
has the following debug features: 1) generate instruction traces
and store them locally in an instruction trace buffer and
2) debug support unit (DSU), which stores AHB traces into
a separate trace buffer in addition to supporting activities
like diagnostic read (or write) from (or to) system registers,
accesses to the internal state through JTAG and UART ports,
and so forth. We enhanced this DfD hardware by tracing
critical signals from the pipeline (similar to [27]), and cache
controllers. Table II shows the number of bits captured by
each of these detailed traces. We perform differential compres-
sion [28] before storing them into their respective trace buffers.
We retain the distributed approach followed by the original
LEON3 SoC and use a 4-kbyte trace buffer per core and the
AHB to store the generated traces. The information captured
in the detailed trace is fixed at design time and remains the
same in all the scenarios we consider in the following section.
However, the bits captured in the summaries change across
scenarios, as shown in Table II, as per the specifications from
the validation engineer. The input applications are written in C
and are compiled using the Bare-C cross compiler, which
allows them to be executed off the bare metal. We used
CACTI 5.3 to estimate the area of the trace buffers. The
proposed design was implemented in VHDL and synthesized
using a Cadence Encounter RTL compiler with a 90-nm
technology standard cell library.

B. Bug Scenarios

We modeled different realistic architectural bugs that could
interfere with the functionality using a simple application with
four threads: two writers and two readers. The writers incre-
ment a global counter and the readers continuously read it. The
application was allowed to execute for 75 000 cycles and the
bugs were introduced randomly. Such directed test applications
are used extensively during postsilicon validation [2].

We considered three different configurations to capture trace
messages into the on-chip trace buffers: 1) base case: the DTB
of 4 kbytes with no STB; 2) the STB of 3 kbytes and the
DTB of 1 kbyte; and 3) the STB and DTB of 2 kbytes each.
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We studied the number of stalls required to transfer the
contents of the trace buffer off-chip in each of these configura-
tions. Under our proposed methodology, only the contents of
the STB are transferred off-chip when it is full and the older
messages in the DTB are overwritten by newer detailed trace
messages. If only detailed trace messages are of interest, then
the trace buffer is configured to store only the detailed trace
messages, which are transferred off-chip as and when the trace
buffer overflows.

1) Core–Cache Interface: This bug is inspired by our
experience from an actual design scenario involving adding
a victim cache to the processor. Previous studies have also
found that a large number of functional bugs occur at the
interface of the core [29]. The implementation of the victim
cache sent the data to the core as well as to the L1 cache as an
optimization if the request to it resulted in a hit. This required
changes to the interface between the core and the memory
hierarchy, such that the core can accept data either from the
victim cache or from the regular memory hierarchy through
the data cache. The interface between the core and the memory
hierarchy is governed by two key control signals: 1) MDS and
2) HOLDN. The former is a strobe signal that indicates whether
valid data are available for the LEON3 processor to store into
its internal registers, and the latter is used to stall the pipeline
until the memory system returns valid data to the pipeline.
The protocol to be followed at the interface mandates that
MDS should change one cycle before HOLDN changes. When
adding a victim cache into the base system, the timing of these
signals was violated, due to which the core proceeded with its
execution using the stale value present in its internal register.

After the initial run, we analyzed the most recent detailed
trace messages available on-chip, which revealed that the
contents of a register retained the same value across multiple
increment operations. In the subsequent run, we captured a
spatial summary that included: 1) address and data values
of the AHB trace and 2) address and data values of the
pipeline trace. Only the spatial summaries (a total of 114 bits)
were transferred off-chip. This was achieved using the SSL
statements below.

The two SSL statements are used to program the online
filters associated with the AHB trace and the pipeline trace,
respectively. These two SSL statements capture a narrow but
lengthy trace of data accesses made by the pipeline and
the responses from the memory. The data returned to the
pipeline are correlated with the data returned by the memory
system using the addresses captured in the traces. A mismatch
in the data returned to the pipeline and the data visible
over the AHB helped us localize the bug to the core–cache
interface. This is because the LEON3 SoC uses a write-
through cache with no-allocate policy, and therefore, dirty data
are never present in the caches. If dirty data are allowed in
the system, then each mismatch would have to be analyzed
during postprocessing to see if intervening stores were issued.
This would not affect the number of stalls because this

TABLE III

NUMBER OF STALLS REQUIRED FOR DIFFERENT TRACE BUFFER
CONFIGURATIONS WHEN STORING SPATIAL SUMMARIES

information is also present in the traces captured using the
above-mentioned SSL.

