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Abstract– We have moved into an era where modern multicore systems must deal with several critical
challenges such as increased power density and high temperatures. In addition to this, ITRS projects that
heterogeneity due to manufacturing process variations would continue to rapidly increase in sub-nanometer
technology nodes. Spatial heat influence or the lateral heat transfer is becoming more prevalent in manycore
systems and has a significant impact on the processor power consumption. Thus it is becoming increasingly
difficult to meet the application throughput requirements while adhering to the system power budget and
thermal constraints. Many of the existing task mapping schemes that does not take into account the
underlying variations in core frequency and leakage power consumption will result in sub-optimal solutions.
In this work, we first formulate the mapping problem as an optimization problem and then present a
rank-based, process variation and lateral heat transfer aware application mapping algorithm to solve it
heuristically. Our extensive experimental results reveal that the proposed algorithm produces near optimal
results (average 6% away from optimal) while being orders of magnitude faster (4000x faster for 225 cores).
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1 INTRODUCTION

Aggressive CMOS technology scaling leveraged by chip manufacturers has led to many cores being fabricated
on the same chip. The idea behind this was to harness the compute capability of all the cores simultaneously
and achieve significant performance improvement. But the continued scaling of CMOS technology has given
rise to several critical issues like increased power density, increased leakage power, and consequent increase
in operating temperatures. Spatial heat interference or the lateral heat conduction (heat flow between
different cores on a die) further exacerbates these challenges in modern many-core processors
[1,2]. Thus power and thermal constraints prohibit the concurrent use of all the cores at maximum frequency
and limits the achievable performance. This phenomenon is known as Dark Silicon [3].

Another critical challenge in sub-nanometer technologies is the increasing fluctuations posed by IC man-
ufacturing process. The feature sizes of current sub-nanometer devices are an ultra small fraction of the
wavelength of light used in the lithographic processes. Thus it is very difficult to scale the resolution limit
of the manufacturing processes leading to variability in the dimensions of transistors. These variations typi-
cally affect the transistor parameters like the threshold voltage (Vth) and the channel length (Leff ) leading to
variability in the transistors power consumption and switching frequency.

There is a complex relationship between threshold voltage, frequency, temperature (T ), power, through-
put, and the workload assignment. Figure 1 depicts the dependencies between the various parameters. The
threshold Vth decreases with increase in temperature. Cores with higher Vth are less leaky but have high
switching times hence will increase the execution time of the task. Cores with lower Vth have low switching
times but are highly leaky. Because of the limitations in cooling, each core has a different heat removal capac-
ity. Leakage power consumption and core temperature have a cyclic dependency between each other. Thus,
the performance and power consumption of the task will now depend upon the core on which it is executed.
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Figure 1: Relationship between Variables

Our aim in this work is to take into account the variations in the core characteristics, the effect of spatial
heat interference/thermal coupling and map the tasks of the given workload onto the cores to achieve any of
the below mentioned objectives:

• Minimize total power consumption of the chip with a certain guaranteed throughput

• Maximize overall system throughput under a certain power budget

• Compute a set of trade-off solutions in terms of power and performance



2 RELATED WORK

Vast majority of previous works have proposed Dynamic frequency and voltage scaling (DVFS) [4, 5] as the
primary technique for power management. Conventional frequency scaling techniques were first adopted at
the chip-level [6, 7]. Due to their success in providing substantial power savings, it was gradually adopted
at per-core [8], memory subsystem [9] and inter-connect levels [10]. Coordinated schemes combining fre-
quency scaling mechanisms at multiple levels were also proposed [11–13]. Most of these prior works try
to only maximize performance per unit of power consumed and do not take into account thermal constraint
violations. Our work differs from these as we consider the heterogeneity in core frequency only because of
the impact of manufacturing process variations. Existing works of Teodorescu et al. [14], Stamoulis et al. [15]
consider the heterogeneity in the die due to process variations and try to maximize the performance of the
given set of workloads. There are many reported works that address variation aware task mapping [16–18]
that tries to take into account the communication requirements between the tasks while trying to maximize
the performance.
Ding et al.’s work [19] talks about adaptive application execution i.e assigning threads of an application to
the cores of a chip multiprocessor with process variation using thread mapping schemes that can potentially
exploit the existing heterogeneity in power and performance characteristics of the cores to optimize perfor-
mance, energy consumption and energy-delay product. They also suggest that instead of globally clocking
all the cores to the lowest frequency, if a subset of cores are reconfigured to their lowest frequency based on
specific application behavior, significant reduction in energy-delay product can be obtained. Meng et al. [20]
also proposed a very similar approach of core to thread mapping that reduces the overall power consumption
for chip multiprocessors fabricated under extreme parameter variations. But none of the existing works takes
into account the effect of spatial thermal coupling or the leakage temperature feedback loop as we do in this
work. Also, most of the existing heuristics generate a single approximate solution for a single objective while
in our work, we also give a methodology to compute trade-off solutions while considering multiple objectives.

3 BACKGROUND

In this section, we briefly discuss the background information on the hardware architecture and related power,
thermal, performance and process variation models.

