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Abstract—Instruction prefetching is a standard approach to
improve the performance of operating system (OS) intensive
workloads such as web servers, file servers and database servers.
Sophisticated instruction prefetching techniques such as PIF [12]
and RDIP [17] record the execution history of a program in
dedicated hardware structures and use this information for
prefetching if a known execution pattern is repeated. The storage
overheads of the additional hardware structures are prohibitively
high (64-200 KB per core). This makes it difficult for the
deployment of such schemes in real systems. We propose a
solution that uses minimal hardware modifications to tackle this
problem. We notice that the execution of server applications
keeps switching between tasks such as the application, system
call handlers, and interrupt handlers. Each task has a distinct
instruction footprint, and is separated by a special OS event.
We propose a sophisticated technique to capture the instruction
stream in the vicinity of such OS events; the captured information
is then compressed significantly and is stored in a process’s virtual
address space. Special OS routines then use this information to
prefetch instructions for the OS and the application codes. Using
modest hardware support (4 registers per core), we report an
increase in instruction throughput of 2-14% (mean: 7%) over
state of the art instruction prefetching techniques for a suite of
8 popular OS intensive applications.

I. INTRODUCTION

Prefetching instruction streams to reduce i-cache misses is
a standard approach for improving the performance of codes
that have low i-cache hit rates. Most of the highly cited recent
work [12], [13], [16], [17] in this area has focused on operating
system (OS) intensive programs such as file servers, web
servers, and database servers. This is primarily because such
applications have a fair amount of interference between the
application threads, and kernel threads. The reason for such in-
terference can be attributed to frequent system calls, interrupts,
and intense activity within the operating system’s kernel. As
a result, these programs have benefited from sophisticated i-
cache prefetching algorithms. In comparison, serial codes such
as the Spec CPU benchmarks [14] or numerically intensive
parallel codes such as the Splash2 [30] and Parsec [8] suites
are associated with relatively higher i-cache hit rates (98.5-
99.9%) and thus do not stand to significantly benefit from
advanced i-cache prefetching strategies.

Note that prefetching is not the only method of increasing
the performance of system intensive workloads. Some other
techniques include core specialization [23], [26] (dedicating a
core to process interrupts and system calls), OS caches [5], [7],
[11], [21] (dedicating a cache to store OS instruction/data),
and DVFS techniques to compensate for OS induced non-
deterministic execution [11]. Having a separate core, or a

separate cache represents a large area overhead. DVFS based
approaches that predict the loss in performance due to in-
terference and subsequently try to boost the frequency for
small durations of time are associated with appreciable power
overheads. In comparison, state of the art prefetching based
approaches have lesser overheads in terms of area and power.

Our aim in this paper is to consider a suite of standard
system intensive benchmarks running on a multi-core pro-
cessor and increase their performance by prefetching i-cache
lines. We compare our proposed scheme, pTask, with state
of the art techniques (RDIP [17], PIF [12]) in Section V,
and demonstrate a roughly 2-14% improvement in perfor-
mance (defined as instruction throughput). Moreover, pTask
outperforms classic schemes with low area overheads such
as Markov [15], [22] and call graph based prefetching [3]
by around 10%. We achieve these speedups with a minimal
amount of additional hardware (2 256-bit registers and 2
integer registers). In comparison competing techniques have
larger hardware overheads: 200 KB for PIF [12] and 64 KB
for RDIP [17].
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Fig. 1: Impact of task switches on the i-cache hit rate
(Apache web server: representative execution)

The insight that we use to achieve a speedup with reduced
storage overheads is shown in Figure 1. Figure 1 shows that
any system intensive application can be divided into two
distinct phases. The i-cache hit rates on a core are typically
high during the steady state execution of application or OS
threads. The misses peak whenever there is a context switch,
or we switch between one type of tasks to another. An example
of the latter will be a switch from an interrupt handler task
to the OS scheduler. We propose a sophisticated method
to capture instruction streams in the vicinity of these task
switches, and ignore the rest of the execution, which in any978-1-5090-3508-3/16/$31.00 c© 2016 IEEE



case has relatively higher i-cache hit rates. In comparison
competing works are oblivious of the nature of tasks and treat
the entire execution identically. This insight allows us to get
better performance with reduced storage requirements.

We shall briefly discuss related work in Section II, discuss
the characterization of benchmarks in Section III, move on
to discuss the implementation of pTask in Section IV, and
finally conclude with evaluation results in Section V.

II. RELATED WORK

A. Mitigating Application/OS Interference

Additional Caches: The combined footprint of the OS and
applications typically overwhelms the smaller private caches.
[5], [7], [11], [21] replicate the existing cache; application lines
are stored in the regular cache and the OS lines are stored in
a special OS cache. The main drawback of this line of work
is the 100% area overhead of adding an extra cache.

Core specialization: [9], [10], [21], [26], [29] reduce
the OS-application interference by offloading the OS code
execution to dedicated OS cores. This increases code locality
and hence improves performance. However, Nellans et al. [21]
show that the cost of moving application data to OS cores and
back is prohibitive in most cases, and thus this approach is not
the best choice for the system intensive benchmarks that we
consider.

B. Instruction Prefetching

The work on hardware and software assisted prefetching
is extensive. We discuss some of the sophisticated techniques
here.

1) Hardware Based Prefetching: One of the earliest in-
struction prefetching techniques is Nextline prefetching. If a
cache line with address x is not found in the i-cache, the
Nextline prefetcher reads cache lines with addresses from
x + 1 to x + n from the lower level cache. This is a simple
scheme and requires a negligible amount of additional area.
However, Nextline prefetchers perform poorly in the presence
of frequent jumps and function calls.

Markov prefetchers [15], [22], [27] rely on the correlations
in the i-cache access sequence to predict future i-cache misses.
They work very well for traditional single and multi-threaded
programs. However, for OS-intensive applications whose exe-
cution is punctuated by a lot of non-deterministic events such
as interrupts and context switches, the i-cache access sequence
changes frequently. As a result, the i-cache miss sequence
predictor performs poorly, and we shall see in Section V that
such prefetching schemes are inferior to the scheme that we
propose.

Recent hardware prefetching proposals [12], [13], [17] rely
on the observation that the instruction miss sequences are
highly repetitive and are often predictable. TIFS [13] records
the order of instruction fetches in a dedicated per-core in-
struction buffer and uses other index based structures to map
PCs of missed instructions to entries in the instruction buffers.
Whenever there is a miss, we prefetch the set of addresses
stored at the corresponding entry in the instruction buffers.
PIF [12] improves over TIFS by recording instruction commit
sequences instead of instruction fetch sequences. However,

the storage requirement of its dedicated hardware units is
around 200 KB per core. To put this number into perspective,
the size of the instruction cache is 32 KB. A later paper
(SHIFT [16]) reduces the area overhead of PIF by sharing
the prefetch information across all the cores. However, this
scheme gives lesser performance benefits and is suitable only
for multi-threaded applications as mentioned in the original
paper. RDIP [17] predicts future i-cache accesses using the
function call sequence (expressed in the return address stack).
The function call sequence is stored in a 64 KB per-core buffer.
We compare our work against RDIP [17] and PIF [12] in
Section V.

