
A Fast Compact Thermal Model For Smart Phones
Anjali Agrawal

Dept. of Electrical Engineering
IIT Delhi, India

Email: anjaliagrawal3298@gmail.com

Anand Singh
Dept. of Electrical Engineering

IIT Delhi, India
Email: anandsinghmahich@gmail.com

Ankit Gola
Dept. of Electrical Engineering

IIT Delhi, India
Email: ankitgola005@gmail.com

Hameedah Sultan
School of Information Technology

IIT Delhi, India
Email: hameedah@cse.iitd.ac.in

Smruti R. Sarangi
Computer Science and Engineering

IIT Delhi, India
Email: srsarangi@cse.iitd.ac.in

Abstract—In this paper, we present a fast, compact thermal model for
modeling the temperature of smartphones. Existing approaches use the
finite element (FEM) or finite difference (FDM) based methods that are
very slow. Even fast Green’s function-based approaches always use such
FEM/FDM based approaches to compute the Green’s function (impulse
response of a power source) in the first place. This significantly slows
down the process of design space exploration. To ameliorate this, we
propose an ultra-fast model that can be used to model the temperature
of mobile phones: we use simple polynomial or exponential expressions
to compute the Green’s functions. These expressions can be evaluated
very quickly and can be generalized for a wide variety of electronic
components. In a smartphone, analysis of the temperature hotspots is very
crucial in the design process. We can estimate the location of hotspots
and the temperature rise at those hotspots with very high accuracy. Our
error is limited to 2.56% and our tool is 1300 times faster than the
nearest competing, state-of-the-art tool.

I. INTRODUCTION

Significant improvements in device performance and functionality
combined with affordable costs have resulted in a huge demand
for smartphones and tablets in recent years. The processor speed
has increased manifold, but the voltage requirements of the device
haven’t scaled down accordingly. This has resulted in increased power
dissipation in the device [1]. Higher power dissipation causes many
adverse effects such as higher temperatures in the die, which degrades
performance and reliability [2]. Furthermore, as the PCB temperature
increases, so does the temperature on the screen of the device (also
called the skin temperature). This is a serious problem since users of
hand-held mobile devices can tolerate heat only up to a certain limit,
beyond which it can degrade the user experience [3] and can even
prove to be dangerous in terms of battery explosions.

High skin temperatures beyond 45◦C can result in a severely
degraded user experience [4]: it is a limit that is easily reached
in small form-factor mobile devices. Consequently, it is important
to keep the skin temperature under limits (about 41◦C for an
aluminum casing and 45◦C for a plastic casing [5]). At present,
this is achieved by throttling the processors: reducing performance
to keep the temperature under limits. However, this results in a sub-
optimal design. The optimal approach requires a coordinated system-
level thermal design and management solution that encompasses the
hardware as well as the software [6]. The structure of the system, its
physical layout, material properties, and power dissipation all affect
the thermal profile. However, to assess the impact of these design
decisions and find an optimal solution, an ultra-fast system-level
thermal simulation method is needed. Unfortunately, the research in
this area is very sparse and inadequate. The ability to devise an
optimal thermal design that maximizes performance is contingent
on fast and accurate thermal simulations, and throughout the design

cycle, a very large number of such simulations need to be done.
Hence, the speed of a thermal simulator is extremely important and
even a small speed-up results in huge savings in time and effort.

While there is a large body of work focused on thermal simu-
lation at the level of processors, memories, and MPSoCs, a very
limited number of techniques exist at the system-level1. Moreover,
these techniques use the traditional finite element (FEM) or finite
difference (FDM) methods to solve the classical Fourier heat equation
and compute the temperature profile. However, these methods are
quite slow, especially for complete system-level thermal analysis.
Moreover, they do not capture the complex relations between various
system components accurately [7]. A much faster category of thermal
simulators is based on Green’s functions [8]–[10]. Here, the impulse
response (Green’s function) is first obtained, and then at the runtime,
this impulse response is convolved with the power map to compute
the complete temperature map. However, such an approach cannot
be trivially extended to the system-level, because of the complex
relationship between the various system components [7].

