A Fast Leakage Aware Thermal Simulator for 3D
Chips

Hameedah Sultan
School of Information Technology
Indian Institute of Technology, New Delhi, India
Email: hameedah @cse.iitd.ac.in

Abstract—In this paper, we propose, 3DSim, which is an
ultrafast thermal simulator for 3D chips. It simulates the effects
of both dynamic and leakage power. Our technique captures the
steady state as well as the transient response with a high speed
and good accuracy. 3DSim uses an approach based on Green’s
functions, where a Green’s function is defined as the impulse
response of a unit power source. OQur approach incorporates
the effects of the leakage-temperature feedback loop, exploits
the radial symmetry in the thermal profile, and uses Hankel
transforms to yield a closed form solution for the leakage aware
Green’s function. To further speed up our technique, we use
fast numerical discrete Hankel transforms, and pre-compute
and store certain functions in a lookup table. Our approach
fundamentally converts a 3D problem to a set of 1D problems,
thus leading to a 68X speedup as compared to competing
simulators with an error limited to 1.5 °C .

I. INTRODUCTION

With increased power density, chip temperature has been
increasing steadily, resulting in several adverse effects. The
most pronounced effect is the increase in leakage power.
Leakage power is strongly dependent on temperature. Increase
in leakage power further increases the on-chip temperature,
resulting in a feedback effect. While there has been a signifi-
cant amount of research in the area of fast thermal simulators
[11, [2], [3], there is hardly any research that focuses on fast
leakage aware thermal simulators [4].

Modeling leakage power is extremely necessary in modern
day chips. In 45 nm technology and beyond, an estimated 30-
50% percent of the total power is due to leakage [5]. Most ex-
isting thermal simulators incorporate leakage by computing the
temperature profile, finding the leakage power and re-iterating
several times to close the leakage-temperature feedback loop.
This increases the run time by at least 3-5X (depending upon
the number of iterations needed for convergence).

3D chips have an even more severe temperature issue. For
3D chips too, a fair number of thermal simulators exist[2],
[3]. However, to the best of our knowledge, there is no 3D
simulator that provides an analytical single-iteration solution
for the chip temperature accounting for leakage, although it
has been observed several times that high leakage is inevitable
in such chips [6]. Furthermore, while calculating the transient
response in 3D chips, state of the art simulators either ignore
leakage, or suggest iterating multiple times until temperature
and power values converge. However, we will justify in this
paper that this method is prohibitively expensive.
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Hence, we propose a novel 3D temperature simulator,
3DSim, which is faster than contemporary simulators and
takes into account the effect of leakage without requiring
multiple iterations. Our simulator is capable of calculating
the steady state as well as the transient thermal response.
We propose a Green’s function (impulse response of a power
source) based methodology to obtain a closed form solution
for temperature (in the transform domain). We also propose
new algorithms for approximating sides and corners that are
faster than the previous algorithms. We provide a method
for further speed-up by using Hankel transforms instead of
Fourier transforms, which are conventionally used in Green’s
function based methods. Further, we use Mathematica [7] to
compute complex transforms and solve equations. We also
use fast discrete Hankel transform algorithms, and deploy
lookup tables to speed up the simulator further. Due to space
constraints, we have moved some of the derivations and
results to the Appendix. Our simulator is 68X faster than
competing simulators for steady state simulations (HS3D [8]
used by HotSpot and 3D-ICE [2]) and 71X faster for transient
simulations. For accuracy, we compared our results against
those obtained using a commercial CFD software, Ansys
Icepak. The error is within 1.5°C , and is similar to that of the
current simulators. In cases where the temperature dependence
of leakage power changes, the Hankel transform based method,
3DSim offers 82X speedup compared to Fourier transform
based techniques (3DSimF).