3.1 Models

3.1.1 Architecture Model

We consider a tiled processor architecture consisting of N tiles connected to each other through 2D mesh
topology and are organized as a grid of X*Y where X ∗ Y = N . Each tile comprises a processor core,
L1/L2 cache subsystem together with a memory management unit. In this work, the processor cores are
homogeneous with respect to micro-architecture but heterogeneous in terms of performance due to process
variations. Each core runs at a different frequency and consumes different amount of leakage power.

3.1.2 Workload Model

We consider a bag-of-tasks workload model with both synthetic and real workloads. During any de-
cision epoch, we assume M (M ≤ N ) independent tasks will be mapped and executed on the processor.
For evaluating on real workloads, we construct various multi-program workload mixes by combining various
benchmarks from SPEC 2006 benchmark suite. More details will follow in Section 6.

3.1.3 Power and Thermal Models

Each task has two sources of power consumption. The dynamic power due to switching activity is given by
αCV 2f and the leakage power is given by equation[1]. BSIM4 and more recently BSIM-CMG models the



dependence of leakage power on temperature and the same is given by the following equation:

Pleakage ∝ v2T ∗ e
VGS−Vth−Voff

η∗vT (1− e
−VDS

vT ) (1)

vT is the thermal voltage (kT/q), Vth is the threshold voltage, Voff is the offset voltage in subthreshold
region and η is a constant. The threshold voltage Vth decreases with increase in temperature and vT increases
linearly with increase in temperature.

In this work, we consider that each task’s steady state average dynamic power consumption profile is
known apriori. The power consumption of taski executing on corej is given by

Ptotij = αiCiV
2
ddFj + Pleakagej (2)

We use the Hankel transform based temperature estimation framework of [2] to model the heat spread
function of a point heat source. This model characterizes the lateral heat conduction as the sum of radially
symmetric rapidly decaying function and a constant κ. Constant κ captures the effect of the entire die heating
up because of a point power source. This happens because some of the heat is transferred to the spreader,
which in turn transfers some energy to all the points in the die.

This thermal model captures the effect that a primary power source (due to a task running on a core)
increases the temperature in the neighborhood, and each point in the neighborhood (adjoining cores) starts
acting as a secondary power source dissipating leakage power. It then uses Green’s function approach to
compute the resultant temperature field while taking into account the leakage temperature feedback loop.

3.1.4 Process Variation Model

The typical transistor parameters that are affected due to process variations are the threshold voltage(Vth) and
the channel length (Leff ). Both these parameters are related to each other by a simple equation proposed by
[21]. L0

eff and V 0
th refer to the nominal values.

Leff = L0
eff

�
1 +

Vth − V 0
th

2V 0
th

�
(3)

In this work also, we consider only the variation in threshold voltage. We model the systematic and random
components of the threshold voltage variation as described in [21]. As leakage power consumption and
threshold voltage are related to each other as given by Equation 1, variations in threshold voltage translates to
variations in leakage power consumption at ambient temperature. We include these variations in our leakage
power model. Similarly, the impact of threshold voltage variations on the peak operating frequency of various
cores in the processor is obtained using the alpha power law [21].

Frequency ∝ (V − Vth)
α

V (1 + Vth/V
0
th)

(4)

Figures 2 and 3 show the threshold voltage and frequency variation maps of a 64-core processor simulated
using Varius framework. In Figure 3, there are different possible frequencies in a core block due to variation
in individual transistor switching frequencies. But the operating frequency of the core will be the maximum
frequency that the slowest transistor can support without suffering from timing faults [21].

3.1.5 Performance Model

We use the concept of CPI stacks [22] to obtain the average number of cycles utilized per instruction (CPI).
It breaks the cycles used per instruction into multiple components like baseline cycles, cycles lost due to
branch and memory.

CPItot = CPIcore + CPIL1 + CPIL2 + CPIdram

CPIcore = BaseCPI + CPIbranch
(5)
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Figure 2: Sample Vth variation map of a 64-core processor
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Figure 3: Sample frequency variation map of a 64-core processor

The core, L1 and L2 caches are tied together in a tile in our architecture and runs at the same frequency. To
model effects of frequency heterogeneity among the tiles on the performance of the application, we measure
the changes in terms of absolute time. We measure the average seconds used (SPI) by the core, L1 and L2
components of the instruction execution (refer Equation 5) at the nominal frequency (Fnom) and scale it to
obtain SPI for a new frequency F

�
. DRAM access time remains the same irrespective of changes in tile



frequency. The throughput achieved is measured in terms of Instructions per second (IPS).

SPI =
CPI

frequency

SPI(F
�
) = SPI(Fnom) ∗ Fnom

F �

IPS(F
�
) =

1

SPI(F �)

(6)

4 PROBLEM FORMULATION

In every epoch, there are M tasks (M ≤ N ). Let the M tasks be denoted by τ1 . . . τM . The average dynamic
power consumption of the jth be denoted by τDP

j .
For each of the N cores indexed by i, Let P d

i , P s
i , P tot

i and Ti be the dynamic, leakage, total power and
temperature respectively.

Let Xij denote the mapping between core i and task j.