To pinpoint the cause of the erroneous behavior, we pro-
grammed the temporal summarizer to store a spatial summary
that includes the data returned to the pipeline (CDATA, MDS,
and HOLDN) only when the invariant to be followed by the
control signals at the interface was violated. This was achieved
using the SSL given below.

Table III shows the number of stalls required to transfer
the spatial summaries off-chip and the maximum duration
of activity history captured in the trace buffer, for the three
different configurations of the overlapped architecture: 1) the
DTB of 4 kbytes; 2) the STB of 3 kbytes and the DTB
of 1 kbyte; and 3) the DTB and STB of 2 kbytes each.
We observe that the number of stalls decreases by 63% and
the activity history is extended by 162% when an STB of
3 kbytes is used. This reduction in stalls occurs because we
dump only the STB contents. This resulted in the total time
spent on dumping the trace buffer contents off-chip reducing
from 100.72 to 29.7 s, when transferred over LEON3 SoC’s
DSU serial link operating at 115 200 bits/s.

2) Window Invalid Mask: The next bug scenario deals
with the corruption of the window invalid mask (WIM) of
one of the SPARCv8 cores in our SoC. The WIM is used
by the SPARCv8 core to detect register window overflow
when executing the SAVE instruction and register window
underflow during the execution of the RESTORE instruction.
When the current window pointer (CWP) points to the WIM,
the execution of the current instruction traps, thereby invoking
the suitable handler to either save a register window to create
space or restore previously saved contents into a register
window. We investigated a bug in the pipeline that corrupted
the WIM in a way such that the execution of the trap
handler itself traps (double trap), which forces the processor to
reboot. Such a bug falls into the class of single-bit upsets at
flip-flops [27], [30]. A bug due to corruption of WIM has
long suspect windows when one or more functions are called
within a loop. The length of the suspect window increases as
the number of iterations increase, because the bug manifests
into a failure only when the call stack shrinks eventually. For
this case study, a corruption of the WIM during the system
bootup led to a crash after 32 646 cycles.
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Initially, a simple instruction trace, which is the default
spatial summary (primary fields), was captured to gain insights
into the possible reasons for the observed erroneous behavior.
Since the execution was within the trap handler for window
underflow, the bug was localized to the register window
logic.

For further debugging, a combination of instruction trace
and detailed pipeline trace only when the CWP changed was
stored into the trace buffer as per the SSL shown below.

The detailed pipeline trace (of 151 bits) is stored instead
of just 21 bits (of spatial summary) every time the CWP
changes. This shows an example scenario where spatial
summaries and detailed trace messages are required to
be stored simultaneously. The stall reduction is shown in
Table III.

3) Nonatomic Execution of ldstuba: Determining the
root cause of race conditions introduced into applications
due to hardware defects using at-speed debugging is a chal-
lenge because of their nonrepeatable nature [15], [24]. The
nonrepeatable nature of the bug requires the test case to
be executed multiple times for long durations, continuously
collecting detailed traces, and analyzing them for the presence
of bugs.

A bug deep in the logic of the atomic exchange instruc-
tion (ldstuba) of SPARCv8 caused the master issuing
the ldstuba instruction to not lock the AHB until the
semaphore was acquired by writing the value 0xff at address
0x400126f0. This violated the atomic operation of ldstuba
and hence introduced a data race in our application.

A spatial summary consisting of address and data values in
AHB trace and data values returned to the pipeline helped
eliminate possible sources of errors such as errors on the
interface and unintentional caching of values. This led to
the reduction in stalls obtained through the use of spatial
summaries, which is shown in Table III.

We then coded the invariant for mutual exclusion on the
AHB trace, as shown in the SSL below.

