SecCheck : A Trustworthy System with Untrusted Components

Rajshekar Kalayappan and Smruti R. Sarangi
Department of Computer Science and Engineering
Indian Institute of Technology Delhi
New Delhi, India
{rajshekark,srsarangi} @cse.iitd.ac.in

Abstract—Mission critical applications face a security risk when
they use third-party ICs for their speed and/or technology benefits.
SecCheck is an architectural framework that securely incorporates fast,
untrusted third-party cores (3PCs). It takes a comprehensive approach,
providing for all of the different traditional fault tolerance techniques,
to verify the 3PCs’ functioning. The verification is done at run-time
by slow, trusted, homegrown cores (HGCs). The overhead of providing
security is reduced through intelligent scheduling exploiting task-level
parallelism. The average performance penalty for achieving security
under SecCheck is just 10-17% (optimal schedule), even when the
HGCs are only half as fast as the 3PCs. We also devise a heuristic-
based scheduler that is 500X faster than an ILP-based optimal one,
with a relative penalty less than 1%.

Keywords-security; trojan; redundancy; scheduling; heterogenous

I. INTRODUCTION

The failure of Syria’s radar systems was instrumental in Israel’s
successful air strike on it in 2007 [1]. The failure is believed to
have been brought about by Hardware Trojan Horses (HTHs) in
the control systems. Governments across the world are beginning to
take this problem very seriously. The United States Department of
Defense has launched the Trusted Foundry Program [2], attempting
to implement the entire design and fabrication process within
a small group of trusted organizations. The resulting systems
however fall short of the global IC industry in many aspects such as
yield, turnaround time, cost and technology [3]. An organization,
by itself, cannot produce chips that are advanced enough to meet
its application requirements. The reliance on third-party ICs is, at
least in the immediate future, unavoidable.

SecCheck is an architectural framework that allows the secure
incorporation of high performance, untrusted, third party, general
purpose cores (3PCs). There are four types of attacks an HTH
may carry out [4]: (i) wrong computation, (ii) malicious signaling
of devices, (iii) denial of service (DoS) and (iv) leakage of data.
In this work, we primarily focus on detecting whether a 3PC
miscomputed a task, and on preventing the effects of this attack
from reaching the rest of the system. Thus SecCheck handles all
attacks of the first class, and to a large extent the other classes
as well. All communication with devices are made only after they
are fully verified, thereby preventing malicious signaling of devices
and leakage of data (akin to the gateway-based approaches of [5],
[6]). Incorporating watchdog timers will help detect DoS attacks.

The detection of an HTH through pre- and post-silicon tech-
niques is extremely hard [7]. Trojans can lie dormant for long
periods of time before becoming active. Thus run-time techniques
are required to detect malicious activity. The principles behind run-
time techniques are largely inspired by fault tolerance research
(see the survey by Kalayappan et.al [8]): dual modular redundancy
(DMR) and invariant verification. The efficacy and limitations of

each of these strategies by themselves has been well studied in
prior works [7], [9], [10]. We observe that intelligent choice of the
verification strategy based on the task at hand can significantly re-
duce the performance burden of security. This brings us to the first
important facet of SecCheck : it is a generic and comprehensive
approach, that brings together (i) DMR, (ii) invariant verification,
(iii) the seminal soft-error detection technique DIVA [11], and (iv)
a novel combination of DMR and DIVA called Extended DIVA
(E_DIVA), all within a single framework.

The second important facet of SecCheck is that it uses low
performance, trustworthy, home-grown, general purpose cores
(HGCs) to verify the untrusted 3PCs. HGCs are designed and
fabricated in-house, or within a trusted group of organizations like
that realized by the Trusted Foundry Program [2]. Prior DMR-
based strategies like [9], [10] employ two functionally-equivalent
ICs from two different third parties and check if their results match.
These strategies are based on the assumption that the two third
parties do not collude. Since SecCheck need not rely on such
assumptions, it provides a stronger security guarantee. Additionally,
to the best of our knowledge, there is no other work that has studied
heterogeneous systems of this kind, with different trust domains
at the granularity of processor cores. Prior works using trusted
components are typically simple invariant checkers [7], [12], [13].