Xij =

�
1, If task j is mapped to core i

0, otherwise

Aik is the thermal resistance co-efficient between core i and k (see Equation 14). Thermal resistance is
defined as the difference in the temperature of a core k when a unit of heat energy flows through core i in unit
time.The SI units of thermal resistance is Kelvins per Watt. The higher the value of Aik, the smaller the heat
transfer and the lower the value of Aik, the greater the heat transfer

4.0.1 Objective Function

The optimization goal in this work is to study the trade-off between the total power consumption and the
system throughput achieved. We formulate the mapping problem as a bi-objective weighted sum optimization
problem. One component of the objective function (

�N
i=1P

tot
i ) presents the total sytem power consumption

while the other component of the objective function (
�N

i=1 IPSi) presents the system throughput which
quantifies the aggregated throughput of all the tasks that are executed in the system. We have two conflicting
requirements to satisfy. We aim to increase the system throughput while trying to reduce the total power
consumption. For consistency, we transform the maximization objective Max(

�N
i=1 IPSi) into equivalent

minimization objective Min(-
�N

i=1 IPSi ) to cast the problem as a single objective optimization problem.
The problem is now constructed as a sum of objective functions multiplied by weighting coefficients Φ and
1−Φ. Normalization of the two components of the objective function is carried out to ensure the consistency
of the optimal solutions.

Minimize(Φ · K1 ·
N�

i=1

P tot
i − (1− Φ) · K2 ·

N�

i=1

IPSi) (7)

The trade-offs in the objectives are obtained by varying the coefficient Φ . Φ = 0 leads to throughput
maximization mapping while Φ = 1 leads to power consumption minimization mapping. K1 and K2 are
fixed weights used for normalization.

4.0.2 Constraints

We have the following constraints on Xij .



• Each task j has to be mapped to a core i and at most one task j can be mapped to a core.

∀j,
N�

i=1

Xij = 1, ∀i,
M�

j=1

Xij ≤ 1, Xij ∈ {0, 1} (8)

• The throughput of task τj running on corei is given by TPTij (refer Equations 5 and 6).

IPSi =
M�

j=1

XijTPTij (9)

• We consider the core-to-core variations in frequency and leakage power consumption. We assume all
the tiles run at the same supply voltage (Vdd).

• The dynamic power of a task running at the nominal frequency Fnom, will get scaled appropriately
when running on a core with frequency F

�
. Let DPij denote the dynamic power of jth task when

executed on ith core.

DPij = τDP
j (Fnom) ∗ Fi

Fnom

P d
i =

M�

j=1

Xijτ
DP
j

(10)

Leakage power’s exponential dependence on temperature can be approximated with piece-wise linear
models [23]. For the chip operating temperature range of 40◦C to 90◦C , we assume a linear model of
leakage power and is given by

Pleakage = P 0
leakage + β(T − Tamb) (11)

P 0
leakage is the inherent leakage power at ambient temperature and is captured by α. β captures the

ΔPleakage

ΔT and is a function of the electrical characteristics of the chip like supply voltage, and threshold
voltage. Thus, the variation in leakage power of corei due to threshold voltage variation is modeled by
choosing appropriate α and β.
Power Gating: Any core that is not dissipating any dynamic power is turned off such that the
leakage power dissipation is zero. During any epoch, if there are M tasks where M ≤ N , it is assumed
that the rest of the N −M cores have zero dynamic power dissipation. In this case, the new equation
for leakage power is:

P s
i = αi + βiTi ×


�

j

Xij


 (12)

The total power consumption is the sum of dynamic and leakage components and is given by:

P tot
i = P d

i + P s
i (13)

• The steady state temperature is related to total power consumption through a linear relationship as given
by

T = AP (14)

Here, A is a symmetric n× n matrix, T (temperature) and P (power) are n× 1 vectors.

• We set TSL = 85◦C as the chip thermal limit and this is the maximum allowable temperature
that can guarantee safe operation of the chip.
Since both the objective function and the constraints contain quadratic terms, we formulate the map-
ping problem as a Quadratically Constrained Quadratic Problem (QCQP) and use
a QCQP solver to obtain the optimal solutions (refer Section6).



5 TASK ASSIGNMENT ALGORITHM

The high computational cost of the optimal solution computed by the QCQP necessitates a faster algorithm.
We present a process variation and lateral heat influence aware algorithm (Algorithm 1 VLA TAA) in this
section. This rank-based task assignment approach provides near optimal results while being order of magni-
tude faster. The terms used in the algorithm are defined in Table 1.

Table 1: Glossary of terms

Symbol Definition
SPN Array containing the static power consumption of each core at ambient temperature Tambient.
FN Array containing the maximum operating frequency of each core.
TN Array containing the temperature of each core. T[i] gives the temperature of ith core.
flpN flp[i] gives the x− y co-ordinates of the ith core on the die
LHIN×N Matrix containing the heat transfer contribution of each core on other cores. Each cell of

the row gives the amount of heat transferred from core I to core J when core I is
applied with 1 watt of power while taking into account the leakage temperature feedback
loop. We call this matrix as the Lateral Heat Influence matrix.

DPM×N Table containing the dynamic power of the tasks scaled according to the frequency of the
core. DP[M,N] gives the dynamic power consumption of the M th task when executed on
N th core.

TPTM×N Table containing the throughput (Instructions per second) of the tasks scaled according to the
frequency of the core. TPT[M,N] gives the throughput in terms of Instructions per second
of the M th task when executed on N th core.

