Game Theory-based Parameter Tuning for Energy-Efficient
Path Planning on Modern UAVs

DIKSHA MOOLCHANDANI, School of Information Technology, IIT Delhi, India

KISHORE YADAV, Computer Science and Engg., IIT Delhi, India

GEESARA PRATHAP, Department of Computer Science, Innopolis University, Russia

ILYA AFANASYEV, Huawei Technologies Co. Ltd., St. Petersburg, Russia

ANSHUL KUMAR, Computer Science and Engg., IIT Delhi, India

MANUEL MAZZARA, Department of Computer Science, Innopolis University, Russia

SMRUTI R. SARANG]I, Computer Science and Engg. (joint appt. with Electrical Engg.), IIT Delhi, India

Present-day path planning algorithms for UAVs rely on various parameters that need to be tuned at runtime
to be able to plan the best possible route. For example, for a sampling-based algorithm, the number of samples
plays a crucial role. The dimension of the space that is being searched to plan the path, the minimum distance
for extending a path in a direction, and the minimum distance that the drone should maintain with respect to
obstacles while traversing the planned path are all important variables. Along with this, we have a choice of
vision algorithms, their parameters, and platforms.

Finding a suitable configuration for all these parameters at runtime is very challenging because we need to
solve a complicated optimization problem, and that too within tens of milliseconds. The area of theoretical
exploration of the optimization problems that arise in such settings is dominated by traditional approaches
that use regular nonlinear optimization techniques often enhanced with Al-based techniques such as genetic
algorithms. These techniques are sadly rather slow, have convergence issues, and are typically not suitable
for use at runtime. In this paper, we leverage recent and promising research results that propose to solve
complex optimization problems by converting them into approximately equivalent game-theoretic problems.
The computed equilibrium strategies can then be mapped to the optimal values of the tunable parameters.
With simulation studies in virtual worlds, we show that our solutions are 5 — 21% better than those produced
by traditional methods, and our approach is 10X faster.

CCS Concepts: » Computing methodologies — Evolutionary robotics; Modeling methodologies.
Additional Key Words and Phrases: game theory, parameter tuning, path planning, power model, UAVs

ACM Reference Format:

Diksha Moolchandani, Kishore Yadav, Geesara Prathap, Ilya Afanasyev, Anshul Kumar, Manuel Mazzara,
and Smruti R. Sarangi. 2022. Game Theory-based Parameter Tuning for Energy-Efficient Path Planning on
Modern UAVs.

1 INTRODUCTION

The ! global commercial market for UAVs has seen a continued upsurge for the past decade due to
their growing demand for a multitude of applications such as surveillance, search and rescue, aerial
photography, smart agriculture, surveying, and construction. The UAV market that was worth

IThis paper is an extension of our conference paper “Game Theory-based Parameter Tuning for Path Planning of UAVs”
published in VLSI Design 2021 [28]

Authors’ addresses: Diksha Moolchandani, diksha.moolchandani@cse.iitd.ac.in, School of Information Technology, II'T
Delhi, India; Kishore Yadav, Computer Science and Engg., IIT Delhi, India; Geesara Prathap, Department of Computer
Science, Innopolis University, Russia; Ilya Afanasyev, Huawei Technologies Co. Ltd., St. Petersburg, Russia; Anshul Kumar,
Computer Science and Engg., II'T Delhi, India; Manuel Mazzara, Department of Computer Science, Innopolis University,
Russia; Smruti R. Sarangi, Computer Science and Engg. (joint appt. with Electrical Engg.), IIT Delhi, India.

2 D. Moolchandani et al.

$20.8 billion USD in 2021 is expected to reach $501.4 billion USD by 2028 with a CAGR (Compound
Annual Growth Rate) of 57.5% [34]. According to the U.S. Federal Aviation Administration (FAA),
the number of UAVs registered as of 2019 was 1.1 million and this number was expected to exceed
4 million by 2021 [14].

Unfortunately, the software and computing aspects of a UAV have not been given adequate
importance in the literature. For example, consider path planning algorithms for UAVs. In general,
path planning is the most time-consuming step in a RRT* based path planner [20]. Boroujerdian et
al. [4] have shown that with the wrong choice of the algorithm or its parameters, it is possible to
compute paths that take four times longer to traverse. This is a wastage of time as well as battery
power. Though there have been a lot of advances in path planning algorithms, their behavior
is mostly governed by a number of parameters that need to be set based on runtime conditions.
Hence, tuning a path planning algorithm is disproportionately important in UAV design, especially
when we need to codesign it along with the overall computer vision system. The current day
autonomous systems are assisted by computer vision techniques that run simultaneously with
these path planning algorithms or as standalone applications (e.g. drones for smart agriculture).
Hence, it becomes necessary to consider both path planning and computer vision algorithms in
unison to be able to model the effect of one on another. This kind of modeling leads to even more
tunable knobs and hence a larger search space. Moreover, such a form of parameter tuning needs
to be done at runtime to be able to dynamically optimize for energy and performance.

The state-of-the-art techniques [21, 37] use a combination of classical optimization and Al
enhanced algorithms to find the right set of these parameters. Though the results obtained are
optimal, there are several problems with these approaches [31]: @ the computational complexity
increases with the number of parameters and their possible values, ® these techniques take a
prohibitive amount of time to converge in case of high-dimensional non-convex problems, ® they
are not necessarily globally optimal, and @ the presence of an exponential number of local minima
leads to slow convergence. These problems render the classical optimization approaches unsuitable
for real-time applications.

To solve such optimization problems, fast yet approximate solution techniques such as genetic
algorithms, Coral Reefs Optimization and Particle Swarm Optimization (PSO) methods are used [37].
Even the PSO algorithm is reported to have some convergence issues [21]. Hence, recent papers
on resource allocation have used Al algorithms such as the Coral Reefs algorithm aided with
game-theoretic techniques to speed up convergence. Game theory is also increasingly being used as
a standalone technique for quickly solving optimization problems by converting them to roughly
equivalent games. For example, Javarone et al. [18] solved the traveling salesman problem using
a public goods game, and Xu et al. [41] solved the electromagnetic buffer optimization problem
using the Nash equilibrium solution of the corresponding game-theoretic formulation.

The basic idea is to convert optimization problems to game-theoretic problems and find the Nash
Equilibrium, which can then be used to derive a near optimal solution for the original problem.
To the best of our knowledge, we are the first to solve the parameter tuning problem for the path
planning of drones using game theory. Given that the path planning step is the most time-consuming
step, we need efficient methods to solve the parameter tuning problems in real-time. The parameters
also include the choice of the computer vision system (both hardware and software). We propose a
generic framework that can be augmented with a variety of other knobs as well.

The UAV parameter tuning problem is not a traditional game - there are no well-defined players
and payoffs. We use recent results in this area [8, 9, 26]. We first formulate a traditional optimization
problem that finds the most suitable configuration of all the parameters (from the constrained
parameter search space) such that the energy (in hovering, traveling sub-optimal paths, and running
the vision algorithm) is minimized. We convert this optimization problem to a game theory-based

Game Theory-based Parameter Tuning for Energy-Efficient Path Planning on Modern UAVs 3

problem by converting the parameters to players and the objective function is accommodated within
the payoffs of all the players. A part of the payoffs is also directly obtained from various sensitivity
analyses results. We perform real experiments with drones as well as exhaustive simulations
in virtual worlds. We convincingly show that a modest optimization problem with six tunable
parameters (characterize the path planning phase and the vision system), each having a finite
feasible range, cannot be solved in real-time and often does not converge.

In the game-theoretic version, we need to find the Nash equilibrium values of the parameters.
We observe that solving for the Nash Equilibrium is 10X faster as compared to solving the basic
optimization problem. Moreover, our solutions using game theory are at par with those obtained
by solving the old-school optimization problem. Given that solution techniques for complex op-
timization problems are also approximate, our solutions are either comparable (for parameter
tuning of vision-assisted path planning) or 5 — 21% better (for parameter tuning of path planning
algorithm). This implies that we achieve smaller (or equal) path lengths and hover times using the
game-theoretic framework.

The novel contributions of this paper are as follows.

(1) We provide a comprehensive empirical power model for UAVs that is easily generalizable to
UAVs of different weights and use it to formulate an optimization problem that minimizes
the overall energy consumption of the UAVs during their flight. This includes the energy
consumed in hovering, traveling a distance, and running the computer vision algorithm.

(2) We propose a game-theoretic formulation corresponding to the optimization problem formed
in the previous step, where the tunable parameters become the players and the objective
function forms the basis of the payoff functions of these players. We define novel payoff
functions to incorporate the selfish and altruistic objectives of the players. We also show that
both are needed.

(3) We show that our game-theoretic approach is 10X faster and provides solutions that are
either comparable or 5 — 21% better than the best optimization based approaches for three
different virtual worlds. Our solutions converge in all cases.

(4) We show that the execution time to solve a game theory problem on Beagleboard is 0.05s for
a 5-player game, which is well within the real time constraints (100ms) for these systems.
The execution time for solving the optimization problem is prohibitive, it takes 0.4 — 0.9s to
solve using the IPOPT solver on Beagleboard.

We shall describe the relevant background in Section 2, describe related work in Section 3,
develop the power model in Section 4, explain the experimental setup in Section 5, formulate an
optimization problem in Section 6, and show the formulation of the game in Section 7. We shall
discuss the results in Section 8, establish theoretical equivalence of optimization problem and game
theory-based approach in Section 9, and finally conclude in Section 10.

2 BACKGROUND
2.1 Navigation in UAVs

The problem of navigation in UAVs has been solved by both classical computational geometric
methods and end-to-end learning-based methods. However, for the case of UAVs, the classical
methods are still the most popular choice [4, 5] because of their simplicity and deterministic
approach. These methods follow three basic steps: @ Perception: building a 3D view of the
surroundings, and extracting information in the form of an obstacle/occupancy map, @ Planning:
using the information about the obstacles from the Perception step to create a collision-free path,
and ® Control: sending the control commands to the UAV to follow the planned path. This is
referred to as the Perception, Planning, and Control (PPC) paradigm.

4 D. Moolchandani et al.

We focus on the path planning step because it is the most time consuming step in the entire
pipeline (roughly 65% [20]). Yang et al. [42] suggested that among all the path planning algorithms
with bounded time complexity, sampling-based algorithms are fast, self-sufficient, and provide
good solutions respecting real-time constraints. We choose the most popular sampling based
algorithm, RRT, for this work, which is known to provide near-optimal solutions and allows
dynamic re-planning.