The different verification strategies that SecCheck employs are
known to provide complete security. However, since the HGCs are
slower and/or simpler than the 3PCs, simple application of these
redundancy techniques results in large performance overheads,
negating the benefit of the 3PCs. The solution to counter this gives
SecCheck its third facet. SecCheck seeks to mask the overhead
of verification by overlapping the 3PCs’ computation with the
HGCs’ verification. This is possible due to the task-level paral-
lelism exposed by the popular task-based application model. With
the right verification strategy for each task and the right mapping of
task instances to cores, the overhead of redundancy can be masked
significantly. Our experiments show that an optimal schedule of
the application on the SecCheck system results in a performance
overhead as low as 10% (as compared to an insecure 3PC-only
run) when the HGCs are half as fast as the 3PCs. In contrast, a
system consisting of only HGCs displays a 100% overhead. We
admit that SecCheck has high area and power overheads — these
are expected traits of all redundancy-based architectures.

The optimal scheduler is an ILP-based one and hence is
quite slow. Based on certain non-trivial heuristics, we propose
the SecCheck Scheduling Algorithm (SSA). SSA computes near-
optimal schedules (average penalty < 1%), while being much faster
(/500X) than the optimal scheduler.

Sphere of Containment
Third-party
HG Crpes —D Hardware
HG et _Dg Home-grown
= Hardware

O . 3

H H Hi=}

. - H

A H]

<. =4

-~
Interconnect

Figure 1: SecCheck Hardware Architecture

II. RELATED WORK
HTHs can be inserted at any point during the design or the

fabrication phase. Pre-silicon design verification techniques are
impractical — RTL-level simulators are too slow, while formal veri-
fication techniques have scalability issues. Post-silicon functionality
testing faces coverage issues. Side-channel analyses require a
golden model against which the chip under test is compared.
Process variation phenomena force the golden model to be loosely
specified. Also, pre- and post-silicon techniques are ineffective
in the face of triggered HTHs [7].

Given the shortcomings of both pre-silicon and post-silicon
techniques, run-time techniques are being sought that can detect
a HTH when it is activated in-field. Prior run-time techniques can
be classified into two categories: redundancy-based and invariant
checking. Redundancy-based techniques such as [9], [10] suggest
that multiple functionally equivalent IPs/ICs be procured from
different vendors. Comparing their results at run-time tells us if a
Trojan was activated. These works are based on the assumption
that the different third party vendors do not collude. Given
the sensitive nature of mission critical applications, we believe
this assumption to be too risky. SecCheck suggests using home-
grown HGCs to verify the 3PCs. Even though the HGCs are much
slower and/or simpler than the 3PCs, clever utilization of them
can ensure minimal impact to the performance. To the best of
our knowledge, no prior work attempts to employ home-grown
circuitry to verify complex foreign ICs such as processor cores.
The general approach in using home-grown security elements is to
verify certain properties or invariants associated with the third-
party IC [3], [7], [13]. Simple functionalities such as bus protocols
allow complete coverage through elegant invariants. However,
in more sophisticated designs like processor cores, not all sub-
functionalities display elegant invariants.

ITI. SECCHECK ARCHITECTURE

A. Hardware Architecture and Attack Model .
Figure 1 shows the hardware architecture. The system contains

Ns3pc number of 3PCs and Nygc HGCs. The system also
contains devices that may be read from or written to by the HGCs.
The 3PCs are potentially malicious and may miscompute the task
assigned to it. A result derived from a miscomputed task must not
reach the devices; only fully verified read and write requests must
do so. Any malicious 3PC activity must be detected and contained
within the “sphere of containment” (which is the system of cores;
see Figure 1). We term this

The Principle of Containment: Any attack by a Trojan must be
contained within the sphere of containment and not allowed to
affect the rest of the system.

Once the Trojan is detected, one or more of a set of measures
(not exhaustive) may be carried out: (i) move to a fail-safe HGC-
only mode (ii) disable the guilty 3PC (iii) restart the guilty 3PC in
a bid to upset the triggering condition.

