Leakage Power Aware Task Assignment Algorithms for Multicore Platforms

Gayathri Ananthanarayanan
School of Information Technology
Indian Institute of Technology Delhi
New Delhi, India
gayathri@cse.iitd.ac.in

Abstract—Increased power density and high temperatures are loom-
ing issues in many-core processors. Technology scaling trends, cooling
limitations and stringent application requirements make these issues
rather difficult to handle. Consequently, it is imperative to design
solutions that are effective and also scale well with increasing core
counts. In this work, we present an application mapping framework
LeakOpt, which aims to minimize the total power consumption of
manycore processors. We first demonstrate the implications of lateral
heat conduction on leakage power consumption and show that heat-
spread aware task assignment can significantly impact the total power
consumption. We formulate the mapping problem as an optimization
problem and design a family of algorithms to solve it heuristically.
We present simulation results that shows reduction upto 27.12% in
leakage power consumption relative to worst case task mapping for
a variety of workloads. Heuristic based mapping schemes perform
2600x faster (for 225 cores) while still within 2.5% of best case
results. We further evaluate the same algorithms on a real hardware
(TILE-Gx36™) and show that these techniques can reduce leakage
by upto 18.22% on average. Results on hardware are consistent with
the simulation results as far as the relative effectiveness of various
heuristics is concerned.

Keywords-leakage power; lateral heat conduction; task mapping;
temperature; multicore
I. INTRODUCTION

With the end of Dennard scaling, supply voltage can no longer
be decreased with every new generation of technology scaling
leading to substantial increase in onchip power density. Increasing
power densities result in high on-die temperatures. High on-chip
temperature increases the chip power consumption due to positive
temperature leakage power feedback loop. This also has detrimental
effect on ageing and reliability of the processors [1]. Many-core
processors are becoming severely power constrained to the extent
that it is predicted that only a fraction of cores can be turned
on because of the capacity to remove heat. This is known as
DarkSilicon [2, 3] in literature. It is therefore imperative that we
design efficient solutions to control the chip power consumption.

In this work, we study the problem of lateral heat conduction
across cores in multicore processors and examine various task
assignment algorithms to mitigate its harmful effects such as
increased leakage power. Lateral heat conduction is defined as
the heat flow between different cores on a die. Traditionally,
the EDA research community has not considered this problem
to be very important because most of the heat is dissipated via
the integrated heat spreader and heat sink. The lateral thermal
resistance across silicon is roughly four times that of the vertical
thermal resistance [4]. However, the effect is not insignificant in
today’s processors considering the high on-chip power densities.
The work by Henkel et al. [3] shows the new trends in dark
silicon from a thermal perspective and also the need for spatio-
temporal mapping decisions. Therefore, for processors with large

Smruti R. Sarangi and M. Balakrishnan

Department of Computer Science and Engineering

Indian Institute of Technology Delhi
New Delhi, India
{srsarangi,mbala} @cse.iitd.ac.in

number of cores, spatial heat interference (lateral heat conduction)
is becoming more relevant.

To illustrate the implications of lateral heat conduction on the
leakage power consumption, we simulate a 64 core tile processor
in Ansys Icepak [5] and study the heat transfer across cores for
various task to core mappings. Figures [la, 1b and 1c] shows
the resultant chip temperature for various mappings. The linkage
between the lateral heat conduction and leakage power consump-
tion results in increasing core temperature. This gets amplified due
to the cyclic dependence between temperature and leakage power.
Thus, these simulations reveal the fact that the leakage power
sensitive task to core assignment can significantly alleviate hotspot
formation and also reduce the total power consumption. We observe
similar results on a real processor as well (refer figures 2a and 2b).

In summary, this paper is organized as follows. We first demon-
strate the implications of lateral heat conduction on chip power
consumption. We introduce the required background and related
preliminaries in Section II and then formulate power aware task
mapping problem as an optimization problem in Section III. We
observe that solutions based on integer programming, or based
on maximizing different forms of distance metrics have high
computational complexity (typically O(N?) for placing each task)
and thus cannot be used in an online setting. Subsequently, we
devise and examine a family of algorithms to solve the mapping
problem heuristically in Section IV. We propose approximately
O(log(N)) time algorithms that underperform QCQP by atmost
2.5%, and are orders of magnitude faster. In Section V, we describe
our simulation environment and evaluation setup. In Section VI,
we first show that our heuristics can significantly reduce power
consumption through simulations and validate the same on a 36-
core tile processor. Finally we conclude in Section VII.

