Probabilistic Sequential Consistency in Social Networks

Priyanka Singla
Computer Sc. and Automation
1ISc Bangalore, India
priyanka.singla6 @ gmail.com

Shubhankar S. Singh
Computer Sc. and Engg.
IIT Delhi, India

Abstract—Researchers have proposed numerous consistency
models in distributed systems that offer higher performance
than classical sequential consistency (SC). Even though these
models do not guarantee sequential consistency; they either
behave like an SC model under certain restrictive scenarios,
or ensure SC behavior for a part of the system. We propose a
different line of thinking where we try to accurately estimate
the number of SC violations, and then try to adapt our system
to optimally tradeoff performance, resource usage, and the
number of SC violations. In this paper, we propose a generic
theoretical model that can be used to analyze systems that
are comprised of multiple sub-domains - each sequentially
consistent. It is validated with real world measurements. Next,
we use this model to propose a new form of consistency called
social consistency, where socially connected users perceive an
SC execution, whereas the rest of the users need not. We create
a prototype social network application and implement it on the
Cassandra key-value store. We show that our system has 2.4 x
more throughput than Cassandra and provides 37% better
quality-of-experience.

Keywords-Hot-spot; social; load balancing;
experience; distributed; consistency violations.

quality-of-

I. INTRODUCTION

The CAP theorem creates a tradeoff between consistency,
availability, and tolerance to partitions. For example, it is not
possible to create a system that is sequentially consistent,
and at the same time is highly available and immune
to network partitions. As a result in large commercial
deployments [1], [2] engineers do not explicitly aim for
sequential consistency (SC). Instead, they use a consistency
model that is somewhere between sequential and eventual
consistency [3], [4]. For example in Dynamo [1], the authors
try to ensure that no writes are lost from the shopping cart
at the time of checkout (eventual consistency); however, it
is possible to see different views of the cart throughout the
shopping process.

The field of non-SC models that have different correctness
properties is very extensive. Most of the related work has
focused on models that behave as SC given the unique
constraints of the problem [5], or SC is relaxed under known
and predictable conditions [1]. In this work, we look at
a third line of work known as probabilistically bounded
staleness [6]. In this model, we can place bounds on the
probability of SC violations for a given window of time.
Researchers have mainly looked at such models in the

shubhankar@cse.iitd.ac.in

K. Gopinath Smruti R. Sarangi
Computer Sc. and Automation Computer Sc. and Engg.
11Sc Bangalore, India IIT Delhi, India

gopi@csa.iisc.ac.in srsarangi@cse.iitd.ac.in

context of key-value stores. The line of reasoning is that
some applications can tolerate violations in SC; therefore,
the aim is to limit the number of such violations so that the
users can perceive a good quality-of-experience. Our aim
in this paper is to extend this line of work and introduce
a new consistency model and accompanying theoretical
fundamentals. We call our model social consistency.

We focus on social networking applications that try to
provide a sequentially consistent view on a best-effort basis.
These applications have dynamic workloads and often ob-
serve spikes in the incoming traffic [7], [8], resulting in hot-
spots. For example, a particular post on a social-networking
site by a celebrity [7] can result in a deluge of requests,
possibly overwhelming the system. Current systems handle
this by either giving up performance or consistency. In such
cases, our model tries to group users based on social ties and
creates minimally overlapping subsets of users. Users within
each such subset perceive sequential consistency; however,
users across groups see an eventually consistent execution.
In particular, an object is initially stored on a single server
and is accessed by all the users, who see a consistent value
of the object. Upon overload, this hot object is cloned and
stored on another server, and the user set is partitioned into
2 groups (clusters) on basis of social relationships among
the users. These clusters are one-to-one mapped to cloned
servers. The clones diverge as time progresses and we call
them splits. If the request rate increases further, new splits
are created resulting in more sub-clusters. Only when the
request rate decreases, these clusters are combined back and
the splits are merged in an application dependent manner [1],
[9].

In addition, for a given system we outline a modeling
methodology where we can estimate the number of SC
violations as a function of the number of requests and make
our system react accordingly.

We argue about the acceptability of social consistency
on the basis of the following observation in existing social
networking sites like Facebook/Twitter. We are primarily
interested in the updates that our friends are posting, and in
general, we would like to see our friends’ posts, followed by
the comments on it. This is typical SC behavior. However,
when we are seeing the Facebook wall of a stranger, and
we see a comment to a post without seeing the post, this

is a violation. We wish to minimize such incidents. We
argue that because of the natural limitations imposed by the
CAP theorem this situation is not completely unavoidable.
However, if we can estimate such occurrences and adapt our
system, then we can control the quality of experience to a
reasonable extent.

In specific, our main contributions are:

« We define a new model called social consistency, which
offers a client-centric view of consistency.

o We present a split-merge algorithm to handle a simple
scenario: single object overloads.

« We introduce a new consistency metric, quality, and use
it to compare our model with various existing systems
using a basic prototype of a social networking service.

o We develop the mathematical foundations for simulat-
ing such a system and create a framework that allows
us to reason about the behavior of such systems using
simple Monte Carlo simulations. The results of these
simulations can be used to tune our system to reduce
the number of SC violations.

The paper is organized as follows: Section II discusses
the related work. Section III provides a detailed description
of our social consistency model. Section IV presents an
insight into the mathematical framework for computing the
SC violation probability. Section V presents the architecture
of the system and then describes the split-merge protocols.
Section VI implements and evaluates a prototype based on
our model, and finally, Section VII concludes the paper.
Please note that the terms clients and users have been used
interchangeably throughout the paper.

II. BACKGROUND AND RELATED WORK

Achieving low latency along with strong consistency is
difficult, and the situation becomes acute in an overloaded
system. Various approaches proposed to deal with such
systems can be categorized as follows:

Admission Control and Load Balancing Techniques:
Randles et al. [10] use work-stealing based techniques to
steal work from overloaded nodes. Authors in [11] rely
on random sampling for distributing jobs to servers and
performing load balancing. These approaches completely
ignore the relationships between clients, thus it is tough to
ensure a good QoE for the clients.