B. Application Model
Prior works in the domain of such multi-SoC systems that

possibly contain heterogeneous computing elements, commonly
assume the task based application model [9], [10] (survey in [14]).
A task is a sub-program with a single entry point, and a single exit
point. Regular tasks are self-contained, and do not have side effects.
A program is represented as a graph of tasks, where tasks receive
their inputs and send their outputs via messages from/to each other.
Due to the message passing model, it is easy to parallelize such
programs. Additionally, task graphs present isolation properties
desirable when fault tolerance and/or security are design goals.
Acknowledging the emergence of this paradigm at the level of
embedded processors, GPUs, and servers, several vendors have
launched programming languages/runtimes in this space namely
Ericsson’s Erlang, Intel’s Cilk+ and TBB, Microsoft’s Task Parallel
Library, Google’s Go and IBM’s X10. These paradigms have
software runtimes that govern the execution of the task graphs
on the available processors, and the movement of data between
tasks. SecCheck also adopts the task graph model, and assumes a
software runtime (running on an HGC) that manages the execution
of the tasks and their instances (see Section III-C), the movement
of data between them, and the performing of I/O. Just like in other
works in this domain, we evaluate our proposal using the standard
E3S benchmark suite [15], which contain task graphs composed
of benchmarks from the standard EEMBC suite [16], as well as
synthetic graphs generated using TGFF [17] (also used in [9]).

Formally, a task graph is a directed acyclic graph G = (V, E).
The set of vertices V' represents tasks. An edge e = (u,v),e €
E' indicates that the output of task w forms the input of task wv.
Consequently, u must complete before v begins. A task may have
zero or more inputs, and zero or more outputs. All outputs of a task
are available at the same time at the end of the task’s execution.

I/0 tasks: Some of the tasks access devices. To realize the
principle of containment, an 1/0 task is allowed to complete only
when it and all its ancestors have been verified.

Task annotations: Each task is also annotated with (i) an
estimate for the time taken to execute on a 3PC, t3pc (notation:
t will be used to describe time intervals, and T to describe
absolute times), (ii) an estimate for the time taken to execute on an
HGC, tgyge, (iii) an estimate for the time taken to execute under
the DIVA scheme (see Section III-C), tprva, (iv) whether it is
invariant capable (see Section III-C), (v) an estimate for the time
taken to verify under the invariant scheme, ¢;nv . These annotations
are provided by the programmer and/or a profiling compiler.

Figure 2(a) shows the specification of an example application.
The task graph model for applications reveals task-level parallelism
(TLP) that is critical for SecCheck . The parallelism across different
tasks, as well as their verification instances (see Section III-C), is
the reason for SecCheck ’s superior performance.

C. Verification Strategies

A task can be verified through any of four verification strategies
(or execution types), each having its pros and cons. At run-time,
for each task, multiple execution instances are spawned. The
number of instances, the cores on which they run, and their run
duration depend upon the verification strategy chosen. Appropriate
selection of the verification strategy for each task can reduce
the time to securely execute the application. For all strategies,
there exists one instance that runs on a 3PC termed the primary

—> data flow

B 3PC instance

(a) Application specification
as a data flow graph

[T HGC instance

(b) Task graph choosing
(i) E_DIVA for task 1, (ii) Inv for task 2,

verification
success/failure

time

(c) One possible schedule
on a system of 2 3PCs and 2 HGCs

(iii) DMR for task 3, (iv) DIVA for task 4

Figure 2: Application specification and execution in SecCheck

instance. Data dependencies are resolved through the primary
instances. That is, all the instances of the successor tasks of a task
¢ can begin only after the primary instance of ¢ completes. The
time required for this completion is denoted by tgep,. A task ¢
can be deemed verified only after all its instances have completed.
This time is denoted by tyer,-

Dual Modular Redundancy (DMR): Under DMR, the primary
instance runs on a 3PC and another runs on an HGC, and their
outcomes are compared. This gives t4ep = t3pc, allowing quick
spawning of successor tasks. However, the verification time is
high, tyer = trcc. This allows for potential overlapping of the
task’s verification and the execution of its successors. Note that the
executions of the 3PC and HGC instances need not overlap.

DIVA: DIVA [11] verifies by assisted re-execution. Two in-
stances of the task are run simultaneously, one on a 3PC (leader),
the other on an HGC (checker). The leader passes execution hints
to the checker thereby improving the latter’s performance. The
time taken for the instances to finish, t prv 4, typically follows the
inequality t3pc < tprva < tmac. Under DIVA, tgep = tyer =
tprva. From a resource utilization standpoint, DIVA results in a
longer 3PC occupation (than DMR), and a shorter HGC occupation.

Invariants (INV): Applications that exhibit easy-to-verify in-
variants are termed invariant capable. The class of NP problems is
a classic example. The fast 3PC can be used to solve the problem,
and the slower HGC can be used to quickly verify the result. Under
this technique, tgpgc << tspc, making tyer & tgep = t3pc.