DISTN×N Matrix containing the pairwise Euclidean distance between the cores. DIST[I,J] gives the
Euclidean distance between core I and core J.

The proposed algorithm leverages insights from the complex relationship between threshold voltage,
temperature, power, and throughput and builds a solution by iteratively mapping tasks onto cores with the
aim of achieving the user-defined objective. In the case of trading off multiple objectives, the algorithm
computes K trade-off solutions instead of approximating to a single solution.

The algorithm takes as input the dynamic power (τDP ) and instructions per cycle (τ IPC) of the task at
the base frequency f0, a priority queue (coreQ) of unmapped and available cores, a floorplan (flp) and a user
defined objective. We consider three different objectives in this work

1. minimizing power consumption with a predefined throughput requirement

2. maximizing throughput under a certain power budget

3. computing trade-off solutions in terms of power consumption and throughput.

The algorithm initially sorts the available tasks in taskQ according to the selected objective (Lines 2 to 10)
and for each task, the procedure computeMap loops through all the cores in the coreQ in the descending
order of priority. The priority is computed depending on the desired objective (Lines 1 to 22). For each core
in the coreQ, the procedure computeRanks() computes four different ranks namely, selfLeakage
(LS

Rank), mutualHeatInfluence (HM
Rank), distance (DRank) and frequency (FRank) ranks. It

uses matrices SPN , LHIN×N , DISTN×N and FN as inputs to compute the ranks.
The selfLeakage component captures the variations in the base static power consumption of the cores.

Lower the base leakage of a core, higher its rank. The mutualHeat Influence component captures the
total amount of heat transferred by the core to the other cores in the chip. Lower the total amount of heat
transferred by the core, higher is its rank. The distance component is based on the geometric mean of distances
of the current core from already mapped cores that are executing tasks on them. The farther the core from
the currently active cores, the higher its rank. The FRank component captures the inherent variations in the
operating frequencies of the core. Higher the frequency of the core, higher its rank. For the objective of
maximizing performance, the idea is to aggressively assign the tasks to cores such that the highest throughput



Algorithm 1 VLA Task Assignment Algorithm
Input: taskQ, coreQ, flp, τDP , τ IPC , objective
Output: selQ

1 taskQ ← all tasks to be scheduled coreQ ← priority queue of available(unmapped) cores selQ ←
list of mapped cores Tflag,Pflag, T Pflag ← 1 T ← Tambient GRank ← ∞ pTaskQ, selQ ← φ

2 if (objective = MinimizePower) then
3 taskQ ← sort taskQ in decreasing order of base DP
4 end
5 else if (objective = MaximizePerformance) then
6 taskQ ← sort taskQ in decreasing order of base IPC
7 end
8 else if (objective = PowerPerformanceTradeoff ) then
9 taskQ ← sort taskQ in decreasing order of base IPC and DP

10 end
11 if (objective = (MinimizePower ∨MaximizePerformance)) then
12 while taskQ not empty do
13 curTask ← poll head of taskQ selCore ← computeMap(objective, coreQ, flp, τDP , τ IPS)

selQ ← selQ ∪ selCore
14 end
15 end
16 if (objective = PowerPerformanceTradeoff ) then
17 for k

� ← 1 to K do
18 selQk� ← φ while taskQ not empty do
19 curTask ← poll head of taskQ selCorek� ← computeMap(objective, coreQ, flp, τDP , τ IPS ,

powCoeff, perfCoeff ) selQk� ← selQk� ∪ selCorek�

20 end
21 end
22 end



Procedure computeMap( )

1 if (objective = MinimizePower) ;
2 then
3 for i ← 1 to N do
4 SP amb[i] ← getBaseStaticPower(i) ;
5 end
6 CoreQ ← sort coreQ in increasing order of SP amb;
7 end
8 else if (objective = MaximizePerformance) ;
9 then

10 for i ← 1 to N do
11 F [i] ← getFrequency(i) ;
12 end
13 CoreQ ← sort coreQ in decreasing order of F ;
14 end
15 else if (objective = PowerPerformanceTradeoff ) ;
16 then
17 for i ← 1 to N do
18 SP amb[i] ← getBaseStaticPower(i) ;
19 F [i] ← getFrequency(i) ;
20 end
21 CoreQ ← sort coreQ in decreasing order of F and then in increasing order of SP amb;
22 end
23 return First element of CoreQ if size(coreQ) = N ;
24 computeRanks() ;
25 minGRank ← minimum(GRank) ;
26 topCore ← core with minGRank in coreQ ;
27 updateState() ;
28 checkVitals() ;
29 if (Tflag ∧ Pflag ∧ T Pflag �= 0);
30 then
31 selCore ← topCore ;
32 deque selCore from coreQ ;
33 updateFlags();
34 return selCore ;
35 end
36 else
37 pTaskQ ← curTask;
38 updateFlags();
39 return Feasible Core not found

40 end



Procedure computeRanks( )

1 if (objective = (MinimizePower ∨MaximizePerformance)) ;
2 then
3 topQ ← topmost k cores of CoreQ ;
4 for j ← 1 to k do
5 LS [j] ← getBaseStaticPower(j) ;
6 HM [j] ← computeHeatInfluence(j) ;
7 D[j] ← computeDistance(j,selQ) ;
8 LS