Data or Metadata Partitioning, and Replication: Amazon
Dynamo [1] and Cassandra [9] use consistent hashing to
ensure a uniform key distribution. However, this goal of
uniform distribution might fail if the access distribution is
highly skewed, resulting in a single key getting overloaded;
accesses to this key cannot be partitioned across the nodes.

Distributed file systems such as NFS [12] suffer from
hot-spots when multiple clients simultaneously open the
same file. Weil et al. [13] handle overloads by file system
subtree migration and replication. They [14] extend this
work and perform load balancing by randomly forwarding

metadata requests within a metadata server cluster. These
methods of random replication and forwarding lead to
inefficient resource utilization. In contrast, our approach
carefully chooses the split-merge servers and handles client
requests on the basis of social relationships among them.
Similar to our approach, Bayou [15] has per object split-
merge, however it does not form clusters based on social
relationships.

Relaxed Consistency Models: Lloyd et al. [4] propose
a novel system with low latency and causal consistency.
However, the main drawback of this work is that it is very
specific, and it is tough to enforce causality all the time,
and in all the scenarios. Some systems [5], [16] rely on the
commutativity of operations for ensuring different kinds of
consistency (strong and weak) at different times. We, on
the other hand, provide two different levels of consistency
by partitioning clients into clusters based on their social
distance: clients within the cluster are strongly consistent
while across the clusters are eventually consistent.

Partitioning the Set of Users: Although the idea of
partitioning users and identifying clusters in social networks
has been explored in a significant body of research [17],
these works focus on other goals, and unlike us, they do not
propose to handle overloads. For example, SPAR [17] uses
social partitioning to minimize replication and in storing
the entire data of clients in a single cluster. Our work,
on the other hand, is independent of client placement and
follows an object based lightweight split at runtime (during
overloads). Walter [18] is a geo-replicated key-value store,
offering linearizability for replicas deployed in the same data
center and weak consistency across different data centers.
This can be considered as a special case of our architecture,
where consistency is dependent on physical proximity. Our
model is more generic.

Bounding the Eventual consistency: Various relaxed con-
sistency models provide bounds on sequential consistency
violations. Bailis et al. [6] proposed a Probabilistic Bounded
Staleness (PBS) model to quantify the bounds on the time
(t-visibility) when a particular update becomes visible to all
the clients. This work also provides bounds on the version
(k-staleness) of the object which will be visible to the clients
at any time. Liu et al. [19] present a formal probabilistic
model to quantify the consistency guarantees achieved by
Cassandra. Their formalization is not generic to any eventual
consistency model but is specific for Cassandra. Also, they
do not provide any analysis/model for other metrics like
performance. In contrast, our model provides a mathematical
framework for any eventually consistent system along with
performance and quality metrics.

IITI. SociAL CONSISTENCY

A weak consistency model can be obtained from a strong
consistency model by applying various program order relax-
ations for operation pairs accessing different locations [20].

Table I: Valid relaxations

Relaxation /N
W — R/W Order
R — R/W Order

Y,
Y
Y
Read Own Write Early N
N
Y

Read Other’s Write Early
Read Own Cluster’s Write Early
Read Other Cluster’s Write Early

Z

Table II: Example of social consistency

Time P1 P2 P3
t=0 w3 (z) =3
t=1 wi(z) =1

=2 @ =2

t=3 | ri(z) =[1,2] r2() =1[1,2 r3(z) = [3]

Different models include relaxations from the following set
of relaxations: a) Write to Read b) Write to Write ¢) Read
to Read d) Read to Write e) Read own write early f) Read
others’ write early. For our socially consistent system, we
introduce a new relaxation: any client can read the writes
within its cluster earlier as compared to the clients in the
other clusters (Read own cluster’s write early). Table I lists
the relaxations that are valid in our social consistency model.

We describe these relaxations by an example for a generic
system defined as a tuple I'=(C, O, r, w, p):

o C={c1,c9,...,cy} is a finite set of n clients in the
system.
e O={01,09,...,0;} is a finite set of k objects on which

operations are performed. The object’s value is a list
and is denoted by a square bracket [].

« 7 denotes a read and r.(0)=V represents a read request
issued by a client ¢ to an object o, which fetches the
entire state V' (list of values) of the object o, atomically.

o w represents a write operation and w.(o)=v appends
the value v to the list V' maintained by object o.

e A partition function o : C x O — Cl, where Cl
is the set of all cluster ids ({Cly,Cla,...,Cly}). The
function maps the client id to the corresponding cluster
depending on the overloaded object.

Example: Let be a shared object in a system with three
clients {P1, P2, P3} accessing it. The three clients issue
a write request to the object x (see Table II); they write
(1), (2), and (3) respectively (at different times). Now while
reading, the clients P1 and P2 read the value [1,2], while
P3 gets [3]. As all the clients do not read a sequentially
consistent value, the system is not sequentially consistent.
However, this result is valid in the case of social consistency:
if we consider the clients P1 and P2 to be in a single
cluster and client P3 to be in the other cluster. Then,
both P1 and P2 will be able to read the writes of each
other early, but they cannot read the updates from the other
cluster containing P3. It should be noted that in the socially
consistent model, all the three clients will eventually read
the same value, which happens upon a merge.

A. Formal Definition

Let the set of socially consistent executions for a given
program be E. An execution e € F is socially consistent if
the following conditions hold:

Condition 1: Within a cluster, all the writes are atomic.
Writes are not visible atomically to nodes outside of a
cluster.

Condition 2: All writes are eventually visible across all
clusters.

Condition 3: Within a cluster, we obey sequential consis-
tency, where nodes within the cluster can read the writes of
another node (in the cluster) before they are visible to nodes
in other clusters.