Extended DIVA (E_DIVA): DIVA’S tyer(= tprva) is lower
than that of DMR. However, DIVA’s t4ep(= tprva) is greater
than that of DMR. To capture the best of both worlds, we propose
extended DIVA, where three execution instances of the task exist:
one running standalone on a 3PC to help dependent tasks start as
soon as possible, and two instances running in DIVA mode. This
gives tyer = tprva and tqep = tpamr. However, since E_DIVA
employs three instances, it is more resource intensive as compared
to the other techniques, and therefore must be prudently used. Note
that it is also verified that the output of the HGC instance matches
with the stand-alone 3PC instance.

Figure 3 shows a comparative summary of the techniques.

D. Offline Scheduling
Prudent scheduling of tasks on cores improves performance.

Alternatively, it reduces the number of HGCs required to attain a
certain level of performance. A commonly used metric to evaluate
performance is the makespan — the time elapsed between the

@
E M 3PC instance
= [HGC instance

thace Ever

taepm mitver itver

t,
tdepI F=hver — - Ly

DMR DIVA Inv E_DIVA

Figure 3: Comparison of different verification techniques

starting of the first task and the completion of the last task.
This is ideal if only the result of the very last task is to be
considered. However, as commonly seen in typical applications,
many intermediate tasks also perform I/O. Thus, a more apt metric
would be one that favors a highly responsive system. We choose
the popular average completion time metric [18] — the arithmetic
mean of the completion times of the different I/O tasks. Formally,

Task-verification: a task is said to be fask-verified when all its
execution instances have completed execution. Let the time when
a task ¢ is task-verified be given by Tyer; .

Output-verification: a task is said to be output-verified when
it is task-verified and all its predecessors are output-verified. Let
the time when a task ¢ is output-verified be given by Topyer,;.
Topuver; = Tyer; for root tasks.

The performance metric that must be minimized is:

PM — Z’UGVIO TOPverv
\Viol
where V7o is the set of all I/O tasks.

The scheduler is responsible for determining for each task,
(i) what verification technique must be employed, (ii) when the
different instances should be scheduled, and (iii) on which cores
must the different instances be scheduled.

In the example in Figure 2, panel (b) shows the different 3PC and
HGC instances required if the scheduler determines E_DIVA to be
used for task ‘1°, INV for task ‘2’, DMR for task ‘3’ and DIVA for
task ‘4’. Panel (c) shows one possible schedule of the application on
a system having 2 3PCs and 2 HGCs. Prudent scheduling can help
increase the temporal overlap of different instances, and therefore
reduce the value of PM. For instance, it can be seen that the
HGC instance of task 3 overlaps with instances of all tasks. The
advantage of E_DIVA is also seen — the HGC instance of task
3 begins before task 1 has completed verification, which itself
does not take too long (as compared to when the DMR strategy
is employed for task 1). Note that in INV, the HGC instance can

()]

Table I: Parameters in the ILP formulation

V: set of tasks
tspc;: time taken to execute task z on a 3PC
tuco;: time taken to execute task 7 on an HGC

tprva;: time taken by a DIVA execution of task 7
I10;: is task 4 an I/O task (boolean)

INV;: is task 4 invariant capable (boolean)
tINv;: time taken for INV verification of task 4
Eij: is task j data dependent on task 7 (boolean)
N3pc: number of 3PC cores

Nyago: number of HGC cores

Table II: Variables in the ILP formulation

VS, — 1, if task 7 is executed by verification strategy j
v 0, otherwise.

where j = 1 refers to DMR, j =
DIVA, j = 3 refers to INV and j =
E_DIVA.

2 refers to
4 refers to

AHGCij : is the HGC instance of task ¢ assigned to the jth
HGC (boolean)

Tstu'f'tHGC,i : start time of HGC instance of task 2

A3Pc_1”: is the 3PC instance of task ¢ assigned to the jth

3PC (boolean)

start time of 3PC instance of task ¢

is the DIVA-3PC instance of task ¢ assigned to
the jth HGC (boolean); applicable only for the
E_DIVA case

start time of DIVA-3PC instance of task ¢; appli-
cable only for the E_DIVA case

Tstartsapc_1;:
A3po_2,;:

Tstartspc_2;:

begin only after the 3PC instance finishes. In DIVA and E_DIVA,
the leader-checker pair have to execute at the same time.