The RRT* algorithm builds a path from the source to the destination in the form of a tree. To
grow the tree, the algorithm first samples the environment and chooses a random point (p,4nq).-
Subsequently, the node in the tree, A, that is the closest to p,4,4 attempts to create a new node in
the direction of p,4nq. We assume a step size or resolution (R) in the algorithm that restricts the
maximum distance (from A) at which the new node can be placed. Subsequently, a new node B is
placed R units away from A in the direction of p,4,4. Node B is added to the vertex set of the tree if
the direct path from A to B is free of obstacles. After B is added to the vertex set, it needs to connect
to some vertices via edges to become a part of the tree. Instead of directly creating an edge from A
to B, we create edges using the notion of a cost function. Each vertex in the tree has an associated
cost that quantifies the cost of reaching that vertex from the start (root) node. To connect B, all the
nodes within a radius r are checked. If any node C from this neighborhood has a path to B that
is of lower cost as compared to the cost of the path from A to B, then an edge is created between
C and B in place of the edge between A and B. Needless to say, the edge between C and B should
be free of obstacles. The minimum distance between an edge and an obstacle should be at least
equal to the obstacle avoidance distance — this avoids collisions even if there is a slight amount of
nondeterminism in the UAV’s position.

The number of samples, the step-size, obstacle avoidance distance, and the dimensions of the
environment form the tunable parameters of the RRT* algorithm, which determine the behavior
of the algorithm. The obstacle density also plays an important role in deciding the length of the
planned path and the time taken to plan the path. In this work, we perform experiments to identify
this behavior and develop a game-theoretic framework to model this behavior at runtime.

2.2 Game Theory Preliminaries

In a game-theoretic system, there are multiple selfish yet rational players. Each player has a strategy,
which it plays to maximize its chances of winning the game. The notion of winning the game is
captured by the payoff or utility that a player derives by playing a certain strategy. Thus, for a
combination of strategies across the players, each competing player obtains a payoft.

There is no notion of optimality here, because fundamentally the players are at odds with each
other. Hence, we define the notion of a Nash equilibrium instead, where no player can increase its
payoff by unilaterally changing its strategy (the rest of the strategies remaining the same). The
notion of a Nash equilibrium is very useful in describing the results of games, and it is often possible
to derive profound insights about the inherent trade-offs and feasible solutions. A Nash equilibrium
is said to be stable if a small change in the strategy for any player makes it strictly worse off.
The strategies should be independent, implying that the players can independently choose their
strategies regardless of the strategy of other players.

2.3 Relating Optimization Problems to Game Theory

In general, optimization problems take an unpredictable amount of time to converge to a solution
especially when the constraints are non-linear in nature. Most of the time, they get stuck in local
minima or return infeasible solutions. Hence, instead of solving these problems exactly, they are
typically solved using approximate optimization techniques. There are many such approximate
techniques that are much faster than classic optimization techniques such as genetic algorithms,

Game Theory-based Parameter Tuning for Energy-Efficient Path Planning on Modern UAVs 5

particle swarm optimization, ant colony optimization, and the coral reefs algorithm. Game theory
is a newly applied technique in this space that can be used to solve the optimization problem
approximately and very quickly [37]%. In many recent papers, game theory has been used to
improve the convergence speed of the classical and approximate optimization techniques such as
tuning the weighting parameters for the particle motion in a particle swarm optimization [21].
Xu et al. [41] used game theory for solving the electromagnetic buffer optimization problem. The
optimization problem was converted to a game based on several sensitivity analyses experiments.
To the best of our knowledge, we are not aware of any automatic algorithm that takes an arbitrary
optimization problem and converts it to a game. However, a lot of optimization problems can be
converted to a game by ingeniously creating players and their associated payoffs. The computed
Nash equilibrium can be mapped to the solution of the original optimization problem. We follow a
similar approach.

3 RELATED WORK
3.1 Parameter Tuning

There are multiple proposals that target the problem of parameter tuning for path planning algo-
rithms by formulating an optimization problem that aims to optimize a cost metric such as the
hover time, planning time, or path length.

Luo et al. [23] and Dunlap et al. [13] studied the effect of tuning the parameters that determine
the path length. They showed that the relationship of the path length with these parameters has a
very complicated form. Cano et al. [7] formulated the optimization problem as a cost minimization
problem. The aim was to find a parameter combination that provides a valid trajectory using the
path planning algorithm and minimizes the planning time. Since the time required for parameter
exploration and tuning is large, they employed four intelligent search space exploration techniques
based on random sampling, random forests, Bayesian Optimization, and AUC Bandit (Al algorithm).
Similarly, Burger et al. [6] solved the optimization problem using the SMAC [17] tool. The tool
internally uses random forests to explore the parameter space. Due to the time consuming nature
of these techniques, they set a cut-off time for the exploration. In contrast, our game-theoretic
formulation provides theoretical guarantees about the solution and is far more time-efficient.

3.2 Power Modeling

There can be two approaches for modeling the power consumption of drones: analytical or ML-
based. For building an analytical model, an in-depth knowledge of the relationship of energy
consumption with the vehicle dynamics is needed. Liu et al. [22] proposed one such model. For an
ML-based approach, the basic idea is to collect the power consumption behavior of the drone for
different types of motions along with different configurations of the kinematic parameters such as
velocity, distance, height, acceleration, and deceleration. Subsequently, a regression model can be
fitted to the collected data to obtain a power model. One of the most recent works by Prasetia et
al. [33] proposed three regression-based energy models for horizontal motion, vertical motion, and
hovering, respectively. Their energy models for the horizontal and vertical motion relied on the
respective velocities and distances, while the energy model for the hovering motion relied on the
hover duration. Their model is not generic as it is designed from the data collected on one drone,
relies on a finite number of fixed mission commands for the separation of motions to three types:
horizontal, vertical, and hovering, while in practice the drone can have complex motions too that
are a combination of the basic motions. Additionally, there is no clear partition of the motion types
in a practical random drone flight.

2Note that classical game theory was developed in the late 1940s

6 D. Moolchandani et al.

Another comprehensive power model was proposed by Abeywickrama et al. [2] that models
the power for all the different types of drone motions such as take-off, hovering, horizontal, and
vertical movements, impact of the payload, and the effect of wind. However, this model does not
take into account the effect of different horizontal velocities, and does not generalize to drones
of different weights. Franco et al. [12] proposed an energy model that models the energy for all
the motions as captured by Abeywickrama et al. [2], with the exception of the take-off movement.
However, the developed models did not take into account the effect of height in both the vertically
upward and the hovering movements. Similar empirical models were proposed by Ji et al. [19] and
Maekawa et al. [24], however they do not consider all the kinds of drone motions.

We, on the other hand, develop a comprehensive model for all the types of motions that are
encountered in a drone flight and also take into account the effect of height, velocity, acceleration,
and the weight of the drone. This makes our model far more generic and accurate.

4 MODELING THE ENERGY CONSUMPTION OF UAVS

20in4 v ~20in8

Vs

59

Fig. 1. Drones used in our experiments

4.1 Experimental Setup

We conducted experiments on three drones manufactured by BotLab Dynamics (two of them
are shown in Figure 1): 20in4, 20in8, and 18in4 drones. The 18in4 drone consists of four 18-inch
propellers, the 20in4 drone consists of four 20-inch propellers, while the 20in8 drone contains eight
20-inch propellers. Four propellers are mounted on one side of the motor and the other four are
mounted on the opposite side (see Figure 1). The weights of the 18in4, 20in4 and 20in8 drones are
1.5 Kg, 1.5 Kg and 2.7 Kg without batteries, respectively. The weight of the battery is 1.2 Kg.

4.2 Data Collection

We use the power module circuit (as shown in Figure 2) consisting of voltage and current sensors to
get the readings. The two ends of the circuit are connected to the battery and the UAV, respectively.
The sensed data is read by the Pixhawk-2.4.8 flight controller via the power slot. The logged data

Game Theory-based Parameter Tuning for Energy-Efficient Path Planning on Modern UAVs 7

is then sent to the ground station via the telemetry module operating at 433 MHz. We use the
ArduPilot firmware [38] and the Mission Planner software [39] to design different mission plans.

The collected data contains a lot of information corresponding to different components such
as the battery, barometer, IMUs, and the position control data. We extract the voltage and current
values from the log messages corresponding to the battery (BAT) module, the altitude (Z) from the
log messages of the barometer (BARO) module, the horizontal distance, velocity and acceleration
(dx, dy, vx, 0y, ax, ay) from the log messages of the position control data (PSC) module. The sampling
interval of the data logger is 100 ms. We calculate the instantaneous power using the standard
equation P =V X I.

To battery

Power module

Fig. 2. Power module and Pixhawk flight controller

4.3 Data Pre-processing

We pre-process the data obtained from the data logger to get additional useful data such as the
velocity in the z-direction, the total horizontal distance traveled, the total horizontal velocity, and
the total acceleration in the horizontal direction. For calculating the velocity in the z-direction,
we need to have a relationship of the distance traveled in the z-direction with time ¢. Based on
the collected data from BARO, we first use a linear regression model to fit a curve that models the
variation of altitude (Z) with time (t). Subsequently, we differentiate the equation of the curve to
get the instantaneous velocity (v;).

Upward + Hover + Downward Upward + Horizontal + Downward
F1000 80
s 1.75 12
70
F800 150 10 Ls0o

6 _ s 60 =
€ - 125 Ei E ~ E
E 600 S R 6002 [50 g
o4 = g 3 = c
k] 5 100 Si 2 @ s
= 2 242 2 40 1
£, 3 @i 54 I a

< r400& Lo7s @4 < F400 30

2
0 0.50 o 20
200 —Altitude r200
-2 —Altitude 0.25 2 — Power 10
— Power L ——Distance
4 o = Distance Lo 0.00 4l i i i i . Lo 0
0 200 400 600 800 0 100 200 300 400 500
Time (ms) Time

Fig. 3. Phases in a flight of the 20in4 drone

We consider four standard types of motions that can occur in any flight after the drone has taken
off: vertically upward, vertically downward, horizontal, and hovering (staying at the same place).
We divide the entire flight into phases where each phase is identified by the type of motion in that
phase. An example of the four phases in a flight is shown in Figure 3. In each phase, we collect
multiple readings spread over the entire duration of the phase.

8 D. Moolchandani et al.

4.4 Quantification and Modeling

We experiment with two kinds of drone flights: controlled and random. A controlled flight is the
one in which the height, distance, velocity, and/ or acceleration are restricted, while a random flight
is not pre-planned or controlled. The controlled and random flights are shown in Figures 4 and 5,
respectively. From nearly 39 controlled flights and 13 random flights for the two drones (20in4 and
20in8), we extract the phases and their characteristics (power, velocity, distance, and acceleration).
Due to control over the quantities in controlled flights, the phases are easily separable and each
phase consists of multiple continuous readings. They are mostly stable with minor fluctuations in
power, velocity, and acceleration. Hence, we consider the average values of these quantities for each
phase. In the case of a random flight, the separation between the phases is not clear. However, if the
duration under consideration is small enough such that the readings do not change significantly, it
can be considered to represent one particular phase, that is, it behaves in a controlled manner for
small durations. For these small durations, we extract the average values of the desired quantities.
There is a good match between the parameters extracted for both the flights (power and velocity).