II. BACKGROUND AND RELATED WORK

In this section, we briefly discuss the background information
on the underlying architecture and related power, performance and
thermal models.

1) Architecture Model: We consider a tiled processor architec-
ture consisting of N micro-architecturally homogeneous tiles. Each
tile comprises a processor core, L1/L2 cache subsystem together
with a memory management unit. The tiles in the processor
are connected to each other through 2D mesh topology and are
organized as a grid of X*Y where X *Y = .

2) Workload Model: We consider both synthetic and real work-
loads. During any decision epoch, we assume M (M < N)
independent tasks will be mapped and executed on the processor.
For evaluating on real workloads, we construct various multi-
program workload mixes by combining various benchmarks from

(a) Rim and Corners

Temperature [C]
56.6173

55.1651
53.7130
52.2608
50.8087

49.3565
47.9043
46.4522

45,0000

(b) Center

Temperature [C]
61.8581

59.7508
57.6436
55.5363
53.4290

51.3218
49.2145
47.1073

45.0000

Figure 1: ANSYS Simulation Thermal map for 16 tasks with different mappings

Temperature [C]

[|

59.3947
57.5954
55.7960
53.9967
52.1974
50.3980
48.5987
46.7993
45.0000

32
z
= 30
f=
2
o 28
€
2 26
c
o
Q24
%
2 22 .
a = Rim + Corners
E 20| Center
|9 ==+ Random
1 0 100 200 300 400 500 600
Time (s)

(a) Chip Power Consumption

(c) Random
80,
75
o
270
I
3
E 65
g
£ 60
ﬂ === Rim + Corners
55 v Center
==+ Random
500 100 200 300 400 500 600
Time (s)

(b) Chip Temperature

Figure 2: Nine instances of Hmmer workload executed with different mappings on TILE-Gx36™

SPEC 2006 benchmark suite.

3) Power Model: Each task has two sources of power consump-
tion. The dynamic power due to switching activity is given by
aCV?f and the leakage power is given by equation[1]. BSIM4
and more recently BSIM-CMG models the dependence of leakage
power on temperature and the same is given by the following
equation:

Vas—Vih—Voss
o

(l—e) ()

vr is the thermal voltage (kT'/q), Vi is the threshold voltage, V5 ¢
is the offset voltage in subthreshold region and 7 is a constant. The
threshold voltage V;;, decreases with increase in temperature and
v increases linearly with increase in temperature.

In this work, we consider that each task’s steady state average
dynamic power consumption profile is known apriori. The power
consumption of task; executing on core;j is given by

2
Pleakage X v ke

Ptotij - azCZVd2dFJ + -F)leakageJ' (2)

4) Thermal Model: 1.ightSim [6] uses Hankel transforms
to model the heat spread function of a point heat source. It
characterizes the lateral heat conduction as the sum of radially
symmetric rapidly decaying function and a constant . It captures
the effect that a primary power source (due to a task running
on a core) increases the temperature in the neighborhood, and
each point in the neighborhood (adjoining cores) starts acting as a
secondary power source dissipating leakage power. It then uses
green’s function approach to compute the resultant temperature
field while taking into account the leakage temperature feedback

loop. We use this temperature estimation framework in our work
to calcuate the resultant core temperature.

5) Performance: The core, L1 and L2 are tied together within
a tile in our architecture and runs at a single frequency. We do
not consider per-tile DVFS in this work and assume that all the
tiles operate at the same frequency. As the tiles are architecturally
homogeneous and run at the same frequency, we can say that, the
throughput of the task will be the same when executed on any tile.

A. Related work

Task mapping and scheduling is a well researched area and there
is a rich literature on task mapping and scheduling solutions [7]
targeting power and thermal management. Most of task mapping
schemes, suffer from poor scalability issues. Finding an optimal
task to core mapping is a NP-hard problem, and thus the associated
complexity and overhead grows considerably for large number of
cores.