IV. ILP FORMULATION OF THE SCHEDULING PROBLEM
The parameters in the formulation are given in Table I. The

variables are given in Table II. Table III lists the variables added

for ease of formulation. The objective function is:

i T 10,
minimize v%:‘/(OPuvery X v) (2)

where Topyer;: time when itP task is output-verified.
The constraints of the ILP are:
I Every task must have exactly one verification strategy.

Viev ¢ Z VS; =1 3)

I A task can be assigned thz: invariant verification strategy only
if it is invariant capable.

Viev 1 VSi3 S INV; (@]

X The run times of the different instances of a task depend upon

the verification strategy.

VieV :trun3PC_1; = t3PC; X VSi1 +tprva; X VSi2

5

+tzpc; X VSiz +t3pc; X VSig)

YieV : trun3PC_2; = tDIVA; X VSia (6)

Viev ‘trunHGC; = tHGC; X VSi1 +tprva; X VS %)

+trNv; X VSiz +tprva; X VSig
"I All instances of a task can begin execution only when the

primary instances of all its parents have completed.

Vijev i TstartaPc_1; TstartsaPc_2;» TstartHGC;

®

= (Tstart3PC_1; + trunsPc_1;) X Bji

Table III: Additional variables in the ILP formulation

1, if tasks 4 and j are scheduled on the
same core and ¢ is scheduled before j
0, otherwise.

B” =

trunHGC; "
trunBPC_li :
trunSPC_2i :

run times of the different instances of task

I DIVA instances have to be scheduled together.

Viev i Tstartapc_1; <M X (1 = VSi2) +TstartmGo; 9)
Viev i TstartHGC; <M x (1= VSi2) + TstarzPc_1

where M is a very large value. The DIVA pair in an E_DIVA
task have to be scheduled together.

Viev : Tstartsapc_2; <M X (1 = VSiy) + TstartHGC; (10)

Viev : TstartHGC; <M X (1 =VSiy) +Tsrartsapc_2;
I In an invariant verified task, the HGC instance must begin after
the 3PC instance.

Viev : TstartaPc_1; t trun3pPcC_1; < tstartHGC, (11)
+M x (1 — VS;3)

I A task is output-verified only when all its instances have
completed and all its parents have been output-verified.

Viev :Topver; 2 TstartaPC_1; T trun3Pc_1;

Viev :ToPver; 2 Tstart3aPC_2; T trun3PC_2;

Viev :ToPver; 2 TstartHGC; T trunHGC; (12)

Vi,jev i ToPver; Z TOPver; X Fji

¥« The different instances of a task must be assigned to exactly

one unit. Note that Agpc o is relevant only in the E_DIVA case.
N3pc N3pc

Viev: 2. Aspc.iy; =LYiev: Y Aspc2,; = VSia
j=1 j=1 (13)
NHGc
Viev i 2 AHGC;; =1
i=1

I Tasks mapped on the same core must not execute simultaneously.

For the sake of brevity, we show here only the constraint for HGCs.

The constraints for the 3PC instances follow likewise.
Vijev i TstartHGO; T trunHGC,; < TstartHGC;

(14)

+M x (1= B;j;)

V. SECCHECK SCHEDULING ALGORITHM (SSA)
The large computation time of the ILP scheduler entails a faster

algorithm. SSA is a multi-pass greedy scheduler (Algorithm 1).
The key intuitions behind SSA are:
As soon as possible (ASAP) scheduling
The task graph is processed in topological order. The tasks
are allocated ASAP on any of the available resources. This
greedy approach provides near optimal results, while skipping the
exploration of more involved schedules.
Prioritizing important tasks
Tasks with more number of I/O tasks as descendants, and
with more temporally proximal I/O descendants, are given higher
priority. Since a highly responsive system is desired, SSA greedily
tries to reach I/O nodes as quickly as possible. Formally, the
definition of Task Importance (TI) is as follows:
TIu:Z ﬁ 1wa':1and 10, =1 (15)
= |0 otherwise
where 1T, is the minimum time required for task v to complete,
after task u has completed. Formally it is defined as follows:

0 ,if Ry =0
TTuww = t3PC’v + maxyev TTww ,if Ruw =1 (16)
and Ewu =1

where R,, = 1 if task v is reachable from task u, 0 otherwise.
Basic choice of verification strategy

INV is given the highest preference as it has the most desirable
values of t4ep and tyer , and is the least resource intensive. For
all I/O tasks, DIVA is employed as it greedily ensures the smallest
tyer for that particular I/O task. For all other tasks, DMR is
employed, as it provides the lowest possible value of t4ep, and is

Algorithm 1 schedule()