Rank[j] ← getRank(j, LS [j]) ;
9 HM

Rank[j] ← getRank(j, LM [j]) ;
10 DRank[j] ← getRank(j, D[j]) ;
11 GRank[j] ← LS

Rank[j]+HM
Rank[j]+DRank[j] ;

12 end
13 end
14 if (objective = PowerPerformanceTradeoff ) ;
15 then
16 for j ← 1 to N do
17 LS [j] ← getBaseStaticPower(j) ;
18 HM [i] ← computeHeatInfluence(j) ;
19 D[j] ← computeDistance(j,selQ) ;
20 F [i] ← getFrequency(i) ;
21 LS

Rank[j] ← getRank(j, LS [j]) ;
22 HM

Rank[j] ← getRank(j, LM [j]) ;
23 DRank[j] ← getRank(j, D[j]) ;
24 FRank[j] ← getRank(j, F [j]) ;
25 GRank[j] ← powCoeff * (LS

Rank[j] + HM
Rank[j] + DRank[j]) + perfCoeff * FRank[j]

26 end
27 end



is achieved and then use LS
Rank, HM

Rank and DRank to take care of the possible reduction in power that can
be obtained. For computing a set of K trade-off solutions in terms of power and performance, the procedure
computes the ranks for K different values of powCoeff and perfCoeff.

Due to high spatial correlation(φ) between values of Vth in regions of close proximity, less-leaky cores are
present in close vicinity to each other. The assumption that mapping high dynamic power tasks to less-leaky
cores will result in minimum power consumption does not hold true because of leakage temperature feedback
loop. Initially less-leaky cores will gradually become more leaky because more number of less leaky cores in
close vicinity are active simultaneously leading to hotspot formation. Since leakage power has an exponential
dependence on temperature, the increase in leakage power will be very significant. Similarly mapping high
IPC tasks to high frequency cores will help in maximizing the performance but will also lead to very high
power consumption because of the same reason as mentioned above.

After the ranks are computed, the core with the minimum global Rank (GRank) is chosen for mapping
the current task. The function updateState() computes the augmented temperature field by scaling
the lateral heat interference (LHI) matrix with the dynamic power of the current task. The resultant core
temperature is calculated using the temperature estimation framework described in [2].

Procedure updateState( )

1 C ← selCore ;
2 Update LHI[C] by scaling with DP[curTask] ;
3 Update Global LHI matrix of the chip ;
4 for i ← 1 to N do
5 T [i] ← computeTemp(i) ;
6 end
7 Update TN array ;

The function checkVitals() checks whether the maximum power budget, required throughput and
maximum temperature conditions are violated and raises the appropriate flag (Tflag / Pflag / T Pflag). If the
current task is found to violate any of the requirements, then it is moved to the pending task queue (pTaskQ).
The algorithm continues to iterate over the remaining tasks in the taskQ. When an executing task exits, the
algorithm checks whether any valid mapping can be found for the tasks in the pending task queue pTaskQ.

Procedure checkVitals( )
1 for i ← 1 to N do
2 if (T [i] > TSL);
3 then
4 Tflag ← 0;
5 end
6 end
7 if (P Tot > P budget);
8 then
9 Pflag ← 0;

10 end
11 if (IPS[curTask] < IPSreq);
12 then
13 T Pflag ← 0;
14 end



6 EVALUATION

To showcase the effectiveness of the proposed variation and lateral heat influence aware algorithm, we com-
pare the performance per watt obtained through our algorithm against the following different solutions.

• QCQP - Optimal solution computed by the QCQP solver

• Checkered - Maps the task to an idle core such that active cores and inactive cores are interleaved in
a checkerboard pattern.

• Greedy - Maps the task such that it maximizes the distance to all other active cores.

• Pinned - Maps the task to the first available idle core in an indexed linear circular list.

• Random - Maps the tasks on to the cores randomly.

• Teodorescu et al. [14] - A technique that takes into account, the effect of process variation
but does not consider the effect of lateral heat influence.

• CoolMap - A technique proposed in [1] that takes into account, the effect of lateral heat influence but
does not consider process variations.

We first describe our experimental setup and simulation environment. We then evaluate the efficiency of the
proposed algorithm.

6.1 Experimental Setup

Our simulation framework consists of Sniper 6.0 architectural simulator integrated with McPAT [24] and the
temperature estimation framework from [2]. For our simulations, we consider a wide range of floorplans
from 20 tiles (5x4) to 225 tiles (15x15). The baseline chip that we consider in this work is a 20-tile processor
manufactured using 32nm CMOS technology. We assume the die area to be constant (400 mm2) as per the
2011 ITRS report [25]. Table 2 summarizes configuration of the baseline processor.