II. RELATED WORK AND BACKGROUND

A. Background

1) Leakage power: The leakage power, P,k i exponen-
tially dependent on temperature and can be described by the
simplified BSIM 4 [9] model, as given by Equation 1.
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where, vr is the thermal voltage (k¥T'/q), V43, is the threshold
voltage, V, s is the offset voltage in the sub-threshold region
and 7 is a constant. However, over the operating temperature
range of real ICs, leakage may be assumed to be linearly
dependent on temperature, as was shown experimentally in
[10], [4]. The authors of these papers calculated the leakage
power by taking a photograph of the power dissipation of
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functional units using IR cameras [10], and by performing
HSpice simulations [4]. To verify these results, we calculated
the leakage power using Equation 1 for the set of parameters
shown in Table I. We then fit the results to a linear model using
least squares based regression. The error using the linear model
remained within 1% in the temperature range of 40-80°C . So
we use a linear model given by Equation 2 to calculate leakage
power as has been done in recent work [4].

Pleak - F)leakO + ﬁ(T - Tamb)7 (2)

where, Ty, 1s the ambient temperature, P.,o is the leakage
power at ambient temperature, and 8 = ‘“’;l%"“ is a function
of the electrical characteristics of the chip such as threshold

voltage, and supply voltage.

TABLE 1

PARAMETERS USED FOR CALCULATING LEAKAGE
Parameter Value
Tamb 318.15 K
Ves = Vbs 0.7V
Vin 0.15—0.002 x (T'— Tamb) V
Vors 0.0024 V
n 2
F’leakO 0.1 W

2) Green’s function: The Green’s function in the context
of thermal simulation is the impulse response (temperature
profile) of a unit point power source (the Dirac Delta function,
). The final temperature profile is given by the convolution
of the Green’s function with the power profile (distribution of
power within a chip) as follows:

T=GxP 3)

Here, T is the temperature profile (change in temperature), *
is the 2-D convolution operator, G is the Green’s function, and
P is the power map.

3) Hankel Transform: The 2-D Fourier transform of a
radially symmetric function is equivalent to a zero order 1-
D Hankel transform. The Hankel transform is defined as:

H(f(r) = H(s) = / T i o(srrdr @)

Here Jj is a Bessel function of the first kind of order 0, and
‘H denotes the Hankel transform operator.

B. Related Work

For 2-D chips, a wide variety of techniques have been
proposed for temperature simulation, which are fast as well
as accurate [4], [11]. Most temperature simulation techniques
solve the Fourier’s law of heat conduction to arrive at a
temperature simulation technique. However, this method is
slow and the accuracy depends on the granularity of meshing.

In 3-D Thermal-ADI [3], the package and heat sink are
modeled as convection boundary conditions represented by
resistances on the 6 sides of the chip. The popular Hotspot
[12] simulator uses the analogy between electrical and thermal
circuits to solve the heat conduction equation. To close the
leakage-temperature loop, they suggest iterating multiple times
till convergence.

Another set of techniques first pre-compute the Green’s
function by applying a unit power source at the center of
the die, and then calculate the temperature profile for a given
power profile by convolving it with the pre-computed Green’s
functions [4], [1], [13]. In the Power Blurring approach [1],
additional corrections are applied to the Green’s functions for
edges and corners. The authors propose a methodology for
modeling the transient profile as well. But this method is not
applicable to 3D chips.

In [4], a closed form temperature profile of a 2-D chip
incorporating leakage has been obtained. They use a Green’s
function based method. Beginning with a linear model of
leakage, they convolve the total power profile with the Green’s
function to obtain leakage aware temperature values. To
convert the 2-D convolution to 1-D multiplication, they use
the Hankel transform. To obtain the transient temperature
profile, they incorporate a thermal capacitance. This is the
work closest to our area. But this method is for 2D chips,
and owing to the multiple heating effects in both lateral and
vertical directions, this method cannot be trivially extended to
3D chips. We consequently developed a novel technique to
realistically approximate the Green’s functions in a 3-D chip.

A limited number of techniques have been proposed for 3-D
chips. HS3D [8] extends the Hotspot temperature simulation
technique [11] by adding multiple layers and vertical resis-
tances for the interface material. We shall compare 3DSim
with this approach in Section IV. In 3D-ICE [2], the chip
is discretized into several small cuboidal cells. The effect
of incorporating microchannel cooling is studied by adding
a convective term for the heat exchange by the fluids. The
additional term is modeled as a temperature controlled heat
source which translates to a voltage controlled current source
in the equivalent RC circuit.