2) Software Based Prefetching: Typically, in software
prefetching techniques, the compiler adds special prefetch
instructions to the generated code. A plethora of sophisticated
compiler techniques [3], [20], [28] have been proposed in
this area. However, these techniques use offline profiling to
generate the prefetch information. Offline profiling is not
suitable for server applications where regular updates to the
OS and the application can change the execution of an appli-
cation significantly. Our scheme also uses software prefetch
instructions; however, the actual addresses to prefetch are
calculated using an online profiler. We compare our work
against a seminal software prefetching technique, CGP [3]
(call graph prefetching), in Section V.

III. CHARACTERIZATION

A. Definition of a HyperTask

OS Event HyperTask Execution Block

System call begin System call han-
dler

Code processing a system call request

System call end Application Application’s execution between two
consecutive system call requests

Hardware interrupt Interrupt Code processing an interrupt
Start of a bottom half han-
dler’s routine

Bottom half han-
dler

Code processing a bottom half handler

Start of the schedule routine Scheduler Scheduler’s code

TABLE I: Events related to HyperTasks

We broadly define a HyperTask as a piece of code that
runs between two OS events. We identified five OS events
to define HyperTasks: (a) system call begin, (b) system call
end, (c) hardware interrupt, (d) start of a bottom half handler’s
routine, and (e) start of the schedule routine. Table I mentions
the type of HyperTask and the actual code that is associated
with each OS event.

We observed a pattern here: the code that executes imme-
diately after an OS event remains more or less the same, each
time it is invoked. Let us consider the timer interrupt. Each
time the core receives a timer interrupt, it executes the routines
related to the timer interrupt handler. We leverage this pattern
to prefetch the instructions belonging to the timer interrupt
handler. When the core receives the timer interrupt for the
first time, pTask records the instructions executed by the timer
interrupt handler. If the core receives the same interrupt again,
pTask prefetches the instructions belonging to the interrupt
handler. The entire process: identify the HyperTask, record
its execution, and prefetch its instructions, is done at runtime
(details in Section IV).
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Fig. 2: Decomposition of the Apache benchmark’s execution into HyperTasks

As an example, Figure 2 shows a simple decomposition
of the Apache benchmark into its constituent HyperTasks.
Broadly speaking, a HyperTask is supposed to be a block
of code that is predictably fetched into the i-cache after an
event of interest (as defined in Table I). Skeptics can argue
that the code to (for example) handle a timer interrupt need
not be exactly the same all the time, between two OS events
we can have many other types of code executing such as OS
book keeping code, and the definition is vague for applications.
To ensure that HyperTasks are better defined in practice we
place a limit on their footprint (typically 125 functions).
We evaluate the efficacy of our definition in Section III-F,
and observe that for most system intensive benchmarks it is
possible to define HyperTasks in this manner. For applications,
the code sequence after an OS event (such as a context
switch) is roughly predictable because most of this code is
actually inside a library or is a part of the application’s
code dedicated to preparing/processing system call data, and
remains approximately identical across invocations.

B. Setup
We used the full system emulator, Qemu [6], to get the

execution trace of the entire system (application+OS). The ex-
ecution trace includes executed instructions, branch outcomes,
interrupts/system calls, and memory addresses (loads/stores).
We subsequently fed the traces to the Tejas [25] simulator,
a detailed cycle accurate simulator for multi-core processors
(fully validated against native hardware [24]).

Table II shows the details of our simulated system. We
simulate a 16 core machine, where each core has a private
L1 cache, and a shared L2 cache with directory based cache
coherence.

Parameter Value Parameter Value
Cores 16 Technology 22nm

Frequency 3.2GHz Vdd 1V

Pipeline
Retire Width 4 Integer RF (phy) 160

ROB Size 168 Predictor GShare
IW Size 54 Bmispred penalty 14 cycles

LSQ Size 64 Float RF (phy) 160
iTLB 128 entry dTLB 128 entry

L1 i-cache, d-cache
Write-Mode Write-Back Block Size 64
Associativity 4 Size 32 kB

Latency 3 cycles Port 2
Coherence Directory based MOESI (fully mapped, 256 KB, 8-way)

Shared L2
Write-Mode Write-Back Block Size 64
Associativity 8 Size 4 MB

Latency 20 cycles

Main Memory and NOC
Latency 250 cyc Memory Controllers 2

NOC 2-D Mesh Flit Size 16 bytes
Routing XY Router + Hop latency 3 cycles

OS Debian GNU/Linux 6.0.1 squeeze

TABLE II: Details of the baseline system

C. Benchmarks

We shall evaluate the pTask scheme for a suite of 8 OS
intensive applications. Some of these benchmarks are part
of well-known benchmark suites such as Sysbench [18],
Filebench [1], and TPC-H [2], while others are representative
utility applications available on Linux. (1) Apache captures
the execution of the Apache web server that services a set of
static web-pages. In our experiments, the web-client requests
48 web pages at a time, meaning that each core serves on
average 3 web pages at any point in time. (2) DSS captures
the execution of a decision support system on large volumes of
business data. Specifically, we execute query 2 of the TPC-
H benchmark on a 1 GB database. (3) FileSrv simulates the
execution of a file server using Filebench. In this workload,
200 threads perform a sequence of creates, deletes, appends,
reads, writes and attribute operations on a directory tree. (4)
The Find benchmark uses the Linux command find to search
for a file in a large file system staring from /. (5) MailSrvIO
simulates the file operations of a mail server using Filebench.
In this workload, 48 threads perform a sequence of create-
append-sync, read-append-sync, read and delete operations in
the /var/mail directory. (6) OLTP is a benchmark from
the Sysbench benchmark suite. It mimics the operations of a
database server for a company owning a large number of ware-
houses. It contains transactions that implement order creation,
order entry, order status, payment, and stock handling. (7/8)
Iscp and Oscp copy a file from a remote system to the native
system and vice-versa respectively using the Linux utility scp.
In these benchmarks, a large amount of data stored in files is
sent over secure network channels. This mimics the execution
of back-end servers of popular platforms such as YouTube and
Netflix.