Coskun et al. [8] solve the problem of task allocation in 8
core MPSOC:s for various objectives like minimizing and balanc-
ing energy, reducing thermal hotspots and temperature gradients
using ILP techniques. Pro-Temp by Murali et al. [9] uses convex
optimization to pro-actively control the temperature of the cores
and minimize the power consumption. The work by Ebi et al. [10]
presented a hierarchical agent based approach to map tasks to cores
with the aim of only minimizing the peak temperature. More recent
work of Hu et al. [11] introduced a framework that can efficiently
allocate power to each core while considering thermal constraints.

Most of these solutions do not take into account the spatial
heat conduction and positive temperature leakage power feedback
loop effects. We utilize the insights from the leakage converged

heat spread function characterization (refer Section II-4) to devise
heuristics for solving the power aware task mapping optimization
problem. We design three algorithms that try to match the optimal
solution in Section IV. They primarily use the concept of the region
of influence(ROI) of an active core to estimate the temperature
spread. We also compare our algorithms to a greedy solution that
tries to maximize the distance to all other active cores.

ITII. PROBLEM FORMULATION
A. Optimal Mapping
Let the M tasks be 71...7a and their dynamic power
consumption be Pﬁll e me. For each of the N cores indexed by
i, let P2, P#, P! and T; be the dynamic, leakage, total power
and temperature respectively.

Let X;; denote the mapping between core ¢ and task j.

If task 7 is mapped to core ¢

otherwise

1) Objective Function: We aim to minimize the total chip
power consumption:
N
Minimize > P (3)
i=1
We also obtain the maximum chip power consumption for a
given set of tasks by negating the objective in our optimization
formulation. This is done primarily to quantify the maximum
impact of task assignment.

2) Constraints: We have the following constraints on Xj;.

« Each task j has to be mapped to a core ¢ and at most one
task j can be mapped to a core.

N
Vi, > X =1,
=1

o The dynamic power for core ¢ is given by:

M
Vi, Y Xi; <1, Xy €{0,1} (4

j=1

M
P’Ld :ZXZJPT] (5)
j=1

Leakage power’s exponential dependence on temperature can
be approximated with piecewise linear models [12]. For the
chip operating temperature range of 40°C to 90°C , we assume
a linear model of leakage power. The leakage power and total
power for core ¢ is given by

P =a+ BT, P =P+ P (6)

where, o and [values depend on the operating temperature
range.

Power Gating: We consider power gating in our model. Any
core that is not dissipating any dynamic power is turned off
such that the leakage power dissipation is zero. As we have
assumed M tasks where M < N, it is assumed that the rest
of the N — M cores have zero dynamic power dissipation. In
this case, the modified equation for leakage power is:

P’ =a+ BT x <Z Xij) (7
J

o The steady state temperature is related to total power con-
sumption through a linear relationship as given by

T=AP ®)

A;r is the thermal resistance co-efficient between core ¢ and
k. Here, A is a symmetric n X n matrix, T'(temperature) and
P(power) are n x 1 vectors.

e We set the chip thermal limit as Tmae and this is
the maximum allowable temperature that can guarantee safe
operation of the chip.

IV. HEURISTICS
A. Generic Structure
Table I: Glossary of terms

Symbol Definition

T task 1

Pr, dynamic power of 7;

pointQueue | Contains all the cores that are unmapped

flp flpli] gives the x-y co-ordinates of the i*?
core on the die

algoType Type of algorithm: {coolMap,
spreadMap, hybrid, greedy }

selCore Assigned core for task i

We define four algorithms in this section. All of them have a
common structure as shown by Algorithm 1. We show a glossary
of terms in Table I. The procedure computeMap takes as input
the type of the algorithm, the dynamic power of the task, a
priority queue of cores (pointQueue) that are unmapped and a
floorplan(fip). For every chip, we pre-characterize the heat spread
function (fsp) and store the heat influence matrix faMat as
proposed in [6].