The main issue with Green’s functions is that we need to compute
them using a slow method: physical measurements or FEM/FDM
simulations. It is often the case that we need to simulate the thermal
profile for many different physical layouts and material properties.
In such cases, we need to recompute the Green’s functions for
every single configuration using rather slow methods. This nullifies
the performance gains of using Green’s functions. Consequently, in
this work, we develop a very fast method to estimate the Green’s
functions themselves. This is a novel approach and to the best of our
knowledge, it has not been tried before. We propose a model based
on small and simple functions – ultra-compact thermal models in our
parlance – to help us calculate the Green’s function for a given layout
and configuration. These Green’s functions can subsequently be used
to simulate the thermal profile: this part is very fast.

1) The first step was to create a simulation setup that is calibrated
with real-world data. We performed three-way cross-validation of
infra-red (IR) images of devices, thermocouple based measurements,
and CFD models (using Ansys Icepak).

2) We then developed a system-level Green’s function-based ther-
mal modeling approach by superposing the component level temper-
ature maps obtained using classical Green’s function approaches.

3) To reduce the time needed to obtain the Green’s function, we
developed an ultra-compact thermal model that relies on simple

1By system, we mean complete electronic systems with a small form factor,
such as tablets and smartphones.



polynomial expressions to very quickly compute the Green’s function
for a wide range of design choices.
We demonstrate that the error using our algorithm is limited to
2.56% while simultaneously being 1300 times faster than the state of
the art approaches. Moreover, our ultra-fast thermal modeling method
makes it possible to sift through a very large number of configurations
to obtain the optimal configuration quickly – something which would
be prohibitively expensive with the traditional approaches used by the
state of the art tools.

To the best of our knowledge, we are the first to develop a three-
way calibrated CFD model. We are also the first to develop a Green’s
function-based system-level thermal modeling method, as well as
an ultra-compact thermal model that doesn’t need to compute these
Green’s functions are runtime.

In section II, we introduce a relevant background. We describe our
IR imaging framework and the creation of CFD models calibrated
with IR images in Section III. Next, we describe our Green’s function-
based modeling methodology in Section IV. We have evaluated our
algorithm and presented the results in Section V. Section VI concludes
this paper.

II. BACKGROUND

A. Heat Transfer

Heat transfer in solids is mainly governed by the Fourier’s heat
equation given by

∇. [κ∇T ] + q̇ = ρCv
∂T

∂t
, (1)

where T is the temperature, Cv is the volumetric specific heat, t
is the time, q is the heat flux, and κ is the thermal conductivity of
the material. Most thermal simulation methods either use the finite
element method (FEM) or the finite difference method (FDM) to
solve this differential equation.

B. Green’s Functions

An alternative and faster approach for computing the thermal
profile is based on Green’s functions [8]–[10]. A Green’s function
is the impulse response of a unit power source (Dirac delta function)
applied to the center of the chip. The temperature distribution for
any power distribution can be quickly found using a convolution of
the Green’s function with the input power map of the system. This
stems from the principles of linearity and shift-invariance (the Green’s
function is the same across a neighborhood).

T = P ? G, (2)

where T is the temperature profile, P is the power map of the system,
and ? is the 2D convolution operator.

C. Related work and Ultra-Compact Thermal Models

Several researchers have attempted to analyze the effects of major
device components on skin temperature. Xie et al. [11] show that
a significant thermal coupling effect exists between major heat-
generating components, such as battery and application processor
(AP) and they propose a dynamic thermal management (DTM)
method considering this effect. Therminator is the most related
work [12], [13]; it uses the finite difference method to calculate the
thermal profile of the device. We shall show that it is 1300 times
slower than our approach. Sadiqbatcha et al. [14] propose a method to
identify the major heat sources in IR images of a multicore processor
and propose a learning-based dynamic thermal model to predict the
temperature of identified heat-generating sources at runtime. Park et.

