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Abstract—Novel applications such as micro-blogging and
algorithmic trading typically place a very high load on the
underlying storage system. They are characterized by a stream
of very short requests, and thus they require a very high
I/O throughput. The traditional solution for supporting such
applications is to use an array of hard disks. With the advent
of solid state drives (SSDs), storage vendors are increasingly
preferring them because their I/O throughput can scale up to
a million IOPS (I/O operations per second). In this paper, we
design a family of algorithms, RADIR, to schedule requests for
such systems. Our algorithms are lock-free/wait-free, lineariz-
able, and take the characteristics of requests into account such
as the deadlines, request sizes, dependences, and the amount
of available redundancy in RAID configurations. We perform
simulations with workloads derived from traces provided by
Microsoft and demonstrate a scheduling throughput of 900K
IOPS on a 64 thread Intel server. Our algorithms are 2-3 orders
of magnitude faster than the versions that use locks. We show
detailed results for the effect of deadlines, request sizes, and
the effect of RAID levels on the quality of the schedule.

Keywords-Flash bandwidth, resource allocation model, lock-
free, wait-free, I/O scheduling

I. INTRODUCTION

At the moment, there are two disruptive changes happen-
ing in the world of storage systems and software. The first
is that there is an increasing shift towards SSDs (solid state
drives) that are significantly faster than conventional hard
drives. The second is that a new class of applications such
as micro-blogging and algorithmic trading have emerged,
which have very small requests yet require very high
throughput. In other words, very soon most storage systems
will have extremely high throughput storage devices, and
applications to utilize them. Hence, it is necessary to work
on vital pieces of the storage platform today such that we can
support the software and hardware of tomorrow. In response
to these requirements, researchers have proposed a set of
platforms that are explicitly tailored for such applications,
which are characterized by a fast stream of small requests.

Some of the notable platforms in this space are Spar-
row [1], Dremel [2], Spark [3], and Impala [4]. Additionally,
research by Ousterhout et. al. [1, 5] has indicated that by
dividing a large Facebook job into many small fragments,
it is possible to improve the response time by 5.2X using
the Spark [3] framework. This gives us one more additional
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incentive to consider the problem of designing fast storage
platforms for supporting such novel workloads with very
short jobs on ultra-high throughput SSDs. In specific, we
focus on designing a high throughput scheduler for such
platforms in this paper.

Till now, the scheduler was not a bottleneck because the
system as a whole was not constrained by the scheduling
throughput or latency. The I/O throughput was a bigger
bottleneck. Modern hard disks can at the most service 10-
20k IOPS (I/0 operations per second) for 100% sequential
reads and it drops down to 100 IOPS if there are random
reads and writes. Conventional lock based schedulers suffice
in this case. In fact, we shall show in Section V that
conventional schedulers can scale till 200k IOPS. However,
enterprise class SSDs and rack mount SSDs (with DRAM
based caches) are an order of magnitude faster than hard
drives. Some of the fastest SSD drives being designed
today such as Fusion I/O’s ioDrive Octal can support up
to a million IOPS for small requests. Figure 1 summarizes
the I/O throughput of different devices. We can observe a



spectrum of devices that have throughputs between 500k
IOPS to 1 million IOPS. Supporting these devices is well
beyond the means of conventional scheduling techniques
(refer to Section V), and thus a more scalable solution is
required.

First, let us try to understand why conventional solutions
fail to scale beyond 200k IOPS in our testbed. Most con-
ventional solutions typically export a schedule function that
is used by multiple threads to schedule their requests for a
set of storage drives. There is some state associated with
each device that records the time intervals in the future that
it is already reserved for. The scheduler needs to find a
free interval, and schedule the current request. We term this
state as the reservation record. In current approaches the
code to modify the reservation record of a storage drive is
encapsulated in a critical section. This is because the data
structure to store the reservation record has hitherto between
sequential. Now, the main sources of delay are the time it
takes to acquire the lock, and the time it takes to modify the
reservation record. Even with highly scalable locks such as
the MCS or Fast-Path lock [6], the critical path of the process
of acquiring the lock scales superlinearly [6]. Secondly, the
reservation record cannot be modified concurrently, and thus
it is a sequential bottleneck.

A. Parallel Slot Schedulers

To genuinely satisfy our requirements of having a sched-
uler that schedules roughly a million requests per second, it
is necessary to remove the lock, and parallelize the process
of updating the reservation record. There is some related
work in this area [7], which proposes to use slot schedulers
that allow multiple threads to schedule requests in parallel.
A slot scheduler divides time into discrete quanta called slots
and reserves a certain a number of slots for each request.
Having the notion of slots helps convey an implicit notion
of timing across the threads, and helps threads effectively
synchronize with each other. However, slot schedulers such
as the non-blocking scheduler proposed by Aggarwal et.
al. [7] do not take the characteristics of requests into account
such as their duration, dependencies, deadlines, and amount
of available redundancy. This is because any single thread
has limited visibility of all the tasks in the system, and
because of the rapid entry and exit of tasks, the system is
very dynamic and rapidly changing. It is difficult to optimize
the schedule in this scenario.

In this paper, we try to balance both the goals (time
and quality of the schedule) by designing a parallel non-
blocking slot scheduler, which explicitly takes the nature
of tasks into account. We extend the parallel non-blocking
slot scheduling algorithms developed by Aggarwal et. al. [7]
and evaluate their feasibility for SSDs with different RAID
configurations.

A slot scheduler divides time into discrete quanta called
slots. We represent the time associated with a single port
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Figure 2: The Resource allocation model

storage device as a 1-dimensional array, where each cell
represents a time-slot. A cell can either be reserved or free.
Each process that wishes to access the storage device first
tries to reserve the bandwidth for a specified number of slots.
Figure 2, generalizes the idea to a matrix of slots (also
known as the Ousterhout matrix [8]). Here, the columns
represent slots, and the rows represent ports of a set of
storage devices. To realize a request, we typically need to
reserve a sequence of contiguous slots.