Table 2: Baseline Architectural parameters

Parameter Value Parameter Value
Cores 20 Technology 32 nm

Frequency 2.66 GHz Vdd 1.0V
L1 I-cache, D-cache

Associativity 8 Size 32 KB
L2 Cache

Associativity 8 Size 512 KB

We use Sniper 6.0 architectural simulator integrated with McPAT to obtain the power traces and CPI stacks
of the SPEC 2006 bechmarks for the baseline processor (refer Table 2). We use the scaling methodologies
and factors described in [3, 25, 26] to model the technology scaling effects and obtain the dynamic power,
leakage power, frequency and threshold values for other technology nodes accordingly. We quantify and
include the leakage temperature trends for all the technology nodes using MASTAR 5.0.51 [25]. We use the
framework described in [2] with the configuration mentioned in Table 3 to compute the leakage converged
Green’s functions (center, edge, corner) for a chip and obtain temperature values of the tiles. We use the
same tool to generate the lateral heat influence matrix as well. To calculate final critical dimension
CD variability from ITRS roadmap, we need to integrate many entries from the CD tolerance data given by
the ITRS tables. We use the methodology described in [27] to calculate the magnitudes of variability from
ITRS projections for different technology nodes. [27] uses entries such as Line width roughness, overlay, CD



Table 3: Thermal estimation framework configuration

Parameter Value Conductivity Value
Die size 400 mm2 Silicon 130 W/m-K

Spreader thickness 3.5 mm Spreader 370 W/m-K
Heatsink thickness 24.9 mm Heatsink 237 W/m-K

uniformity, CD linearity and CD mean to target from the Lithography section of the ITRS tables to calculate
the overall variability. Figure 4 gives the complete simulation tool flow.

We present the scaled values for all the technology nodes in Table 4. The values in the columns of
Frequency, Vdd and Power in Table 4 are normalized values (normalized with 32nm as the base) while the
other columns represent absolute values.

Table 4: Scaling Projections

Tech
(nm)

No.of
cores

Frequency Vdd Power Vth

(V)
Var
(%σ

µ)

32 20 1.00 1.00 1.00 0.285 15
22 32 1.31 0.95 0.73 0.220 18
16 64 1.69 0.93 0.55 0.175 28
11 121 2.16 0.90 0.41 0.179 34
8 225 2.72 0.90 0.31 0.186 38

Figure 4: Complete simulation tool chain flow diagram

6.2 Simulation Methodology

In this work, we use applications from the SPEC2006 benchmark suite. We consider a bag-of-tasks
model, and assume that different cores in the processor run independent tasks. We consider 3 utilization
scenarios for evaluation, with 25%, 50% and 75% of the cores active and running tasks. We compose multi-
program workload mixes of SPEC2006 applications as indicated in Table 5. For 25% utilization scenario, we
generate task queue by combining multiple instances of these mixes. We replicate the instances by 2x and
3x for the 50% and 75% active core scenarios, respectively.



Table 5: Simulation Workload

Workload Benchmarks
Mix1 hmmer namd tonto gamess h264ref
Mix2 sjeng calculix astar povray gromacs
Mix3 mcf leslie3d libquantum xalancbmk zeusmp
Mix4 GemsFDTD cactusADM milc gcc bwaves
Mix5 lbm gobmk sphinx3 omnetpp mcf

For a given utilization scenario and a workload mix, we identify the baseline power budget and baseline
throughput by simulating that workload mix for that utilization scenario for 250 random thread to core map-
pings. We set the median power of the 250 mappings to be the baseline power budget and median throughput
to be the baseline throughput. We vary the power budget and throughput from 80% to 100% of the baseline
to explore different constraint scenarios. Previous works [28] and [15] have also used similar approach for
generating baseline budgets.

For each utilization scenario, we compare the performance per watt obtained through our algorithm
against the different solutions mentioned in Section 6. For computing the optimal solutions of Quadratic
Constrained Quadratic Program (QCQP), we use the R interface of Gurobi Mixed Integer Programming
solver [29].

Simulation of Process Variations

To simulate process variations, we generated sample variation maps in R using the geoR package as described
in [21] and superimposed the floorplan on it using the approach mentioned in [21]. A sample variation map
is shown in Figure 3. The σ/µ variation for different technology nodes is given in Table 4. The spatial
correlation factor is assumed to be 0.5. This means that a value at a certain point is correlated with values in
a radius equal to half the width of the die. We generated 100 sample dies for every technology node and the
corresponding results are presented in Section 7.

7 RESULTS

On 100 random dies, and for 5 different workload combinations, we evaluate our algorithm against the al-

gorithms mentioned in Section 6. Performance Per Watt

�
IPS

Watt

�
represents the energy efficiency

metric in this work. We consider the optimal solution computed by the QCQP to be the baseline. All the
results presented in the following sections are normalized with respect to the baseline.

7.1 Maximizing Performance

For the objective of maximizing performance, we tabulate (Table 6) the, normalized net system
throughput values. For the simulation results presented here, we fixed the chip power budget to be 90%
of the baseline power budget (refer Section 6.2). For single threaded applications, instructions per second
(IPS) is a clear indicator of performance. For multiprogrammed workloads like the ones we use in this work,
IPS summed over all the applications indicates the net system throughput. Previous works such as [8] and
[28] use this as their performance metric.