Create a detailed CFD
model for a device. 
Perform 3-fold validation

Obtain component-level
Green's functions for

nominal block area and
conductivity

Compute component 
level Green's functions
from the classical 
Green's function.

Convolve the modified
Green's functions with the
respective power map

Verified CFD model

Classical Green's
function

Modified Green's
function

Component level
temperature maps 

Superpose all the
component level

temperature maps 

Full system thermal
profile

Offline

Online

Fig. 1: Overview of our approach

al [7] propose a method for skin temperature estimation by using
different models for different types of components and considering
the interaction between components such as the LCD screen and the
battery. The temperature models are simply based on the cubic power-
frequency relations. The authors in [15] have created detailed FEM
models in Ansys for mobile devices and studied the thermal effects of
different material combinations with different conductivities. Satomi
et. al [16] propose a genetic algorithm for thermal-aware placement
of components on the PCB. However, their method for temperature
estimation is very simplistic and has only one 3D thermal resistance
for an entire component. Egilmez et. al [3] collect 13 features such
as CPU utilization and temperature from thermistors and then apply
machine learning algorithms to predict the temperature. They then
use this prediction model to keep the skin temperature under check
using DVFS. However, learning-based algorithms are very sensitive
to the nature of the data, and often don’t generalize well.

The main drawback of all of these methods is that they make very
coarse approximations and are additionally much slower than our
solution. Our tool can rapidly explore thousands of configurations
(layout+material properties) in less than 10 seconds.

III. IR IMAGING FRAMEWORK

A. Overview of our Approach

We employ a novel two-step abstraction process to develop an
ultra-fast compact thermal model of a complete electronic system.
We describe an overview of our method first:

1) a) In the first step, we create a novel non-intrusive IR imaging
framework.

b) Next, we create an accurate CFD model for the device by
calibrating it against the real IR images and thermocouple
readings. This three-way cross-validation enables accurate
parametric modeling for a wide range of properties.

2) a) Subsequently, we create a Green’s function-based thermal
model for the complete system.



b) We then create an ultra-compact thermal model based on sim-
ple polynomial expressions to compute the Green’s function
for different components very quickly.

A flowchart describing an overview of our method is shown in
Figure 1. We describe the IR imaging framework and the equivalent
CFD models in this section. We describe the Green’s function-based
ultra-compact thermal modeling method in Section IV.

B. CFD Models and Overview of the IR Imaging Framework

CFD models are necessary for two reasons:

1) The device specifications such as component dimensions, place-
ment, and material properties are varied at design time to obtain
an optimal configuration. It would not be practically possible
to vary such properties in real devices and hence an equivalent
CFD model is necessary.

2) To empirically obtain the Green’s function, a unit impulse source
has to be applied to the center of the chip. However, a unit
power source in an individual component cannot be practically
applied in a running system. The best bet in such a case is a
CFD model verified against real IR images, which offers a lot
of design flexibility.

We use the industry-standard tool Ansys Icepak for CFD modeling.
It uses the Fluent solver for thermal and fluid flow analyses and
applies the finite element method to solve the heat flow equations. We
create three separate CFD models for a smartphone, tablet, and laptop,
which have been validated against the IR images of the respective
devices. To do so, we capture IR images of the target device under
different stress conditions (resulting in different power dissipation
profiles). We extract the per-component power values corresponding
to these stress conditions using a novel non-intrusive approach. These
IR images need to be pre-processed to extract the thermal maps.
Finally, we validate the CFD models against these known power and
thermal maps. A schematic diagram of the Icepak model for one of
the devices is shown in Figure 3.

1) Workloads: There are multiple power dissipating components
in any electronic system, such as the processor, RAM, flash memory,
hard disk drive (HDD). However, most of these components can
be classified into two categories: compute-intensive, and memory-
intensive. To generate the thermal maps corresponding to different
workloads applied to these components, we have designed some
workloads in Python, which we call stress scripts, that exercise the
individual components. The power consumption corresponding to that
element is then calculated.