1.6 1.6 6 ;
10 v m
i 8o £ & 6 2
—~ 8 — Altitude = li12 @ 5E (6
3 —— N = 12 o = n
= Velocity g 2 £ —~ 4 215 2
g6 ! || = Distanc w‘l 60 g 38 5 £ 478 £
; 4 | —— Accelefation \ 5 08 % |08 = 2 3 Bl g
<, f S |) 403z e o 2 T3 8
o\ s g Jo 2§ 2
0 ‘ NP {\'u‘di»}(‘\ M""“,M\,"h 20 0.4 § 0.4 g S |2 @
2 ; v Ay 2 2 1814 <
0 0.0 0.0 0 0
0 200 400 600 800 0 200 400 600 800 1000
Time (ms) Time (ms)
Fig. 4. Controlled flight Fig. 5. Random flight

4.4.1 Power Model for Hovering. For estimating the power consumption of the drone during
hovering, we considered all the relevant parameters such as the altitude of hovering and the
hovering duration. We perform a sensitivity analysis with both of these parameters, by varying one
at a time and keeping the other constant. The drones were made to hover at different heights (10,
20, and 40 m) for different durations (60, 120, and 180 seconds). We controlled the highest altitude
in the controlled experiments. We never performed experiments for heights beyond 40 m due to
legal restrictions. We did not observe any significant effect of the hovering duration on the power
drawn and hence it does not appear in the power model (see Equation 1).
Figure 6 shows the variation of hovering power with re-

spect to the hovering altitude (the scattered values are the (. [Tg. T, 1
real measurements and the lines are the best fit obtained). Y
We observe that the hovering power consumed by the 20in8 ¢ .,

drone is roughly 1.8 the power consumed by the 20in4 drone. E 500 — ;g::i E:E ::t

This is correlated with their weights (3.9 Kg and 2.7 Kg, re- 3 450 ® 20in8 measured
spectively, including the weight of battery). The power is 400 ® #0ind meashred
mostly constant with respect to the hovering altitude with aA . .
minimal variations limited to 20 W for both the drones. These 30 .

variations in power occur mainly because the drone tries to 10 15 20 25 30 35 40
stabilize itself to maintain a pre-specified position for the Altitude (m)

entire hover duration. We present a general formulation of Fig. 6. Hovering power

power consumed by our drones of different weights in Equation 1. Here, Wy is the weight of the
drone, h is the hovering altitude, Ep oy, is the energy consumed, Tjo4e, is the hover duration, and
Phover is the power consumed by the drone. The fitted curve estimates the power with an accuracy
of 98.4%. The accuracy can be improved further if a single drone is considered as is done in the

Game Theory-based Parameter Tuning for Energy-Efficient Path Planning on Modern UAVs 9

related work on power modeling for drones, however our aim is to provide a power model that
generalizes to different drones having different weights. We checked for the generalizability of the
model for the 18in4 drone.

Prover = 247.9 X Wy — 0.6 X h — 315.74 ()
1
Ehover = Phover * HT

Theoretically, the hover power should not depend on the hovering altitude. The standard equation
for hovering power is given by Equation 2. However, in our experiments we observe that the
hovering power reduces to some extent as the altitude increases. This is primarily due to other
unavoidable environmental factors involved in the measurements such as minor changes in the air
pressure. Abeywickrama et al. [2] have observed similar variations with the altitude.

_ (m * g)?
Phoser =\ pwma o ? @

4.4.2 Power Model for Vertically Upward Motion. For modeling the power consumption during a
vertically upward motion, the ideal approach [2, 35, 39] is to make the drone climb upwards at a
constant velocity till it reaches a certain height. We extract the average vertical velocity and the
distance traveled for the upward motion from the random and controlled flights as explained in
Section 4.4. Subsequently, these values along with the weights of the drones are used as features to
get the power model for the vertically upward motion.

750 . 750
700 . 700
s ° °
650 re 650
S 600 L K - - < 600
% o3, — 20in8 best fit 2 °¥ e ——20in8 best fit
& 550 o gg::g ?ne:atsf:fred § 550 —— 20in4 best fit
s ® 20in8 measured
£ 500 ® 20in4 measured & 500 ® 20in4 measured
450 450
400 s 400
0, L] Y
3501 &3 . 3501 egaga e
® ®
10 20 30 40 0.0 0.5 1.0 1.5 2.0
Height (m) Velocity (m/s)
(a) (b)

Fig. 7. Power consumption for vertically upward motion of the 20in4 and 20in8 drones

Figure 7 plots the overall measured power consumption during the upward motion on the y-axis
and the height and vertical velocity on the x-axes. Note that we plot the overall power, and thus
the power on the y-axis is a result of all environmental conditions, the current vertical velocity
and the vertical distance traveled. Nevertheless, we plot the overall power with each parameter
separately so as to get a rough idea of the effect of the parameter on the power. Hence, the fit will
not be exactly accurate when we plot the overall power with respect to only one parameter as is
visible from Figure 7 (because the other parameter varies). Nevertheless, we observe that the power
for the upward motion increases as a result of increasing the vertical distance and velocity.

Upon quantifying the effect of both the parameters on the overall power in Equation 3, we
observe that the effect of the vertical velocity on power is much more as compared to the effect of
the vertical distance. In Equation 3, W is the weight of the drone, h is the total vertical distance
to travel, and v, is the velocity in the vertical direction. This equation gives the best fit for the
measured power values with an accuracy (mean absolute percentage error = 2%) of 98%. Though
we were able to get a similar accuracy using polynomial features of degree 2, we chose the linear

10 D. Moolchandani et al.

model due to its simplicity. Here, E j;mp is the energy consumed, T,;,,p is the time taken, and Pejjpmp
is the power of the drone in the vertically upward motion (assumed to be continuous from the last

hover position).

Petimp = 248.5 X Wy + 1.22 X h + 15.34 X v, — 338.7

Ectimb = Petimb * Tetimp

4.4.3 Power Model for Vertically Downward Motion. For

®)

vertically downward motion, we perform similar exper- 650 = Py
iments as we did for the case of the vertically upward 600f = "¢ H
motion. Here, we start by considering two quantities that 550 . ® [—Z0in8 bestfit
can have an effect on the power: vertical velocity, and the £3%°7 o ¢ o Joing mabsured
vertical distance. However, we do not observe any vari- % 122 @20 measured
ation in power with the vertical velocity because during = __ | __« R .
vertically downward motion or during landing, the drone 54 W > °
automatically switches to a lower and safer constant ve- 250 L]

locity value. Hence, this parameter is not important. Thus, 0 oneight (:3 0

we show the effect of height (vertical distance traveled)
on the power consumption.

Figure 8 shows the effect of height (as we have defined)
on the power consumption. The power consumption increases with an increase in the height
because at higher heights, the potential energy is more and hence more work is done by the drone
to fly downwards at constant velocity. We observe that the power consumption in the downward
motion is less than that in the upward motion for the same height owing to gravity. Equation 4 fits
the measured power data with an accuracy of 96%. Here, h is the vertical distance traveled, Eqy is
the energy consumed, Ty, is the time taken, and Py is the power of the drone in the vertically
downward motion.

Fig. 8. Power consumption for vertically
downward motion of the 20in4 and 20in8
drones

Prap = 195.786 X Wy +0.84 X h — 207.5

Efair = Pran * Tran)
4.4.4 Power Model for Horizontal Motion. We perform ., 3
experiments to measure the power consumption of the 600 L e
drone when it is moving horizontally. We consider two < 550 9
primary factors that decide the power consumption dur- 3 . | 2305 best e
ing the horizontal motion: the horizontal velocity and & wsol Lo 2Qing meagured
the vertical height. A pure horizontal motion requires
the drone to maintain a constant height while flying hor- . J O
izontally. The power increases slightly with the height. °

00 05 10 15 20 25 30 35

However, the effect of height is less pronounced and is
more or less negligible.

Figure 9 shows the variation in power with respect
to the horizontal velocity. We observe that the effect of
horizontal velocity is similar to that observed in reference [35] where the power decreases with
the velocity initially and then increases suddenly. There is no clear reason for this behavior. One
possible reason is that at lower velocities, the drone stabilizes more frequently and hence leads to a
larger power consumption. This is mainly because the time taken to travel a particular distance is
more with lower velocities as compared to the corresponding time taken with higher velocities.

Velocity (m/s)

Fig. 9. Power consumption for the horizon-
tal motion of the 20in4 and 20in8 drones

Game Theory-based Parameter Tuning for Energy-Efficient Path Planning on Modern UAVs 11

Note that we do not experiment with very high velocities (beyond 6 m/s), hence we do not see the
inflection point. The fitted curve is given by Equation 5 that has an accuracy of 98.2%. Here v, is
the horizontal velocity, Ep,, is the energy consumed, Ty, is the time taken, and Pp,, is the power
of the drone in the horizontal motion.

Ppor =225 X Wy —3.93 X vy, — 257
Enor = Pror * Thor

®)

4.4.5 Summary. Our power model is similar in structure to other models proposed in prior work [2,
35, 39]. Note that our model is much more comprehensive in terms of the scenarios and parameters
that have been considered to model different types of motion. Moreover, we also consider random
flights unlike the related work that considers the clean separation of phases. Hence, our experiments
model the real-world flights more accurately. In general, for drones there is a need to create a
bespoke model for a given family of drones because most models do not generalize very well. We
did a limited study of generalizability: we collected most of our data for the 20in4 and 20in8 drones.
The resultant model estimates the power consumption of the 18in4 drone very well. We thus are
confident that our model will hold for other drones in the same range of weights.

4.5 Accuracy Comparison of Different Power Models

Figure 10 compares the mean absolute

. 520,01 .
percentage error of different ML mod- £ = Climb

B : 5 17.54 Fall
e.ls for estimating the power consump- £ I B Horibontal
tion of the drones. We observe that SVR & 7] I] Hover
has the highest error for all the types ¢ 1251 I I
of motion. Decision tree, random forest é 10.0 A I I
and gradient boosting regressors per- £ 7.5-
form nearly equivalently to the linear 3 50 I I =
regressor, with linear regression having ¢ | I I I B = - =

S 2.
an error within 5% for all the types of = 0.0 I I I I I I | | in
motions. We choose linear regression & N & o&ro“ IR %(9\00
because of its higher accuracy and sim- & 063 & &
plicity over other competing models. & & ®®&°° '&&@‘Q
S

5 EXPERIMENTAL SETUP Fig. 10. Mean absolute error (%) of ML models for estimating
5.1 Overview the drone power

In this work, we aim to identify the suitable configuration of the tunable knobs involved in UAV
navigation such that the total energy consumption is minimized. We primarily consider the tunable
parameters of the RRT” path planning algorithm as the knobs (see Section 2.1) because these
parameters play a role in deciding the flight statistics such as the hover time and the path length.
We also consider the different platforms for running vision algorithms such as CPUs, GPUs, and
accelerators as the tunable knobs. Based on the performance and power requirements of the system
and these platforms, a suitable platform is chosen. Note that such a heterogeneous system is
currently the state-of-the-art for such systems. The Nvidia AGX Xavier board is one such example.