We propose, implement, and evaluate a request scheduling
layer for storage devices called RADIR. It provides a parallel
and linearizable data structure for the reservation record,
disk RevRec, which provides lock-free and wait-free guar-
antees. Each flash drive has its dedicated diskRevRec data
structure to record its requirements. Each request specifies
the time for which it wants to access the resource in terms
of the number of slots, the starting slot number and the time
by which the request should be scheduled (slot-deadline). In
the case of RAID 1, a request can be fulfilled by reserving
slots in a set of redundant disks. We demonstrate that we
can sustain a request throughput of 800-900K IOPS with
commercial I/O traces.

II. BACKGROUND AND RELATED WORK
A. Scheduling

Most resource management schemes that optimally allo-
cate resources, and try to minimize the makespan, energy
consumed, or average execution time are known to be NP-
complete [9]. Nevertheless, there are very effective heuristics
for scheduling problems in general, and for storage drives
in specific [10, 11]. Several scheduling methods are known
for optimizing data retrieval and storage operations in disk
drives [12, 13, 14]. Most of these sequential methods [15]
rely on one request queue per disk, which uses locks. Sec-
ondly, the time to process all the jobs and their requirements,
and to compute an optimal schedule is prohibitive for very
short jobs [5]. Sadly, these I/O schedulers are not effective
for SSDs because they have a different model of operation.
Traditional I/O schedulers optimized for HDDs have been



retuned for SSDs [16, 17, 18, 19]. These schedulers are
generally designed to reduce random write operations and
not focus on the fairness and throughput of the scheduler.
SSDs are organized into multiple banks that can be in-
dependently accessed [20]. It is possible to have a large
amount of parallelization within the drive itself. We need
a high throughput scheduler which considers the internal
parallelism of the flash drives also.

For scheduling lots of tiny tasks, the reservation records
have to export a very simple interface to threads such that
we can minimize the time it takes to schedule a request. Slot
based schedulers fit this category, and have been widely dis-
cussed in the storage literature [17, 21, 22, 23, 24, 25, 26].
By making time a discrete quantity, we can make the design
of the scheduler more efficient and elegant (similar to the
way paging helps in managing virtual memory). The authors
of [21](Argon) argue that having the notion of slots also
helps in maintaining fairness across the threads. Unfortu-
nately, similar to paging in virtual memory, slot scheduling
also suffers from the problem of internal fragmentation.
However, if the size of the slot is chosen appropriately [21],
this can be minimized.

B. Non-blocking Slot Schedulers

Aggarwal et al. [7] were the first to propose a parallel
slot scheduler that did not use locks. It was shown to be at
least 10X faster than conventional solutions. Our aim in this
paper is to make it storage aware. Let us briefly introduce
their contributions in this section.

In their slot scheduler, multiple threads place requests for
a given number of contiguous slots. Each request specifies
the starting time slot (startSlot), and the number of slots
it requires. The lock-free implementation guarantees that
regardless of the contention caused by concurrent processes,
always at least one request makes progress. However, there is
a risk of starvation. The wait-free implementation prohibits
starvation because it guarantees that a request completes
its computation in a finite number of steps, regardless of
the behavior of other requests. This is achieved by making
threads with newer requests help older requests to complete.

Their basic approach is as follows. At the outset, a thread
t tries to temporarily reserve the first slot that is closest
to startSlot. Next, t continues to temporarily reserve the
required number of slots in consecutive columns of the slot
array. When the thread ¢ finishes doing so, it changes the
state of the request, and makes the reservation permanent.
After this operation is over, the thread collates and returns
the list of slots allotted. It is possible that while the request is
temporarily reserving slots it might get cancelled by another
request, or it might not be able to reserve slots because they
have already been committed to another request. In this case,
the request needs to wind up its state, and start anew.

In spite of all of this complexity, they guarantee the
strictest form of consistency in concurrent systems — lin-

earizability [27]. A method call is said to be linearizable if
it appears to execute instantaneously between its invocation
and completion. We extend this slot scheduler and make it
aware of dependencies, deadlines, request lengths, priorities,
and RAID levels. Additionally, we provide generic mecha-
nisms to take into account the page/block copy operations
in SSD drives.

III. BANDWIDTH ALLOCATION MODEL FOR 1/0
SCHEDULING

A. Request Parameters

Our aim is to schedule higher priority requests, among
a set of concurrent requests. We propose a set of heuris-
tics, which are considered in the scheduling process. The
heuristics consider: (i) deadline of a request, (ii) request size,
(iii) number of requests depending on a given request, (iv)
request type and (v) preferential writes to blocks. Next, we
discuss each of these heuristics and their role in dynamically
updating the priorities of the requests placed by the various
processes.

1) Deadline of a Request: There are many real time
applications that have deadline constraints. For example,
a military radar application may need to retrieve radar
signatures of aircrafts from a storage device, or a stock
market software may need to finish a trade by a certain
deadline. In our scheduling logic, the concurrent requests
are prioritized depending upon their deadlines similar to
the Earliest Deadline First (EDF) [28] scheduling paradigm.
Deadlines are specified in terms of time slots. We service
a request with lower priority only if serving this request
is not going to violate the deadline constraints of a higher
priority request. However, if this is not the case, then the
lower priority request is cancelled and scheduler later.