Stress Test of Processing Components: This stress test is designed
to stress the computing element by maximizing its power consump-
tion. The user is required to enter the average number of threads
it wishes to spawn per core – the thread multiplier. Then it starts
a process that spawns as many threads as the number of cores
multiplied by the thread multiplier entered by the user. Each thread
then starts counting from three and tests whether the current number
is prime or not. We do not implement any optimization in this process
as we aim to stress the cores maximally.

Stress Test of Memory Components: To stress the memory, the
script asks the user to supply the maximum amount of disk space
it wants the test to take and the number of iterations. The test then
starts a process that copies data from the special file uzero to the flash
memory. After one iteration of writing, the script runs a cleanup job
where it wipes the caches and deletes the file it just wrote before
starting the next iteration. Once all the iterations are over, it returns
the time taken for running the test in microseconds. To address the

issue of the lack of direct access to the RAM in Android, we map a
disk folder directly over the RAM using the tool RAMdisk. We limit
the maximum write size to 1 GB.

The total power consumption for running the tests is found either
through a power meter for laptops or using the power profiling tool
TREPN [17] from Qualcomm for Android devices. When we execute
the stress tests for memory elements, the processor too consumes
some power. To determine the power consumed solely by the memory
component, we first accurately measure the power consumed by the
processor by running a program that does not have the memory
instructions added to stress the system, and then we subtract this
power from the results of the memory stress test.

2) Pre-processing of the IR Images: We use image processing to
extract the region of interest (ROI) in the image corresponding to the
device in an automated manner. For this, we have used the ROI as a
mask. This masking technique sets all other pixel values except the
ones inside the ROI to zero. To find the ROI, we used the Canny edge
detector. First, we applied a Gaussian blur to smoothen the image.
To detect the edge intensity, we calculated the gradient of the image
by filtering using a Sobel kernel. To thin out the edges, we used
non-maximum suppression.

Next, we needed to calibrate the IR camera itself. This is because
IR cameras detect radiations emitted from the target body. This
detected radiation depends on several factors such as the emissivity
of the target object and lens configurations of the camera. For cali-
bration, we used a pre-calibrated thermocouple to accurately measure
the ambient temperature and obtain IR images at multiple ambient
temperatures. We then used the following equation to calibrate our
IR camera:

TTherm = CaTIR + Cb (3)

where, TTherm is a known temperature reading obtained using the
thermocouple, TIR is the IR camera reading, and Ca and Cb are
constants. We obtained measurements for multiple ambient temper-
atures, and then fit a curve to obtain the values of the constants Ca
and Cb. Figure 2 shows our infrared imaging setup.

IV. GREEN’S FUNCTION-BASED ULTRA-COMPACT THERMAL

MODELING

A. System-Level Thermal Modeling using Green’s Functions

At the system-level, multiple components are present on a PCB and
they have different Green’s functions. Hence, for each power dissi-
pating component, we obtain the Green’s function for that component
using Ansys Icepak by applying a unit power source to the center
of the individual component. Since the complete system is linear,
the principle of superposition holds. So we convolve the component-
level Green’s function with the component-level power profile and

Fig. 2: Devices used and the setup for calibration (a) Digital Tem-
perature Sensor (b) Thermal Imaging Camera (c) Experimental setup



Battery

Fig. 3: Layout of one of the test devices

TABLE I: Glossary

Symbol Meaning

A Area
κ Conductivity

a, b, c, d, e Coefficients of the fitted model
Gbase Baseline Green’s function, obtained at nominal area and

conductivity
Ccomp Multiplier to Baseline Green’s function

Gmod(A, κ) Modified Green’s function
P Power map of individual component

Tfinal Complete system’s temperature profile

superimpose the resultant temperature profiles for all the components.
This gives us an accurate complete system thermal profile. We call
the Green’s functions so obtained as the baseline Green’s functions,
Gbase, and the corresponding area and conductivity as the nominal
area and conductivity. Table I lists the symbols used in our work.
The problem is to compute the modified Green’s functions Gmod
for different areas and conductivities. We approximate Gmod =
Ccomp×Gbase (justified empirically in Section V). We thus need to
estimate Ccomp for a given area and thermal conductivity.