We need to formulate a joint optimization problem that finds the optimal values of the tunable
parameters of RRT* and the optimal platform for the vision algorithm. The joint optimization objec-
tive is to minimize the total energy consumed, which includes the energy consumed in hovering,
traveling a certain path length, and running a vision algorithm. To formulate the optimization
problem for the RRT* path planning step, we model the tunable parameters as the variables. We

12 D. Moolchandani et al.

then need to find a relationship between the parameters of RRT™ and the flight statistics that directly
impact the energy consumption (hover time and path length). Due to the complex relationship
between the parameters (see Table 1) and the uncertain nature of sampling-based algorithms such
as RRT*, we need to collect a huge amount of data for multiple environments to formulate a master
equation for the optimization problem. This process is extremely time-consuming if done in a real
outdoor setting, thus we perform exhaustive simulations using an open-source robotics simulator,
Gazebo, for multiple configurations and virtual worlds.

The optimization problem that we create has complex, non-convex, nonlinear constraints and it
thus takes a long time to solve (if at all it converges). Hence, to solve it in real-time, we map it to
an approximately equivalent game-theoretic framework where the independent parameters (see
Table 1) are the players and the dependent parameters (flight statistics such as hover time and path
length) are used to formulate the payoffs of the players (explained in detail in Section 7). We, in
effect, perform sensitivity analyses of the dependent parameters with respect to the independent
parameters. Once the payoffs of the players are formulated using the sensitivity results, we use
Gambit-v15.1.1 [25] along with its Python API to calculate the Nash equilibria of the game. This is
then mapped to the optimal solution.

5.2 Setup for Sensitivity Analyses

Table 1. Tunable parameters of the RRT* algorithm

l Parameter Description [Range]

Dimension size (dim) | Dimension of the search space | 5X5x5-40x
for RRT* path planning (physi- | 40 x 40 m®
cal 3D dimensions)
#samples (sam) Number of random samples for | 100 — 2000
RRT*
Step size (res) of RRT* | Minimum step length that can | 0.01 — 10 m
be taken in the direction of the
chosen random sample
Obstacle avoidance | Minimum distance that should | 0.1 — 0.5m
distance (obs_av) be maintained between the
nearest obstacle and the calcu-
lated path

These values are obtained as feasible ranges from the experiments.
Feasible values are those that do not degrade the accuracy significantly.

We use an NVIDIA Xavier board (state-of-the-art board for autonomous vehicles such as UAVs)
for the sensitivity analyses. It consists of 8 ARMv8.2 cores having a frequency of 2.26 GHz, main
memory of 16 GB, 8 MB L2 cache, 4 MB L3 cache, and a 512-core NVIDIA Volta GPU with 64 Tensor
cores. We emulate the path planning algorithm on the NVIDIA Xavier board to get the sensitivity
results. The board runs the Robot Operating System (ROS). ROS allows running multiple concurrent
processes, also called nodes. These nodes pass data between each other using non-blocking FIFO
queues [4]. ROS uses the publish-subscribe model where some nodes publish messages while other
nodes receive the messages by subscribing to the publishing nodes. The messages can belong to
some specific categories, also called ROS topics. For the sensitivity analyses, we kept the simulation
environment the same. We primarily relied on pre-recorded messages for simulation that were
stored in a ROS bag file during the outdoor flight of the UAV. ROS bag files help us realize a
deterministic simulation by replaying the pre-recorded messages.

5.3 Gazebo and Rviz for UAV Simulation

Game Theory-based Parameter Tuning for Energy-Efficient Path Planning on Modern UAVs

To collect the data for formulating the optimiza-
tion problem, we simulate the virtual world and

Gazebo

simulations

Collect flight data
for different worlds
and parameters

Fit the data using

a perceptron

based model
|

the UAV in Gazebo-9. Gazebo takes in a world [corsraimson 1 Lo

. . . : Formulate the P OPT
file that specifies the environment along with ;eaarsa'ﬂ:t‘éféues of=loptimization prob.
a map of the obstacles, and the UAV’s speci- =
fications. After the planning step, the control Perf. & power
JE characterization of |---------------------—-
commands are sent to the Gazebo engine to vision algorithms
make the UAV move in the. des1.re.d direction. e Py Computa N
We use Rviz-v1.13.13 for visualizing the sur- |Sensitivity formulation equilibria

analyses of flight
data to parameters

roundings in the form of an occupancy map. faster and better

Rviz is a ROS graphical interface that allows
us to visualize the position, orientation of the
UAV, and the locations of the obstacles.

Fig. 11. Overview of our approach

5.4 Creation of Virtual Worlds

For creating the virtual Gazebo worlds, we have used
standard tools [1, 30] from the literature. Oleynikova et

Table 2. Baseline system

Parameter Type/Value
al. [30] generate random sylvan worlds with trees of vary- CPU 2 x Intel Xeon Gold 5118 (Skylake)
ing heights scattered over a given area. Abbyasov et al. [1] # of cores 24 physical
. K X N Frequency 23 GHz
generate virtual worlds by taking in any 2D image and | Main memory 128 GB
producing a 3D model of it. GPU NVIDIA Tesla T4 (Turing)
CUDA cores 2560
Tensor cores 320

5.5 IPOPT and AMPL

In order to solve the nonlinear optimization problem
formulated using the data collected from Gazebo, we

Table 3. Details of the system (source [27])

used a nonlinear solver, [IPOPT-v3.12.13 [40]. We model II; x:%z}rl Big :ore SmaI; core

the optimization problem using two ways: an algebraic Pipeline Type | Out-of-order | In-order

modeling language called AMPL and Python (using Frequency 3.1 GHz 1.55 GHz

the Gekko [3] package). Figure 11 shows an overview L1 cache latency 4 cye. 2cyc.
L2 cache latency 20 cyc.

of the steps involved in the formulation of the opti-
mization problem and the game-theoretic approach. These are discussed in detail in Sections 6
and 7.

5.6 Setup for Measuring the Power and Performance of Vision Algorithms

We collected the power and performance numbers of the vision algorithms on three types of
execution units: Intel Xeon-like big core, Intel Atom-like small core, and Tesla T4 GPU. The
configuration of the GPU is given in Table 2. The configurations of the big core and the small
core are given in Table 3. The big and the small cores are simulated using the Tejas architectural
simulator [36] that is very well calibrated with native hardware. The weights of the big core, small
core and GPU are 768 gm, 390 gm, and 500 gm, respectively [5, 11, 16]. We consider these weights
in the power calculation using the power model derived in Section 4. We considered the traditional
vision workloads inspired from the MEVBench vision benchmark suite [10]. Table 4 provides a
brief description of the workloads used in this study, and the power and performance of these
workloads on different platforms.

6 FORMULATION OF THE OPTIMIZATION PROBLEM

As explained in Section 5.1, we need to perform exhaustive simulations in Gazebo to collect
multiple data points corresponding to different parameter configurations and different virtual

14 D. Moolchandani et al.

Table 4. Benchmarks (derived from MEVBench)

Bench. | Description Big Core Small Core GPU T4
Time (s) | Power (W) | Time (s) | Power (W) | Time (s) | Power (W)
Sift Feature detection and ex- 0.092 26 0.88 4.1 0.03 26.1

traction algorithm. Finds
features that are invari-
ant to scale, lighting, view-
point, and orientation

Surf Feature extraction algo- 0.062 31 0.53 4.5 0.04 27
rithm similar to SIFT but
is much faster, suitable for
embedded systems

Fast Extracts the features of the 0.02 26.1 0.14 45 0.03 26
image corners
Orb Uses Fast to detect the cor- 0.02 28.7 0.18 47 0.04 26.6

ners and BRIEF to extract
the features corresponding
to these corners

HoG Uses gradients in an orien- 0.2 20 0.71 4.3 0.03 26.6
tation of the image to de-
scribe the features.

SVM Classifies the features on 0.04 25.8 0.4 47 0.05 25.1
the basis of a support vec-
tor

KNN Uses the nearest neighbor 0.05 27 0.6 4.44 0.03 27
algorithm to classify the
features

worlds. Subsequently, we use a novel ML-inspired technique to fit a curve on these data points.
The equation for the curve is then used to formulate the constraints of the optimization problem.
The objective of the formulation is to minimize the total energy consumption including the energy
consumed in traveling from a source to a destination and the energy consumed by the computer vision
algorithm. The energy consumption in going from the source to the destination can be written as
the sum of the energy consumed in hovering at a location and the energy consumed in traveling
horizontally from the source to the destination. The hovering energy is proportional to the hover
time (HT) as shown in Equation 1, where HT signifies the time elapsed before a decision is made
by the planner. The UAV hovers at the current position during this time and is not doing any useful
work. The energy for the horizontal motion is proportional to the path length (PL) as shown in
Equation 5. In order to collect the flight data (HT, and PL) from the Gazebo simulator, we simulate
the path planning algorithm for different parameter configurations and collect the corresponding
HT and PL for different virtual worlds. We collect HT and PL instead of hovering energy and the
energy consumed in the flight because the simulator is not equipped with its own energy model
and the energies are proportional to HT and PL, respectively, as shown in Section 4. We use the
setup as described in Section 5 to collect the power and performance characteristics of the vision
algorithms on different platforms.

6.1 Collection of Data Points

The idea is to collect the flight data (HT and PL) for multiple virtual worlds from Gazebo for varying
configurations of the tunable parameters (shown in Table 1) of the RRT* path planning algorithm.
We performed simulations for all possible configurations of the independent parameters in their
feasible ranges. We collected 300 data points for each virtual world. A data point is an n-tuple
of the parameter configuration (res, sam, dim, obs_av), input environment (obs_den), HT, and PL
(parameters explained in Section 2.1). The input environment is captured in terms of the obstacle

Game Theory-based Parameter Tuning for Energy-Efficient Path Planning on Modern UAVs 15

density (obs_den) of the virtual world. For each simulation, the start and the end points were kept
the same so that the effect of changing the configurations can be accurately captured. To tackle the
uncertainty in the experiments, we find 10 paths and hover time values for every configuration
and use the average of these values as the final path length and hover time of the data point.

== Hover time
= Path length

RMSE (%)
o N & O ®

Fig. 12. RMSE comparison of dif- Fig. 13. RMSE comparison of dif- Fig. 14. RMSE comparison of dif-
ferent models for World 1 ferent models for World 2 ferent models for World 3

6.2 Curve Fitting: Hover Time and Path Length

The configuration parameters and the obstacle density together form the feature vectors of these
datapoints. To get the exact dependence of the flight data (HT and PL) on the feature vector, we
performed curve fitting. The curve fitting problem takes the collected data points as its input and
provides a trained predictor model as the output. The equation for this model is the fitted curve
that provides a relationship of the flight data with the configuration parameters and the input
environment. Here the idea is to consider 80% of the collected data points and fit the curve using
these points. We use the remaining 20% of the data points as the test points to test the accuracy
of the fitted curve. We use the root mean square error (RMSE) metric to quantify the error of
prediction.

All the data points are normalized using the min-max scaling technique (APIs present in Scikit-
learn [32]). Since two values (HT and PL) need to be predicted for each feature vector, this is
a multi-output regression problem. Figures 12, 13, and 14 show the comparison of five different
learning/regression techniques for three different virtual worlds. Our aim is to derive a mathematical
expression that relates the output to the inputs for the best learning technique. We achieve the
lowest root mean square error (RMSE) using the multi-layer perceptron (MLP) algorithm with
a Sigmoid-based activation function and 2 hidden layers, each having 10 neurons. It captures
nonlinear dependences well and fortunately, it is possible to represent its action quite easily in
mathematical terms as we shall see next.