For each workload, the average net system throughput (across 100 sample dies) obtained by the QCQP
solution is considered as the baseline. The net system throughput values obtained by all the other algorithms
(for all the 100 sample dies) are normalized with respect to this baseline. We use 5 different multiprogrammed
workloads (refer Table 5) in this work.
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Figure 5: Normalized Performance across all Workloads (for 225 cores) for the objective of maximizing
throughput under power constraints

7.1.1 Normalized Performance

In Figures[ 5a and 5b], for 225 cores, for each of the two different utilization scenarios (25% and 50 %), we
show the normalized net system throughput across all the 5 different workload mixes for all the 100 sample



dies in two different beanplots1. In addition to net system throughput values, we also report the
performance per watt values. For 75% utilization, we observe trends similar to that of 25% and
50% utilization.

Focusing on the performance results in Table 6 and Figures [ 5a and 5b], we observe that VLA TAA incurs
a maximum error of 5% (for 25% activity) and 3% (for 50 and 75%) activity. We also observe the following
trends from the simulation results. First, the performance of VarF IPC [14] decreases with increase in
utilization. The algorithm tries to map high IPC tasks to high frequency cores that are highly leaky and thus
the power budget quota gets exhausted quickly and thus while using this algorithm, the number of unmapped
tasks for a given bag-of-tasks increases with increase in activity.

For the case of Pinned scheduler, it just maps the task to the first available idle core in an indexed
linear circular list without taking into account the underlying process variations and thus for some dies, its
performance may be better and in some it may not. But the main limitation of this algorithm is that, since it
maps the tasks in the cores one next to the other, there is an increase in power consumption due to hotspot
formation. Greedy and CoolMap are spatial heat interference minimizing algorithms. We can see from
the results in Table 6 that the performance of these algorithms improves with increase in activity. One reason
is that as the number of free cores decreases with increase in activity, the difference in the normalized net
system throughput also decreases.

7.1.2 Normalized Performance Per Watt

We observe from Table 7 and Figures[ 6a, 6b and 6c] that VLA TAA outperforms QCQP in terms of per-
formance per watt. This is because the QCQP’s objective function only aims to maximize throughput while
staying within power budget. In contrast, VLA TAA takes into account both the throughput as well as effect of
lateral heat interference while computing the global rank (GRank) metric. This is because for a small degra-
dation in throughput, a significant amount of power can be saved (refer Section 1). As mentioned previously,
VarF AppIPC [14] maps the high IPC tasks to high frequency cores, but since it does not take into account
the spatial heat interference, it leads to high power consumption. Consequently, its performance per watt
metric is much lower than the competing algorithms. Greedy and CoolMap approaches aims to reduce the
total power consumption and thus for higher utilization scenarios, their performance per watt metric is better
than VarF AppIPC and Pinned.

7.2 Minimizing Power

7.2.1 Normalized Power Consumption

Figures 7a and 7b plot the normalized power consumption of the workload mixes obtained under VLA TAA
and various other algorithms for the case of 225 cores and for three different utilization scenarios and Table 8
which tabulates the normalized average power consumption of the workload mixes for all the other core
configurations and for all the three different utilization scenarios. For these simulations, we fix the minimum
required net system throughput to be 90% of the baseline throughput (refer Section 6.2).

We observe that in the case of 225 cores, for the objective of minimizing power consumption under pre-
defined required throughput, the difference between the optimal solution and VLA TAA is on an average 6%
across all the utilization scenarios and workloads. In this case, QCQP outperforms VLA TAA in reducing
power consumption as well as in achieving better performance per watt. VarP AppP algorithm maps high
dynamic power tasks to less leaky cores. There is a good amount of spatial correlation between values of
Vth in regions with close proximity. This correlation is modelled as an approximately linear function of the
distance between two points, and it is mostly independent of the direction. This thus places less leaky cores
in close vicinity. Even though the cores are initially less leaky, but due to lateral heat flow and leakage power-
temperature feedback they become more leaky as more and more tasks are placed in close proximity. Thus,

1A beanplot is a plot which draws one bean per group of data. A bean consists of a one-dimensional scatter plot that shows all
the individual measurements, its distribution as a density trace and an average line for the distribution
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Figure 6: Normalized Performance Per Watt averaged across all Workloads (for 225 cores) for the objective
of maximizing throughput under power constraints
both Pinned and VarP AppP algorithm suffer from hotspot formation and increased power consumption.
For some workload mixes, both Pinned and VarP AppP algorithm violates the power and thermal con-
straints inorder to satisfy the predefined required throughput constraint. Even though checkered algorithm
interleaves active and inactive cores, the heat is spread throughout the die and on an average there is around
52% increase in power consumption (compared to optimal QCQP solution) for 50% and 75% utilization
scenarios.
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Figure 7: Normalized Power Consumption across all Workloads (for 225 cores) for the objective of minimiz-
ing power under pre-defined throughput requirements



Ta
bl

e
8:

N
or

m
al

iz
ed

Po
w

er
C

on
su

m
pt

io
n

av
er

ag
ed

ov
er

di
ff

er
en

tW
or

kl
oa

d
m

ix
es

fo
r

th
e

ob
je

ct
iv

e
of

m
in

im
iz

in
g

po
w

er
un

de
r

pr
e-

de
fin

ed
th

ro
ug

hp
ut

re
qu

ir
e-

m
en

ts

To
ta

lN
o.

of
C

or
es

%
of

A
ct

iv
e

C
or

es

Q
C

Q
P

C
he

ck
er

ed
G

re
ed

y
Pi

nn
ed

R
an

do
m

Va
rP

A
pp

P
R

ef
[1

4]
C

oo
lM

ap
V

L
A

TA
A

20

25
1

1.
24

5
1.