This gave insights into the detailed state of the AHB as
and when mutual exclusion was violated. On examining the
detailed state, we observed that the AHB master released
the lock before the slave responded. This helped to pinpoint
the cause of the bug to the implementation of ldstuba.
Since the detailed traces were captured only on violation of
mutual exclusion, the trace buffer never overflowed for the
sample application under consideration.

4) Cache Snooping Logic: Another bug in the cache coher-
ence logic also led to a race condition. This tested the

TABLE IV

AREA OVERHEAD OF THE PROPOSED DfD HARDWARE

robustness of our methodology to different bugs that result
in similar manifestations. The reason for the observed race
condition was data duplication, instead of mutual exclusion
violation. This scenario arose because the semaphore is
maintained in an alternate address space of SPARCv8 that
bypasses the caches, whereas the shared data is maintained in
a cacheable address space for performance reasons. Therefore,
two writers were not incrementing the counter simultaneously,
but each writer was incrementing a stale value of the counter
because of the faulty cache invalidation logic.

A spatial summary that captures address and data values in
the AHB trace and line numbers of cache lines invalidated due
to snoop hits was used to narrow down the root cause to faulty
cache behavior. To determine the exact cause for the observed
error, we used the SSL shown below for cross triggering.

The above statements are configured on all the summarizers
in order to track all the updates to the shared variable and the
invalidates that occur on other caches as a result of it. The
first statement is responsible for notifying the peers every time
the shared variable is updated. The latter detects the updates
to the shared variable and captures the snoop hit status and
the corresponding address to give specific visibility into the
invalidation logic.

None of the previous works on multilevel tracing [16],
[19], [24] would be able to detect all the bugs studied above,
because each bug required the capture of a different set of
signals, and a different combination of detailed traces and
summaries.

C. Area Overhead

We synthesized the proposed summarizer that generates
secondary fields that are up to 32 bits at the output of the
online filter for each trace type. The inputs to each event
trigger are 8-bit wide. Therefore, the 32 bits of the secondary
fields are partitioned statically into four groups and each one
is assigned an event trigger and a repetition counter. The last
column of Table IV shows the area overhead and the delay of
the critical path of the summarizer for each trace type. The
total area occupied by all the summarizers associated with a
core is 0.187 mm2. The summarizer associated with processing
AHB traces occupies 0.066 mm2.

The split architecture, with the DTB and the STB of
2 kilobytes each, occupies 0.216 mm2, of which 0.139 mm2
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and 0.077 mm2 are occupied by the DTB and STB, respec-
tively. Although the overall sizes of the DTB and STB are
the same, the widths of the entries in these two trace buffers
are different. The unified architecture has the highest area
overhead of 0.399 mm2, due to the increased number of ports.
The overlapped architecture occupies 0.186 mm2, which is
less than that of the split architecture by 13.9%. This is due
to the reduction in the number of ports compared with the
unified architecture and also due to the sharing of the SRAM
read/write controller across both the DTB and STB compared
with the split architecture.

The total area occupied by the trace buffers and the sum-
marizers (associated with one core, including the AHB) is
0.625 mm2 (= (0.187 + 0.066 + 0.186 × 2)), which is only
1.8% of the area occupied by a 64-kilobyte cache.

VIII. CONCLUSION

In this paper, we proposed to generate and store trace
summaries before overwriting the captured trace messages
during postsilicon debug. Specifically, we presented an over-
lapped debug architecture where the trace summaries are
stored alongside the recently captured execution traces in
a flexible manner. The trace summaries are generated by
retaining only the information of interest to the validation
engineer and discarding the rest. To this end, we proposed
an SSL that the validation engineer can use to specify the
information to be retained in the summaries. Moreover, we
extended the base design to support cross triggering in the
case of distributed and multicore systems. We showed how
the proposed enhancements exploit the increasing amounts
of information gathered about the bug over successive debug
attempts to progressively reduce the number of stalls until they
are avoided, in all of the four bug scenarios that we considered.
The proposed methodology does not make any assumptions
about the type of errors and supports at-speed debugging of
different classes of bugs such as nonrepeatable errors and
errors with long suspect windows that are encountered during
postsilicon validation.
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