B. Compact Thermal Modeling using Green’s Functions

We first collect a large amount of temperature data by varying a
block’s (CPU, flash, etc.) parameters. We see that the parameters that
have the most significant effects on temperature are the area (A) and
thermal conductivity (κ). Hence, we try to find Ccomp as a function
of A and κ.

1) Parametric Model for the Power Dissipating Components (e.g.
Processor, Flash/HDD, RAM): We consider several polynomial and
exponential expressions to fit Ccomp. Table II shows a set of candidate
functions along with their root mean squared error (RMSE) and the
R-squared (R2) values for two representative components: processor
and flash. Similar results were obtained for the other components
too. R2 represents the ratio of the variation in the data explained by
the fit model to the total variation in the data. It lies between 0 and
1. The higher its value, the better is the fit. We see that Ccomp is
quadratically dependent on the area and linearly dependent on the
conductivity. This is because the temperature profile of a block has
a higher dependency on the variation of the area as compared to the
variation of conductivity.

Thus, we obtain a second-order polynomial expression for Ccomp
that is multiplied with the baseline Green’s function Gbase.

Ccomp = a+ bA+ cκ+ dA2 + eAκ (4)

Gmod = Ccomp ×Gbase (5)

TABLE II: Comparison of different compact models for the processor
and flash memory

Parametric Model
Processor Flash

R2 RMSE
(◦C )

R2 RMSE
(◦C )

aebA + cedκ 0.79 0.06 0.90 0.05
aA/b + cκ/d 0.87 0.05 0.93 0.04
(aA+ b)/(cA+ d) 0.91 0.04 0.93 0.04
a+ bA+ cy 0.91 0.04 0.93 0.04
a+ b ln(A/κ) 0.95 0.03 0.96 0.03
a+bA+cκ+dA2+eAκ 0.99 0.02 0.99 0.01

TABLE III: Comparison of Different Models taken for the non-silicon
components

Model R2 RMSE (◦C )

Exponential 0.98 7.05 ×e−5

Polynomial 0.97 8.70 ×e−5

Power 0.98 8.07 ×e−5

Rational 0.97 1.03 ×e−4

where A is the area of the component, κ is the conductivity, Gmod
is the baseline Green’s function obtained at the nominal conductivity
and area, Gbase is the modified Green’s function and Ccomp is the
multiplier to the baseline Green’s function.

2) Parametric Models for the Other Components: For the non-
silicon components such as the battery, we observe that the conduc-
tivity doesn’t have as much of an effect on the temperature as the
area. Hence, to minimize the model complexity, we only consider
one variable: the area of the component. Table III lists the RMSE for
the different models explored. We choose the model with the least
RMSE:

Ccomp = aebA (6)

We next compute the temperature profile of each component by
convolving the modified Green’s function with the respective power
map. To compute the temperature profile for the complete system
(Tfinal), we superimpose the individual temperature maps as per
Equation 7.

Tfinal =

n∑
n=1

Gmod,i ? Pi (7)

where n is the number of components in the system, Gmod,i is the
modified Green’s function for the ith component, Pi is the power
map of the ith component, and ? is the 2D convolution operator.

V. EVALUATION

A. Setup

1) IR Imaging Setup: We use the Fluke Ti450 pro thermal imaging
camera to obtain the IR images. It is an industrial-grade thermal
camera with a sensor resolution of 320 × 240 for a total of 76800
pixels. To calibrate the IR camera we perform multiple measurements
at different ambient temperatures and fit the results into Equation 3.
The best fit curve gives Ca = 1.17 and Cb = −5.93. We obtain
the IR images for three devices: Samsung Galaxy S3, Lava IRIS X1
mini, and Lenovo Thinkpad.



(a) IR camera thermal map (b) Icepak thermal map

Fig. 4: Comparison of Icepak and IR outputs for the S3 phone

2) Green’s function setup: We run the Icepak simulations on
a desktop running Ubuntu Linux 16.04 with the Intel i5 − 4950
processor working at 3.30 GHz and 12 GB RAM. For the CFD
simulations, we used Ansys Icepak (version 19.2). The scripts for
our approach were written in MATLAB R2017b.