Apache, FileSrv, MailSrvIO, and OLTP are multi-threaded
benchmarks, and the remaining benchmarks are single
threaded. For single threaded benchmarks, we simulate the
execution of one instance of the application on each core of
the system. We instrument the Linux kernel to track the context
switches between applications. Next, we characterize each
benchmark for a representative execution block of 1 billion
instructions per core (akin to PIF [12]).

D. Instruction Mix in HyperTasks

We decompose (see Section III-A) the execution of a
benchmark into HyperTasks belonging to five categories:
application, system call handler, interrupt (top half) handler,
bottom half handler, and scheduler. Figure 3 shows the con-
tribution (in terms of instructions) of each HyperTask to the
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Fig. 3: Instruction mix in HyperTasks
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overall execution of each benchmark. We shall use the terms
instructions and activity in this section interchangeably.

As we observe from Figure 3, the OS activity for a bench-
mark varies from 20% (for OLTP) to 97% (for FileSrv). Let
us now look at each benchmark individually.

Apache has roughly 40% application activity and 60% OS
activity. In this case, most of the work done by the OS is
in processing and validating network packets. We thus see
an elevated amount of activity (18%) in the bottom half
handlers. DSS has roughly 80% application activity because
the application code spends a lot of time in servicing the large
aggregate queries of the client. In comparison, the system call
activity in FileSrv is significantly more, because of the file
system’s operations. Additionally, because of heavy interaction
with the hard disks, a lot of interrupts need to be serviced;
hence, interrupts and bottom half handlers account for roughly
27% of the benchmark’s instructions. Another benchmark that
has a lot of system call activity (65%) is Find. It has a high
system call component because there are frequent calls to the
OS for browsing through the file system. In comparison, OLTP
services a lot of database requests, and thus the application
instructions are more numerous given the amount of query
processing that is done in modern databases. It has a moderate
amount of OS activity (21%). MailSrvIO (like FileSrv) spends
a lot of time in the OS mode(>93%). This is primarily because
of the file operations for the mail server. Finally, Iscp and Oscp
have around 75% of application activity, and 20% of system
call activity. Iscp shows more system call activity because
it has additional system calls to check if new packets have
arrived. In all the benchmarks the contribution of the interrupt
handler (top half) varies from 2-4%. Finally, for all these
applications, we notice that the scheduler is invoked quite
often; its contribution to the instruction mix lies between 2-
5%.

The primary conclusion from this study is that the ap-
plication HyperTasks, and the system call handlers form a
major chunk of the executed instructions. Nonetheless, other
HyperTasks such as the scheduler, the bottom half handler,
and the interrupt handler also account for up to 25% of the
total instructions.

E. I-cache Hit Rates/Evictions

Figure 4 shows the characterization of the i-cache accesses.
For each benchmark, we show two bars. The first bar repre-

sents the i-cache hit rate for the benchmark. The hit rates for
the benchmarks lie between 80% (Apache) to 95% (FileSrv).
It must be noted that the i-cache hit rates are on the lower side
as compared to benchmarks without OS activity (hit rates ≈
98-99.9%). To understand the reasons for such low hit rates,
let us look at the breakup of i-cache evictions. In Figure 4, the
second bar for each benchmark shows the breakup of i-cache
evictions into three categories: SameTask, OtherTask, and
SameTaskOther.
SameTask refers to the lines evicted by other lines of the

same HyperTask, and OtherTask refers to one HyperTask
evicting lines populated by another HyperTask. SameTask−
Other is slightly more subtle. Let us assume that a HyperTask
adds lines A, B, and C to the same set. Then there is a context
switch, and another HyperTask brings in line D into that set.
Then, we switch back to the first HyperTask again. Now, if it
needs to immediately bring in another line say E, it will evict
either line, A, B, or C. It will not evict D because it has a
higher priority (as per the LRU replacement scheme). In this
case, we have an eviction because of an intervening HyperTask
that has changed the priorities within a set. To evaluate the
effect of other HyperTasks, we are interested in the categories:
OtherTask and SameTaskOther. We can conclude from
Figure 4 that most (80-90% of the time) of the lines in the i-
cache are evicted because of other HyperTasks. The category,
OtherTask, clearly dominates. However, SameTaskOther
can account for 5-10% of i-cache evictions in some bench-
marks. The crucial insight that we obtain from this figure
is that it is necessary to reduce the destructive interference
between different HyperTasks, and intra-HyperTask evictions
are not significant.

F. Prefetching HyperTasks

We define the prefetch list of a HyperTask as a set of cache
lines that should be prefetched into the i-cache before the
execution of the HyperTask begins. A HyperTask is invoked
multiple times during the execution of a benchmark. Depend-
ing on the input parameters, and the state of global variables,
the instructions executed by a HyperTask may vary. It is thus
important to decide which cache lines should be added to the
prefetch list, and which should be left out.

1) Coverage and Utility: A prefetch list should have two
desirable characteristics: (a) coverage: it should cover most
execution paths inside a HyperTask (b) utility: a cache line
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Fig. 6: Jaccard distance vs #runs

which is added to the prefetch list should be used during the
execution of the HyperTask. We quantify these characteristics
as:
coverage = #accessed lines found in the prefetch list ∗ 100

#lines accessed by the HyperTask

utility = #lines in the prefetch list that were accessed ∗ 100
#total lines in the prefetch list

Let us consider different methods of constructing a prefetch
list. We evaluate the coverage and utility of five different
prefetch lists: Pall, P25, P50, P75, and P100. For a HyperTask,
prefetch list Px is a set of cache lines that are accessed in at
least x% of the HyperTask invocations. Pall is the set of cache
lines that are accessed at least once during the invocation of
a HyperTask. Note that P100 ⊆ P75 ⊆ P50 ⊆ P25 ⊆ Pall.

Figure 5 shows the average value of coverage and utility of
these five prefetch lists averaged across all the benchmarks. We
profile and test the efficacy of the prefetch lists on the same set
of execution blocks. We observed a similar pattern across all
the benchmarks. The coverage of the prefetch list varies from
100% for Pall to 68% for P100. The utility of prefetch list
varies from 100% for P100 to 58% for Pall. We want to have
the best of both criteria: coverage and utility. Here, P50 seems
to be the most balanced option. It has around 92% coverage
and 91% utility. We pick this criteria for adding a cache line
to the prefetch list.

2) Profiling Duration: Each HyperTask needs to be pro-
filed multiple times, before its prefetch list is created. Each
additional profiled invocation of a HyperTask may change its
prefetch list. A HyperTask can be considered to be profiled, if
the prefetch lists constructed after successive invocations do
not show large variation. It is necessary to decide the ideal
number of profiling runs for a HyperTask.

We calculate the variation between two prefetch lists as the
Jaccard Distance between them.