2) Request Size: The processing time of a request is
equal to the number of slots it requires. This is depen-
dent on two factors. The first is the amount of data that
needs to be read or written. We sometimes may need to
insert some extra time slots, called dummySiots, to take
write amplification into account (copy-erase operations). In
our algorithm, the variable diskSlots is the sum of the
requestSize (original number of slots requested) and the
number of dummySlots required. If a request requires more
than 24 slots for reading/writing, we classify this request as
a long request. The rest are short requests. Short requests
are preferred over long requests if doing so does not result
in a long request missing its deadline. However, this can
lead to starvation for the long request. To keep starvation in
control, we introduce a ROLLBACKLIMIT to limit the number
of times a request can be cancelled by other requests.
Every time a request is cancelled by some other request,
its priority is increased. Once the cancellation count for a
request req reaches the ROLLBACKLIMIT, then other threads
help to complete the request.



3) Dependent Requests: Sometimes, I/O accesses have
dependences between them. We explicitly model the notion
of a request packet, which consists of a set of requests
arranged as a directed acyclic graph (DAG). For example, in
the case of RAID 5, a write operation can be broken down
into 4 requests: read original block, read parity block, write
to the original block, and write to the parity block. Figure 3
shows the dependences.

4) Request Type: Flash writes are often substantially
slower than reads and a reader may experience excessive
slow-down, when other concurrent writes are present. There-
fore most storage system prioritize reads over writes because
reads are typically on the critical path. We can trivially
model this by increasing the priority of reads. Again to avoid
starvation, we gradually increase the priority of writes such
that they will ultimately have a higher priority than reads.

5) Block Preferential Writes: In flash drives writing to a
new block imposes significant penalty. A scheduler should
aim at minimizing the number of writes to a new block [19].
This is achieved by giving higher priority to the requests that
are in the same block as the previous request.

B. Redundant Disk Arrays

It is possible that the data is distributed across the drives as
in the case of RAID levels. Let us consider a highly reliable
system where drive;, drives and drives are redundant
(RAID 1). In such a scenario a read request can be served
from multiple disks. We term such type of requests as
Snake Requests. In this case a single request for process
Ps requesting for 7 time slots can be scheduled as shown
in Figure 4. In the case of a RAID 5 implementation, a write
request needs to write its data to a particular block as well as
update the parity block. Such a request needs to reserve time
slots at two drives for the same duration. We term such type
of requests as thick requests. As shown in Figure 4, drives
4, 5 and 6 are connected in a RAID 5 configuration. Process
P, reserves slots for both drives 4 and 6 — one for writing
the data and the other for updating the parity.

C. Dummy Slots

Data within the SSDs needs to be erased before the blocks
can be used for new writes. As a result, most SSDs employ
copy-on-write mechanisms and remap blocks through the
Flash Translation Layer (FTL). FTL also performs garbage
collection, which issues many reads and writes internally. To
take into account these additional copy-erase operations for
wear levelling and mitigating read disturbance, a request oc-
casionally might need some extra time slots, called dummy
slots.

D. Load Balancing

For drives with redundant configurations (RAID 1), we
maintain the notion of a load factor. We try to balance the
usage across the drives such that flash blocks take longer to
wear out.

IV. DESIGN AND IMPLEMENTATION
A. Data Structures

We maintain the schedule of the various incoming re-
quests in a 1 dimensional array, diskRevRec. Each cell in
this array can be in one of the following states: VACANT,
TRANSIENT and RESERVED.

The vAacaNT state means that the slot is free and a request
can be scheduled in it. The TRANSIENT state refers to a tempo-
rary reservation made by some thread, and the RESERVED state
indicates that the slot is permanently booked. Figure 5 shows
the information saved in the slot for each state. The REQUEST
array is an array of atomic object references indexed by the
thread id. In the REQUEST array, each thread places its request
to reserve flash bandwidth. Each index of REQUEST has the
following fields: requestType — read or write, startSlot
— starting slot number beyond which the request needs to be
scheduled, start Addr — starting address of the block in the
storage device, slotDeadline — the largest possible value
of the starting slot, reqSize — request size, depLisLen —
the number of requests depending on the request. The field,
iterationState, maintains the current phase of the request.
A request has broadly four phases which are: INIT, TEMP, PERM
and FINISH (explained in Section IV-B).

The priority of the request is saved in the field, priority.
reservationPath and diskNumber are used for the case
of redundant drives. The slots currently reserved by a request
are saved in the array, reservationPath. It has diskSlots
entries. In case there is only one flash drive, we need to
only record the first slot reserved by a request, and thus we
save it in slotAllocated. The rest of the time-slots that are
reserved are the next consecutive diskSlots-1 slots. We use
the variable, diskSlots to represent the number of time-
slots for which a drive is to be reserved for a particular
request. Globally, we maintain the load factor loadFactor
and the last blocked written (lastBlockAccessed) of each
drive in an array. Apart from this we also maintain the list
of redundant drives.

B. Reserve Operation

In the lock-free algorithm, a thread iteratively reserves
slots for itself. Whenever a thread collides with any other
thread, it either decides to overwrite that thread’s booking
or help that thread in completing its request. Whereas, in
the wait-free algorithm, a thread begins its operation by
first helping all the slow threads, which have placed their
request and then it proceeds with its own request [7]. We
mainly focus on the case when there is no redundancy
and the schedule is generated for each drive separately.
The flash bandwidth is reserved by placing a new request
in the miT phase. In this phase a thread (¢) temporarily
reserves a slot in the diskRevRec array with the help of
the function reserveSlots (explained in Section A-1). On
successfully reserving the first slot, the request moves to
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class Request {

final int requestType,
final int startSlot,
final int threadlId,

final int request_size,
final int slotDeadline,
final int deplList,

final int startAddr,
AtomicLong slotAllocated,
AtomicLong iterationState,
AtomicInteger priority,
AtomicLong [] reservationPath,

AtomicInteger diskNumber

Figure 6: The Request class

the TEMP phase. In the TEMP phase, the remaining slots are
reserved temporarily. Once it finishes doing so, the request
moves to the PERM phase. In this phase the reservation made
by the thread (or by some other helper on its behalf) is made
permanent. For lack of space, we do not show the code
for this operation and its proof of linearizability (interested
readers can look at the associated technical report [29]).
Next, we explain how the slots are reserved by a thread
and the methods for assigning and updating priorities.