B. Verification of the Icepak Models

We design an Icepak model for each device. Next, we obtain the
IR images for different stress tests and measure the corresponding
power dissipation using the approach described in Section III-B1. We
then apply the same power to our Icepak models and compare the
temperature maps against the corresponding pre-processed IR images.
The pre-processing of IR images is done in Python. We observe an
average error of 5% meaning that our Icepak models represent the
actual devices fairly accurately. Figure 4 shows the thermal profiles
obtained from Icepak as compared to the IR images for the Samsung
Galaxy S3. The average error, in this case, is 1.4%.

C. Green’s Function-based Thermal Modeling

50 100 150

Grids along x direction 

20

40

60

80

100

G
rid

s
 a

lo
n

g
 y

 d
ire

c
tio

n
 

14

14.5

15

15.5

16

16.5

17

17.5

18

18.5

T
e
m

p
e
ra

tu
re

 r
is

e
 (

°
C

) 

(a) Icepak thermal profile

50 100 150

Grids along x direction 

20

40

60

80

100

G
rid

s
 a

lo
n

g
 y

 d
ire

c
tio

n
 

14

14.5

15

15.5

16

16.5

17

17.5

18

18.5

T
e
m

p
e
ra

tu
re

 r
is

e
 (

°
C

) 

(b) Calculated thermal profile

Fig. 5: Full-System temperature map using classical Green’s functions

1) Classical Green’s-function Approach with Superposition: In
Figure 5, we show the actual thermal map obtained using Ansys
Icepak in the presence of multiple power sources alongside the
calculated thermal map using the standard Green’s function approach.
We store one Green’s function per component and perform its
convolution with the respective power map to get the component
level thermal profile. Superimposing all such thermal profiles gives
the full system temperature map. This takes approximately 40.8 ms
and yields the maximum screen temperature with an error of less than
0.5%. This shows that the Green’s function-based approach works
well at the system level and can quickly and accurately give us
the thermal profile. The error reported in this work is the error in
computing the maximum system temperature on the screen of the
device.

2) Compact thermal modeling: First, we collect thermal data by
taking 45 different area and conductivity values for each component.
We vary the area of the processor between 49 mm2 and 225 mm2.

TABLE IV: Constants for three representative components

Component a b c d e

CPU 1.49 −5.07e−3 3.63e−5 1.13e−5 −2.29e−7
Flash 1.63 −7.46e−3 −5.4e−5 2.13e−5 −3.77e−8

Battery 1.007 −2.37e−6 – – –

M
ax

 t
em

p
 r

is
e 

w
.r
.t

 n
om

in
al

Fig. 6: Maximum temperature rise of the CPU relative to nominal
CPU properties as a function of area and conductivity

The thermal conductivity was varied from 120 W/mK to 150
W/mK. The area of the flash memory was varied from 36 mm2 to
169mm2 and the thermal conductivity was varied from 120W/mK
to 150W/mK. We considered the nominal CPU area to be 144mm2

and the nominal flash area to be 156 mm2. The area of the battery
was varied from 2656 mm2 to 3189 mm2. Note that the thermal
conductivity, in this case, captures the conductivity of the package
itself: even though the silicon die’s conductivity varies very little, the
packaging material keeps changing.

Next, we fit a second-order polynomial model for the measured
data. Figure 6 shows the variation of the maximum CPU temperature
relative to that of the nominal CPU as a function of the area and
conductivity. The root mean square error is 0.017◦C for the CPU and
0.015◦C for flash. The maximum temperature rise for a nominal CPU
is 12.75◦C and the error in computing the modified Green’s function
for a CPU is 0.8%. The area and conductivity limits were chosen
in accordance with values considered in the literature. The values of
Ccomp for the CPU, flash, and battery are shown in Table IV.