Algorithm 2 assign() : assign verification strategies to tasks

function SCHEDULE

verStratDirectives[] < NULL

assign()

optimizeIO(DMR)

optimizeIO(E_DIVA)

do
improved <—False
improved < improved |optimizeExtend(DIVA)
improved <— improved |optimizeExtend(E_DIVA)
improved < improved |optimizeStructural()

while improved = True

> used in Algorithm 2

Table IV: Parameters of the synthetic task graphs

Param Value Param Value

Number of tasks N(6,2) P[IO; = 1] 0.3
tspo N(199,102) x 10° PIINV; = 1] 0.2
tnce 2 x tgpe + 10* 1 Max in-deg/out-deg 22
tprva N(1.3,0.168) X tzpc P[multiple roots] 0.2
tinv 1

(N = normal distribution; { : 107 =-comparison overhead)

not resource-hungry (Algorithm 2).
Moving from DIVA to DMR/E_DIVA for I/0 tasks

Though counter-intuitive, it is sometimes beneficial to verify an
I/O task by DMR instead of DIVA (Algorithm 3). Consider three
I/O tasks u, v and w, such that R,, = Ry, = 1. By changing
the execution type of w from DIVA to DMR, Topyer, may
increase. However, since tqep, has now reduced, it is possible
that Topver, and Topyer, decrease. The net effect may be a
decrease in PM. By the same reasoning, a change to E_DIVA
may also be beneficial, subject to resource availability (or if the
task graph is in a “narrow” phase). SSA greedily attempts the
DIVA — DMR/E_DIV A changes in decreasing order of T'I.
Moving from DMR to DIVA/E_DIVA for long interior tasks

It is sometimes beneficial to employ DIVA (or E_DIVA)
for long interior non-I/O tasks (Algorithm 4). Consider a task
graph with two tasks v and v, with E,, = 1 and IO, = 1.
Now, let t3pc, >> tzpc,. This results in v dominating PM,
with Topyer, = tver, = tmcc,. Now, if DIVA is employed
for w, tyer, decreases to tpryva,. This results in Topyer,
decreasing to tprva, + tprva,. SSA greedily attempts the
DMR — DIVA/E_DIV A changes on those ancestor tasks u
of I/O tasks v that satisfy the condition Topver, = Tver, -
Reducing the impact of structural hazards

Employing DIVA instead of DMR for interior tasks sometimes
reduces structural hazards (Algorithm 5). Since we follow a greedy
TI-ordered allocation of resources, the utilization of 3PCs is near
optimal. However, the same cannot be said for HGCs. The DMR
strategy displays a large t g c. If there is a shortage of HGCs (or if
the graph is in a “wide” phase), then this has a cascading effect on
lower tasks. These lower tasks, in spite of having their inputs ready,
are forced to delay their HGC instances, i.e, Tsiartmcc; > Tready;
(where Treaqy; is the time at which the input data of ¢ are ready).
SSA, in topological order, tracks tasks ¢ displaying this condition,
and greedily attempts the DM R — DIV A change on the task
assigned before ¢ on the same HGC.

) VI. EVALUATION
The experiments consisted of five real world benchmarks from

the E3S suite [15] (based on the automotive and telecom suites
of EEMBC [16]), and 50 synthetic task graphs generated using
TGFF [17]. The parameters of the synthetic graphs were derived
from the E3S benchmarks (see Table IV). P;o is the probability

function ASSIGN
Q < all root tasks
while Q not empty do
curTask < remove task in Q with highest 77
if verStratDirectives[curTask] not NULL then
curTask.verStrat <— verStratDirectives|curTask]
else
if INV.yy7usk =TRUE then
curTask.verStrat <— INV
else
if 10.yusk =TRUE then
curTask.verStrat <— DIVA
else
curTask.verStrat < DMR
allocate cores for all instances of curTask ASAP
add all successors of curTask, whose parents have been allocated, to Q