ALGORITHM 1: scheduleTasks ()

Input: algoType, i, Pr,, pointQueue, flp
Output: selCore
1 taskQueue < all tasks to be scheduled ;
2 taskQueue <— sort taskQueue in decreasing order
of dynamic power;
3 while raskQueue not empty do
4 curTask < poll head of taskQueue ;
5 Pr, < Dynamic Power of curTask ;
6 selCore <— computeMap(algoType, i, Pr,, pointQueue, flp);
7 end

Procedure computeMap(algoType, i, Pr,, pointQueue, flp)

1 minDist < oo ; minPoint + —1 ;

return A corner core if size(pointQueue) = n;

forall the p € pointQueue (in order of descending
priority) do

w o

4 dist < calculateCost(p, pointQueue, flp, algoType) ;
5 if dist < minDist then

6 minDist < dist ;

7 minPoint < p ;

s end

9 if algoType € {CoolMap, SpreadMap} then

10 | break ;

11 end

12 end

13 deque p from pointQueue ;
14 updateState(algoType) ;
15 return p

In Line 3, the procedure computeMap loops through all the
cores in the pointQueue in descending order of priority. For each
core, it computes an algorithm specific cost function. The aim is

to minimize the cost (Lines 5 to 8). For two of our algorithms,
coolMap and spreadMap, the top of the queue is optimal.
Hence, there is no need to iterate further and we can break.
Lastly, we dequeue the core p, and update the state in Line 14.
computeMap returns the mapped core, p.

1) spreadMap Algorithm: We observe that not all the cores
spread heat equally to neighboring cores (refer Figures 1la, 1b).
Especially, cores at the corners and the sides dissipate a lot of
heat to the surroundings. Consequently, from the point of view of
total power, we should prefer cores at the corners and sides before
placing tasks at the center. For each core, we consider the integral
of fa, multiplied by -1 as its priority. The integral of fa represents
the total increase in chip leakage power if the core is supplied with
1 Watt of dynamic power. We use the framework in [6] to obtain
the matrix fa Mat. Each row in fa Mat specifies the increase in
the temperature field, if the i core is heated by 1 watt. Cores at
the corner will have a higher priority and cores at the center will
have a lower priority. In this case, pointQueue can be a priority
queue implemented as a heap.

2) hybrid Algorithm: There is a shortcoming with the
spreadMap algorithm. It places too many tasks side by side. It
might be preferable to move some tasks towards the center if there
are already a lot of tasks at the rims of the die. Hence, we modified
the spreadMap algorithm as follows. Let us consider a threshold
v for the integral of the spread function. If the integral is less than
the threshold, then its priority is the same as that computed by the
spreadMap algorithm. However, if it is more than v, then we
fall back to the greedy scheme. The priority is equal to the mean
square distance to all the mapped cores plus a large constant, .
We use V¥ to ensure that the algorithm will fall back to the greedy
mode of operation only when it has exhausted all the cores that
have an integral less than v. Here, again the pointQueue can also
be an array based heap. It is possible to traverse it in linear time
and also extract the minimum in O(log(n)) time.

3) coolMap Algorithm: In this approach, we maintain a
dynamic estimate of the current temperature of each core. We
map each task to the coldest available core. In this case, the
updateState function is more elaborate. Now, we make the
assumption that leakage power is more or less linearly dependent
with temperature; hence, the principle of superposition applies.
Therefore, as we map or unmap a core, we can add or subtract
its temperature field from the temperature map for all the cores in
the die. The temperature field is captured by fa and we ignore
K because it is the same for all cores. If we heat a core by 1
Watt, then the augmented temperature field is obtained by scaling
fa with the applied dynamic power, and then adding the resultant
field to the existing temperature map. An efficient data structure
for saving this function is a matrix. We need not update all the
cores in the matrix since fa is a rapidly decaying function. We
need to update all the cores in the region of influence of fa, which
is small.

4) greedy Algorithm: Each task is mapped to an idle core
which maximizes the mean square distance to all the mapped
cores on the die. The aim here is to minimize the effect of lateral
heat conduction. The updateState function will be empty. The
calculateCost function will simply calculate the mean square
distance between the core p and all the cores that have already

been mapped to tasks. In this case pointQueue can be a simple

linked list.

We summarize all the algorithms in Table II.