6.3 Formulation of the Optimization Problem
minimize FlightEnergy = Epoper + Enor + Evision/ fDS
= Phover X HT + Ppop X FT + Pyision X (HT + FT)/ fps

6
=PhoverXHT+PhorXPL/Uh + Pyision X (HT+PL/Uh)/fps ()

As explained in Section 5.1, we solve the joint optimization problem, where the objective is to
minimize the total energy consumed, which includes the energy consumed in hovering, traveling a
certain path length, and running a vision algorithm as shown in Equation 6. The energy is then
written as a product of the corresponding power (obtained from the power model) and time. Here,
HT is the hover time, FT is the flight time to travel the distance from the source to the destination,
PL is the path length, Py;s;op, is the power consumed by the vision algorithm, and fps is the frame
rate. We scale the energy consumption of the vision algorithm by the frame rate because given
the choice of platforms with varying energy and execution time requirements, we need to choose

16 D. Moolchandani et al.

the one that does the maximum work for the same energy. If such a scaling factor is not used, the
choice will always be in favor of the most energy-efficient core, that is, the small core, which is
a biased result. Hence, we scale it by the frame rate. This ensures that for any vision algorithm,
the platform that processes maximum frames with the least energy consumption will be chosen.
Note that we have three different platforms and thus have three different values of Py;sion and fps,
where only one is ultimately chosen; the implemented optimization problem captures this fact with
integer constraints. This has not been shown for the sake of ease of readability.
5
st hi[i] = Zw;[i,j] o[j] +b1[i],Vi € [1,10]
j=1
hio[i] =1/(1 + e ") vi € [1,10]
10

h2[i] = Zw;[i,j] x hlo[j] + b2[i], Vi € [1,10]

= (7
h2o[i] =1/(1 + e "1y vi € [1,10]
10
h3[i] = Z wl i, j] = h2o[j] + b3[i], Vi € [1,2]
j=1
h3[1] - &, <HT < h3[1] + &
h3[2] - &, <PL < h3[2] +&,
1< HT < FT/2
dist(start,dest.) < PL < 2 = dist(start, dest.) ®
8

0.01 <o[1] <10
100 < v[2] < 5000
dist(start, dest.) < v[3] < 5 * dist(start, dest.)
0.1 <0[4] <0.5

Note that the horizontal motion is usually composed of three kinds of motions [39]: acceleration,
flight at constant velocity, and deceleration. Ideally, FT should have been replaced by the time taken
in these three phases as opposed to considering the time taken in only the constant velocity phase.
We do not consider the acceleration and the deceleration phases because those are necessary phases
to reach a constant velocity and to come back to a zero velocity, respectively. Thus, there is no scope
of energy minimization/reduction in these phases and hence we consider only the constant velocity
phase. The curve derived from the MLP formulation provides the equations for the constraints on
the tunable parameters of the RRT* path planning algorithm as shown in Equation 7.

Here (h1, h2, h3, hlo, h20) are the neurons in the hidden layers of the MLP. We use two hidden
layers and correspondingly three weight matrices (w1, wy, ws) and three bias vectors (b1, b2, b3)
from the input layer to k1, hlo to h2, and h20 to h3, respectively, where h3 is error-corrected to give
the outputs HT and PL. The input to the MLP is the feature vector v that captures the configuration
parameters and the input environment. Here, v = (res, sam, dim, obs_av, obs_den).

In Equation 7, the first constraint for the first hidden layer (h1) is the sum of the product of the
weights (w;) learned from curve fitting and the feature vector (v). A bias term (b1) is also added to
each neuron (h1[i]) of the hidden layer (h1). The second equation for hlo introduces a nonlinearity
in h1 using the Sigmoid activation function. The equations for the second hidden layer (h2) are
obtained similarly.

Game Theory-based Parameter Tuning for Energy-Efficient Path Planning on Modern UAVs 17

The output of the second hidden layer is multiplied by its corresponding weights to generate
the constraints on HT and PL. The equations for HT and PL capture the final regression output
along with the error margins: &, and ¢, (see Equation 8). The equations containing the Sigmoid
activation are expanded using the Taylor Series expansion of e™¥, which is 1 — l_y' + g—f - g—,j ...; hence,
the formulated optimization problem can have an approximate polynomial form (see Equations 6, 7,
and 8). The next two constraints on HT and PL ensure a good quality of the solution. Equation 8
shows the constraints on the feasible regions of all the configuration parameters: res (v[1]), sam
(v[2]), dim (v[3]), and obs_av (v[4]). These are obtained from experimental observations. We did not
find it useful to impose a constraint on the obstacle density (v[5]) because it is an environmental
parameter and can significantly vary based on the ambient. dist(start,dest.) is the Euclidean
distance between the start and the end points.

Additionally, we introduce a new constraint as shown in Equation 9. This constraint provides a
power cap to the objective function. Here, Pg,op. is the power cap for the 20in4 and 20in8 drones.
We obtain approximate values of the power cap for the two drones from our power modeling
experiments. Pg,ope is set such that it provides a feasible solution for all the vision algorithms.
For some vision algorithms, a tighter constraint on the power envelope is sufficient, while for
others such as SURF, a relaxed power constraint is necessary to provide feasible solutions of the
optimization problem. We apply this constraint only for experimentation to get an idea of the
variation of the flight statistics with Pg,ope.

Prover X HT + Ppor X PL/Uh + Pyision X (HT +PL/Uh)/fP3 < Pirone X (HT"'PL/Uh) (9)

6.4 Sensitivity to the Power Envelope (P onc)

Figures 15 and 16 show the sensitivity of the path length to the power cap (Pgrone) for the 20in4
and 20in8 drones, respectively. The platform is the big core for this experiment. In this experiment,
we perform a sensitivity analysis of the path length with the power constraint (see Equation 9). We
start with the constraint that provides a feasible solution for all the vision algorithms and keep on
relaxing it. Note that since this is a minimization problem, a less than constraint should not have
an effect on the optimal solution. However, we see some variation in the path length (and hence
the chosen configuration) as Pg,op. is increased. We observe that as Pgpope is increased from 560 W
to 1500 W or 800 W to 2000 W, the optimal configuration and hence the path length changes. This
is mainly because the search space increases with increasing Pgyon.. We observe fluctuating results
because of the non-convex search space and the tendency of solvers to get stuck in local minima.

8.35

83 8.30

8.25

-+ 530W
—-e- 600W
—+- 700W
+- 800W
-+ 1000W - +— .- 1200W
-+ 1500W 8.05 | P — / / - 1500W
+- NoConst 5\ N / —e- 2000W

8.00 \ // \\ / +- NoConst

8.2 8.20 - 800W
- 900W
8.1 815 - 1000W

8.10

Path length (m)
Path length (m)

s 7.95{ + ! ! Vo :
Al \4 < \g %
BRI AR SR RN AR P

Fig. 15. Sensitivity of path length to Pg,op. for Fig. 16. Sensitivity of path length to Py, for
the 20in4 drone the 20in8 drone

18 D. Moolchandani et al.

7 GAME THEORY

We show in Section 8 that solving the formulated optimization problem using a nonlinear solver
takes a prohibitive amount of time and sometimes even does not converge to a solution. Thus, we
propose to develop games where the tunable parameters of the RRT* path planning algorithm are
the players. We divide the parameters into dependent and independent parameters. The independent
parameters (shown in Table 1) are the players while the dependent parameters are used in conjunc-
tion with the independent parameters to formulate the payoffs of these players. This is because
the energy consumption of the drones is proportional to these dependent parameters (HT and PL).
Hence, if these parameters are not controlled judiciously, the energy consumption will be high.
Additionally, we take into account the energy consumption of the vision algorithm in formulating
the payoffs of these players. We do not consider the type of platform (for the vision algorithm) as a
player because it is unrelated to the flight statistics and hence would have acted as an indifferent
player. However, we realize that the energy consumption of the vision algorithm on a resource will
play an important role in determining the overall energy budget and hence it should be a part of
the payoff equations.

Our approach is to make the payoff of the players a function of two objectives: altruistic and selfish.
The altruistic objective of the players is to minimize the hover energy, the energy consumed
in traversing the path (of length PL), and the energy consumption of the vision algorithm. It is
negative in nature. The selfish objective of the players is proportional to the values of their
individual parameters. Thus, the payoffs of the players is a combination of maximization of the
selfish objective and minimization of the overall energy, given the map (specifically, obstacle density)
of the environment.

1.2 - 39 2.25
SN S I _ __ 2,00
g 10 B E 38 2 175004
2os o £ 37 ProeT £ 150 Wy
] e e 2 36 B 1251~y
204 £ 35 g 100 N
T o2 g € 34 s s
I I e 0s50f o TTTT=al S

33
10 20 30 40 50 60 70 80 90100
Number of obstacles

0
10 20 30 40 50 60 70 80 90 100
Number of obstacles

1 2 3 4 5 6 7 8 910
Resolution (m)

Fig. 19. Resolution of the path
v/s hover time

Fig. 17. No. of obstacles v/s hover Fig. 18. No. of obstacles v/s path
time length

7.1 Sensitivity Analyses

We performed the sensitivity analyses of the UAV flight (HT and PL) with respect to the parameters
of the path planning algorithm on an NVIDIA Xavier board (see Section 5 for the setup and details of
the experiments). We make the following relevant observations. Figure 17 shows the relationship of
the worst-case hover time with the number of obstacles present in the search space. The worst-case
hover time is when the UAV has to do re-planning at every obstacle. With an increase in the number
of obstacles, the congestion in the search space increases, thereby leading to a higher hover time.

Figure 18 shows the relationship of the length of the path with the number of obstacles, while
the source and destination for all the experimental points are kept the same. As the number of
obstacles increases, the number of free spaces to form a collision-free path reduces. Thus, the length
of the path increases because the planner has to take many detours.

If the resolution (step-size) of the path increases, the UAV takes larger steps in the direction of
the destination, thereby reducing the number of collision checks and replanning steps. Hence, the
hover time reduces. Figure 19 shows the relationship of the resolution with the hover time of the
UAV.

Game Theory-based Parameter Tuning for Energy-Efficient Path Planning on Modern UAVs 19

7.2 Game Setup

We developed a game with five players: number of samples (sam), obstacle avoidance distance
(obs_av), dimension of the search space (dim), resolution of the path (res), and the obstacle density
(obs_den). Here, the first four players are the tunable parameters of the path planning algorithm and
the obstacle density is the input to capture the nature of the world through which the navigation
is to be done. A higher obstacle density tries to reduce the payoff of the players by increasing
the hover time and the path length as observed in Figures 17 and 18. This in turn will negatively
affect the energy consumption of the vision algorithm, which will scale proportionally to the
power consumption of the algorithm on the underlying platform. However, a higher frame rate in
this scenario will find a shorter collision-free path. Hence, the payoff of the players will have the
energy consumption of the vision algorithm per unit frame capture rate as one of the terms with a
negative sign. Moreover, we have three types of platforms for the vision algorithms as explained
in Section 5.6. These platforms have varying performance and power requirements. While some
of them are high performing but energy-inefficient, others are not real-time but highly energy
efficient. Hence, scaling the energy consumption of the vision algorithm (Ey;sion) by the frame rate
(fps) will provide a fair decision in terms of the platform.