B. Partitioning the Set of Clients (o)

The set, C, of clients accessing the object is represented
as a weighted graph G=G(C, E), where E represents the
set of weights (connectivity strength among the clients).
A larger edge weight represents strongly connected clients.
The edge weights broadly have two types of components:
static weight (SW)- provided by the application, and dynamic
weight (DW)- computed during execution depending upon
the intensity of communication among clients. Along with
weighted edges, we also consider the graph to have weighted
nodes, with only a dynamic component (dynamic node
weight—DNW) which indicates a node’s contribution to the
overall load of the system.

Upon interaction between two clients, we have:

DWnew =1+ f(At) * DWold (1)
where DW,; represents the previous dynamic edge
weight, which loses its contribution with time according to a
damping function, f(At). At is the time difference between
two consecutive interactions between these two clients. The
value of this function should be close to 1 for small At and
should decrease with an increase in At; we choose a variant
of the Sigmoid function, f(At) = 1/(1 + e2t~?), where b
is a tunable parameter. This pattern appropriately captures
(observed empirically) the client behavior such that if At is
high, then the corresponding clients are not interacting much
and hence their edge weight should be small.

There can be some clients who send a disproportionate
number of requests. Such clients should be placed in separate
partitions; otherwise, the partition with these clients will
remain overloaded, thus nullifying the overall effect of
partitioning. Our system supports this by trading off social
consistency for load balancing. We assign weights to the
nodes, dynamic node weights (DNW), which vary with
time and represent each node’s contribution in overloading
the system. Whenever a client writes, her DNW is com-
puted by using a formula similar to Equation 1, but with a
different value of b.

We use a weighted matrix, WV, to represent the edge
weights and the node weights. A diagonal entry, W(c;c;],
represents the node weight of client ¢;, and a non-diagonal

entry, Wic;c;|, represents the total edge weight between
clients ¢; and c;. These weights are computed as follows:
Wicicj] = ax SW + f« DW 2)
where «, (3, and are the normalization parameters and
are tunable. They are provided by the application according
to its requirement.

After a partition, the clients across the clusters do not
see each other’s data. But there might be certain clients
who would wish to see all the data at the cost of higher
latency (e.g. the owner of the post) and would like to be in
both the clusters. We call such clients as “global nodes”,
and in our current prototype implementation, the application
specifies this set of global nodes. These global clients are
omitted from the graph while performing partitioning and
later added to all the clusters. The following conditions have
to be satisfied by the partitioning algorithm:

1) Maximize social consistency and load balancing:
| 2 veneiect, WICiC] = X ve, ciecr, Wiekal] < e,
where > W]c;c;] denotes the combined weight of
all the edges and nodes in a partition. This condition
states that the sum of edge and node weights in two
partitions are roughly equal. (e; is a relatively small
number).

2) Minimize the loss of social connectivity:
Ve; € Cly N e ¢ Cly Nej € Cly Acj ¢ Cly,
cic; € E Y Wieicj] is minimized at all points of
time. This condition states that the partition should be
a min-cut, minimizing the total weight of edges across
the partitions.

Please note that we defined the conditions considering
only a pair of clusters (Cl; and Cls), though these can be
generalized to any number of clusters.

We try to provide social consistency on a best-effort
basis. Our graph partition captures social consistency and
concomitantly performs load balancing; we prioritize load
balancing when the load becomes prohibitive.

IV. SEQUENTIAL CONSISTENCY VIOLATION DUE TO
INTER-CLUSTER COMMUNICATION

As per our definition of social consistency, the nodes
within the clusters are sequentially consistent, while nodes
across clusters (inter-cluster) are eventually consistent. This
means that if clients seek the value of an object from clients
in other clusters, then sequential consistency can be violated.
For example, consider a scenario with two clusters Cl; and
Cls. A client from Cl; reads the value of an object from
Cl5 at some time ¢;. If the client in C; re-reads the object’s
value from Cls, at some future time ¢5 : to > t1, then it
should receive either the previously read value (if the cluster
Cly did not write to the object in the period (¢1,t2)) or a later
value (due to Cly’s write). However, if the value read is older
than the value read at ¢;, it implies a violation in sequential

Frontier
0 Visited

@ Unvisited
»Path

Figure 1: Feasible movements
in XY space

Figure 2: SC Violation

consistency. This example can be extended to more number
of clusters.

Let us consider a system with R clusters, where each
cluster can progress independently, and can have either
inter-cluster or intra-cluster communications. The term intra-
cluster communication is used for all the read/write accesses
to the shared object within the cluster. This is because
these accesses result in information transfer among the
clients of the same cluster. Let us define a single step as
aread or a write. As is common while analyzing concurrent
systems [21] let us assume each cluster to be a process that
takes only one step at a time. Furthermore, assume that all
the processes are in lock-step and make a single movement
(send a single read/write message either within or outside
the cluster) at discrete times: steps 1, 2, 3, 4, ... (similar
assumption as [21]). Assume that we send a message within
the cluster with probability p, and we send a message to a
node in another cluster with probability 1 — p.

This can be modeled as a random walk in a 2-dimensional
Cartesian system (see Figure 1). We consider a matrix of
points where each point is a read or write event. Since the
read/write events (in each cluster) are sequentially consis-
tent, we can arrange them in a linear order. Hence, we
represent them as a row of points arranged sequentially
(one row for each cluster). Hence, the y coordinate in this
Cartesian system represents a particular cluster, and it ranges
between [0, R — 1]. The = coordinate represents the number
of the time step and has a range from (—oo,00). We use
this formalism to develop a mathematical model to bound
the probability of violating SC.