Table II: Summary of the algorithms

Algorithm Cost Time Complexity

greedy mean square distance to | O(N?)
all the mapped cores

spreadMap | -1 * (integral of fa) O(log(N))

hybrid spreadMap + O(N?) (for a fraction of
greedy the cores)

coolMap -1 * (estimated tempera- | O(log(N) + k) (k is the
ture) number of elements in

fa)

V. EVALUATION

In this section, we first describe our experimental setup, simu-
lation environment and validation hardware. We then evaluate the
efficiency of our algorithms in comparison.

A. Experimental Setup

To evaluate the efficiency of our algorithms, we performed
experiments over a wide range of floorplans from 20 tiles (5x4)
to 225 tiles (15x15). We assume the die area to be constant (400
mmz) as per the 2011 ITRS report [13]. Furthermore, we consider
20 core processor at 32nm to be the baseline. Table III summarizes
configuration of the baseline processor.

For SPEC2006 workloads, we obtain the power traces and CPI
stacks of the benchmarks for the baseline chip configuration (refer
Table III) using Sniper 6.0 architectural simulator integrated with
MCcPAT [14]. We use the scaling methodologies described in [2,
3, 13] to quantify the technology scaling effects and obtain the
dynamic, leakage power, frequency and threshold values for other
technology nodes accordingly. We compute the leakage temperature
trends for various technology nodes using MASTAR 5.0.51 [13].

Table III: Baseline Processor Configuration

Parameter Value Parameter | Value
Cores 20 Technology | 32 nm
Frequency | 2.33 GHz Vid 1.0V

Table IV gives the scaling projections for various technolgy
nodes. The values in the columns of Frequency, V44 and Power
in Table IV are normalized values (normalized with 32nm as the

base) while the other columns represent absolute values.

Table IV: Scaling Projections

Tech No.of Frequency Via | Power Vin

(nm) cores V)
32 20 1.00 1.00 1.00 0.285
22 32 1.31 0.95 0.73 0.220
16 64 1.69 0.93 0.55 0.175
11 121 2.16 0.90 0.41 0.179
8 225 2.72 0.90 0.31 0.186

We use the thermal estimation framework of [6] and compute
the leakage converged Green’s functions (center, edge, corner) for

a chip with the parameters shown in Table V.

Table V: Thermal estimation framework configuration

Parameter Value Conductivity Value
Die size 400 mm? Silicon 130 W/m-K
Spreader thickness 3.5 mm Spreader 370 W/m-K
Heatsink thickness | 24.9 mm Heatsink 237 W/m-K

B. Simulation Methodology

We have carried out a set of simulation experiments in which we
consider a bag-of-tasks workload model. We assume that different
cores in the processor run independent tasks. We evalaute our
algorithms over a wide range of floorplans from 20 cores to 225
cores and with a set of multi-program workloads constructed from
combining benchmarks from the SPEC 2006 benchmark suite.
We also consider 3 utilization scenarios for evaluation, with 25%,
50% and 75% of the cores active and running tasks. We replicate
each workload by 2x and 3x for the 50% and 75% active core
scenarios, respectively. We compare the four algorithms — greedy,
spreadMap, coolMap, hybrid — to the optimal solutions
computed by Quadratic Constrained Quadratic Program (QCQP)
and two other schemes namely checkered and pinned. For
computing the results of QCQP, we use the R interface of Gurobi
Mixed Integer Programming solver [15]. The simulations were
performed on an Intel Xeon CPU E5-2640 v3 server operating
at 2.60 GHz, and having 20MB of L3 cache.

C. Hardware Validation Methodology

We evaluate the proposed heuristics and quantify their benefits
on a real hardware platform. We use 36-core TILE-Gx36™
processor as our hardware in this work. Each of the 36 processor
cores is a complete 64-bit processor with 32KB L1 and 256KB L2
caches and running at a clock frequency of 1.2GHz. The power
consumption of the core is measured using the INA219_0-VRM
power monitor. The power monitor measures the power by sensing
the voltage and current by voltage drop over a shunt resistance.