Algorithm 3 optimizelO() : optimize I/O tasks

function OPTIMIZEIO(verStrat)
candidates < all 1/O tasks
while candidates not empty do
candidate <— remove task in candidates with highest 71
attemptUpdate(candidate,verStrat)

that a task performs I/O. Additionally, all leaf nodes are I/O
nodes. Prnyv is the probability that a task is invariant capable.
tspc, tuae and tprva of the different EEMBC benchmarks are
obtained by simulation using the Tejas simulator [19]. The core
configuration is based on the Intel Sandybridge microarchitecture,
with 2MB LLC. For evaluation purposes, we assume that the 3PCs
and the HGCs have the same architecture, with the frequency
of operation of a 3PC equal to twice that of an HGC. This
assumption is not an artifact of SecCheck and is made only for
presenting the evaluation. We also account for the overhead of
output comparison by adding a fixed penalty of 10k cycles to all
HGC tasks. This gives tncc = 2 X tspc + 10%. Experiments were
performed for a range of values of N3pc and Npcgc — ranging
from a severely resource constrained system having just 1 3PC and
1 HGC to a resource rich system having 4 3PCs and 6 HGCs. The
experiments were performed on an Intel Xeon server with Intel
Sandybridge based cores, operating at 2.53 GHz, with 12 MB LLC.
SecCheck Overhead We shall now discuss the performance
penalty of secure computation in the SecCheck system, relative
to insecure computation. We compare the PM of SecCheck ,
PMecurernp (computed using GLPK solver v4.52), against
the PM of a system having only 3PCs, PM;nsecurerr.p.
The latter is obtained using a reduced version of the ILP
formulation in Section IV. Table V lists the average overhead

(= (% — 1) x 100) across the different real world

Table V: SecCheck overhead ((payieecurelLE . _ 1Y x 100)

insecurel LP

[Nege [1 [2 [3 [4 [5 [6 |
[Nsrc] E3S benchmarks |
1 19.17% 16.4% 16.4% 16.4% 16.4% 16.4%
2 22.08% 16.64% 15.42% 12.35% 12.35% 12.35%
3 22.08% 15.43% 15.43% 15.43% 12.35% 12.35%
4 22.08% 12.45% 12.45% 12.45% 12.35% 12.35%
[I Synthetic benchmarks |
1 22.11% 17.48% 15.81% 16.81% 15.81% 15.81%
2 33.15% 13.66% 12.85% 12.85% 12.61% 12.61%
3 30.62% 11.29% 10.37% 10.21% 10.21% 10.21%
4 31.53% 10.47% 10.08% 10.08% 10.08% 10.03%

Algorithm 4 optimizeExtend() : handle extending tasks

Algorithm 6 attemptUpdate() : attempt verification strategy update

function OPTIMIZEEXTEND(verStrar)
tasks <— all tasks
improved <— False
while tasks not empty do
i <— remove task in tasks with highest Topyer
if Tgpvg,-’. > T"”i then
candidate < ancestor of i with T,,, = T()pv”[
improved < improved |attemptUpdate(candidate,verStrat)

return improved

Algorithm 5 optimizeStructural() : reduce structural hazards’
impact

function OPTIMIZESTRUCTURAL
Q < all root tasks
improved <— False
while Q not empty do
i < remove task in Q with highest 77
if Tyanrice; > Treaay; then
candidate <— previous task assigned on same HGC as 7
improved < improved |attemptUpdate(candidate,DIVA)

add all successors of i, whose parents have been processed, to Q
return improved

and synthetic benchmarks, for different values of N3pc and
Nrac. Unless severely constrained (Nggc = 1), the overhead
is typically between 10-17%. The SecCheck system provides
security with a meager loss in performance, proving itself a
worthy technique to incorporate 3PCs securely.
SSA Penalty SSA was found to produce near-optimal schedules,
while being about 500X faster on average than the optimal sched-
uler. Table VI lists the average penalty (= (PMI:Z% —1) x
100, PMssa :PM when SSA is used to compute the schedule)
observed. The average penalties were less than 1% in all cases.
The maximum penalty observed was 43.7% in one of the synthetic
benchmarks. The reason for this was found to be the ASAP
scheduling policy. The optimal solution delayed the scheduling of
some tasks even when resources were available. The time taken
by SSA (implemented in Java7) to compute a schedule was in the
order of 10s of milliseconds. In contrast, the ILP-based scheduler
took anywhere from a few seconds to a few days to complete.
The number of tasks in the synthetic graphs were randomly
generated according to the distribution observed in the E3S suite.
Since it is a suite of embedded benchmarks, the graph size is
typically less than ten tasks. We performed experiments with
synthetic graphs having hundreds of tasks, and found SSA’s run-
time to be in the order of seconds. However, we are unable to
present any comparisons with the optimal scheduler in terms of
schedule quality or scheduler running time because the ILP solver