Initially, we start at « = 0 for all the clusters. Let us
consider a point (x,y) in our Cartesian space as shown in
Figure 1. From this point, we can either take 1 step forward
(intra-cluster message with probability p) and reach (x +
1,y), or we can move to another row (inter-cluster message
with probability 1—p), and reach any point (2/,y’) : ¢’ # y.
A move from the point (z,y) to (2’,y’) where they are in
different rows (clusters) happens when the event at (z,y)
and the event at (z’,y’) have a happens-before relationship
(read — write, write — read, write — write). In other
words, every movement from point A to point B represents
a happens-before relationship between the events at points
A and B. Assume that there is a directed edge between
any two points that have a happens-before relationship: two
points on the same row, and two points connected across
clusters.

To summarize, we can model the process of reads and

writes in a distributed system (with the assumptions made
by Attiya et al. [21]) as a random walk in a matrix. We can
either move one step to the right in the same row (intra-
cluster access), or move to any other column on a different
row (inter-cluster access, which is not in SC). We know that
the probability of going to another row is 1 —p. We assume
that the other row is uniformly distributed, and the value
2’ — x follows a given distribution D.

SC Violation Condition: We consider that every co-
ordinate (z,y) in this system has a state, S(z,y) €
{visited,unvisited}. Initially, all the coordinates are in
the unvisited state. When the walk begins, the state of
points being traversed is changed to visited (for example,
in Figure 2, as point (x,y) is traversed its state becomes
visited). If during the walk, we reach a particular coordinate
(«',y'), such that 3 (2", y/) : 2’ > 2’ AS(2",y) = visited,
then such a situation is called a violation.

This is tantamount to a cycle in the graph of happens-
before relationships. To compute the violations, for each
cluster (y € Y) we define a function, Frontier(y) =
Max{z : S(x,y) = visited}. Formally, a violation happens
when: N

(z,v) m («',y') : ' < Frontier(y').

Referring to Figu(;e 2, node 1 is initially unvisited. Once
it is traversed, it becomes visited and also serves as the new
frontier for its row. As the walk continues, the transition
from node 4 to node 5 result in a violation, since node 5 is
before the frontier of the corresponding row.

The probability of violation depends upon the following
parameters:

o Inter-cluster communication probability (1 — p).

e The distribution D.

o Number of clusters or rows (R).

o Number of steps taken (k), k = k¢ +kq. Ky is the total
number of forward steps, and &, is the total number of
inter-cluster steps.

To find the dependence of the violation probability on
these parameters, we performed Monte-Carlo simulations.
Following observations have been made from the exper-
iments as shown in Figure 3(a-d). Here D is a discrete
normal distribution NV (u, o) that has been shifted (validated
empirically).

The violation probability:

o Decreases with an increase in p. This is because a
high value of p means a low number of inter-cluster
messages, and hence a low violation probability.

o Decreases with an increase in R. This is because we
can make a lot of moves in many more clusters.

o Increases with an increase in the variation of the
standard deviation, o. This is because as the variance
increases, the dispersion increases; thus increasing the
probability of returning to an older value.

o Increases with an increase in k.

Let us denote each configuration by a tuple (p, o, R, k).
Given a bound on the probability of SC violations (F,),
and bounded values of some parameters in the tuple, the
best possible values for the remaining parameters can be
found by using our model. Let us describe two criteria.

e Criteria CLUST_SIZE: Assume that we wish to have
an SC violation on an average once every k steps. In
other words, for let’s say a million reads/writes, we
want to bound the number of SC violations. In such a
scenario we need to choose the minimum number of
clusters R in such a way that we can meet our target.
Note that R and p are inter-dependent; however, the
distribution D is not necessarily dependent on R. It is
a function of the hardware and network latencies.

e Criteria RUN_LENGTH: In another situation, we
can fix the number of clusters R (and consequently
p), and try to run the system until we accumulate a
maximum number of SC violations. To stop the quality
of experience from worsening, we can either introduce
a period of quiescence or rearrange the clusters.

A. Empirical Validation of our Model

Our model is generic and can be tuned to represent any
application. Let us consider SC violations in a popular key-
value store, Cassandra, as described by Liu et al. [22].
Figure 4 shows three consecutive operations, W1, W2 and
R3, respectively, where L1 and L2 are the issuing latencies
between them. This scenario satisfies SC if R3 reads the
value of W2. For achieving SC, the propagation delay (D)
among the replicas should be less than L2, else R3 will
either return W1 (if L2 < D < (L1 + L2)) or some older
value, thus violating sequential consistency. To compute
the probability of achieving sequential consistency we have
used a version of Cassandra with support for Probabilistic
Bounded Staleness [19]. Figures 3(e,f), represents the no-
violation probability as a function of the issuing latency for
4, and 5 node systems, each with a replication factor of
2, and 3, respectively. The graph shows that as the issuing
latency increases, the probability of violation decreases.
This happens because the updates can be propagated to the
replicas before the read request arrive. Our mathematical
model can be adapted to represent this system as described
in the following subsection.

1) Adapting our Formulation to Model Cassandra: The
probability of SC violations in Cassandra depends upon the
number of replicas (R,.,), the propagation delay among the
replicas (D), and the latency distribution between writes and
subsequent reads. Please note that the number of clusters
(R) in our model is different from the number of replicas
(Rrep) in Cassandra, since the replicas communicate at a
very high frequency to remain consistent while our clusters
communicate minimally. So we consider two rows to model
Cassandra; one row represents all the replicas and the other
row represents a cluster of clients issuing requests (there