The complexity of the RRT* algorithm is directly proportional to the number of samples. Thus,
the decision time and hence the hover time increases with an increase in the number of samples.
The sam player would want to increase the number of samples to make a better decision, however
it wants to minimize the wasted energy. In this case, the wasted energy is equal to the hovering
energy, which is equal to the product of the hovering power and the hover time [12] (see Equation 1).
The payoff of the sam player is shown in Equation 10.

Payoff_sam = a * sam — Epoper — 0 * 0bs_den — B * Eyision/ fPS
= o * sam — Ppoper * HT — 0 % 0bs_den — B * Pyision ¥ (HT + PL/vp)/fps (10)

The obs_av player wants that the UAV should fly at a distance from the obstacles. Thus, it would
want to increase this distance; this would lead to an increase in the time for path planning and
increased path length. Moreover, there will be a nonlinear relationship with the path length owing
to the uncertainty in the sampling-based path planning algorithms and the vision algorithm will
require more energy. Hence, the payoff is captured in Equation 11, where E,; is the energy spent in
covering the path. It is equal to Ep,,, which is proportional to the horizontal velocity v;, and path
length PL as shown in Equation 5.

Payoff_obs =a’ % obs_av — y % PL*—

Epl — Epover — 0 * obs_den — ﬂ, * Evision/fps ()
11

=a’ % obs_av — y % PL*—
Pror % PL/vp — Phoger * HT — 6 % 0bs_den — B’ * Pyision * (HT + PL/vy)/ fps

The relationship of the hover time and resolution of the path planning step is accurately captured
in Figure 19. The hover time is a hyperbolic function of the resolution of the path. Thus, the res
player would want to decrease the resolution, still observe all the obstacles and form a collision-
free path, however the hovering energy would increase. Hence, the payoff can be captured using
Equation 12.

Payoff_res = a” [res — Epoyer — 0 * obs_den — B x Eyision/ fPs

12
a" [res — Ppoper * HT — 0 % obs_den — " * Pyision * (HT + PL/vp)/ fps (12)

20 D. Moolchandani et al.

As the dimension increases, the sample density reduces. This reduces the number of samples
to choose from for the next nearest node. Thus, the time spent in planning and hence hovering
increases. Due to the dispersed samples, the path length also increases. The relationship of the
dimension with the path length is nonlinear, however the exact relationship is hard to deduce. The
dim player would want to do the planning for a larger dimension, however it needs to minimize the
wasted energy as a result of increased hovering and increase in the path length (E,;). Equation 13
captures the payoff for the dim player.

Payoff_dim = a"" x dim —y' * PL" —
Ept = Ehover — 0 # obs_den — B x Euision/ fps
=a"" « dim -y % PL" -
Pror % PL/vp — Phoger * HT — 6 % 0bs_den — """ * Pyision * (HT + PL/vp,)/ fps

(13)

All the constants - the as, ys, s, and 0s — are the hyper-parameters of the game. We are using
the constant As in the equations involving PL because the exact function is not known. We however
experiment with different values of As and choose an appropriate value as we show next.

7.3 Choosing the Hyper-parameters

We experimented with multiple combinations of hyper-parameter values and found the correspond-
ing Nash equilibria (NE). It was observed that for all these experiments, the obtained NE were
non-trivial — at least one player played its non-trivial strategy. A trivial Nash equilibrium refers
to an equilibrium point where all the players play their dominant strategy (extrema in the range).
A non-trivial Nash equilibrium refers to a point where the players need to adjust their strategies
to non-dominant strategies based on the strategies played by the other players. We prefer the
hyper-parameter ranges for which the obtained NE parameter configuration is such that the overall
energy gets minimized. We found that the best ranges for the hyper-parameters are as € [0.1,0.5],
ys € [0.5,1], 6s € [0.5,1], As € [1,1.5], and Ss € [5, 10]. We found that if as are less than ys and 0s,
the above observation holds. Hence, the exact values of the hyper-parameters are not important.
For the final experiments, we set the hyper-parameters to the mid-points of their respective ranges.

In order to map the continuous range of the feasible values of the tunable parameters to a finite
number of distinct strategies of these parameters (parameters become the players), we discretize
the feasible range. After the Nash equilibrium is found, we get a unique strategy for all the players.
The granularity of discretization is found empirically with practical considerations in mind. We
found that discretizing sam at the granularity of 250 samples, dim at 5 X 5 X 5m?, res at 0.2 m, and
obs_av at 0.1 m gives the best results both in terms of the NE solution and the time taken to solve
the game.

8 RESULTS

We show two categories of results: standalone parameter tuning of RRT* and parameter tuning of
RRT* with computer vision algorithm. In the first type, we do not consider any vision algorithm that
is executing alongside the path planning algorithm. In the second case, we have a vision-assisted
drone and hence a vision algorithm runs alongside the path planning algorithm in an always-on
mode. We run both the IP-OPT solver and the Gambit solver on a BeagleBone Black Board. It
consists of an ARM Cortex-A8 processor clocked at 1 GHz, 4GB eMMC on-board flash storage, and
512 MB DDR3 RAM.

We first show the comparison of the two approaches for parameter tuning of RRT* path planning
algorithm in Section 8.1. We also show the comparison of the path lengths and hover times obtained
using the game theory-based configurations with the random configurations in Section 8.1.1. Next,

Game Theory-based Parameter Tuning for Energy-Efficient Path Planning on Modern UAVs 21

we compare the execution times of the optimization solver and the game theory solver on the
BeagleBone Black board in Section 8.2. We then show the path lengths and hover times obtained
by using game theory to jointly tune the parameters of RRT* and vision algorithm in Section 8.3.
Subsequently, we show the comparison of the two approaches for jointly tuning the parameters of
RRT* and vision algorithm in Section 8.4.

8.1 Comparison of Optimization-based and Game Theory-based Approaches for RRT*

We compare the hover time and the path length Tap|e 5. Comparison of optimization-based and
obtained using the optimization-based approach game theory-based approaches
and the game-theoretic approach for three differ-

. 1 . h Environment | Optimization Game Theory
ent virtual worlds. Figures 20, 21, and 22 show the HT (sec) | PL (m) | HIT (sec) | PL (m)
occupancy map of the three worlds used in the World 1 0.72 63 0.56 5.8
experiments. Table 5 shows the comparison of the World 2 0.4 >.7 029 | 524
World 3 0.5 83 0.4 7.9

hover time and the path length obtained using the
two approaches.

We observe from Table 5 that our game-theoretic T,p|e 6. Comparison of planning time (sec) for
approach provides solutions that are 5-21% better than random and best configurations
the best optimization-based approach. In terms of the

. . . . Players Random | Best | Improvement(%)
time taken to calculate the opt1mz?l.so¥ut10n, }t takes sam, res 19 208 =755
10 ms to compute the Nash Equilibrium using the sam, dim 6.15 471 234
Gambit solver. On the contrary, the IPOPT solver does res, dim 4.98 2.64 46.9
not converge to a solution in finite time. The numbers res, obs_av 2.3 1.2 4738
sam, dim, res 1.9 1.6 15.78

reported in Table 5 correspond to the results obtained start: (0, 0, 2); dest: (5.5, -2.0, 1.0)

by simplifying the search space of the optimization
problem. For the cases where IPOPT converges with the actual or reduced search space, it still takes
0.1 s to reach the solution, which is 10x slower than the time taken by Gambit. We also observe
that the values of the hover time and the path length for World 3 are more than that for World 2.
Both the worlds correspond to a forest, however the tree density is half in World 2 (0.1 trees/m?)
as compared to World 3 (0.2 trees/m?) as shown in Figures 21 and 22. A higher obstacle density
leads to higher congestion and hence the hover time increases, which is expected.

Fig. 20. 3D Occupancy map Fig. 21. 3D Occupancy map Fig. 22. 3D Occupancy map
and the planned path for for World 2 (tree density for World 3 (tree density
World 1 0.1 trees/m?) 0.2 trees/m?)

8.1.1 Comparison of Game Theory-based and Random Configurations for RRT”. In this section, we
show the results for World 1 (see Figure 20) by considering two to three parameters as the players
while the other parameters are assigned random values within their feasible ranges. Table 6 shows
a comparison of the planning time for the random and the best parameter configurations of these
players. The best configuration is the one that is provided by the game theory-based approach. We
observe a 15-57% improvement in the planning time.

22 D. Moolchandani et al.

8.2 Performance Comparison of Solvers on BeagleBone Black for RRT*+Vision

In the literature, it has been reported that with an increase in the number of players or strategies,
the time taken to calculate Nash Equilibria using the Gambit solver becomes prohibitive [25].
Nevertheless, this is not a problem for us because in the path planning algorithms, the number of
parameters and their ranges (strategies) are relatively small and finite [1, 7]. Thus, our solution is
scalable for a wide range of path planning algorithms for drone-based settings. We have a lot of
leeway.

We compare the time taken to solve an optimization problem using the IPOPT solver and the
Gambit game theory solver. We observe that the time taken to solve the optimization problem using
IPOPT is between 0.4 — 0.9 s. The time taken to solve the game theory problem is 0.05 — 0.07 s. For
the 2-player, 3-player, 4-player, and 5-player games, the approximate execution times are 0.01 — 0.03
s,0.02 — 0.035 s, 0.04 — 0.06 s, and 0.055 — 0.07 s, respectively. The corresponding execution times
for the IPOPT solver and the Gambit solver are an order of magnitude less on the desktop machine
(Intel Core i7 CPU @ 1.9 GHz); nevertheless the trends remain the same.

8.3 Results from the Game Theory-based Approach for RRT*+Vision

820 ———-——1\ —e- bigcore 8.25 -~ bigcore I"
Egis LU e SG“;S"TCZFQ £820(===y -+~ smallcore \
k= \ —er = -e- GPUT4 \
© 8.10 \ £ 8.15 \ P
8 gos \ g 810 \ S
5 oo = 8.05 \ ! \
&€ 8.00 NN 5 5.00 IR H \
‘ P -y S R S a o.
:><.:;_,,/<-\\‘ ~TT7 Lem e ,_>_:-::~,= __)_4
7.95 ~Nozo 7.95 ~J33-~2
L O \g < N & < G > < & &
S g S g N

Fig. 23. Path length for the 20in4

Fig. 24. Path length for the 20in8

drone drone
0.4251 ===3%

0.425 B 0420 TTTATTRTTA oA
T 0.420 o ARV
2 - £ 0415 Vi R)
£ 0415 —e- bigcore | = NN N
aq:) -e- smallcore % 0.410 AN N
g 0.410 -e- GPUT4 T Vouow A\
g 0.405 Voo e

0.405 t

L O o® & & O
SY O SN 94 ‘(~$

??\c)’ﬂ \3\00 OQ& ‘9\(‘(90?& C)q\‘\ \$$$ > X0 O 13\
Fig. 26. Hover time for the 20in8

Fig. 25. Hover time for the 20in4 drone
drone

Figures 23 and 24 show the path lengths corresponding to the optimal parameters chosen by
the Gambit game theory solver for the 20in4 and 20in8 drones, respectively. Similarly, Figures 25
and 26 show the hover times corresponding to the optimal parameters chosen by the Gambit game
theory solver for the 20in4 and 20in8 drones, respectively. We observe that the results are mixed
for both the drones. All the three platforms achieve the best path length and hover time for at least
one vision algorithm. However, a platform achieving a smaller hover time and path length does not
mean that the corresponding platform is optimal and is finally chosen. The payoffs of the players
contain many other variables, hover time and path length are just two of them. We shall see the
results corresponding to the chosen platform in the next section.