JaccardDistance(A,B) = |A∪B|−|A∩B|
|A∪B|

A value of 0 indicates completely similar lists, while a
value of 1 indicates completely dissimilar lists. Figure 6
shows the Jaccard Distance between successive invocations
of HyperTasks averaged across all the benchmarks. Jaccard
Distance(n) is defined as the Jaccard Distance between
the prefetch lists created at the end of invocation n and
invocation n + 1. We observe that the Jaccard Distance
between successive invocations do not vary by more than
0.005 after 10 invocations. We use this observation to limit

the number of profiling runs of a HyperTask to 10.

G. Detailed Characterization of HyperTasks

Table III shows the characterization results for each category
of HyperTasks for all the benchmarks. For each HyperTask
category, we first report the number of HyperTasks we ob-
served in that category. Next, for each HyperTask category, we
report the average number of instructions executed between
two consecutive invocations of a HyperTask, the average
number of instructions executed each time a HyperTask is
invoked, the average size of the instruction footprint(in terms
of cache lines), the average number of unique functions in the
HyperTask, the average i-cache hit rate during the execution
of the HyperTask, and the fraction of i-cache misses which
were present in the prefetch list of the executing HyperTask.

The total number of HyperTasks for each benchmark is
limited (<500 for most of the benchmarks). Additionally, we
observe that the number of instructions between two succes-
sive invocations of the same HyperTask is high (100,000-
200,000) mainly because HyperTask execution exhibits high
temporal locality. The application and system call HyperTasks
are always found in a pair, hence the number of such tasks is
the same. Let us consider the application HyperTasks first. On
one end of the spectrum is MailSrvIO, which executes around
1,000 instructions between two consecutive system calls, and
on the other hand of the spectrum is Oscp which executes
more than 15,000 instructions between two successive system
calls. Although the instruction count for each benchmark is
high, these instructions are mostly executed in loops, and they
are clustered across a small set of i-cache lines. For most of
the HyperTasks, the average number of i-cache lines accessed
is less than 200. Considering that our i-cache has 512 lines
(32 KB cache size for 64 byte blocks), capacity misses are
not an important issue. However, as we observe, the i-cache
hit rate during the execution of many HyperTasks is around
85% mainly due to conflict misses.

We make a conclusion similar to [13] that most misses
are part of long and repeating sequences on the basis of the
last column (iFrac), which shows that around 90% of the i-
cache misses happen for cache lines that are a part of the
prefetch list (generated using the P50 criteria). Note that for
this experiment no prefetching is being done; the lists are
just being constructed once at the beginning. Considering that
the average i-cache miss rate during a HyperTask’s execution
is around 10-15% and the average fraction of cache misses
found in the prefetch list is 80-90%, if we can successfully
fetch the lines belonging to the prefetch list before a task
starts execution, the i-cache’s miss rate should reduce by at
least 5-10%, leading to a significant improvement in overall
performance.

The prefetch list for a HyperTask is created from the body
of frequently accessed functions. We observe that the average
number of functions accessed during the HyperTask execution
is very small. It ranges from 13 functions for the top half
interrupt handlers of Apache to 55 functions for system call
handlers of Find. These functions are called repeatedly using
loops (also see Table III). Note that after applying the P50
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Type #Hyper
Tasks
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#Inst #Lines #Funcs i-
cache
hit
rate

iFrac
(%)

Per HyperTask Per HyperTask
Apache DSS

app 464 173975 1519 56 21 84 80 app 41 105258 3895 60 18 95 80
sys 464 179109 1242 78 24 81 87 sys 41 110689 1308 139 44 92 87

bhalf 5 251813 12819 136 34 81 44 bhalf 3 816911 2868 92 28 77 44
thalf 9 190192 454 39 13 67 96 thalf 3 800198 1358 125 38 68 96
sched 1 27742 1775 111 31 83 78 sched 1 437482 674 65 20 78 78

FileSrv Find
app 172 980935 1154 49 15 83 77 app 40 207670 2798 52 17 93 77
sys 172 718406 14039 79 26 96 57 sys 40 181112 4671 171 55 86 57

bhalf 6 271253 23339 99 29 96 71 bhalf 3 148911 2974 105 32 75 71
thalf 11 285403 809 51 18 81 95 thalf 3 122682 1176 98 32 64 95
sched 1 61672 1472 112 30 80 81 sched 1 60345 786 73 22 74 81

OLTP MailSrvIO
app 211 619628 4850 224 59 92 62 app 182 430686 1086 52 16 82 62
sys 211 617311 1014 78 26 85 90 sys 182 279713 4561 82 28 91 90

bhalf 5 960944 1081 35 10 95 90 bhalf 4 486127 3846 138 39 84 90
thalf 9 920550 1990 67 20 92 90 thalf 10 117108 301 43 15 78 90
sched 1 65352 1141 103 29 76 95 sched 1 13955 1005 94 26 82 95

Iscp Oscp
app 196 635961 8680 57 18 98 82 app 90 597384 15448 45 15 98 82
sys 196 629592 2402 99 30 89 80 sys 90 600707 1568 100 29 82 80

bhalf 7 368556 5827 130 36 86 67 bhalf 5 368719 6447 142 37 84 67
thalf 8 375618 818 79 26 77 93 thalf 6 370267 719 67 23 75 93
sched 1 112470 1475 113 31 72 78 sched 1 99243 1048 96 26 74 78

app → application, sys → system call handler, bhalf → bottom half handler, thalf → top half handler, sched → scheduler
iFrac → fraction of i-cache misses found in the prefetch list of the executing HyperTask

TABLE III: HyperTasks: detailed characterization
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Fig. 7: pTask: Execution overview

criteria, the number of functions that will be a part of the
prefetch will be lower (20-30% reduction in our experiments).

IV. PREFETCHING HYPERTASKS

The crucial problems that need to be solved in any prefetch-
ing algorithm are: (1) What to prefetch? and (2) When to
prefetch? Let us consider the first problem. We need to decide
whether we need to fetch instructions at the granularity of a
single instruction, or at coarser granularities such as at the
level of basic blocks, functions, or groups of functions. We
observed experimentally that the best strategy for our set of
benchmarks is to prefetch a set of functions that are deemed
to be frequent in a HyperTask. Next, we observed that the
best time to prefetch these functions is once, right before
executing the instructions in the HyperTask. We shall justify
these choices in Section V.