50 100 150

Grids along x direction 

20

40

60

80

100

G
rid

s
 a

lo
n

g
 y

 d
ire

c
tio

n
 

14

14.5

15

15.5

16

16.5

17

17.5

18

18.5

T
e
m

p
e
ra

tu
re

 r
is

e
 (

°
C

) 

(a) Icepak thermal profile

50 100 150

Grids along x direction 

20

40

60

80

100

G
rid

s
 a

lo
n

g
 y

 d
ire

c
tio

n
 

14

14.5

15

15.5

16

16.5

17

17.5

18

18.5

T
e
m

p
e
ra

tu
re

 r
is

e
 (

°
C

) 

(b) Calculated thermal profile

Fig. 7: Full-System Temperature Map using Modified Green’s func-
tions

Complete System-level Thermal Profile: Figure 7 shows the com-
parison of the Icepak thermal map with the calculated thermal map
when the component areas and conductivity values are varied at
runtime. We report an error of 2.56% for the maximum temperature



TABLE V: Comparison with other system-level simulators

Approach Accuracy Speed

Therminator [13] 98% 55 s
Our approach 97.4% 0.041 s

rise of the system. Our method takes only 41 ms to compute the
full-system thermal profile. In addition to this, we accurately predict
the location of all the hotspots in the system.

3) Generalizability to Multiple Devices: We next implement our
modeling method for new device layouts to see how well our method
generalizes. Figure 8 shows the comparison between the thermal
profile obtained using Ansys Icepak and the calculated thermal profile
for one such layout in which the positions of a few components
are changed. Our approach computes the thermal profile with an
error of 1.33%. This demonstrates that our method can be used to
model a variety of device layouts without having to recompute the
Green’s function using slow FDM or FEM simulations. This is very
useful in the design phase, where the thermal characteristics of several
candidate layouts can be quickly studied.

50 100 150

Grids along x direction 

20

40

60

80

100

G
rid

s
 a

lo
n

g
 y

 d
ire

c
tio

n
 

14

14.5

15

15.5

16

16.5

17

17.5

18

18.5

T
e

m
p

e
ra

tu
re

 r
is

e
 (

°
C

) 

(a) Icepak thermal profile

50 100 150

Grids along x direction 

20

40

60

80

100

G
rid

s
 a

lo
n

g
 y

 d
ire

c
tio

n
 

14

14.5

15

15.5

16

16.5

17

17.5

18

18.5
T

e
m

p
e

ra
tu

re
 r

is
e

 (
°
C

) 

(b) Calculated thermal profile

Fig. 8: Full-system temperature map using modified Green’s functions

D. Comparison with state-of-the-art simulators

CFD simulators such as Ansys Icepak are capable of providing
a detailed system-level thermal profile. However such methods are
very slow, sensitive to the meshing, and prone to convergence issues.
In our models, Icepak approximately requires 8 minutes to compute
the full system thermal profile. The total time that our model takes
to compute the complete thermal map of the system comes out to
be less than 41ms. This includes the time taken for scaling the
Green’s functions, convolving the modified Green’s functions with
respective power maps, and the time taken to superimpose all the
individual thermal maps. Thus our algorithm provides over a 12, 000
times speedup over Icepak. We compare our results with the closest
accurate system-level thermal simulation tool, Therminator [12],
[13]. It is based on the finite difference method and extends the
methodology of the popular thermal modeling tool Hotspot [18] to the
system-level. It needs 55 s to compute the thermal map across 5313
points with the same number of power dissipating components as
our system. In comparison, we consider more than 18,000 meshing
points and take only 41 ms to compute the full thermal map (a
speedup of 1300 times). Moreover, our approach has been validated
by thermal measurements on real hardware. In Table V, we present
a comparison of our approach with Therminator for the speed and
accuracy (maximum system temperature on the screen). The accuracy
is almost the same.