The main focus of our technique is the speed of com-
putation while considering leakage power. The method of
re-iterating till convergence consumes a lot of time, especially
for transient analysis. Zhou et al. [6] show that ignoring
temperature dependent leakage in modern-day chips can result
in a 32% error. Furthermore, they also show that a 20%
reduction in peak temperature can be obtained by simply
modeling temperature dependent leakage during floor-
planning optimization, without any overheads. However, it
increases the floorplanning run time by 56%. Hence, often
where speed is of utmost importance, researchers either ignore
leakage, or make very crude approximations, compromising
heavily on accuracy. Thus there is a strong need for a fast
algorithm that can provide the steady state as well as the
transient temperature profile, while incorporating the effects
of leakage. We consequently devised a novel set of algebraic
techniques to compute the leakage aware Green’s function in
a 3-D chip. We also propose novel approximations for sides
and corners. We use a combination of several mathematical
techniques and software to provide an analytical solution to
a complex set of equations. Finally we compare our results
against those obtained using a commercial CFD software.



III. METHODOLOGY
A. Model of the Chip

Let us assume that our chip has [ active layers, and each
layer has been discretized into an n x n grid.

When the chip is excited by an impulse power source, the
temperature rise in a layer is affected by 3 factors: 1) dynamic
power applied, 2) leakage power sources created in that layer,
3) leakage power sources created in other layers.

The secondary sources created in other layers make the
calculation of the temperature profile of a layer very complex.
Each layer heats every other layer, and the sources created in
turn heat the other layers. Hence we propose a fast method
for determining the final temperature values analytically in the
next section. Note that in the rest of the discussion, we shall
use the terms, Green’s function and heat spreading function,
interchangeably. Let us discuss the steady state solution and
the transient solution separately.

B. Steady State Solution

1) Outline of the Method: This method broadly involves
three steps:

1) Pre-compute stage I(Offline): Obtain the heat spread-
ing function (Green’s function) without leakage.

2) Pre-compute stage II(Offline): Calculate the leakage
aware heat spreading function.

3) Compute stage (Online): Convolve it with the power
profile to obtain the thermal profile

2) Obtaining the Green’s Functions without Leakage: The
Green’s function can be pre-computed using either in-vivo
thermal measurements, or a thermal simulator. It is obtained by
applying an impulse power source in a layer, and measuring
the temperature distribution across the chip. Let us call the
temperature distribution in layer ¢ because of a point impulse
source in layer k as fsp;;. These are then modified to obtain
the leakage aware Green’s functions.

3) 3D Leakage Aware Green’s Function: When we apply
a power source equal to Py, Watts, the temperature rise 7
according to Equation 3 is given by:

T= fsp * (den + A]Dleak) (5)

Let Pyy, be a delta function applied in layer k. We
denote the temperature rise in layer ¢ by 7. As discussed
in the previous Section, 7 is affected by the dynamic power
dissipated by layer k, as well as the leakage sources created
in all the layers. From Equation 2, APleak;;, = 57;x, which
denotes the new leakage sources created in layer ¢, due to the
source in layer k. Using these terms in Equation 5, we arrive
at the following set of Equations:

Tik =fspir + B(fspi1x Tik + fspi2 * Tar + fspiz * Tan+
o fspuxTik)

To transform convolution to multiplication, we compute the
2-D Fourier Transform of the above Equations. This gives us
a set of simultaneous linear equations in F(71x), F(Tz2k), ---
F(Tix), where F denotes the Fourier transform operator. To

solve this system of equations, we used Mathematica [7]. We
make some more approximations and arrive at the analyti-
cal solution, which can be used directly to obtain the final
temperature profile. We call this method 3DSimF. However,
it requires taking a 2-D transform, which is computationally
expensive. To further speed-up the computation, we use the
Hankel Transform. A 1-D zero order Hankel transform is
equivalent to a 2-D Fourier Transform for a radially symmetric
function. Thus the 2-D problem (O(n?) points) is reduced to
a single dimension (O(n) points).

Interested users may have a look at the detailed derivation
in the Appendix.
H(fsp12) + 21 B(H(fsp13)H(fsps2) — H(fspss3)H(fsp12)

+ .o+ H(fsp1) H(Fsprz) — H(fspu) H(fsp12))

H(Ti2) = 1= 278 (H(fsp11) + H(Fspaz) + - + H(Fspu))

(6)

After computing the inverse Hankel transform of Equa-

tion 6, we can obtain the leakage aware Green’s function.