Figure 7 shows an overview of the pTask strategy. The
small blocks correspond to pTask’s software routines, which
reside in the kernel’s address space. These routines addition-
ally have access to the hardware registers that we add and the
user process’s address space as well. The central components
of pTask are these OS routines that are called at the start
of each HyperTask (Table I shows the trigger event for each
HyperTask). A HyperTask goes through two disjoint modes
of execution: profiling mode, and normal mode. Any new
HyperTask starts execution in the profiling mode of execution.
In the profiling mode, the execution of the HyperTask is

recorded. We use the recorded information to create a prefetch
list. Once a HyperTask has been adequately profiled, we run
it in the normal mode. In this mode once the HyperTask is
invoked, we first read its prefetch list and then start executing
it. Unlike the profiling mode, the normal mode is very non-
intrusive and is not associated with timing overheads. Figure 8
summarizes the data structures used by pTask with the help
of an example scenario, where we have 3 modules with 16
functions. Please refer to this figure as we introduce pTask’s
data structures in the rest of this section.

First, let us discuss the profiling mode of execution. There
are several problems that need to be solved. We need to first
define a mechanism to identify a function that is frequently
executed. Second, we need to be able to identify HyperTasks
in executing programs (including the OS), track the behavior
of their functions, and create a data structure that can save the
frequency of executed functions.

A. Profiling: Recording Function Execution

We profile multiple runs of a HyperTask before creating
its prefetch list. However, before that, we must record the set
of functions executed during a single run of the HyperTask.
We represent the set of functions as a bit vector called the
FuncVector (saved in software). The FuncVector contains one
bit for each function inside the application/OS code. It is a
software structure in the process or kernel’s address space,
and there is one such vector for each core.

During the profiling mode of execution, all the bits of the
FuncVector are first set to false. When a function with index
x is executed, the bit numbered x in the FuncVector is set to
true. This is achieved using a special assembly instruction –
recordFunc x . Now, let us discuss the process of assigning
an index x to each function.

1) OS Kernel: Let us first consider the OS kernel. We shall
explain all our mechanisms with respect to the Linux kernel
in this paper. Note that our methods are not specific to any
particular type of kernel. Now, the Linux kernel consists of



mostly statically linked code; however, it does support modules
that are chunks of dynamically linked code. The compiler adds
the recordFunc x assembly statement at the start of each
function. Here, the value of x is undefined. Once all functions
are compiled, the linker iterates over the functions, and assigns
the function id’s sequentially from 0 to n-1; n being the number
of functions inside the kernel.

We evaluated our approach for the Linux kernel (version
2.6.32). It contains around 20k functions (as obtained from the
System.map file), 1 bit for each function leads to a FuncVector
of around 2.5 KB.

Now, let us create a generic mechanism for dynamically
loaded modules. Each module is compiled separately; hence
in each module, we assign ids to functions in a monotonically
increasing sequence starting from 0. Let the starting n bits in
the FuncVector refer to kernel functions, and let the remaining
bits refer to functions in modules. Subsequently, when a
module is loaded, we assume that its functions have been
appended to the kernel’s functions. For example, let the kernel
have 10,000 functions. Subsequently, we load a module that
has 100 functions. We assume that the functions of the module
have ids from 10,001 to 10,100. To implement this we need to
map the code in each module to an offset in the FuncVector.

This is achieved by maintaining a separate table (module
map) that maps a module (identified by the path and version) to
its offset in the FuncVector. At the time of linking a module (at
run time), we need to create space for the module’s functions
inside the FuncVector. We achieve this by invoking a ded-
icated software routine, ModuleManager, which manages
(allocate/lookup/deallocate) the module map. If a module is not
mapped to locations in the FuncVector, the ModuleManager
assigns entries in the FuncVector to the module. At the time
of invoking a function in a module, we get the offset from the
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ModuleManager, and subsequently save it in a special register
called FuncVectorBase. The recordFunc x instruction sets
the (x+FuncV ectorBase)th bit inside the FuncVector. When
a module is unloaded, the corresponding locations in the
FuncVector are freed and are available to be mapped by other
modules.

We maintain the number of unique functions accessed
during the HyperTask execution in a register FuncCounter.
This register is initialized to 0 at the beginning of a HyperTask,
and whenever the recordFunc instruction changes the value
of a function’s bit from 0 to 1, the value of FuncCounter is
incremented by 1. When its value reaches K (typically 125),
we unset the profile mode bit of the core. This ensures that
the HyperTask size is not unreasonably big, and profiling over-
heads are low. This is also done for application HyperTasks.

2) Application: We follow the same process for an appli-
cation. We can assign unique ids to each function at link time,
and treat dynamically linked code as modules. Additionally,
we treat sections of code that are self modifying as dynami-
cally linked libraries (DLL). Each function within a DLL has a
function id that is added to the FuncVectorBase register. When
the DLL changes, we need to flush its entries from the module
map and recreate it. This is done by a custom software routine
similar to the ModuleManager.

B. Hypertask Annotation

We now have a method of uniquely identifying functions in
an application and in the kernel. Our approach is to fetch a
set of functions in a HyperTask that satisfy certain coverage
criteria. For this purpose it is necessary to identify HyperTasks
at runtime.

1) Identifying Application Hypertasks: We define an appli-
cation HyperTask as a sequence of application functions that
are executed between two consecutive system calls. If there
is an asynchronous event such as an interrupt/exception in the
middle of an application, we do not terminate the application
HyperTask. Instead we start the interrupt HyperTask, and after
it completes, we resume the application HyperTask.

As explained in Section IV-A2, each application function is
assigned a unique id, which is hard-coded inside its record-
Func instruction. We use the recordFunc instruction to modify
two 256 bit registers: PathVector, and PathSum. PathVector
encodes the set of functions accessed during the HyperTask’s
execution, and PathSum encodes the order in which functions
are accessed during the HyperTask’s execution.

Both, PathVector and PathSum are initialized to all 0s
at the beginning of an application HyperTask. When the
recordFunc n instruction executes, we set the nmod 256th

bit in the PathVector. Whenever the value of the ith bit in the
PathVector is changed from 0 to 1, we increment PathSum by
i, and also perform a left rotation operation for i positions. A
left rotation is defined as a left shift operation, where the bit
shifted out of the most significant position is inserted in to the
least significant position. Note that the operation of updating
PathSum is a non-commutative operation, and is thus ideally
suited for encoding the order of function invocations. The
tuple< PathV ector, PathSum > ensures that the execution
of a HyperTask is more or less uniquely encoded. There is



a vanishingly small probability that two disparate tasks will
have a matching pair of PathSum and PathVector.

The identifier of an application HyperTask is essentially an
encoding of its control flow. This is constructed at the end of
the HyperTask’s execution. We use this identifier to predict
the instructions executed in the next application HyperTask.