v 16 k=80,0=1 908 R=4,0=1
H14 -0 p=07 QP p=085| Ho, 21 @@ p=07 @@ p=085
= 12 p=0.75 A p=09 <06 ¥ 12/W-W p=0.75 AA p=09
s J—4k p=0.8 5§ ‘s 1.0 | %=k p=0.8
5 1.0F 205 2
S Tos —
= 0.8r : 1 S04 2 Y - _—k
> » >
us e i) kS o« 0.6 4 e
© 0.6} : 4 =03 1S y /’/
204 t\\Q\ : e | = Zo4 /,,*/ —
=° D S-S - I ~ = asmmi
£%° P o1 b | £ A
* 4 6 3 10 2 4 6 8 10 =000 20 30 40 50 60 70 80
Number of rows (R) Number of rows (R) Number of steps (k)
(a) (b) (0
206 p=0.9, R=4 £ 1.00 N=4,R,,=2,0=2 10 N=5,R,.,=3,0=2
7] -0 o= QP o= = =
Ros o1 o=t ©0.95 - 209
< 7| |WV¥ o=2 AA o=5 % 2 2™
g o4 f—%k 0=3 %/ z 0.90 £ 0.8 4",
= 2 S 0.85 S s
B3 - /! 0.7
2 — . ‘5 0.80 ‘s //
202 /P// = 50.75 — Cassandra §°'6 — Cassandra
S 01 — £0.70 we Adapted Model 805 we Adapted Model
S 20.65 : : . 204 : ; ;
& O.O0 To 30 30 40 50 60 70 89 o 0 50 100 150 200 o 0 50 100 150 200
Number of steps (k) Latency (ms) Latency (ms)
(GY] (e) ®

Figure 3: Probability of violation vs (a-d) (a) Number of rows at different values of forward probability p (b) Number of rows at different
values of o (¢) Number of steps at different values of forward probability p (d) Number of steps at different values of o (e) No violation
probability vs issuing latency (R,.p=2, N = 4) (e) No violation probability vs issuing latency (R,ep=3, N = 5).

Wiy Clients Coordinator

ﬁl Proxy Servers
3 o
o 3

=
N

.
w
o)

S

&2

\\

"}
3

M|
5{

time

Figure 4: Experimental

T
scenario for checking

Cn
Sequential ~ Consistency Q Data Servers
(adapted from [22])

Figure 5: Architecture of the system
is a total order between them). The standard deviation of
this model o', depends on the number of replicas and the
propagation delay among them as:

’ o' =CxoxRy,,, 4
where C' is some constant of proportionality.

A high value of issuing latency means that the probability
of reading a correct value is high. This means that in our
model the probability of reading a value before the frontier
of the replica row should decrease with increase in issuing
latency. We capture this by continuously taking forward
steps corresponding to the value of issuing latency, before
taking an inter-cluster step. In particular, we consider that
for Ims of issuing latency, we move one step forward. Thus
in the adapted model, our forward steps are a function of
issuing latency rather than a probability p. After performing
issuing latency equivalent number of steps, we take an across

step which returns a value according to the discrete Normal
distribution Ay(2,o’?). In summary, the adapted model has
the following parameters for our 4-tuple < [1|0],07,2,k >
configuration, where the first component means that for %y
number of steps we move forward with probability 1, and the
remaining steps are across steps, hence the corresponding
p is zero. We performed Monte-Carlo simulations on our
adapted model. Figures 3(e,f), show that our adapted model
has similar non-violation probabilities as that of Cassandra.
For all the experiments with ¢ = 2, the ¢’ value which best
reflected Cassandra’s behavior was 40+ / I%,.c;,, implying that
if 0 =2, we have C' =20, and r = 1/2.

V. SPLIT AND MERGE PROTOCOLS

Figure 5 presents the architecture of our system, where
C1,Cs,...,C, represent the clients. The data servers,
DS1,DS2,..., DSy, form the storage layer for all the
objects. Initially, in a no-overload situation, the data servers
store different objects, and each object is stored on a single
server. Whenever there is an overload we initiate the split
protocol: add more servers to store the replicas. We can also
dynamically reduce the number of replicas (merge protocol).

The Coordinator maintains the mapping between the
client ids and the cluster ids (which are uniquely mapped
to the data servers), for different objects in the form of a
partition function. Upon any split or merge, the coordinator
provides this mapping information to the proxy servers as
routing functions. The proxy servers, PS1, PS2, ..., PS,,,
add the clients to the system with help of the coordinator.

Proxy Servers act as mediators between the clients and the
data servers; they route the client requests according to the
routing information provided by the coordinator.

A. The Split Protocol:

Each data server tracks the incoming request rates of its
objects, and when the request rate for a particular object goes
beyond a predefined threshold, the overloaded data server
sends a split request to the coordinator, who then performs
the user partition and generates new routing functions.

Consider a social graph of users where their connections
are captured by the weight matrix, W, as described in
Section III. Before the split, assume that the social graph for
a given object is split into R separate sub-graphs (one for
each cluster). Now, we need to increase R to R’ (R’ > R) to
reduce the load on each server. Once we choose R’, we can
then split the graph into R’ sub-graphs, where the number
of accesses for each group of users is roughly the same (see
Section III for the details). To choose R’ we can use either
the criteria CLUST _SIZE or RUN_LENGTH as described in
Section IV. This depends on the application’s requirements
and can be conveyed to the runtime system by the developer.

We envision a small software routine that runs a short
profiling run for different values of R (Is for each con-
figuration in our experiments, less than 1% of the execution
time). In the profiling run, we record the parameters that are
required in our theoretical model: p and D. Then we run a
short Monte Carlo simulation (in ms) to find the relationship
between the number of steps and the probability of error.
An astute reader may question the need for a Monte Carlo
simulation when we have a profiling run; however, note that
finding SC violations is hard in most systems, and secondly
just to observe p and D we need very short profiling runs
with minimal instrumentation (timestamping of messages).
Additionally, this profiling can only be done once in the
lifetime of an application, and the results of the Monte Carlo
simulations can be stored in memory. This will make the
overhead negligible. To summarize, at this point we have
a relationship between the number of clusters, number of
steps, and the probability of SC violations.