1) Reserve Slots: We start by explaining how a slot in the
disk RevRec array is reserved by a thread, which currently
has highest priority among all the contending threads. This
method accepts four parameters - request(req) of a thread ¢,
the current slot to reserve currSlot, current round round of
the request and the phase of the request reqState. In case
their are redundant drives, first we find the drive (minDisk)
which requires the minimum number of dummy slots and
also has least load factor. This is done with the help of the
method get MinDiskSlot. Once we have the desired drive,
depending upon the status of the slot (currSlot) in that drive
we execute the corresponding switch-case statement. round
indicates the iteration of a request. It is used to synchronize
all helpers of a request [7]. If the slot is in the VACANT state,
we try to temporarily reserve the slot and change the state
of the slot from VACANT to TRANSIENT (Line 9) and update the
load factor of the drive minDisk.

Next, we discuss the case when the state of the slot
is TRANSIENT. It indicates that some thread has temporarily
reserved the currSlot slot. If the thread id saved in the

Snake .
7l request Slot no. Thread id Round State

10 bits
TRANSIENT: #slots
already marked
RESERVED: #slots
to be marked

10 bits
(owner)

10 bits
(iteration
number)

2 bits
00 -> VACANT
01 -> TRANSIENT
10 -> RESERVED

Figure 5: Slot state

Figure 4: Various request types

slot is the same as that of the request req (Line 16), we
simply return and read the phase of the request again.
Otherwise, the slot is temporarily reserved by some other
thread for another request, other Req. Now, we have two
requests req and otherReq contending for the same slot
currSlot in the drive minDisk. If the priority of the
request req is higher than otherReq, request req wins
the contention and will overwrite the slot after cancelling
the request other Req i.e changing the state of the request
other Req to canceL atomically (Lines 22 - 29). Request req
will help request other Req in case req has a lower priority.
We increment the priority of a request to avoid starvation
(Line 35). Requests priorities are decided in the method
getHighPriority Request() as explained in Section IV-C.

Let us now discuss the case where the slot is found to
be in the RESERVED state. In the INIT phase of the request, a
request tries to search for the next vacant slot (Line 48). The
search terminates when either a slot is successfully reserved
or the request hits its slot deadline (Line 56). In the TEmP
phase, we return canceL (Line 50). On receiving the result
of the function reseveSlots as CANCEL, the request moves
to the canceL phase. Lastly, it is possible that some other
helper has reserved the slot for request req (Line 42). In this
case the thread refreshes and reads the phase of the request
req again.

Algorithm 1: Reserve Slots

1: function reserveSlots(request,currSlot, round, reqState)

2 for i € [currSlot, req.slotDeadline] do

3: minDisk < getMinDiskSlot(request, i)

4: diskRevRec < diskArray[minDisk]

5: slotState <— getSlotState(disk Rev Rec.get(i))

6 (threadid,round1,state) <
unpackSlot(disk — RevRec. get(i))

7: switch (slotState)

8: case VACANT :

9: res < diskRevRec.CAS(currSlot,

packTransientState(request), VACANT)

10: updateDiskLoad(minDisk)

11: if res = TRUE then

12: return (SUCCESS, currSlot)

13: end if

14: break

15: case TRANSIENT :

16: if threadid = req.threadid then

17: /* slotState = MYTRANSIENT */

18: return (RETRY, null)

19: else



20: otherReq <— REQUEST.get(threadid)
21: res <—
getHighPriorityRequest(req,otherReq,i,minDisk)

22: if res = req then

23: /* preempt lower priority request */

24: if cancelReq(otherReq) then

25: oldValue <— packTransientState( threadid,
roundl, state)

26: new Value <— packTransientState(req.
threadid, round, TRANSIENT)

27: resl < diskRevRec.CAS(currSlot,
oldValue, newValue)

28: if res1 = TRUE then

29: return (SUCCESS, currSlot)

30: end if

31: break

32: end if

33: else

34: /* res = HELP */

35: reserveDiskBandwidth(otherReq)

36: /* increase priority to avoid starvation */

37: req.priority.getAndIncrement()

38: end if

39: end if

40: break

41: case RESERVED :

42: if threadid = req.threadid then

43: /* slot reserved on req’s behalf */

44: return (RETRY, null)

45: else

46: if req.iterationState = INIT then

47: slotMove <« getReserveSlot(disk Rev Rec.

get(i))

48: i < i+ slotMove

49: else

50: return (CANCEL, null)

51: end if

52: end if

53: break

54: end switch

55:  end for

56: return (FAIL, req.slotDeadline)
57: end function

C. Request Priority Rule

Request issuance order is the same as the arrival order
but the order in which the requests are serviced depends
on their relative priorities. As discussed in Section III-A,
there are various parameters based on which the priorities
of the requests are updated to permute the order of service
of incoming I/O requests in order to generate a near
optimal schedule. Each parameter is assigned a weight,
we examine each parameter along with their weights to
calculate an overall priority for a request. These weights
can be customized by the user. As shown in Figure 7,
contending requests pass through various checks such as
the deadline, request type, request size, and dependency
list length checkers. At each level, some of the requests
get filtered out and the request with the highest priority
wins the contention and is ready to be scheduled.