However, to calculate the final temperature profile, we would

again need to take its transform. Hence we store it in the

transform domain itself after converting the radial function to
Cartesian coordinates.

4) Corrections for Edges and Corners: The boundary con-
ditions are different at the sides and corners, and hence we
need to treat these differently. By convolving the generic
Green’s function (obtained by applying a source at the center)
with a power profile consisting of a Delta function at the
corner, we should obtain the Green’s function for the corner.
But since we use 2-D FFT to perform the convolution,
the temperature profile gets folded and split across opposite
corners (because computing an FFT is equivalent to computing
a circular convolution). Thus we obtain a temperature rise at
all the four corners, even though we applied a source at only
one corner. Hence to bring back the temperature values to
the required locations, we add the values at the four opposite
corners. In the cases of edges, we add the temperature values at
the two opposite edges. Thus we obtain the corrected Green’s
functions.

In [1], the authors use the method of images and append
multiple copies of the power map to account for the boundary
conditions. This effectively achieves the same task that we
perform. However, their method increases the size of the
matrix used in convolution and hence the computation time.

5) Convolution with the Power Profile: The final step in
calculating the thermal profile is to convolve the power map
with the leakage aware Green’s functions. The conventional
approach is to compute the 2D FFTs of the dynamic power
profile and the Green’s function, and multiply them. After this,
an inverse 2D-FFT operation yields the final thermal profile.
However, we propose to save the leakage aware Green’s
functions in the transform domain itself. This will save us
from calculating the inverse transform in step 2, and again
the transform in step 3. In a 3-D scenario, the final thermal
profile is obtained by adding the effects of dynamic power as
well as the effects of leakage sources in each layer as given



by Equation 7.

T = F(Tar) F(P1) + F(Ti2) F(P2) + ... + F(Ta) F(Pr) (7)
where, P; represents the sum of dynamic and leakage power
sources in layer ¢, and 7; represents the final temperature rise
in layer 3.

C. Transient Solution

To calculate the transient profile, we add a capacitive term,
which captures the temperature rise with time (as done in [4]).
With no loss of generality, let us assume that the source is
present in layer 2, and the chip has four active layers.

Ti2 =fsp12 + B (fspi1 x Tiz + fspia * Taz + fspiz * Ta2 + fspra x Taz) —

OT12 0T42
C
1 <f5P11* Bt ot >

®)
We note that the non-capacitive terms on the right hand side
of Equation 8 comprise the steady state response. Let us call
this 71245. We first compute the Hankel transform, to convert
the convolution operations to multiplication. This results in
a set of differential equations. We then compute the Laplace
transforms in the time domain. This enables us to convert the
differential equations to algebraic equations and we get a set
of four linear equations. We finally arrive at:

2rC
L(H(Ti2)) =L (Tizss) = 1—2:%

<7—L(fsp11)£ (7—[ (822)) + H(fspr2) L ( <8TH>>
H(fsp13)L (H (8;32 )) + H(fspra) L ( (daT;m)))

9

where, L is the Laplace transform operator. ®

Using properties of the Laplace transform, setting the tem-

perature rise at t = 0 to be zero, and solving further, we arrive
at Equation 10.

oT:
+ fspiz x :2 + fspia *

OTaz
+ fspi2 x ot

27 Cq
m (H(fsp11)L(H(T12))+

(H(T22)) + H(fsp13) L(H(T32)) + H(fsp14)L(H(T42)))

SL(H(Ti2)) = Ti2ss — 5~
H(fsp12)L
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where, s is the Laplace transform variable. o
Let f11 = %, which is constant with time.

The ideal approach would be to solve the set of equa-
tions in Equation 10 for L(H(7i2)), calculate the inverse
Laplace transform, followed by the inverse Hankel transform.
However, the complexity involved quickly makes the problem
intractable, even using numerical techniques.