Now, the load per server decreases linearly with the num-
ber of servers; however, having more servers is expensive.
For the CLUST _SIZE criteria, we need to minimize R’
subject to the constraints: (1) R > R, (2) if L is the request
rate for the object, then L/R’ < 7, (3) the probability
of SC violation is bounded by P for every k steps and
4) R < Ryaz, Where R,,q, is the maximum number
of servers we can allocate for the object. P and 7 are
user-defined thresholds. We have similar equations for the
RUN_LENGTH criteria. Note that (3) is trivially satisfied
for a shifted normal distribution; however, this need not be
the case for other kinds of distributions. This optimization
problem can easily be solved using a greedy approach (if it

<o P=0.99,0=2,P,=0.3

4.5
o 4.0
—
o35

(2]

>3.0

©

=25

@

@ 2.0
1.5

25,000 req/s

4520 25 30 35 a0 45
Request rate (#Req/s) le3

Figure 6: Best R as a function of Request rate
is convex), or by exhaustive enumeration. The time penalty
for this phase is negligible.

Figure 6 shows the results of Monte Carlo simulation
corresponding to the CLUST_SIZE criteria. The simulation
uses p = 0.99 (determined from the profiling run of a
Cassandra workload), and the distribution D is chosen to
be Normal with ¢ = 2, which is the same as obtained
from PBS version of Cassandra in Section IV. The bound
on probability violation is assumed to be 0.3. The value of
T, i.e., the system threshold, is approximately 8000 req/s
(experiments computing this system threshold value are
described in Section VI).

B. The Merge Protocol:

Akin to the split protocol, the merge protocol is invoked
when the average load per server falls below a lower
threshold. In this case, we need to choose a new value of
the number of clusters, R’, where R’ < R. The rest of the
analysis is the same as the split protocol.

VI. EVALUATION
A. Experimental Setup:

We implemented a mock social network application,
GLEE (Good quaLity Experience and pErformance), over
the widely used Cassandra [9] database and stored posts as
key-value pairs: the post-id is the key, and the comment-
list is the corresponding value. In our experiments, each
write request is saved as a comment, which is appended
to a post and each read request returns a list of the latest
50 comments for that post. We have focused on only one
post to show the impact of hot-spots. We use Gpmetis [23],
a graph partitioning tool, to partition the social graphs. Our
experiments are based on the CLUST_SIZE criteria, i.e., we
target on choosing R, while & depends on the incoming
workload.

We ran our experiments within a single data center
equipped with Intel Xeon, Core i3, 2"¢ generation proces-
sors, each having 4 cores, 16 GB RAM, 3 TB Seagate HDDs
(7200 rpm) and connected by Gigabit Ethernet (GbE). The
servers ran Ubuntu Linux 16.04. In each experiment, we use
three dedicated machines for proxy servers, one for the coor-
dinator, three for all the clients, and one, two or four for data
servers (depending on the number of clusters created after
splitting). The data servers run Cassandra 3.9 in the backend

log,ylatency (ms)

log,,latency (ms)

Time(s)

(d) (O]

5|=== Req rate ledg 7|===Req rate leds 7|==Req rate 4.0
nn No Split /" m wie No Split : m wa No Split i
4l == Cassandra ; SE' — 6 Cassandra __-' i {255 —_ 6 mm= Cassandra 3'5;
..... GLEE f / . o g 5w GLEE E ! A 2 g St sais 33.0%
3 iojax = | fo20% = 2.5%
2 ‘/ .": 3 2 ? 4 :: / -i 1.5 2 Lc>; 3 2.08
1 \’7" .”: S 24‘6’_‘-)’ < , £ !! 5: 1.045 < 2 154‘7;
AP S 83 LS S 81 103
0 S 19 = e o 059 = o
g 1-’% \1@"‘""" “-“-‘l““““‘ chJ 0 Osg
~% 50 100 150 200 250 300 04 %0 o 6t°
] 0 20 40 60 80 100 12 20 40 60 80 1001201401
Time(s) Time(s) Time(s)
(a) (b) (c)
== Req rate 7 6
=1 comm le4 H = 1 Cluster (No-SpIiD)
’ s 25 comm N 3'01/? 6 5 = 2 Clusters (GLEE) - Req Rate
O o E0 comm H S P 2 53— ;! 5| == 4 Clusters (GLEE) bl
§ B 29 - 5 i £ 11 2 Clusters (Cas) 7 4
5 75 comm H s 5 0% e 4 =i £ | w4 clusters (Cas) =]
H 3£.U" ~ H H O
4 i S0 T { i 53
3 : 3 +11.5% S H o =
S 0 o 2, 1 § g 11,200 req/s
2 o N - o g § By c 2
1 7 1.0 2 = R ™™ 5 4,500 reqg/s
o o " S R o - =
OW;_\N-V---I-" 0.5 qg)_ o 07' ﬁ‘a ““‘___----’ - 1 : :
o oL i: . . ;
- 0 _10 0 10000 20000 30000 40000 50000
% 20 40 60 8o 100 120 T 2 3 4 5
Request Rate (#Req/sec) le4d Request Rate (#Req/s)

®

Figure 7: (a) Write-Only workload (b) Read-Mostly workload (¢) Mixed workload (d) Latency with number of comments read (e)
Multi-Split (1, 2 and 4 clusters) (f) Number of clusters at different request rates during the execution.

and store data without replication, with a consistency value
of one (i.e., reads/writes are performed at any one server
before returning). Initially, there is a single data server
to handle the incoming workload. Upon overload, another
database with the same schema is created (on another data
server), and the object data is copied. These two servers form
their clusters, without any replication (replication factor:1)
and consistency value:1. Upon subsequent overloads, this
process is repeated without altering the replication factor
and consistency value.

We evaluated the performance of our system in terms
of latency and request throughput and compared it with
Cassandra. Cassandra is used in Facebook and is its default
load balancer; hence, it is one of the best candidates for
comparison. In the experiments, Cassandra initially has a
replication and consistency value of one. Upon any sub-
sequent overload, the replication factor is incremented by
one (after adding a data server), but the consistency value
remains one throughout, unlike our model. We get the data
for social relationships for 360 users from Twitter [24], and
we use both synthetic data sets and data sets from Twitter

and Facebook.