2) Identifying OS HyperTasks: We define four types of OS
HyperTasks: (1) interrupt handler, (2) bottom half handler, (3)
scheduler, and (4) system call handler. Identifying the id of the
top half of the interrupt handler is simple. We just use the id of
the interrupt. For the bottom half handler, we use the program
counter of the first instruction of the function that encapsulates
the bottom half handler. For the scheduler, we embed an
instruction in the beginning of the scheduler code that lets the
hardware know that the scheduler is running. If the scheduler
invokes some other kernel function that is not defined as one of
our HyperTasks, then also this function is counted as a part of
the scheduler’s HyperTask. When the scheduler returns from a
context switch, the previous OS HyperTask resumes execution.

In the case of a system call, this definition fails to hold
because the same system call can have very different behaviors
depending on the arguments. For example, the read system call
in Linux has a file descriptor as its argument; the descriptor
may refer to a file or a network connection or some other
device. It is not possible to find the type of the argument
before the system call invocation. To solve this problem, we
need to look at the code of the application prior to executing
the system call and try to correlate it with the behavior of the
system call. We thus uniquely identify a system call HyperTask
by the id of the previous application HyperTask that was
executing. This is a generic method and is agnostic to the
OS.

C. Prefetch List

We have up till now discussed methods of annotating
functions (user and OS) and HyperTasks. Let us now propose
a method to maintain a count of the number of times a
function executes. Let us define a new structure called a profile
store. For each HyperTask, the profile store maintains the list
of functions in it, and the number of times that they have
executed. We keep 32 bits for the function id, and 4 bits for
the count. Additionally, it also maintains a count that depicts
the number of times the HyperTask has been profiled.

When a HyperTask completes execution in the profiling
mode, we need to update the counts of functions in the profile
store. We iterate through the FuncVector, and for each bit
that is set, we increment the count of the function in the
profile store’s entry for the HyperTask. We optimize this
process by maintaining a high-level map of the FuncVector,
we call it HighLevelFuncVector. 1 bit of HighLevelFuncVector
represents 512 bits (one cache line) of the FuncVector. If the
bit is 0, then it means that none of the bits in the 512 bit
set are set to 1. This takes care of sparse accesses in large
codes such as the kernel, which is most often the case. This
optimization helps us iterate through FuncVector much faster.

Let the number of times a given HyperTask has been pro-
filed be N , and let the count of function f for this HyperTask
be Nf . Only those functions for which Nf/N > 0.5 satisfy

8 
bits

time

avg. miss rateprevious avg. miss raterecent

Sliding Window

...

Fig. 9: Miss Rate Vector (conceptual view)

the P50 criterion of prefetching (see Section III-F1). The cache
lines containing the instructions of the frequently accessed
functions are obtained using the function map, which is a data
structure that stores the starting address of a function and the
number of subsequent cache lines that store the instructions
in a function. These lines are added to the prefetch list of the
HyperTask. As described in Section III-F1, the prefetch list is
generated after 10 profiling runs of a HyperTask.

The prefetch list created at the end of the first profiling
phase works well for most of the HyperTasks. However, the
instruction footprint of some HyperTasks changes at run-time;
such HyperTasks need re-profiling. We propose a scheme to
tackle this problem at run time. For each HyperTask, we
maintain the i-cache miss rates (quantized to 8 bits) for the
last W invocations in a sliding window called the miss rate
vector (see Figure 9). This window is maintained in software.
Let the elements be number M1 . . .MW , where MW is the
latest. The criterion for re-profiling is:∑W

i=l+1Mi

W − l
−

∑l
i=1Mi

l
> φ (1)

The idea is that the average miss rate for the last W −
l invocations should be substantially higher than that of the
average miss rate of the earlier l invocations. Empirically, we
found the best combination to be: W = 16, l = 8, and φ =
0.08(8%).

We apply two techniques to reduce the size of prefetch lists.
The first technique called encode uses run-length encoding.
Instead of storing all addresses, it stores blocks of addresses.
This technique reduces the size of the prefetch lists by around
300%. Next, we apply the unionEncode technique to combine
similar prefetch lists. If the Jaccard distance between two
prefetch lists, Pa and Pb is less than 0.05, instead of storing
both lists, we store a union of both the lists, Pa ∪ Pb. This
technique reduces the number of prefetch lists by around
100%.

We now define a new data structure called the prefetch
store, which maintains a pointer to a prefetch list and the
miss rate vector for each HyperTask. It is possible for multiple
HyperTasks to point to the same prefetch list because of the
unionEncode compression technique that we use.

We save all our data structures such as the prefetch store,
profile store, and FuncVector in the kernel’s address space.
This data is stored separately for each user process and the
kernel. All the pTask routines run as simple function calls
during the execution of the kernel. Even if an application Hy-
perTask’s profiling terminates after encountering 125 unique
functions, we still wait for the next system call to process its
FuncVector (in kernel mode). This design choice eliminates
security issues.



Prefetching tech-
nique

Hardware Support

markov [22] Table of 1024 entries per core
CGP [3] Used h/w support for online profiling. Call graph

history cache of 1024 entries (one entry contains 8
callee slots) per core

PIF [12] 4 Stream address buffers per core. History buffer of
32k entries per core. Index table of 8K entries per
core

RDIP [17] Miss-table of 4k entries per core. 4-entry return
address stack

pTask 4 registers per core

TABLE IV: Hardware support: Prefetching Techniques
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Fig. 10: Performance impact

D. Normal Mode
In the normal mode of execution, we first map the Hyper-

Task identifier to its prefetch list. Each entry in the prefetch
list contains the addresses of multiple i-cache lines. For each
such line, we issue a non-blocking i-cache read operation.
Only after the prefetches are issued, the HyperTask starts
execution. The prefetches may slowdown the execution in
the beginning, but as we show in Section V, the prefetch
operations compensate for this delay during the later part of
the HyperTask’s execution.

In the normal mode of execution, we do not modify
any profiling data structures. The processor uses the current
privilege level bits to distinguish between the OS and user
process. For the OS, the processor commutes the recordFunc
instruction to a nop. For the user process, the processor does
not modify the FuncVector, but it still modifies the PathVector
and PathSum registers. Notice that these registers are essential
for identifying application and system call HyperTasks. Hence,
they need to be updated in profiling mode, as well as in the
normal mode of execution.

Finally, note that the hardware component of pTask in-
cludes 4 additional registers for each core – FuncVectorBase,
FuncCounter, PathSum, and PathVector – along with some
logic for updating these registers.

V. RESULTS

The primary motivation of this work is to improve the
performance of a server processor, which is possibly running
multiple server class applications simultaneously. We first
analyze the impact of pTask for each benchmark individually
and then discuss its impact on multi-programmed workloads
in Section V-H.