Game Theory-based Parameter Tuning for Energy-Efficient Path Planning on Modern UAVs 23

8.4 Comparison of Game Theory and Optimization-based Approaches for RRT"+Vision:
Gambit vs IPOPT

9 9
g1 E==me—msicmcqmmm=e==T T R dttmb ettt TR —C LS LELE
£’ £
= 6 = 6/
S =S
25 —e- optimization 2 51
24 —e- game theor 2 44
% 3 9 Y % 3] —e- optimization
<y &5l —-e&- game theory
1 1+
X o % L & e s Yxe o8 IR
R S NN SO A &€ L S &

Fig. 27. Path lengths for the 20in4 drone Fig. 28. Path lengths for the 20in8 drone
Figures 27 and 28 show the path lengths calculated using the optimization-based approach
and the game theory-based approach for the 20in4 and 20in8 drones, respectively. The results
are mixed. For nearly half of the vision algorithms, the optimization-based approach provides
better path length while for the other half, the reverse is true (the difference is minimal). The
maximum difference in the path lengths obtained by the optimal configurations found using the
optimization-based approach and game theory-based approach is 0.35 m and 0.45 m for the 20in4
and 20in8 drones, respectively. The baseline path length for the corresponding scenario is 8.1 m.
Hence, the two approaches are comparable in terms of finding the optimal solution, albeit the game
theory-based approach is 10x faster.
Table 7 shows the chosen platform for each type of Table 7. Best platform
vision algorithm. We observe that even if a platform min-

imizes the path length and hover time; it is not necessary | Algorithm g)?tzmlz;ot?";‘ o 4Gam2eOA -
oy o . P .. mn 1 n in
that it is ultimately chosen. This is because our optimiza- Tast BC | SC | BC | BC+SC
tion objective and payoffs are a combination of many HoG GPU | GPU | GPU | GPU
. : Orb SC | BC [SC+BC| BC

factors where path .length anq hover Flme are just tyvo of S R R e e
the many factors. Since there is sufficient variance in the Surf GPU | GPU | GPU | GPU
power and performance of these algorithms on different SVM GPU | GPU | BC [BC+GPU

latforms, thi ransl ryin h lengths an KNN GPU | GPU | GPU | GPU
platforms, this gets translated to varying path lengths and 5C 5 big core, SC = small core

hover times. We can say that our formulation is fair and is
not biased towards the platform with the lowest energy or the highest performance and is also not
biased towards a parameter configuration with the lowest path length or the lowest hover time. Our
payoffs favor those platforms and parameters for which the total energy gets minimized. It relies
heavily on the characteristics of the algorithm on the three platforms, and the characteristics of the
platform itself, which are captured in our payoffs. For the lowest energy point, the path length and
the hover time can either be the smallest or anywhere in between. This is natural because their
relationship is not linear. We also observe that for some algorithms, two platforms are very similar
and optimal. For example, for Fast, BC+SC is the chosen platform for the 20in8 drone. This implies
that both the platforms provide comparable payoffs and hence a mixed strategy can be played,
where any of the two platforms can be chosen.

9 THEORETICAL EQUIVALENCE OF GAME THEORY AND OPTIMIZATION PROBLEM

Until now we provided a lot of empirical justification of the equivalence of the game theoretic
formulation and the optimization problem. We now provide formal guarantees using the well-
established theory of potential functions. It is already well established that for non-cooperative
games, there always exists a mixed strategy Nash equilibrium [29]. The theory of potential functions

24 D. Moolchandani et al.

states that if we can design a specially defined potential function that follows some properties
corresponding to the game, then the potential function will be maximized when the game attains a
pure Nash equilibrium [15].

For all the functions, we evaluate the difference in payoffs and potential function if we vary the
strategy of just one parameter/player keeping the strategies of the rest of the parameters/players
the same. Let us refer to these differences as AP and A¢, respectively. Based on the relationship of
AP and Aphi, there can be five types of potential games [15]. Let us list a few prominent ones. If
AP = Aphi, then we have an exact potential game. If AP = w;A¢, then we have a weighted potential
game. Here, w; is a weight associated with the i*” parameter/player (one that is being varied). For
our formulation, the most relevant was the best-response potential game, which states that the
strategy of the i*" parameter/player that maximizes the corresponding payoff also maximizes the
potential (rest remaining the same). Regardless of the type of the potential function, the basic
guarantees are the same. Hence, it makes sense to define the potential function as a simple linear
function of the objective that needs to be optimized.

In our case, we found that if the potential function is defined as the negative of the energy spent
during a flight, then our game becomes a potential game. This formulation of the potential function
is just the negative of the optimization objective that we use in Section 6. In order to identify
the class that our potential function falls in, we performed analyses with the data collected from
Gazebo simulations. We found that the game is a best-response potential game, implying that the
strategy of a player that maximizes its payoff also maximizes the potential function, keeping the
strategies of other players constant.

We plot the relationship between different parameters such as the #obstacles and resolution with
the hover time and path length in Figures 17, 18, and 19. The hover time and path length determine
the overall energy. It is important to note that the relations are mostly piece-wise linear. This can
also be argued from the point of view of basic physics. For instance, if we increase the number
of obstacles, the path length will keep increasing (in a mostly piece-wise linear fashion). This is
because the number of free spaces to form a collision-free path will reduce and hence the planner
has to take many detours, resulting in a longer path length. If we have K obstacles, we expect to add
an additive constant O(K) (order of K) to our path length. Similarly, the congestion in the search
space increases with an increase in the number of obstacles leading to a higher hover time. The
worst case hover time would be when the planner has to do re-planning at every obstacle. We will
seldom have points of inversion, where more is better. Even if we do have such points, they will
mostly be localized noise. For other parameters such as the number of samples or the dimensions,
the relationships are mostly similar (sometimes they are more complex). For the resolution, there is
an inverse relationship. Given this property, the weighted potential functions seem to be the right
choice. However, we observed that the weights do not remain the same because the payoffs depend
on strategies of the players too, which in turn affect the hover time and/or path length. This implies
that with a change in the strategy of the player, either hover time or path length or both can change.
However, the potential is always a function of both the hover time and the path length. Hence, we
used the best-response potential function where the same parameter value maximizes both the
potential function and payoff. The reason it works in this case is because all our payoffs are set as
linear combinations of the parameter value and other objectives that it is linearly related to in its
neighborhood such as the overall energy or path length. Because of this simple combination, the
payoff increases or decreases monotonically with the potential function, that is, the overall energy.
This is exactly whey the best-response potential method works — both are maximized at the same
value.

Game Theory-based Parameter Tuning for Energy-Efficient Path Planning on Modern UAVs 25

2250 100

1750 80

60
1250

40

~
o
o

Divergence in dimension (m)

20

N
@
o

Divergence in the number of samples

»
X T / .
«* VN e o \‘_/'

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Strategy combinations Strategy combinations

»*ea o A s-ae - L R
% \ N,
/ A w NS B SEPLNANGER Y

o

Fig. 29. Divergence in the strategy of the sam Fig. 30. Divergence in the strategy of the dim
player player
Let us now conduct an experimental investigation to exhaustively verify this fact. We shall show

some of the representative results. Figures 29, 30, 31, and 32 show the divergence of the strategies
that maximize the potential function and payoff of the sam, dim, res, and obs players, respectively.
Here, divergence is defined as the absolute difference between the strategies that maximize the
potential function and the payoff of the corresponding player, respectively. The divergence is
defined as Divergence; = arg max,, Pi(p-i, pi) —arg max,, ¢ (p-i, pi). Formally, Divergence; is the
divergence of player i, P; is its payoff, and ¢ is the potential function. p_; denotes the strategies of
all the players except player i, and p; is the strategy of player i.

=4
@

e © © o »
o N » © o
o o
w kS

o ¢
IS
o
N

Divergence in the resolution (m)
o
0

Divergence in Obstacle avoidance distance (m)

031 ¢ poe o 1 e .
Vo b m n n anon ,?‘ "\ N
024 a4 h R e e R 014 ¢ .
’ e 1 41l n NPT 10 e best 1 i b
Mt A P M noyaas! \ n il i
0.1 L B ST ST Y L i A i
00 I WS W WS W VR 00l 4k i .
. oo
0 10 20 30 40 50 0 10 20 30 40 50 60 70
Strategy combinations Strategy combinations

Fig. 31. Divergence in the strategy of the res Fig. 32. Divergence in the strategy of the obs
player player
In all the figures, the maximum range of the y-axis is the maximum feasible value that can

be taken by the respective divergence. Hence, we should interpret the plots as a set of relative
values. We observe that for the dim and obs players, the divergence is mostly zero, indicating that
it is the best-response potential game. For the other two players, the divergence is still relatively
a very small quantity. Hence, our formulated game is an approximate best-response potential
game, where the potential function is derived from the optimization objective. Given that we are
modeling a practical system, we cannot expect ideal conditions to prevail. Hence, within these
realistic limitations, the two formulations are equivalent.

10 CONCLUSION

In this paper, we propose a very novel solution to the parameter tuning problem for path planning
algorithms used in UAVs. A path planning algorithm has many tunable parameters that play a
significant role in deciding the overall length of the planned path. Additionally, several computer
vision algorithms run on drones that are application specific, and sometimes assist in navigation.

26 D. Moolchandani et al.

Hence, the overall parameter space is huge, comprising the parameters of the path planning
algorithms, vision algorithms, and choice of hardware (if there is any). Instead of solving this
problem using traditional Al-enhanced optimization-based approaches, we take a diametrically
different approach; we propose to convert a regular nonlinear optimization problem to a game, and
quickly find the set of equilibrium strategies for the game. This gave us a 10X speedup without
compromising on the quality of the solution. This work has broad implications beyond the scope of
the current problem. This is the first paper to provide a novel, formal methodology to quickly solve
complex joint optimization problems that usually arise in cyber-physical systems by converting
them to equivalent non-traditional games. This approach has a lot of scope across all cyberphysical
system domains.