Hence, we ignore the terms that have a minimal contribution
to the computed temperature field. We only incorporate the
first and second order effects produced by the current and
adjoining layers (ignore third and higher order effects). This
gives us two capacitive terms for each layer:

SL(H(Tiz2)) =Tizss — 5° f11 (H(fsp11) L(H(T12)) + H(fspiz) L(H(Ta2)))

SL(H(Taz)) =Tazss — 5° faa (H(f5pas) LOH(Ts2)) + H(Fspas) L(H(Ta2)))

Solving these, we get,
LOH(Tiz)) = Ti2ss + sfoeH(fsp22)Ti2ss — sfi1H(fspi2)T22ss

s(=1 — furH(fsp11)s — faa H(fspaz)s+
fr1f22H(fspr2)H(fsp21)s® — fi1fae H(fsp11)H(Fsp2z)s®)

Next we ignore the secondary feedback effects, (all terms
except the first and third terms in the denominator, since
the source is in layer 2), and calculate the numerical inverse
Laplace transform using Mathematica: i Fomas))

—t/(f22 sp22
H(Tio) =H(Tioss) — H(T22ss) f11H(fsp12)e
f2oH(fsp22)

(1)

Now, to calculate the final leakage aware transient Green’s
function, we have to calculate the inverse Hankel transform of
Equation 11. Thus we have:

Ti2 = T12ss — finv, where
7_[(7-2235)f11g_[(fsp12)e—t/(fzzﬂ(fwn))> .
fao2H(fsp22)

finv =H " (

Fino = 3L H(T2s5)C1(1 — 2w BH(Fspaz))H(Fsprz)e t/ (f227(fsp22))
B Co(1 = 27 BH(fsp11))H(f sp22)

13)

This equation is still too complex to be calculated analyti-

(Eally. To (furthe)r Séimpli)fy it, we note that the ratio of the terms

1-27BH(fspao2)H(fsp .

.(I—QWﬁH(fsp?f)H(fsp;z) is c}ose to 1, when h > ¢, (where h
is the Hankel transform variable, and ¢ — 0). So we replace
this by a correction factor equal to 1.1 (based on empirical

results).

H(Tagss)Cret/ (f22H(fop22))
Cs

where finv2® is the value of finv between € and co. We

further note that at lower frequencies (h < e),

finvg = g’H(ngss)e mjo(hr)hdh
where finvg 1s the value of finv between O and e.
Since € — 0, the product hr — 0, and thus Jo(hr) — 1.

_ _ 27 C
Ath =€ fa2 = f220 = T3 571 Fopam)ne”

finv® =H "' [11x 14

5)

Also, since 6(h)/h > BT when h < e, we can ignore
all the leakage terms. We can thus approximate H(722ss) =

H(fsp22) = (f5p22)|h 06(h)/h . Thus we have
o(h
finvg = (fsp22)|h OT)e fzon(fsmz)\h _o 2 hdh
0
2 te
_ (H(fspzz)z\::o) f220 <1 B em
€
(16)

As h increases, finvg — 0, and finv>® will dominate. The fi-
nal transient Green’s function can be found using Equation 17.

Ti2 = Th2ss — finvg — finvl®
12 12 finvg — f a7
1) Technique's“ used for Further Speed-up: A continuous
Hankel transform requires the calculation of the Bessel func-
tion for each value of r. To further speed-up the simulation,
we use the technique proposed by Johnson [14] to compute

the discrete Hankel transform (Equation 18):



1

Hjo,x) =
JO,N+1

N
2 ) . L .
5 > —5——f(o,n/d0,n+1)Jo (o kdo,n /do,N+1)
n=1 J1 (]0,71)
(18)
where jo 1 is the k" root of the Bessel function, and N is
the defined range of the function whose Hankel transform is
to be computed. To avoid computing the roots of the Bessel
function in each iteration, we pre-compute the roots and store
it in a look-up table.

IV. EVALUATION
A. Architecture and Modeling of the 3D Chip

Our 3D chip has four active layers of Silicon, with four lay-
ers of thermal interface material (TIM) in between them. Each
layer of Silicon has the dimensions: 1em x 1em x0.015cm and
has 16¥16 = 256 grid points (deemed to be enough by [4]).
The top layer is attached to a heat spreader of dimensions
2cm X 2em X lem, which is attached to a heat sink. The
top layer of the spreader can be thought of as an isothermal
surface (since it is attached to the heat sink), while all other
external surfaces of the chip are adiabatic.