B. Experiments and Inferences:

We initially evaluated our system on a synthetic bench-
mark where the request rate increases in steps, i.e., consider-
ing that the time has been divided into intervals, request rate
is constant during a time interval, and increases or decreases
in steps at different intervals. A split is performed when the
incoming request rate reaches 60% of the system threshold

(determined empirically to be the best point for a split in
terms of performance).
Figures 7(a-c) show the request rate (plotted in the sec-
ond y-axis) and corresponding latencies (logyo scale) for
three types of workloads: i) Write-Only ii) Read-Mostly
(95% Reads, 5% Writes) and iii) Mixed (50% Reads, 50%
Writes). Each latency graph has three curves representing the
base case (no-split, i.e., the system has only one cluster),
Cassandra and GLEE, both with one split each (i.e., the
system has two clusters). After the split, both Cassandra and
GLEE use double the resources. Figures show that GLEE
handles (1.7 — 1.9)x more workload in comparison to the
non-split configuration, and 1.6x workload in comparison
to Cassandra. Cassandra has a negligible performance gain,
(1 — 1.2)x, showing that Cassandra does not perform ef-
fective load balancing when there is a single hot object.
Cassandra sends more messages across clusters, whereas
GLEE has a better clustering scheme.

Figures 7(a-b), show that GLEE can handle (2 — 2.5)x
more of the Write-Only workload than the Read-Mostly
workload. This is because in the Read-Mostly workload,
the performance is dependent on the number of comments
that are read from the server in response to a read request.
The latency of the read request increases as the number
of comments read by it, increases. We confirmed this by
running a non-split experiment (Figure 7d), varying the
number of comments to be read. Thus, the number of
comments read can be tuned, and in our experiments, we
read 50 comments as this value is realistic and provides

reasonable performance.

led 4led >1.
2.0 : =1 2
S | |EEE Reqrate =1.2 B Req rate 8,.g| = Random
Z 15 o o™ GLEE
1.
5 5 0.8 g 1.4
% 1.0 % ’ = ﬁ#*»faﬂ;fvmuw#w.«”‘%“#ﬁe"\w"w.;
4 o 0.6 c_f
I 7 512
205 004 =
3 50.2 U 1.0\ Av PPN pos
“0.0 “ 9.0 o
050 100 150 200 250 0 100 200 300 o8
Time(s) Time(s) <70 50 100 150 200 250
Time(s)
(@) (b) (©
9 4.5 : :
8| w No Split _ 4.0t wn No Split 012 I No. of Requests
27 e Cassandra £33 ma - Cassandra ®10
=X <30 2
? g | GLEE LZ" S| = GLEE 8os
a 3 a2, bS]
& \ ®© 0 5 09
=3 i =15 24
32 , \ 210 EO
2 e »’:{;}-’l:.... 0.5 N s Z02
% 50 100 150 200 250 00100 200 300 400 080 05 1.0 15 2.0 25 3.0
Time(s) Time(s) Normalized Quality
) (e ®

Figure 8: (a) Request rate for Twitter Dataset (b) Request rate for Facebook Dataset (¢) Quality curve for Twitter Dataset (d) Latency
for Twitter Dataset (e) Latency for Facebook Dataset (f) Clients QoE statistics

Henceforth, we use the Mixed workload for all our future
experiments as the other workloads show the same pattern
predictably. Figure 7(e) presents a multi-split scenario: ini-
tially, there is only one cluster in the system, and after
subsequent splits, the number of clusters increases to two
and four. Our experiments demonstrate that GLEE surpasses
Cassandra by handling higher workload: 1.6x more by
performing one split and 2.4x more by performing multiple
splits. Figure 7(f) shows the number of clusters used at
different request rates during the execution of a multi-split
scenario.

We also present the results with two real-world datasets
collected using i) Twitter: Higgs dataset [24] and i) Face-
book’s API: comments on a famous live video, shown in
Figures 8(a,d) and 8(b,e) respectively. The graphs show that
the results are in line with our previous results with synthetic
workloads. For clarity, we have shown the request rate and
latency in separate graphs. The spike in latency curves 8(d) is
due to queuing, as the request rate spontaneously increases
from 9000 req/s to 18000 req/s (at the time interval of
160-170s). GLEE quickly handles the situation (in ~ 20s)
and becomes stable after splitting, while Cassandra provides
poor performance throughout and performance is improved
solely when the request rate decreases.

Apart from load balancing, we demonstrate the impact of
social partitioning, and claim a good Quality of Experience
(QoE) along with performance. Quality is loosely correlated
with violation probability (P,), since good quality means

that the clusters formed have good social connectivity and
hence low probability of inter-cluster communication, thus
a low value of P,. To quantify the QoE received by the
clients, we introduce a new consistency metric: “Quality”,
which can be computed for the response of each read
request. Quality represents the ratio of the number of
friends’ comments received (F'riends_Writes,eceived) tO
the total number of comments done by the user’s friends
(Friends_Writesqone). Formally, the quality of a read

request, R;, is: . .
q ZQualit o Friends_Writes,cceived 5)
Yi Friends_Writesgone

In the experiments, we compute the normalized quality of
a split system w.r.t a non-split system, i.e

(Quahtyl)splzt

‘ (6)
. (Qualltyi)no_split .
If there are n requests in total, the average normalized

quality, AvgNormalizedQuality, can be computed as:
SoF(NormalizedQuality;)

NormalizedQuality; =

AvgNormalizedQuality =
n

Figure 8(c) compares the quality of GLEE against 'ﬂ?
other load balancing system model; we call it ‘Random’.
Random performs client partition randomly (similar
to [11], [14]), thus handling only overloads while com-
pletely ignoring consistency. Figure 8(c) presents the
AvgNormalizedQuality of each system plotted relative
to the non-split case, and show that the quality index of
GLEE is 1.37 times higher than Random. Since we read only