. PMssa
Table VI: SSA penalty (55 254— — 1) X 100)
[(Nege [[T T 2 [3 [4 [5 [6]
[Nsprc] E3S benchmarks |
1 0.03% 0.0% 0.02% 0.02% 0.02% 0.02%
2 0.03% 0.66% 0.49% 0.39% 0.49% 0.49%
3 0.03% 0.0% 0.0% 0.0% 0.0% 0.0%
4 0.03% 0.85% 0.0% 0.0% 0.0% 0.0%
[I Synthetic benchmarks |
1 0.13% 0.84% 0.36% 0.24% 0.36% 0.27%
2 0.0% 0.73% 0.5% 0.43% 0.39% 0.37%
3 0.2% 0.89% 0.12% 0.23% 0.21% 0.1%
4 0.14% 0.8% 0.35% 0.11% 0.12% 0.11%

function ATTEMPTUPDATE(candidateTask,newVerStrar)
oldPM <— compute PM of current schedule
oldVerStratDirectives <— verStratDirectives
verStratDirectives[candidateTask] < newVerStrat
assign()
newPM <— compute PM of current schedule
if newPM < oldPM then
return True
else
verStratDirectives <— oldVerStratDirectives
assign()
return False

fails to converge on a solution in a reasonable amount of time.

L VII. CONCLUSION o
The utilization of untrusted third-party hardware is inevitable.

The step forward is to work towards designs where trusted home-
grown hardware ensure that the untrusted hardware are operating
correctly. This paper proposes SecCheck , a generic architecture that
allows safe incorporation of third-party general purpose cores with
a minimal loss in performance (10-17%). This paper also proposes
the SecCheck Scheduling Algorithm that computes near-optimal
(<1% overhead) offline application schedules for the SecCheck

architecture, while being about 500X faster than an ILP solver.
REFERENCES

[1] S. Adee, “The hunt for the kill switch,” Spectrum, IEEE, 2008.

[2] “Trusted foundry program,” www.trustedfoundryprogram.org.

[3] J. R. Rilling, “Persistent monitoring of digital ics to verify
hardware trust,” Master’s thesis, lowa State University, 2011.

[4] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” Design Test, IEEE, 2013.

[5] R. Kalayappan and S. R. Sarangi, “Secx: A framework for
collecting runtime statistics for socs with multiple accelerators,”
in ISVLSI, 2015.

[6] L. E. Olson, J. Power, M. D. Hill, and D. A. Wood, “Border
control: Sandboxing accelerators,” in Micro, 2015.

[7] M. Abramovici and P. Bradley, “Integrated circuit security: New
threats and solutions,” in CSIIRW, 2009.

[8] R. Kalayappan and S. R. Sarangi, “A survey of checker architec-
tures,” ACM Comput. Surv., vol. 45, no. 4, Aug. 2013.

[9] C. Liu, J. Rajendran, C. Yang, and R. Karri, “Shielding heteroge-
neous mpsocs from untrustworthy 3pips through security-driven
task scheduling,” in DFT, 2013.

[10] J. Rajendran, H. Zhang, O. Sinanoglu, and R. Karri, “High-level
synthesis for security and trust,” in JOLTS, 2013.

[11] T. M. Austin, “Diva: A reliable substrate for deep submicron
microarchitecture design,” in Micro, 1999.

[12] L.-W. Kim, J. Villasenor, and C. Koc, “A trojan-resistant system-
on-chip bus architecture,” in MILCOM, 2009.

[13] J. Dubeuf, D. Hly, and R. Karri, “Run-time detection of hardware
trojans: The processor protection unit,” in ETS, 2013.

[14] A.K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
multi/many-core systems: Survey of current and emerging trends,”
in DAC, 2013.

[15] R. P. Dick, “Embedded system synthesis benchmarks suites
(e3s),” http://ziyang.eecs.umich.edu/~dickrp/e3s/.

[16] “Eembc, the embedded microprocessor benchmark consortium,’
www.eembc.org.

[17] R. Dick, D. Rhodes, and W. Wolf, “Tgff: task graphs for free,”
in CODES/CASHE, 1998.

[18] L. A. Hall, D. B. Shmoys, and J. Wein, “Scheduling to minimize
average completion time: Off-line and on-line algorithms,” in
SODA, 1996.

[19] S. R. Sarangi, R. Kalayappan, P. Kallurkar, S. Goel, and E. Peter,
“Tejas: A java based versatile micro-architectural simulator,” in
PATMOS, 2015.

>