VI. CONCLUSION

In this paper, we proposed an ultra-compact model for system-
level thermal simulations of smartphones. Our method is capable
of modeling the detailed thermal profile very quickly because of
the novel approach used. First, we validate our model with an IR
Camera and thermocouple based measurements by comparing the
temperature maps and report an error of less than 5%. Next, we
develop a compact thermal model that can predict the location of
the hotspots and compute the maximum temperature rise at those
hotspots with an error of 2.56% . Our method is 1300 times faster
than the state of the art thermal simulators and has been validated
with a three-way cross-validation methodology. Such approximations
using simple polynomial and exponential functions for the Green’s
functions had not been done in the past. It was believed that such
simple approaches will not be effective. However, we show that such
approaches can indeed be very accurate and effective.

REFERENCES

[1] J. M. Rabaey, Digital Integrated Circuits: A Design Perspective.
Prentice-Hall, Inc., 1996.

[2] D. Lackey, P. Zuchowski, T. Bednar, D. Stout, S. Gould, and J. Cohn,
“Managing power and performance for system-on-chip designs using
voltage islands,” in ICCAD, 2002.

[3] B. Egilmez, G. Memik, S. Ogrenci-Memik, and O. Ergin, “User-specific
skin temperature-aware dvfs for smartphones,” in DATE, 2015.

[4] B. Averbeck, L. Seitz, F. P. Kolb, and D. F. Kutz, “Sex differences
in thermal detection and thermal pain threshold and the thermal grill
illusion: a psychophysical study in young volunteers,” Biology of sex
differences, vol. 8, no. 1, p. 29, 2017.

[5] M. K. Berhe, “Ergonomic temperature limits for handheld electronic
devices,” in International Electronic Packaging Technical Conference
and Exhibition, 2007.

[6] V. Chiriac, S. Molloy, J. Anderson, and K. Goodson, “A figure of merit
for smart phone thermal management,” Electronics Cooling, vol. 17, pp.
18–23, 2015.

[7] J. Park, S. Lee, and H. Cha, “Accurate prediction of smartphones’ skin
temperature by considering exothermic components,” in DATE, Apr.
2018.

[8] S. R. Sarangi, G. Ananthanarayanan, and M. Balakrishnan, “Lightsim:
A leakage aware ultrafast temperature simulator,” in ASPDAC, 2014.

[9] A. Ziabari, J.-H. Park, E. K. Ardestani, J. Renau, S.-M. Kang, and
A. Shakouri, “Power blurring: Fast static and transient thermal analysis
method for packaged integrated circuits and power devices,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22,
no. 11, pp. 2366–2379, 2014.

[10] H. Sultan, A. Chauhan, and S. R. Sarangi, “A survey of chip-level
thermal simulators,” CSUR, vol. 52, no. 2, pp. 1–35, 2019.

[11] Q. Xie, J. Kim, Y. Wang, D. Shin, N. Chang, and M. Pedram, “Dynamic
thermal management in mobile devices considering the thermal coupling
between battery and application processor,” in ICCAD, 2013.

[12] Q. Xie, M. J. Dousti, and M. Pedram, “Therminator: a thermal simulator
for smartphones producing accurate chip and skin temperature maps,”
in ISLPED, 2014.

[13] M. J. Dousti, M. Ghasemi-Gol, M. Nazemi, and M. Pedram, “Thermtap:
An online power analyzer and thermal simulator for android devices,”
in ISLPED, 2015.

[14] S. Sadiqbatcha, H. Zhao, H. Amrouch, J. Henkel, and S. X. . Tan, “Hot
spot identification and system parameterized thermal modeling for multi-
core processors through infrared thermal imaging,” in DATE, 2019.

[15] J. Lee, D. Gerlach, and Y. Joshi, “Parametric thermal modeling of heat
transfer in handheld electronic devices,” in ITHERM, 2008.

[16] Y. Satomi, K. Hachiya, T. Kanamoto, R. Watanabe, and A. Kurokawa,
“Thermal placement on pcb of components including 3d ICs,” IEICE
Electronics Express, 2020.

[17] T. Profiler, “Trepn power profiler,” 2017.
[18] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,

and M. Stan, “Hotspot: a compact thermal modeling methodology
for early-stage vlsi design,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 14, pp. 501–513, 2006.