TABLE 11

PARAMETERS OF THE CHIP
Parameter Value
No. of layers, [ 4
No. of grid points ,n 16
I} 0.0044
Die size 100 mm?
Die thickness 0.15 mm
Silicon conductivity 100 W/m-K
TIM thickness 0.02 mm
TIM conductivity 4 W/m-K
Spreader thickness 10 mm
Spreader conductivity 400 W/m-K

We use the commercial CFD simulator, Ansys Icepak, for
thermal simulation. It is based on the Fluent CFD package.
Multilevel meshing has been used to separately mesh the chip
and the spreader.

Our routines are written in R and Matlab for computing
and manipulating Green’s functions. We begin by applying a
1 W point power source at the center of the chip at grid point
(9, 8) to obtain the Green’s function without leakage from
Ansys Icepak. We do this for each layer. Next we employ our
methodology to compute leakage aware Green’s functions. To
validate our results, we need to calculate Green’s functions
with leakage from Icepak. We iteratively calculate the leakage
of each core (using BSIM4 models), apply an equivalent
amount of additional power to emulate leakage, and re-run
the simulation. All our results have been obtained on an Intel
i7 (2.8 GHz) desktop PC running 64-bit Windows 8.

For the transient version, it is extremely difficult to calculate
the leakage aware Green’s functions using a thermal simulator
like Icepak. This is because in order to obtain the leakage con-
verged temperature profile, we need to calculate the additional
leakage power based on the temperature at a given time instant,

and re-iterate till the power-temperature values converge. In a
transient setting, where the temperature changes, we pretty
much need steady state (leakage-converged) solutions at each
point in time. This is prohibitively expensive. Hence, for
validating our results, we choose a point in time (say t;),
and run the complete transient simulation (till steady state
is achieved) multiple times with an additional leakage power
each time, corresponding to the temperature rise at this time
instant (7 (¢;)). We do this activity for a fixed number of
chosen points in time, and interpolate the results in between.

B. Steady State Results

1) Accuracy: We compared our results with those obtained
using Ansys Icepak. The method involves two stages: the pre-
compute stage which is off-line, in which we calculate the
leakage aware Green’s functions, and the compute stage, which
is online, in which we convolve the Green’s function with the
power profile.

Pre-compute stage: We found that the maximum error in
calculating the Green’s functions using the Fourier transform
(3DSimF) was 0.2 °C in all cases. In terms of percentage, the
maximum error was limited to 3%. Using Hankel transforms
(3DSim), the percentage errors were lower in some cases, and
higher in others. The average error was 5.5%. Although both
these methods should yield the same accuracy, (3DSim) has
a higher error since there are sophisticated packages available
for computing the Fourier transform, whereas the code for the
Hankel transform has been implemented by us and thus there
are more issues with precision. We found out that the process
of calculating the Hankel transform and the inverse Hankel
transform yields an error between 1-7%, with an average error
of 4%. To correct for these numerical errors, we added a
correction factor of 1.04. This reduced our average error to
less than 3.5%.

Compute stage: The error in the total temperature profile
for the power profile described in Table III was limited to
0.46 °C using Fourier transforms and 1.5 °C using Hankel
transforms.

TABLE III
LOCATION AND MAGNITUDE OF DYNAMIC POWER SOURCES ON THE CHIP
Grid point | Layer Power (W)
(12,5) Layer 1 | 1 W
6,5) Layer2 | 3 W
9,8) Layer2 | 1 W
9.,8) Layer 3 | 2 W
(12,13) Layer4 | 4 W

2) Speed: 3DSimF pre-compute stage: Computing the
Fourier transform of all the spreading functions requires 32
ms. Then it takes an additional 7 ms to calculate the leakage
aware functions in the transform domain. These functions are
then stored to be used later in the online stage.

3DSimF Compute stage: The runtime of the online com-
pute stage is 16 ms.

3DSim pre-compute stage: To compute the Hankel trans-
form of the Green’s functions we need 0.96 s. The higher



computation time needed to calculate the modified Green’s
functions using Hankel transforms is because we need to
compute the results of Bessel functions. However, since this
part is offline, and does not need to be computed again unless
the parameters change, the higher simulation time is not a
problem. Then, for the second sub-stage, it takes an additional
85 s to calculate the leakage aware functions in the domain
of Hankel transforms. Here, we have an 82X speedup as
compared to 3DSimF. This is due to the fact that the size of
the problem is reduced by an order of magnitude, and since
we calculate 16 Green’s functions, we have significant savings
in time.