Now, we give a detailed description of the

getHighPriorityRequest method (Lines 58 - 96).
We have given the deadline parameter the highest
weightage in deciding the relative priorities of the
requests so that the requests with lesser weights for other
parameters do not miss their deadlines. One can change
this, depending upon the target applications. If the given
requests are within a deadline range, then we look at
other heuristics to decide request priorities. Otherwise
we schedule a request, which has its deadline closest to
the slot under consideration (Line 61).

Each request can have some default priority associated
with itself. Whenever a request helps some other re-
quest, we increase its priority by 1 to keep starvation
in control. Once the difference between the priorities
of the contending requests reaches a threshold value
(PRIORITY_THRESHOLD) we choose the request with higher
priority to schedule next. Read requests are given higher
priority over write requests to minimize read-blocked-by-
write situations in concurrent workloads. We check the
request type of the contending requests and if one of them
is a read and the rest are writes, we give higher priority to
the read request. If both the requests are writes then we
check the blocks these requests wish to access. We prefer
writes to the blocks that were accessed in the recent past.
This is because in DRAM backed drives, the writes get
absorbed by the DRAM.

Next we consider the request size (Line 86). Whether to
give high priority to small sized requests or to large sized
requests depends on the user. We assign higher priority to
smaller requests by default, in order to avoid unnecessary
delays due to large requests, and to maximize request
throughput. Let reqgA and regB be two contending re-
quests. We calculate the dummy slots required for each
request based on the block it wishes to access, or garbage
collection requirements in SSDs. The request with the
lower value of diskSlots is assigned a higher priority.
If the difference between disk time slots required by each
request lies within a specified range, then we give higher
priority to the request which has reserved more slots till
now. This is done in order to reduce the wastage of useful
work done by a thread so far (Line 95).

58: function getHighPriorityRequest(reqA , reqB, slot, diskId)

59:  /* priority takes into account some default priority if
specified and age based priority */

60: if abs(reqA.slotDeadline - slot)- abs(reqB.slotDeadline -
slot) > deadlineRange then

61: return reqA.slotDeadline < reqB.slotDeadline ?
reqA:reqB
62:  end if

63:  if abs(reqA.priority - reqB.priority) >
PRIORITY_THRESHOLD then

64: return reqA.priority > reqB.priority ? reqA:reqB

65:  end if

66:  if reqA.requestType = READ A reqB.requestType =
WRITE then
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67: /* write request is within its deadline range so we can request. As shown in Figure 7, we have considered two
schedule it later */ parameters - dummySlots and loadfactor to select a
08: ret?m req/: // request with READ access is given drive among an array of drives. The way in which a
reference . : . .
69: eng it flash drive is selected is captured in the get MinDiskSlot

70:  /* both are write requests */
71:  if reqA.requestType = WRITE A reqB.requestType =

WRITE then
72: blockA < getBlock(reqA.startAddr)
73: blockB < getBlock(reqB.startAddr)
74: if blockA = lastAccessedBlock A blockB #
lastAccessedBlock then
75: return reqA
76: else
77: if blockB = lastAccessedBlock then
78: return reqB
79: end if
80: end if
81:  end if

82:  dummySlotA < calculateDummySlots(reqA)

83:  dummySlotB <« calculateDummySlots(reqB)

84:  diskSlotA <+ reqA.requestSize + dummySIlotA

85: diskSlotB < reqB.requestSize + dummySlotB

86:  if abs(reqA.diskSlotA - reqB.diskSlotB) >
diskSlotRange then

87: return diskSIotA < diskSlotB ? reqA : reqB

88:  end if

89:  if abs(reqA.depLength - reqB.depLength) >
depLengthRange then

90: return reqA.depLength > reqB.depLength ?
reqA:reqB
91:  end if

92:  /* find request which has booked more slots */
93:  slotA <« getSlotBooked(reqA)

94:  slotB <« getSlotBooked(reqB)

95:  return slotA > slotB ? reqA:reqB

96: end function

D. Disk Redundancy

In this section, we look at the scenario where we have an
array of redundant drives. In this case we need to find a
disk, which is the most suitable to schedule an incoming

method (Lines 87 to 99). It is possible that a read
request is scheduled partly on one drive and partly on
the other. Recall the snake request type as explained in
Section III-B.

87: function getMinDiskSlot(request, slotld)
88: minDisk <— MAX
89: redDiskArr <— findRedundantDisk(request.disk

Number)

90: for i € [0, redDiskArr.length] do

91: dummySlot +— getDummySlots(redDiskArr[i],
request)

92: loadFactor < getLoad(diskId)

93: /* select a disk with minimum load factor and dummy
slots */

94: if minDisk.dummySlot > dummySlot A
minDisk.loadFactor > loadFactor then

95: minDisk < redDiskArr[i]

96: end if

97: end for

98: return minDisk
99: end function

end

V. PERFORMANCE EVALUATION

This section examines the performance of RADIR. We
performed all our experiments on a Dell PowerEdge R820
server running the Ubuntu Linux 12.10 operating system
with the generic 3.5.0-17 kernel. It is a hyper-threaded four
socket, 64 bit machine. Each socket has eight 2.20GHz Intel
Xeon CPUs, 16 MB L2 cache, and 64 GB main memory.
All our algorithms are written in Java 6 using Sun OpenJDK
1.6.0_27.

Let us now describe our experimental methodology. Let
there be T' threads in the system. We execute the experiments
till the fastest thread completes N requests. At this point,
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let the total number of requests completed (by all the
threads) be K. We define three quantities — time per request
time, fairness (frn) and delay. time means average time
taken to schedule a request. The fairness is defined as
frn = K/(N x T). If the value of our fairness metric is
equal to 1, then all the threads complete the same number of
requests — N. The lower is the fairness, more is the discrep-
ancy in performance across the threads. delay signifies the
deviation/difference in the starting slot requested (startSlot)
and actual starting slot alloted (slot Allocated) to a request.
It is measured in terms of time-slots. Higher priority requests
are scheduled as early as possible so that they have less delay
(or nearly zero delay) as compared to low priority requests.
Delay in scheduling occurs when there is more than one
request contending for the same slot. Only one request gets
the slots and other requests need to try again for subsequent
slots.