We query the power monitors using the tile board test
kit (BTK) interface. We sample the core power every 500ms
and record the power and timestamps. For each workload run,
we record start and end timestamps and average all the power
samples collected during this interval. We validate the proposed
heuristics on 20 different workload combinations for 3 different
utilization scenarios as mentioned in Section V-B. TILE-Gx36™
processor architecture does not have a hardware floating point
unit. We therefore use only SPEC 2006 Integer workloads for
validation. We first compute the task to tile mapping for each of
the proposed heuristics. We then use sched_setaffinity ()
to set the affinity of the task to the desired tile.

VI. RESULTS

To understand the potential impact of minimal assignment, we
first perform a limit study to find the difference between the best
and worst solutions for leakage power. We then compare our heuris-
tics with the best solution to estimate the efficiency of the proposed
heuristics. The maximum leakage power is obtained with the worst
mapping. The % reduction in leakage power consumption(LPC)
achieved using the proposed heuristics is obtained in comparison
with this maximum by computing ((1 — %‘"is:ic) * 100).

We also include two other schemes namely the checkered [16]
and pinned in our comparison. In the checkered algorithm,
each task is mapped to an idle core such that active cores and
inactive cores are interleaved in a checkerboard pattern. The pinned
algorithm maps the task to the first available idle core in an indexed
linear circular list.

A. Simulation Results

Figures [3a, 3b and 3c] shows the % reduction obtained while
running workload mix consisting of 1bm, gobmk, sphinx3,

omnetpp and mcf benchmarks for 25%, 50% and 75% uti-
lization scenarios respectively. For 20 different multi-programmed
workload combinations, we present the average % savings obtained
in figures[4a, 4b and 4c].

We observe that for both 25% and 50% activity, upto 36 cores
the gains are limited (<= 7%). But for larger number of cores,
there is approximately a 20% difference (24.7% and 21.6% for
225 cores). The difference mainly arises by assigning tasks in a
way such that there are many cores out of the range of influence
of active cores. However, when we increase the percentage of
utilization, it becomes hard to find many such cores, and thus
optimal assigment does not result in sizeable benefits. For 75%
utilization, the difference drops to 13.8%.

We also observe that all the heat spread based algorithms (except
for greedy algorithm) are within 2% of the optimal solution. For
225 cores, coolMap takes only 0.146 seconds whereas QCQP
solution takes around 6.5 minutes for computing the complete
assignment(refer Table VI).

Table VI: Time taken for mapping computation in (ms)

Algorithm 20 36 64 121 225
coolMap 6.8 7.8 14.8 54.6 146
spreadMap 6.6 7 16.2 49.8 126
hybrid 7.2 10 16.4 67.6 178
greedy 8.2 12.8 26.8 101.4 3374
checkered 5.8 7.8 17.4 35.8 96
pinned 6.2 7.1 11.4 29.4 92
QP-Best 78.8 | 347.2 | 1796.2 | 19328.8 | 381342.6

B. Hardware Validation Results

The simulation results for 36 cores showed a maximum savings
of 7.11% . But we observe that all our heuristics perform more
effectively on a real hardware. The best heuristic (coolMap)
roughly saves upto 18%(for 25% activity) and 11.5%(for 50%
activity) of leakage power consumption. Figures[5a and 5b] show
the average % savings in leakage power obtained on TILE-Gx36™
processor across 20 different multiprogrammed workload combina-
tions that include both heterogenous and homogenous workloads.
These results clearly validate the effectiveness and fidelity of the
proposed heuristics. Relative performance of various algorithms
show an excellent consistency in simulation and hardware.

VII. CONCLUSION

This paper addresses the problem of minimizing leakage power
consumption in large multicore platforms. This work proposes a
family of heat spread aware mapping algorithms that compute near-
optimal task to core mappings and achieves substantial leakage
power savings of 24.67%(average) and 27.12%(maximum) for a
variety of workloads. The heuristics are able to closely match the
results from QCQP based optimal solution. Further, leakage power
consumption directly depends on temperature and heat spread due
to other tasks running on neighbouring cores impacts the same.
This work then presents an experimental evaluation of the proposed
algorithms on a real multicore platform. The results clearly show
consistent trends between simulation and hardware in terms of
relative effectiveness of algorithms on leakage optimization.

REFERENCES

[1] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The
impact of technology scaling on lifetime reliability,” in DSN,
2004, p. 177.