3DSim Compute stage: The running time of the compute
stage is 16 ms for 3DSim (almost the same as 3DSimF). The
results are summarized in Table IV.

To compute the same functions using Ansys Icepak, we re-
quire 2-3 hours, depending on the number of iterations needed
for convergence. We also calculated the leakage converged
temperature values for a similar chip configuration using the
latest version of Hotspot (HS3D has now been completely
incorporated into Hotspot [15]), and found the execution time
to be 1.1 s (as compared to 16ms for 3DSim). The authors of
3D-ICE[2] report similar execution times without considering
leakage (using similar hardware). Therefore, our algorithm
provides ~ 68X speedup as compared to state of the art
thermal simulators for steady state analysis of 3-D chips, with
a similar, if not better, accuracy (see Table IV).

TABLE IV
SPEED AND ACCURACY OF POPULAR SIMULATORS (STEADY STATE)

I Simulator | Execution Time | Error (°C) ||
Ansys 2 — 4hours -
Hotspot (HS3D) 1.1s 1.4 [15]
3D-ICE T1s 2] 1.6
3DSim 0.016 s 1.5
3DSimF 0.016 s 0.46

C. Transient Results

For the transient temperature profile, the error obtained
using our algorithm was limited to 6%. The execution time
to obtain the leakage converged Green’s functions depends
on the number of time points chosen for simulation. For
100 points between 0 and 0.05 s, the CPU execution time
remains limited to 3.5 s. As discussed earlier, obtaining the
leakage converged Green’s functions using simulators such as
Hotspot and 3D-ICE is prohibitively expensive since multiple
iterations must be run for each point in time. If five iterations
are needed for convergence (as is the case in a majority of
our experiments), then over 100 points in time, the execution
time gets multiplied by 500. We simulated a model with
a complexity similar to ours on 3D-ICE, and obtained the
execution time for obtaining the transient profile to be 0.5 s.
Thus to obtain a leakage converged transient profile, we need
250 s. Hence, our algorithm provides a 71 times speed-up over
3D-ICE.

V. CONCLUSION

In this work, we propose a fast analytical method for quickly
modeling the temperature profile of a 3D chip, which includes
the effects of leakage. We provide a rigorous method and a
novel algebraic framework for modeling the cross layer heat
transfer effects. We have evaluated our model in terms of accu-
racy and simulation time. Our accuracy (as measured against
Ansys Icepak) is comparable and in some cases better than
competing simulators in this area. Moreover, our algorithm is
68 times faster than competing simulators. The reasons for
the speedup come from the fact that we develop a closed
form solution, which incorporates the effect of leakage, in
the transform domain. This eliminates the need to perform
multiple iterations for leakage-temperature convergence and
converts a 3-D problem to a primarily 1-D problem using the
3DSim technique.
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APPENDIX

When we apply a power source equal to Py, Watts,
the temperature rise 7 according to Equation 3 is given by
Equation 19:

T= fsp*(den+ABeak) (19)

Let Pyy, be a delta function applied in layer k. the heat
spreading function in layers 1 to [ would be denoted by fspix,
fspak, ... fspik. Thus, fsp;r denotes the effect in layer i,
when a point source is applied in layer k. Let the temperature
rise in layer ¢ , when a point source is applied in layer k be
denoted by 7. As discussed in the previous Section, Ty is
affected by the dynamic power dissipated by layer &, as well as
the leakage sources created in all the layers. From Equation 2,
APleak;;, = BTk, which denotes the new leakage sources
created in layer ¢, due to the source in layer k. Using these
terms in Equation 19, and the fact that convolution of any
function with a delta function is the function itself, we arrive
at the following Equations:

Tie =fspik + B(fspi1 *x Tie + fspiz * Tar + fspis * Tsu+
o fspux Tik)

Tir =fspik + B(fspar x Tik + fspaz x Tok + fspaz * Tox+
coo  fspar * Tixs)
(20)
To transform convolution to multiplication, we compute the
2-D Fourier Transform of the above Equations. This allows us
to solve for F(7;;), where F denotes the Fourier transform
operator:

F(fspik) + B(F(fsp12)F(T2x) + F(fsp13)F (Tsk)
+ o+ F(fsp1) F(Tir))

F(Tie) = 1— BF(fspi1)
1)
F(fspie) + B(F(fspir) F(Tik) + F(fspiz) F(T2k)
F(Tix) = +. + F(fspia—1) F(Ta-1yx))

1— BF(fspu)

This gives us a set of simultaneous linear equations in
F(Tik), F(T2k), ... F(Tix). To solve this system of equations,
we used Mathematica [7].

Now, [ is generally a very small number. For most modern
day chips, it is of the order of 1073. Hence we neglect all
terms containing powers of § greater than one. Assume we
have the source in layer 2. We then arrive at Equation 22.
F(fsp12) + B(F(fsp1s)F (fsps2) — F(fspss)F (fspi2)

+ .. + F(fsp1) F(fspiz) — F(fspu) F(fspi2))

F(Ti2) = 1— B(F(fsp11) + F(fsp2z2) + ... + F(fspu))

(22)
In Equation 22, the first term fspio denotes the temperature
rise in layer 1 due to the dynamic power present in layer 2. The
second term, BF(fsp13)F(fsps2), accounts for secondary
effects of the dynamic power source. The dynamic power
source creates leakage sources in the adjoining layer (layer
3), which in turn act as sources themselves and heat the other
layers. The effect of these sources in layer 1 is captured by
the second term.
Equation 22 can be used directly to obtain the final tem-
perature profile. We call this method 3DSimF. However, it

requires taking a 2-D transform, which is computationally
expensive (O(n?)). To further speed-up the computation, we
observe that for large die sizes, the temperature profile is
radially symmetric, and has information only in one direction.
Hence we can convert Cartesian co-ordinates to polar co-
ordinates and use the Hankel Transform. A 1-D zero order
Hankel transform is equivalent to a 2-D Fourier Transform for
a radially symmetric function. Thus the 2-D problem (O(n?))
is reduced to a single dimension (O(n)). Now, according to the
definition of the Hankel transform that we use (Equation 4),
we require an additional factor of 27 when calculating the
transform of a convolution of two functions.

H(fsp12) + 27B(H(fsp13)H(fsp32) — H(fsp3z)H(fsp12)

+ ..+ H(fspr)H(fspiz) — H(fspu)H(fspi2))

H(Ti2) = 1 — 278 (H(fspi1) + H(fspaz) + ... + H(Fspu))

(23)

After computing the inverse Hankel transform of Equa-
tion 23, we can obtain the leakage aware Green’s function.
However, to calculate the final temperature profile, we would
again need to take its transform. Hence we store it in the
transform domain itself after converting the radial function
to Cartesian coordinates. Let us refer to this avatar of the
simulator as 3DSim.

Thus we divide step 2 into two sub-stages. In the first
sub-stage, we compute the transform of the heat spreading
functions (Fourier transform in the case of 3DSimF, and
Hankel transform in the case of 3DSim). In the second sub-
stage, we use Equations 22 for 3DSimF and 23 for 3DSim, to
calculate the final Green’s functions in the transform domain.
The advantage of this approach is that whenever S changes
(as a result of varying supply voltage or the threshold voltage,
or voltage-frequency scaling), we will have to re-run only the
second sub-stage, that is, the calculation of the final Green’s
functions.

Figure 1 shows one of the calculated steady state Green’s
functions (for layer 2) along with the one obtained from
Icepak. The temperature profile rapidly decays down to less
than 0.1°C within four grid points (0.25 c¢m), thereby in-
dicating that the boundary effects should be minimal. Also
the temperature profile is radially symmetric, as shown by
the contour map of the Green’s function in Figure 3. The
temperature profile obtained when multiple power sources are
applied is shown in Figure 2.

The transient temperature profile obtained is shown in
Figure 4
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Fig. 1. Leakage Aware Green’s function for Layer 2 with Source in Layer 3  Fig. 2. Final temperature profile for Layer 2 for the power profile in Table IIT
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Fig. 3. Contour map for the Green’s function in Figure 1
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