A. Storage Device Model

We used synthetic workloads based on the Microsoft
SNIA I/O traces [30] for evaluating the performance of
our scheduling algorithms. We run each experiment for 10
times, and report the mean values. We have modeled the
Seagate 600 SSD drive (see Table I for its characteristics).
The request size governs the number of slots required to
access the device since most SSDs support non-sequential
accesses very well. We consider the slot size as 100us. This
can be decided based on the underlying storage device.

Drive Capacity | 480 GByte
Burst Transfer Rate | 600MB/s(Max)
Flash Memory Type | NAND MLC
Page Size | 8192 Bytes
Average read latency | 158us
Average write latency | 125us

Table I: SSD characteristics (Seagate 600 Pro SSD)

B. Performance of RADIR

We evaluated the performance of our lock-free
(LF_RADIR) and wait-free (WF_RADIR) RADR
algorithms by comparing them with the lock-free (LF") and
wait-free (W I slot scheduling algorithms proposed by
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Figure 10: Request throughput

Aggarwal and Sarangi [7], and also with an algorithm that
uses locks (LOCK). We set N = 100,000, and vary the
number of threads from 1 to 64.

Figure 8 and 9 show the results for the time and fairness
of each of the algorithms. After adding I/O awareness, the
performance of our algorithms is comparable to the LF' and
W F algorithms. The time per operation of (W F_RADIR)
is 2-3 times more than W F' for more than 56 threads. All
the algorithms are at least 3 orders of magnitude faster than
the version with locks. We can also see that the wait free
algorithms maintain a high degree of fairness (=~ 90%), and
the fairness for lock free algorithms varies from 20-80%.
The algorithm with locks has very low fairness (= 10% for
> 32 threads).

Next, we study the throughput of our slot scheduler by
varying the average time between the arrival of two requests
from O to Sus at intervals of 1 ps. Figure 10 shows the
results. Note that the six points for each line segment
correspond to an average inter-request arrival time of 0, 1,
2,3,4, and 5 pus respectively. The first noteworthy trend is
that LE'_ RADIR scales as the number of threads increases
from 1 to 64. WF_RADIR has the highest throughput till
16 threads, and then it becomes inferior to the LF'._RADIR
algorithm. With 8 threads its throughput touches the 800-
900K IOPS range, which is sufficient for todays fastest
SSDs with large DRAM based caches (refer to Figure 1).
The throughput of WF_RADIR does not scale beyond 16
threads because ensuring fairness becomes a very onerous
task. A lot of computational bandwidth is wasted helping
slower tasks, and thus throughput suffers. In comparison, the
LF_RADIR keeps on getting better. Lastly, it is important
to note that the algorithm with locks does not support a
throughput that is more than 200-300K IOPS, and has a
lower throughput than at least one of our algorithms by 5-
10X.

C. Impact of Heuristics

We study the impact of each parameter on time, fairness
and delay with the number of threads set to 64.

1) Sensitivity: Slot Deadline: We start by investigating
the impact of the slot deadline. Each request is associ-
ated with an expiration time. Read requests have a lower
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expiration time as compared to write requests. We set a
deadline of 60 slots for read requests, and 600 slots for write
requests (follow the standard 1:10 thumb rule for reads and
writes). When there is no deadline to schedule a request,
the delay per request for WF_RADIR is as high as 600-
800 time slots since there is no bound on when to schedule
the request. Other parameters also play a role in deciding
the request priority. This results in some requests getting
scheduled as early as possible and others suffering from
huge delays. Whereas, when deadlines are considered, the
delay is within 50-60 time slots as shown in Figure 11. From
this experiment, we can conclude that the request deadline
plays an important role in deciding the request priority, and
requests should have associated deadlines in our system.

2) Sensitivity : Request Size: We vary the request size
from 4 slots to 256 slots. We observe that when large
requests get interleaved with small requests, time and delay
get affected. The time per request for the LF” RADIR
algorithm increases from 35-120us for small requests (< 24
slots) to 300-520us for long requests (24-256 slots). For
WF_RADIR, the time varies from 140-175us to 600-
1520us for 64 threads as shown in Figure 12. As the request
size increases, the number of slots to be reserved per request
also increases, which leads to more contention resulting in
more request cancellations. Therefore, the time per request
increases when there are long requests.

Figure 13 shows the impact of the request size on delay.
Recall that time is measured in seconds, and represents
the wall clock time for scheduling a request, and delay
is simulated time (measured in the number of slots). As
the request size increases from 2-64, the delay increases
from 1-27 for (LF_RADIR) and 8-38 for (\WF_RADIR).
However, the delay for request sizes beyond 64 decreases
since a lesser number of requests get scheduled due to high
contention.

3) Sensitivity: I/0 Intensity: The term I/O intensity refers
to the duty cycle of the scheduling threads. It is defined
as the average time a thread spends in scheduling requests
divided by the total time. The total time includes idle time
in which the thread does not do anything. We simulate

Figure 12: t¢me with varying request size Figure

13: delay with varying request
size

idle time by inserting dummy computations with a known
execution time. This experiment is to evaluate the quality
of the schedule with varying I/O intensity. We assume a
situation in which all the threads contend for the same set
of slots (have proximate starting slots).

Figure 14 shows that for an I/O intensity less than 50%,
the delay is within 8 time-slots. The delay in scheduling the
request increases with an increase in I/O intensity. As the
I/O intensity increases to 90% the delay rises to roughly
30 slots. There is no significant difference between the
WF_RADIR and LF_RADIR algorithms.