The future work involves obtaining a better power model using the real-world drone data for
many different environments and drone types. In a UAV pipeline, there are multiple tasks that
execute concurrently. This work can be further extended to tune the parameters of the UAV pipeline
that includes a choice of multiple algorithms and platforms for each of these concurrent tasks.
Another useful direction could be to incorporate the dynamically changing obstacle density (in
case of moving obstacles) in the formulation.

REFERENCES

[1] Bulat Abbyasov, Roman Lavrenov, Aufar Zakiev, Konstantin Yakovlev, Mikhail Svinin, and Evgeni Magid. 2020.
Automatic tool for gazebo world construction: from a grayscale image to a 3d solid model. In ICRA. IEEE, 7226-7232.

[2] Hasini Viranga Abeywickrama, Beeshanga Abewardana Jayawickrama, Ying He, and Eryk Dutkiewicz. 2018. Compre-
hensive energy consumption model for unmanned aerial vehicles, based on empirical studies of battery performance.
IEEE Access 6 (2018), 58383-58394.

[3] Logan DR Beal, Daniel C Hill, R Abraham Martin, and John D Hedengren. 2018. Gekko optimization suite. Processes 6,
8 (2018), 106.

[4] Behzad Boroujerdian, Hasan Genc, Srivatsan Krishnan, Wenzhi Cui, Aleksandra Faust, and Vijay Reddi. 2018. Mavbench:
Micro aerial vehicle benchmarking. In MICRO. IEEE, 894-907.

[5] Behzad Boroujerdian, Hasan Genc, Srivatsan Krishnan, Bardienus Pieter Duisterhof, Brian Plancher, Kayvan Man-
soorshahi, Marcelino Almeida, Wenzhi Cui, Aleksandra Faust, and Vijay Janapa Reddi. 2019. The Role of Compute in
Autonomous Aerial Vehicles. arXiv preprint arXiv:1906.10513 (2019).

[6] Ruben Burger, Mukunda Bharatheesha, Marc van Eert, and Robert Babuska. 2017. Automated tuning and configuration
of path planning algorithms. In ICRA. IEEE, 4371-4376.

[7] José Cano, Yiming Yang, Bruno Bodin, Vijay Nagarajan, and Michael O’Boyle. 2018. Automatic Parameter Tuning of

Motion Planning Algorithms. In IROS. IEEE, 8103-8109.

Daizhan Cheng and Zequn Liu. 2020. Optimization via game theoretic control. National Science Review (2020).

Sayak Ray Chowdhury. 2015. A Game Theoretic Approach to Robust Optimization. Ph.D. Dissertation. Indian Institute

of Science Bangalore.

[10] Jason Clemons, Haishan Zhu, Silvio Savarese, and Todd Austin. 2011. MEVBench: A mobile computer vision bench-
marking suite. In Workload Characterization (IISWC), 2011 IEEE International Symposium on. IEEE, 91-102.

[11] Nvidia Corp. [n.d.]. NVIDIA TURING GPU ARCHITECTURE.

[12] Carmelo Di Franco and Giorgio Buttazzo. 2015. Energy-aware coverage path planning of UAVs. In ICARSC. IEEE,
111-117.

[13] Damion D Dunlap, Charmane V Caldwell, Emmanuel G Collins, et al. 2011. Motion planning for mobile robots via
sampling-based model predictive optimization. Recent advances in mobile robotics 1 (2011).

[14] FAA. [n.d.]. Fact Sheet — FAA Forecast—Fiscals Years 2016-37.

[15] David Gonzalez-Sanchez and Onésimo Hernandez-Lerma. 2016. A survey of static and dynamic potential games.
Science China Mathematics 59, 11 (2016), 2075-2102.

[16] Ramyad Hadidi, Bahar Asgari, Sam Jijina, Adriana Amyette, Nima Shoghi, and Hyesoon Kim. 2021. Quantifying the
design-space tradeoffs in autonomous drones. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. 661-673.

[17] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequential model-based optimization for general
algorithm configuration. In LION. Springer, 507-523.

[18] Marco Alberto Javarone. 2017. Solving optimization problems by the public goods game. The European Physical Journal
B 90, 9 (2017), 1-7.

—_ —
O oo
—_

Game Theory-based Parameter Tuning for Energy-Efficient Path Planning on Modern UAVs 27

[19]

[20]

[21]

[22]
[23]
[24]
[25]
[26]
[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]
[35]

[36]
[37]

[38]
[39

—

[40]
[41]

[42]

Yao Ji, Chao Dong, Xiaojun Zhu, and Qihui Wu. 2019. Fair-energy trajectory planning for multi-target positioning
based on cooperative unmanned aerial vehicles. IEEE Access 8 (2019), 9782-9795.

Geesara Kulathunga, Dmitry Devitt, Roman Fedorenko, Sergei Savin, and Alexandr Klimchik. 2020. Path planning
followed by kinodynamic smoothing for multirotor aerial vehicles (mavs). In 2020 International Conference Nonlinearity,
Information and Robotics (NIR). IEEE, 1-7.

Cédric Leboucher, Hyo-Sang Shin, Rachid Chelouah, Stéphane Le Ménec, Patrick Siarry, Mathias Formoso, Anto-
nios Tsourdos, and Alexandre Kotenkoff. 2018. An enhanced particle swarm optimization method integrated with
evolutionary game theory. IEEE Transactions on Games 10, 2 (2018), 221-230.

Zhilong Liu, Raja Sengupta, and Alex Kurzhanskiy. 2017. A power consumption model for multi-rotor small unmanned
aircraft systems. In 2017 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 310-315.

Jingru Luo and Kris Hauser. 2014. An empirical study of optimal motion planning. In IROS. IEEE, 1761-1768.

Kotaro Maekawa, Shunsuke Negoro, Ittetsu Taniguchi, and Hiroyuki Tomiyama. 2017. Power measurement and
modeling of quadcopters on horizontal flight. In 2017 Fifth International Symposium on Computing and Networking
(CANDAR). IEEE, 326-329.

McKelvey, Richard D., McLennan, Andrew M., and Theodore L. Turocy. [n.d.]. Gambit: Software Tools for Game Theory,
Version 15.1.1.

Rui Meng, Ye Ye, and Neng-gang Xie. 2010. Multi-objective optimization design methods based on game theory. In
WCICA. IEEE, 2220-2227.

Diksha Moolchandani, Anshul Kumar, José F Martinez, and Smruti R Sarangi. 2020. VisSched: An Auction-Based
Scheduler for Vision Workloads on Heterogeneous Processors. IEEE TCAD 39, 11 (2020), 4252-4265.

Diksha Moolchandani, Geesara Prathap, Ilya Afanasyev, Anshul Kumar, Manuel Mazzara, and Smruti R Sarangi. 2021.
Game Theory-based Parameter-Tuning for Path Planning of UAVs. In 2021 34th International Conference on VLSI Design
and 2021 20th International Conference on Embedded Systems (VLSID). IEEE, 187-192.

John F Nash Jr. 1950. Equilibrium points in n-person games. Proceedings of the national academy of sciences 36, 1 (1950),
48-49.

Helen Oleynikova, Michael Burri, Zachary Taylor, Juan Nieto, Roland Siegwart, and Enric Galceran. 2016. Continuous-
time trajectory optimization for online UAV replanning. In IROS. IEEE, 5332-5339.

Sanaa Oulaourf, Abdelfatteh Haidine, and Hassan Ouahmane. 2016. Review on using game theory in resource allocation
for LTE/LTE-advanced. In 2016 International Conference on Advanced Communication Systems and Information Security
(ACOSIS). IEEE, 1-7.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.
Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. JMLR 12 (2011), 2825-2830.

Alex S Prasetia, Rong-Jong Wai, Yi-Lun Wen, and Yu-Kai Wang. 2019. Mission-based energy consumption prediction
of multirotor uav. IEEE Access 7 (2019), 33055-33063.

Grand View Research. [n.d.]. Commercial Drone Market Size, Share, and Trends Analysis.

Hazem Sallouha, Mohammad Mahdi Azari, and Sofie Pollin. 2018. Energy-constrained UAV trajectory design for
ground node localization. In 2018 IEEE Global Communications Conference (GLOBECOM). IEEE, 1-7.

Smruti R Sarangi, Rajshekar Kalayappan, Prathmesh Kallurkar, Seep Goel, and Eldhose Peter. 2015. Tejas: A java based
versatile micro-architectural simulator. In PATMOS. IEEE.

Mohammad Karim Sohrabi and Hossein Azgomi. 2020. A survey on the combined use of optimization methods and
game theory. Archives of Computational Methods in Engineering 27, 1 (2020), 59-80.

ArduPilot Dev Team. [n.d.]. Ardu Copter, Copter Home. http://ardupilot.org/copter/. Accessed: 2021-06-15.
ArduPilot Dev Team. [n.d.]. Mission Planner, Mission Planner Home. http://ardupilot.org/planner/index.html. Accessed:
2021-06-15.

Andreas Wichter and Lorenz T Biegler. 2006. On the implementation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical programming 106, 1 (2006), 25-57.

Fengjie Xu, Guolai Yang, Zixuan Li, Liqun Wang, and Quanzhao Sun. 2021. Electromagnetic buffer optimization based
on Nash game. Acta Mechanica Sinica (2021), 1.

Liang Yang, Juntong Qi, Jizhong Xiao, and Xia Yong. 2014. A literature review of UAV 3D path planning. In WCICA.
IEEE, 2376-2381.

http://ardupilot.org/copter/
http://ardupilot.org/planner/index.html

	Abstract
	1 Introduction
	2 Background
	2.1 Navigation in UAVs
	2.2 Game Theory Preliminaries
	2.3 Relating Optimization Problems to Game Theory

	3 Related Work
	3.1 Parameter Tuning
	3.2 Power Modeling

	4 Modeling the Energy Consumption of UAVs
	4.1 Experimental Setup
	4.2 Data Collection
	4.3 Data Pre-processing
	4.4 Quantification and Modeling
	4.5 Accuracy Comparison of Different Power Models

	5 Experimental Setup
	5.1 Overview
	5.2 Setup for Sensitivity Analyses
	5.3 Gazebo and Rviz for UAV Simulation
	5.4 Creation of Virtual Worlds
	5.5 IPOPT and AMPL
	5.6 Setup for Measuring the Power and Performance of Vision Algorithms

	6 Formulation of the Optimization Problem
	6.1 Collection of Data Points
	6.2 Curve Fitting: Hover Time and Path Length
	6.3 Formulation of the Optimization Problem
	6.4 Sensitivity to the Power Envelope (Pdrone)

	7 Game Theory
	7.1 Sensitivity Analyses
	7.2 Game Setup
	7.3 Choosing the Hyper-parameters

	8 Results
	8.1 Comparison of Optimization-based and Game Theory-based Approaches for RRT*
	8.2 Performance Comparison of Solvers on BeagleBone Black for RRT*+Vision
	8.3 Results from the Game Theory-based Approach for RRT*+Vision
	8.4 Comparison of Game Theory and Optimization-based Approaches for RRT*+Vision: Gambit vs IPOPT

	9 Theoretical Equivalence of Game Theory and Optimization Problem
	10 Conclusion
	References