A. Comparison: Performance Improvement
We compare the performance benefits gained with five

instruction prefetching techniques: markov [22], CGP [3],
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PIF [12], RDIP [17] and pTask(proposed). Table II shows
the details of our simulated system and Table IV shows the
configurations for each prefetching technique. We simulate
the pTask technique by feeding instructions corresponding to
the profiling and prefetching stages to the simulation engine.
The addresses for the software data structures maintained by
the pTask technique are mapped to unmapped regions in the
kernel’s address space. Recall that the entire simulation setup
has been discussed in Section III.

Figure 10 shows the performance benefits for all instruction
prefetching techniques as compared to a baseline system
with no prefetching. We compare the instruction through-
put (#insts/cycle) (as proposed by [19]) of these techniques
for an execution block of 1 billion instructions per core
(same as PIF [12]). The mean performance benefits of these
schemes are: markov(6.27%), CGP(15.86%), RDIP(19.78%),
PIF(20.51%) and pTask(27.38%). The pTask technique outper-
forms the state of the art prefetch techniques, PIF and RDIP,
by ≈7% (geom. mean). Note that our simulations consider all
overheads associated with profiling and prefetch operations.
We discuss these overheads in detail in Section V-B.

Figure 11 and Figure 12 show breakups of the i-cache
accesses, and the i-cache prefetch operations respectively. Let
us analyze these results to understand the gains in perfor-
mance. The low performance of the markov scheme can be
attributed to the high fraction of iWaitPrefetch events (miss
waiting for prefetch to finish). The reason for a high fraction
of iWaitPrefetch events is that the delay between the prefetch
operation and the i-cache line access is lesser than the prefetch
latency.

CGP records the sequence of function calls and issues
prefetch operations for the next function while the current



Benchmark Fraction of
HyperTask

invocations (exec. in
profiling mode) (%)

Fraction of
HyperTasks that
are re-profiled (at
least once) (%)

Slowdown in
profiling run(%),
Time in profiling

mode(%)

Fraction of
prefetch
insts (%)

Apache 0.56 1.79 1.31 , 0.57 3.2
DSS 0.21 0.01 2.99 , 0.22 1.65

FileSrv 1.82 2.93 1.02 , 1.84 0.77
Find 0.26 3.88 1.59 , 0.27 1.23

MailSrvIO 0.51 12.73 1.27 , 0.53 2.61
OLTP 0.96 0.25 1.53 , 0.97 1.81
Iscp 1.18 0.24 0.92 , 1.19 0.75
Oscp 0.85 0.45 1.01 , 0.86 0.55

TABLE V: Details: profiling and prefetching

function is being executed. We notice two shortcomings of
the CGP scheme: (1) The context of the current function
is not used to predict the next function Hence, its predictor
performs poorly for the OS codes. This explains the high
fraction of iMiss events (regular misses) in Figure 11. (2) If
two functions a and b are called in succession in a loop, CGP
issues a prefetch operation for function b, each time function
a is called. After the first iteration, additional prefetches are
typically not necessary. Hence, many prefetch operations of
CGP are unwanted, which explains the high fraction of prefHit
events (prefetched lines already in the cache) for the CGP
scheme in Figure 12.

RDIP uses the last 4 functions in the call stack to predict the
next function. Since the predictor of RDIP is context sensitive,
its accuracy is better than that of CGP. This is reflected in its
lower fraction of iMiss events. However, the time between two
functions is not enough to hide the prefetch latency; hence, the
fraction of iWaitPrefetch events is high for RDIP.

Compared to RDIP, the prefetch operations of PIF are
more timely. This is because the PIF scheme issues prefetch
operations for a spatial region. However, PIF suffers from
a poor prediction accuracy; hence, its fraction of prefMis-
sUnused events (prefetched line is not used before eviction)
is high. Incorrect prefetches waste i-cache bandwidth, and can
potentially pollute the i-cache.

RDIP and PIF use special hardware (line buffer) to filter
the prefetch operations for lines that are already present in the
i-cache. Hence, the fraction of prefHit events is almost zero
for both these schemes. As we shall see in Section V-B, the
number of prefetch operations is low for the pTask technique
(<3% for most of the benchmarks). Hence, we do not see any
appreciable benefits of adding such a hardware unit for pTask.

As discussed in Section III-F, the prefetch list of pTask has
a high coverage and utility. Hence, the fraction of prefMis-
sUnused events is low for pTask. Additionally, the prefetch
operations of pTask are more timely and accurate. Hence, its
i-cache hit rates are higher than those of competing strategies,
RDIP and PIF, by 2-6% (see Figure 11). This is the primary
reason for the superior performance of the pTask technique. All
benchmarks follow similar trends except DSS (high baseline
i-cache hit rate + almost no reprofiling).

B. Overheads: Profiling and Prefetching

Table V shows the details of the profiling and the prefetch-
ing operations of pTask.

Profiling: The second column shows the fraction of Hyper-
Task invocations that are executed in the profiling mode. The
reason for such low numbers(<2%) is basically because most
HyperTasks have this flow of control: accept request, service

Benchmark naive encode unionEncode
Apache 45.98 15.16 6.89

DSS 5.61 1.85 0.68
FileSrv 26.14 8.27 4.12

Find 59.39 19.31 6.73
MailSrvIO 32.85 10.2 4.47

OLTP 163.59 45.71 13.85
Iscp 44.51 13.86 7.74
Oscp 23.94 7.43 5.04

TABLE VI: Size of the prefetch store (KB)

it, and return to the baseline state. The code for servicing a
request remains mostly similar. Hence, the need for profiling
and re-profiling HyperTasks does not arise very frequently.

The third column of Table V shows the fraction of Hy-
perTasks that are re-profiled (at least once). For most of the
benchmarks, less than 4% of the HyperTasks are re-profiled.
Once a HyperTask is re-profiled, its performance (as compared
to no re-profiling) improves by 8-10%. This justifies the
additional profiling runs.

The first entry in the fourth column shows the mean slow-
down during profiling runs (as compared to a baseline system
without prefetching). The slowdown during the profiling mode
is due to the execution of additional instructions for updating
the FuncVector and the profile store. The second entry in
the fourth column shows the fraction of total time spent in
profiling mode. This is directly proportional to the fraction
of invocations that are executed in the profiling mode and
the slowdown observed during each profiling run. We can
conclude that benchmarks spend a very small amount of time
(<2%) in the profiling mode and hence the gross overheads
of the profiling runs are inconsequential.
Prefetching: The last column in Table V shows the fraction
of prefetch instructions. The fraction of prefetch instructions is
low (0.5-3.2%) because of two reasons: (1) only one prefetch
instruction is executed for each block of i-cache lines (because
of our compression techniques), and (2) during one invocation
of a HyperTask, many instructions execute multiple times
(loops). However, the corresponding prefetch instructions are
executed only once – at the beginning of the HyperTask.