4) Sensitivity: Dependency Length: The dependency
length of a request (req) represents the number of requests
depending on the given request, req. The impact of the
dependency length is only visible in the case of fairness
of LF_RADIR. Figure 15 shows that the fairness of
LF_RADIR drops to 25-15% for 64 threads as the depen-
dency length increases from 32 to 64. Requests with large
values of the dependency length have higher priorities and
are scheduled first, and this affects fairness negatively. This
indicates that it is advisable to assign a lesser weightage to
the dependency length if fairness across threads is desired.

We conclude our analysis by evaluating the performance
with a redundant array of drives (RAID 1). Figure 16
shows the results. WF_RADIR(1), WF_RADIR(2) and
WF_RADIR(3) correspond to a system with 1, 2 and
3 drives (latter two are in RAID 1). We use a similar
terminology for LF_RADIR. As the number of drives
increases to 3, the time to schedule a request decreases by
2x in the case of WF_RADIR since the contention per
drive decreases and our algorithm can handle snake requests
very well. Whereas, in the case of LEF'_RADIR there is no
significant change in the time per request. This is because
in the lock free algorithm, only a few threads make rapid
progress, and additional redundancy does not benefit them.

VI. CONCLUSION

In this paper, we proposed a highly scalable set of algo-
rithms for scheduling I/O requests on SSDs. Our algorithms
can incorporate a wide variety of request and device charac-
teristics. We showed how different request parameters such
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as the slot deadline and request size play a significant role in
setting request priorities. On a 64 threaded machine, we can
support a scheduling throughput of 800-900K IOPS, which
is sufficient for the fastest storage devices to be released
in the near future. Our wait-free algorithm (W F_RADIR)
has a fairness of ~ 90% as the threads are multiplexed at
the level of individual requests, thus preventing jitter. The
results show that our RADIR scheduler is at least 3 orders of
magnitude faster than the version with locks.
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APPENDIX A.
RADIR ALGORITHM

Here we present the algorithim for reserving the disk
bandwidth. The disk bandwidth is reserved by placing a new
request in INIT phase. In this phase a thread (t) temporarily
reserves a slot in the diskRevRec array with help of the
function reserveSlots (explained in Section A-1). On suc-
cessfully reserving the first slot, request moves to TEMP phase
(Line 14) using compare-And-Set(CAS). In TEmP phase the
remaining slots are reserved temporarily. Once it finishes
doing so, the request moves to pERM phase (Line 28). In this
phase the reservation made by the thread (or by some other
helper on behalf of ¢) is made permanent(Line 40). Lastly,
the request enters the FINISH phase where the list of reserved
slots is returned. A thread is unable to reserve its slots if
all the slots are permanently reserved till the thread reaches
end of array or it reaches its slot deadline (Line 10). In each
TEMP phase, a thread tries to book the next consecutive slot
(Line 30). Request continues to stay in TEMP phase till the
required number of time-slots are not reserved temporarily.

In case a thread is unable to temporarily reserve a slot,
we move the request to CANCEL phase. In CANCEL phase
(Lines 45- 48), the temporarily reserved slots are resettled to
its default value (i.e FREg). The request.slot Allocated field
is also reset. The request again starts from the iNiT phase with
a new round and index. round field is used to synchronize
the helpers and index field indicates which slot to reserve in
the disk RevRec array. Once the request enters PERM phase,
it is guaranteed that diskSlot number of slots are reserved
for the thread and no other thread can overwrite these slots.
The disk head position is also updated to the last address
which the thread (¢) wishes to access (Line 41).

Algorithm 2: reserveDiskBandwidth

1: function reserveDiskBandwidth(request)

2 while TRUE do

3: iterState <— request.iterationState.get()

4: (reqState,round,index) <— unpackState(iterState)
5 switch (reqState)

6 case INIT :

7 (status,res) <— reserveSlots(request,index, round,

reqState)

8: if status = FAIL then

9: /* linearization point */

10: request.iterationState. CAS(iterState,

packState(0,0,0,FAIL))

11: else if status = RETRY then

12: /* read state again */

13: else

14: if request.iterationState. CAS(INIT,

packState(1,round,res+1,TEMP)) then

15: request.slotAllocated. CAS(-1,res)
16: else

17: /* clear the slot reserved */

18: end if

19: end if
20: break
21: case TEMP :

22: slotRev <— getSlotReserved(reqState)
23: /* reserve remaining slots */
24: (status, res) <— reserveSlots(request,
index,round,reqState)
25: if res < request.slotDeadline A status = SUCCESS
then
26: if slotRev+1 = req.diskSlots then
27: /* linearization point */
28: newReqState <— Request.packState(req.
diskSlots,round,index,PERM)
29: else
30: newReqState <— Request.packState(slot
Rev+1,round,index+1,TEMP)
31: end if
32: request.iterationState. CAS(iterState,
newReqState)
33: else if status = CANCEL then
34: request.iterationState. CAS(iterState,pack

State(slotRev, round, index, CANCEL))
35: else

36: RETRY/* read state again */

37: end if

38: break

39: case PERM :

40: /* make the reservation permanent */

41: /* update the disk head position */

42: request.iterationState. CAS(iterState, FINISH)

43: break

44: case CANCEL :

45: /* reset the slots reserved till now */

46: /* Increment request round */

47: /* reset the slot Allocated field of request */

438: request.iterationState. CAS(iterState,
packState(0,round+1,index+1,INIT))

49: break

50: case FINISH :