1 1e34.0 —
— Req rate Alzsm LZE I S static Split

& 8| staticsplit | A 4308 10 == Dynamic Split
£ =="Dynamic Splity” = S % b
~ 7 3 K, * o g 1 g 2
g ° 2oy 208 ™
g 2% o “,
T 4 115 © H T
S 108 04 5
S 2) = 3

‘4—“‘ 052 0.2 H e

0 50 100 150 200° 0% 50 _ 100 150 200

Time(s) Time(s)

Figure 9: Static vs Dynamic Per- Figure 10: Static vs Dynamic
formance Quality

the latest 50 comments, the probability of reading friends’
comments can be higher in a split case than in a non-split
case, leading to a quality value higher than one. Figure 8(f)
presents the histogram of the number of requests issued by
clients versus the quality of each request for GLEE. The
graph shows that maximum requests have a quality index
of 1, implying that maximum clients get a high-quality
response. Only 30% of requests have a quality reduction
by more than 50%, meaning that only a small percentage of
clients do not get good quality. Please note that Figure 8(f)
presents the quality of all requests ‘individually’, unlike
Figure 8(c), which shows the average.

To corroborate the importance of dynamic weights in so-
cial partitioning, we evaluate our system in both the settings:
only static weights (denoted by Static Split in the graph), and
both static and dynamic weights (represented as Dynamic
Split). Figure 9 shows that dynamic split provides better
performance, though the quality offered (Figure 10) in this
case is slightly lower than the case of static. This reduced
quality is because our system tries to provide both excellent
load balancing (leading to better performance) and good
social consistency (leading to better QoE) wherever feasible,
but it favors better performance by compromising upon
social consistency in case of critical situations. Figure 10
shows that the quality in the static case suddenly drops to
0. This sudden drop is because as the request rate increases,
the system becomes overloaded with extremely high latency,
and hence no requests complete.

VII. CONCLUSION

In this paper, we proposed a new model for analyzing a
system with multiple sequentially consistent sub-domains,
and then used it to implement a new consistency model
called social consistency. The class of applications that
do not require very strong consistency such as social net-
working, online reviews (Amazon), and collaborative editing
(Google docs) are very well suited for social consistency.
We implemented a prototype social application, GLEE, and
evaluated it using synthetic and real-world datasets. We
compared GLEE against the Cassandra key-value store and
showed that GLEE outperforms Cassandra by handling 1.6 x
and 2.4x more workload (by performing one and three
splits). GLEE provides this performance along with an
average 37% better quality of experience.

(1]

(2]
(3]
(4]
[5]
[6]

[7]

(8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

(17]

(18]
[19]
[20]

(21]

(22]

(23]

[24]

REFERENCES

G. DeCandia et al., “Dynamo: amazon’s highly available key-
value store,” ACM SIGOPS operating systems review, pp.
205-220, 2007.

“Project voldemort,” http://project-voldemort.com/.

W. Lloyd et al., “Don’t settle for eventual: scalable causal
consistency for wide-area storage with cops,” in SOSP, 2011.

, “Stronger semantics for low-latency geo-replicated stor-
age,” in NSDI, 2013, pp. 313-328.

C. Li et al., “Making geo-replicated systems fast as possible,
consistent when necessary,” in OSDI, 2012.

P. Bailis et al., “Quantifying eventual consistency with pbs,”
The VLDB Journal, pp. 279-302, 2014.

NDTV, “Ellen degeneres’ selfie crashes twitter,”
http://www.ndtv.com/world-news/ellen-degeneres-selfie-
crashes-twitter-552579, 2014.

L. Ari et al., “Managing flash crowds on the internet. mod-
eling, analysis, and simulation of computer systems,” in
International Symposium on, 0, 2003, p. 10.

A. Lakshman and P. Malik, “Cassandra: a decentralized
structured storage system,” ACM SIGOPS Operating Systems
Review, pp. 35-40, 2010.

M. Randles et al., “Cross layer dynamics in self-organising
service oriented architectures,” Self-Organizing Systems, pp.
293-298, 2008.

A. Rao et al., “Load balancing in structured p2p systems,”
Peer-to-Peer Systems II, pp. 68—79, 2003.

B. Pawlowski et al., “Nfs version 3: Design and implemen-
tation.” in USENIX. Boston, MA, 1994.

S. A. Weil et al., “Intelligent metadata management for a
petabyte-scale file system,” in 2nd Intelligent Storage Work-
shop, 2004.

——, “Dynamic metadata management for petabyte-scale file
systems,” in ACM/IEEE conference on Supercomputing, 2004.

D. Terry et al., “Managing update conflicts in bayou, a weakly
connected replicated storage system,” in SIGOPS Operating
Systems Review, 1995, pp. 172-182.

M. Shapiro, N. Pregui¢a, C. Baquero, and M. Zawirski,
“Conflict-free replicated data types,” in Symposium on Self-
Stabilizing Systems. Springer, 2011, pp. 386—400.

J. M. Pujol et al., “The little engine (s) that could: scaling
online social networks,” ACM SIGCOMM Computer Commu-
nication Review, pp. 375-386, 2010.

Y. Sovran et al., “Transactional storage for geo-replicated
systems,” in SOSP, 2011.

P. Bailis, “Using pbs in cassandra 1.2.0,” http://www.bailis.
org/blog/using-pbs-in-cassandra-1.2.0/, 2013.

S. V. Adve and K. Gharachorloo, “Shared memory consis-
tency models: A tutorial,” computer, pp. 6676, 1996.

H. Attiya and D. Hendler, “Time and space lower bounds for
implementations using k-cas,” IEEE Transactions on Parallel
and Distributed Systems, vol. 21, no. 2, pp. 162-173, 2010.
S. Liu et al., “Quantitative analysis of consistency in nosql
key-value stores,” in QUEST. Springer, 2015, pp. 228-243.
G. Karypis ef al., “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on scientific
Computing, vol. 20, no. 1, pp. 359-392, 1998.

D. Domenico et al., “The anatomy of a scientific rumor,”
Scientific reports, p. 2980, 2013.