Figure 13 shows the reduction in the d-cache hit rate due to
the additional overhead of saving all our data structures in the
kernel’s address space. We compare two cases: (1) pTask,
and (2) a system where all the pTask data structures are
saved in a separate hypothetical storage area. Since we use
a highly compressed prefetch store, the reduction in the d-
cache hit rate is low (0.5-2.5%). Previous works [4], [7] have
observed that OS intensive benchmarks are not very sensitive
to the performance of the d-cache. So even a 2% reduction
in the d-cache hit rate does not affect the performance of the
benchmarks significantly, and we still get speedups. Note that
an OOO pipeline is very effective in mitigating the slowdowns
due to d-cache misses and additional non-blocking prefetch
instructions.

C. Prefetch store

Table VI shows the size of the prefetch store (in KB)
for three configurations: naive (no compression), encode, and
unionEncode (see Section IV-C). The compression ratios are
5X-12X. To put these numbers into perspective, with an 8X
compression ratio, the unionEncode technique uses around 3
bits to store the prefetch entry of one i-cache line.
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D. pTask: Performance Breakup

Figure 14 shows the overall speedup of our benchmarks
only when a specific type of HyperTasks are prefetched (using
pTask). The speedups are in the range of 8-27% when we
prefetch either only applications or system calls. However,
the net speedup is much lower (2-4%) when we prefetch
top/bottom half handlers or the scheduler. The reason for this
is that application and system call HyperTasks account for
a bigger portion of the overall execution(also see Figure 3).
Note that all of these individual speedups are (and should be)
less than the overall speedup when we prefetch all types of
HyperTasks.

E. Granularity: Basic block vs Function

Figure 16 shows the performance gains of the pTask
technique when we profile and prefetch the HyperTasks at
the granularity of a function versus a basic block (figure
normalized to pTask with functions). For the basic block
strategy, we still identify the application HyperTasks using the
recordFunc instruction. We use another assembly instruction
recordBasicBlock to record the execution of a basic block.
Considering that an average basic block has around 5-6
assembly instructions, recordBasicBlock instructions constitute
around 15-20% of all the executed instructions. Although the
processor treats these instructions as nops during the normal
mode of execution, they consume fetch bandwidth. Hence,
even though the implementation with basic blocks is more fine-
grained, it performs at least 4-7% slower than a pTask system
running at the granularity of functions. Hence, we decided to
use pTask at the granularity of functions.

F. HyperTask Size

As discussed in Section IV-A, we only consider a limited
portion of the HyperTask’s execution that follows an OS event.
Figure 15 shows the impact of prefetching the first K unique
functions (not function calls) of a HyperTask for the Apache
benchmark (we observe similar results for other benchmarks).
The performance of the HyperTask increases as we increase
the number of profiled functions. However, after prefetching
around 125 functions, the benefit of prefetching additional
functions is close to zero. Hence, we stop the profiling of
a HyperTask after it executes 125 functions. We observe that
more than 99% of the HyperTasks access less than 125 unique

functions. So our choice of 125 functions covers most of the
benchmarks’ execution.

G. pTask: Using Extra Hardware

We see two opportunities to improve the performance of the
pTask technique with extra hardware support.

Hardware Prefetch Store: The prefetch store is a software
structure and can cause d-cache pollution. So, we use addi-
tional hardware structures to completely eliminate the d-cache
accesses for the prefetch store. We propose to add two units on
each core. First is a scratch pad memory of 8 KB. This stores
the prefetch lists of the frequent HyperTasks, and the other
structure is used to map the HyperTask ID to its prefetch list
in the scratch pad memory. Figure 17 shows the performance
gains achieved by this technique, hwPrefStore, versus pTask.
The mean performance benefits of pTask and hwPrefStore are
27.38% and 28.57% respectively.

Oracle pTask: An astute reader can observe that the time
between the prefetch operation and the first function of the
HyperTask is not enough to bring its i-cache lines from the
lower level cache to the i-cache. To avoid the miss penalty, we
need at least two more structures: (i) a structure to predict the
next HyperTask, and (ii) a structure to start fetching the i-cache
lines of the next HyperTask before the current HyperTask
completes execution.

Instead of implementing these structures, we evaluate the
upper bound on the performance benefits that can be ex-
pected out of these schemes. We perform experiments with
oracle_pTask. At the start of a HyperTask’s execution, ora-
cle_pTask instantaneously reads all the lines in its prefetch
list into the i-cache without incurring any overhead. Figure 17
shows the performance comparison of the oracle prefetcher,
oracle_pTask, with pTask. While pTask gives a mean perfor-
mance improvement of 27.38%, the oracle prefetcher gives a
performance improvement of around 31.09%. pTask is thus
close to optimal.

H. Multi-programmed Workloads

Next, we show the impact of all prefetching techniques
on the execution of multi-programmed workloads. Table VII
shows the constituent benchmarks of each randomly chosen
multi-programmed workload, and Figure 18 shows the perfor-
mance benefit for each prefetching technique. We simulate a
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Fig. 18: Performance Impact: Multi-
programmed Workloads

Workload ID Constituent benchmarks

MPW-A DSS, FileSrv
MPW-B Apache, OLTP
MPW-C Apache, DSS, FileSrv, Iscp
MPW-D Apache, DSS, Find, OLTP
MPW-E Iscp, Find, FileSrv, Oscp

TABLE VII: Multi-programmed Workloads

16-core system (see Table II) and we allocate an equal number
of cores for each benchmark. The mean performance bene-
fits of these schemes are: Markov (9.42%), CGP (15.04%),
RDIP (20.66%), PIF (21.76%) and pTask (28.70%). A closer
observation of these numbers shows that the performance
of a multi-programmed workload is very strongly correlated
with the performance of each constituent benchmark (also see
Section V-A). Note that we simulate simultaneous execution
of profiling modes (across cores), and simultaneous accesses
by different processes to prefetch/profile stores. The reported
numbers include all of these overheads.

VI. CONCLUSION

In this paper, we proposed pTask, as an alternative to
state of the art prefetching techniques. The basic insight
that we use is that it is not necessary to have prefetching
activated all the time. There are portions of an execution
where the i-cache hit rates are high, and thus do not stand
to benefit from prefetching. In fact we can have a reverse
effect of unnecessarily polluting our prefetching structures if
we prefetch all the time. Instead, it is a better idea to use
prefetching when it is needed. We show that during task
switches, prefetching is needed because the i-cache miss rate
peaks, and prefetching is in fact beneficial. For a popular suite
of 8 OS intensive benchmarks, we demonstrate an average
increase in instruction throughput of 7% over highly optimized
state of the art proposals. In 4 benchmarks the increase is
between 10-14%.
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