51: return request.slotAllocated

52: end switch

53: end while
54: end function

1) Reserve Slots: We start by explaining how a slot in
the diskRevRec array is reserved by a thread, which
currently has highest priority among all the contend-
ing threads. This method accepts four parameters -
request(req) of a thread ¢, the current slot to reserve
currSlot, current round round of the request and the
phase of the request reqState. In case their are redundant
drives, first we find the drive (minDisk) which requires
the minimum number of dummy slots and also has least
load factor. This is done with the help of the method
getMinDiskSlot. Once we have the desired drive, de-
pending upon the status of the slot (currSlot) in that
drive we execute the corresponding switch-case statement.
round indicates the iteration of a request. It is used to
synchronize all helpers of a request. If the slot is in the
VACANT state, we try to temporarily reserve the slot and
change the state of the slot from VACANT to TRANSIENT
(Line 9) and update the load factor of the drive minDisk.
Next, we discuss the case when the state of the slot is
TRANSIENT. It indicates that some thread has temporarily



reserved the currSlot slot. If the thread id saved in the
slot is the same as that of the request req (Line 16), we
simply return and read the phase of the request again.
Otherwise, the slot is temporarily reserved by some other
thread for another request, other Req. Now, we have two
requests req and other Req contending for the same slot
currSlot in the drive minDisk. If the priority of the
request req is higher than otherReq, request req wins
the contention and will overwrite the slot after cancelling
the request other Req i.e changing the state of the request
other Req to canceL atomically (Lines 22 - 29). Request
req will help request other Req in case req has a lower
priority. We increment the priority of a request to avoid
starvation (Line 35).

Let us now discuss the case where the slot is found to be
in the RESERVED state. In the iNiT phase of the request, a
request tries to search for the next vacant slot (Line 48).
The search terminates when either a slot is successfully
reserved or the request hits its slot deadline (Line 56). In
the TEMP phase, we return canciL (Line 50). On receiving
the result of the function reseveSlots as CANCEL, the
request moves to the caNCeL phase. Lastly, it is possible
that some other helper has reserved the slot for request
req (Line 42). In this case the thread refreshes and reads
the phase of the request req again.

1: function reserveSlots(request,currSlot, round, reqState)
2 for i € [currSlot, req.slotDeadline] do
3: minDisk < getMinDiskSlot(request, i)
4: diskRevRec <+ diskArray[minDisk]
5: slotState <— getSlotState(disk Rev Rec.get(i))
6 (threadid,round1,state) <
unpackSlot(disk — RevRec. get(i))

7: switch (slotState)

8: case VACANT :

9: res + diskRevRec.CAS(currSlot,

packTransientState(request), VACANT)

10: updateDiskLoad(minDisk)

11: if res = TRUE then

12: return (SUCCESS, currSlot)

13: end if

14: break

15: case TRANSIENT :

16: if threadid = req.threadid then

17: /* slotState = MYTRANSIENT */

18: return (RETRY, null)

19: else

20: otherReq <— REQUEST.get(threadid)

21: res <—

getHighPriorityRequest(req,otherReq,i,minDisk)

22: if res = req then

23: /* preempt lower priority request */

24: if cancelReq(otherReq) then

25: oldValue <— packTransientState( threadid,
roundl, state)

26: new Value <— packTransientState(req.
threadid, round, TRANSIENT)

27: resl < diskRevRec.CAS(currSlot,
oldValue, newValue)

28: if res1 = TRUE then

29: return (SUCCESS, currSlot)

30: end if

31: break

32: end if

33: else

34: /* res = HELP */

35: reserveDiskBandwidth(otherReq)

36: /* increase priority to avoid starvation */

37: req.priority.getAndIncrement()

38: end if

39: end if

40: break

41: case RESERVED :

42: if threadid = req.threadid then

43: /* slot reserved on req’s behalf */

44: return (RETRY, null)

45: else

46: if req.iterationState = INIT then

47: slotMove < getReserveSlot(disk RevRec.
get(i))

48: i < 1+ slotMove

49: else

50: return (CANCEL, null)

51: end if

52: end if

53: break

54: end switch

55:  end for

56:  return (FAIL, req.slotDeadline)
57: end function

end

APPENDIX B.
PROOF

Theorem 1: The LF_RADIR and WF_RADIR algo-
rithms are linearizable.

Proof: We need to prove that there exists a point
of linearization at which the reserve function appears to
execute instantaneously. Let us try to prove that the point
of linearization of a thread, ¢, is Line 28 when the request
enters PERM phase, or it is Line 10 when the request fails
because of lack of space or it misses it deadline. Note that
before the linearization point, it is possible for other threads
to cancel thread ¢ using the cancel Req function it they have
higher priority than ¢. However, after the status of the request
has been set to PERM, it is not possible to overwrite the
entries reserved by the request. To do so, it is necessary
to cancel the request. A request can only be cancelled in
the mit and TEMP phase. Hence, the point of linearization
(Line 28) ensures that after its execution, changes made by
the request are visible as well as irrevocable. If a request is
failing, then this outcome is independent of other threads,
since the request has reached the end of the diskRevRec
array.

Likewise, we need to prove that before the point of lin-
earization, no events visible to other threads causes them to
make permanent changes. Note that before this point, other
threads can view temporarily reserved entries. They can
perform two actions in response to a temporary reservation —



decide to help the thread that has reserved the slot (Line 35),
or cancel themselves. In either case, the thread does not
change its starting position.

A thread will change its starting position in Line 48, only
if it is not able to complete its request at the current starting
position because of a slot that is in RESERVED state.

Note, that the state of a slot is changed to RESERVED only by
threads that have already passed their point of linearization.
Since the current thread will be linearized after them in the
sequential history, it can shift its starting position to the slot
next to the reserved slot without sacrificing linearizability.
We can thus conclude that before a thread is linearized, it
cannot force other threads to alter its behavior. Thus, we
have a linearizable implementation. |