[] QP-Best [eee]| coolMap |77 spreadMap /== hybrid XY greedy [[88lo) checkered [JJjJiilj pinned

(2]

(3]
(4]

(3]
(6]

(7]

(8]

(9]

w
o
N

N

N
3]

N

o

N

o
-
0]

=
o

% Reduction in Leakage Power

No. of Cores
(a) 25% Utilization

% Reduction in Leakage Power

3]
=]
NI
[1T]

z A
—
|
-~
[T
Z_z4

No. of Cores
(b) 50% Utilization

_ 3 20 —
PR 2 M
A 8 7
H & 15
(] ©
i 3
‘! oY - 10
H ([F
7| | g s
y ey 5
H e | TH ___El < H N :
36 64 121 225 3 20 36 64 121

No. of Cores
(c) 75% Utilization

Figure 3: Workload mix consisting of lbm, gobmk, sphinx3, omnetpp and mcf

30

N
Sl

-
N
]

25 T

N
o

20

= =
=) (]

% Reduction in Leakage Power
1%]

% Reduction in Leakage Power

=]

No. of Cores
(a) 25% Utilization

=
N]

-
o

(o]

ﬁi
ﬁ

% Reduction in Leakage Power

L1

225

225

121
No. of Cores

(b) 50% Utilization

No. of Cores
(¢) 75% Utilization

Figure 4: Average savings across all simulation workloads (25 benchmarks from SPEC 2006)

N
n

N
o

-
n

=
o

v

% Reduction in Leakage Power

Hardware

Simulation

(a) 25% Utilization

'S

T~
N

o

% Reduction in Leakage Power

o N B o

Hardware

Simulation

(b) 50% Utilization

Figure 5: Average leakage power reduction across all workloads for 36 cores

H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam,
and D. Burger, “Dark silicon and the end of Multicore

Scaling,” in ISCA, 2011, pp. 365-376.
J. Henkel, H. Khdr, S. Pagani, and M. Shafique, “New trends

in dark silicon,” in DAC, 2015, pp. 119:1-119:6.

V. Hanumaiah, R. Rao, S. B. K. Vrudhula, and K. S. Chatha,
“Throughput Optimal Task Allocation under Thermal Con-
straints for Multi-core Processors,” in DAC, 2009.

“Ansys Icepak, ”14.0 documentation,” ANSYS Inc, 2012.”
S. Sarangi, G. Ananthanarayanan, and M. Balakrishnan,
“Lightsim: A leakage aware ultrafast temperature simulator,”
in ASP-DAC, 2014, pp. 855-860.

A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping
on multi/many-core systems: Survey of current and emerging
trends,” in DAC, 2013, pp. 1:1-1:10.

A. K. Coskun, T. T. Rosing, K. Whisnant, and K. C. Gross,
“Static and Dynamic Temperature-Aware Scheduling for Mul-

tiprocessor SoCs,” IEEE Trans. VLSI Syst., vol. 16, 2008.
S. Murali et al., “Temperature Control of High-performance

Multi-core Platforms using Convex Optimization,” in DATE,

2008, pp. 110-115.

[10] T. Ebi, D. Kramer, W. Karl, and J. Henkel, “Economic
learning for thermal-aware power budgeting in many-core
architectures,” in CODES+ISSS, 2011, pp. 189-196.

[11] X. Hu et al., “Thermal-sustainable power budgeting for dy-
namic threading,” in DAC, 2014, pp. 187:1-187:6.

[12] H. Huang, G. Quan, and J. Fan, “Leakage temperature depen-
dency modeling in system level analysis,” in ISQED, 2010,

pp. 447-452.
[13] “The International Technology Roadmap for Semiconductors

(ITRS), 2011.”
[14] T. E. Carlson, W. Heirman, S. Eyerman, 1. Hur, and L. Eeck-

hout, “An evaluation of high-level mechanistic core models,”

ACM Trans. on Arch. and Code Optimization (TACO), 2014.
[15] I. Gurobi Optimization, “Gurobi optimizer ref. manual,” 2015.
[16] W. Huang, M. R. Stan, K. Sankaranarayanan, R. J. Ribando,

and K. Skadron, “Many-core Design from a Thermal Perspec-
tive,” in DAC, 2008, pp. 746-749.