21
7

1.
32

9
1.

23
5

1.
28

3
1.

15
5

1.
02

9
50

1
1.

30
3

1.
20

7
1.

36
9

1.
32

1
1.

32
0

1.
12

0
1.

02
0

75
1

1.
32

1
1.

17
2

1.
40

1.
39

4
1.

34
8

1.
08

3
1.

01
2

A
ve

ra
ge

1
1.

29
0

1.
19

9
1.

36
6

1.
31

6
1.

31
7

1.
12

1.
02

36

25
1

1.
29

3
1.

23
8

1.
37

1
1.

31
8

1.
33

2
1.

16
5

1.
02

9
50

1
1.

32
6

1.
18

7
1.

42
5

1.
36

6
1.

38
2

1.
13

8
1.

02
4

75
1

1.
35

9
1.

16
4

1.
46

1
1.

41
4

1.
38

5
1.

10
9

1.
01

8
A

ve
ra

ge
1

1.
32

6
1.

19
6

1.
41

9
1.

36
6

1.
36

6
1.

13
7

1.
02

64

25
1

1.
35

7
1.

24
6

1.
44

5
1.

39
7

1.
41

7
1.

17
9

1.
03

8
50

1
1.

44
3

1.
17

8
1.

62
4

1.
53

9
1.

44
0

1.
13

0
1.

03
2

75
1

1.
46

2
1.

14
2

1.
68

6
1.

59
4

1.
49

6
1.

09
1

1.
02

4
A

ve
ra

ge
1

1.
42

0
1.

19
1.

58
5

1.
51

1.
45

1
1.

13
1.

03

12
1

25
1

1.
40

2
1.

30
4

1.
49

8
1.

43
2

1.
47

1
1.

23
2

1.
04

4
50

1
1.

48
8

1.
26

1
1.

66
8

1.
56

8
1.

51
4

1.
19

7
1.

04
0

75
1

1.
54

5
1.

25
0

1.
72

1
1.

61
2

1.
57

2
1.

18
4

1.
03

2
A

ve
ra

ge
1

1.
47

8
1.

27
2

1.
62

9
1.

53
7

1.
51

9
1.

20
4

1.
03

9

22
5

25
1

1.
44

4
1.

42
4

1.
65

0
1.

52
8

1.
56

1
1.

33
5

1.
05

3
50

1
1.

51
5

1.
41

7
1.

85
1

1.
66

3
1.

63
2

1.
31

4
1.

04
7

75
1

1.
65

0
1.

42
4

1.
92

6
1.

80
1

1.
76

7
1.

32
4

1.
04

1



7.2.2 Normalized Performance Per Watt

We present in Table 9 and Figures 8a and 8b the normalized performance per watt obtained for the objective
of minimizing power consumption under a certain predefined throughput.
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Figure 8: Normalized Performance Per Watt across all Workloads (for 225 cores) for the objective of mini-
mizing power under pre-defined throughput requirements



Ta
bl

e
9:

N
or

m
al

iz
ed

Pe
rf

or
m

an
ce

Pe
rW

at
ta

ve
ra

ge
d

ov
er

di
ff

er
en

tW
or

kl
oa

d
m

ix
es

fo
rt

he
ob

je
ct

iv
e

of
m

in
im

iz
in

g
po

w
er

un
de

rp
re

-d
efi

ne
d

th
ro

ug
hp

ut
re

qu
ir

e-
m

en
ts

To
ta

lN
o.

of
C

or
es

%
of

A
ct

iv
e

C
or

es

Q
C

Q
P

C
he

ck
er

ed
G

re
ed

y
Pi

nn
ed

R
an

do
m

Va
rP

A
pp

P
R

ef
[1

4]
C

oo
lM

ap
V

L
A

TA
A

20

25
1

0.
86

1
0.

87
9

0.
80

5
0.

86
4

0.
78

3
0.

91
4

0.
96

7
50

1
0.

80
7

0.
87

0
0.

76
9

0.
79

5
0.

75
5

0.
92

6
0.

98
5

75
1

0.
78

7
0.

88
7

0.
74

3
0.

74
9

0.
74

4
0.

94
5

0.
99

4
A

ve
ra

ge
1

0.
81

8
0.

87
9

0.
77

2
0.

80
2

0.
76

0
0.

92
8

0.
98

2

36

25
1

0.
84

4
0.

88
4

0.
79

8
0.

83
1

0.
75

0
0.

92
5

0.
97

6
50

1
0.

80
5

0.
90

1
0.

75
0

0.
78

2
0.

72
3

0.
92

8
0.

97
9

75
1

0.
77

0
0.

90
2

0.
71

6
0.

74
2

0.
72

1
0.

93
6

0.
98

5
A

ve
ra

ge
1

0.
80

6
0.

89
6

0.
75

5
0.

78
5

0.
73

1
0.

93
0

0.
91

7

64

25
1

0.
82

4
0.

89
6

0.
77

4
0.

79
8

0.
70

5
0.

92
8

0.
96

7
50

1
0.

75
2

0.
92

2
0.

66
8

0.
70

3
0.

69
4

0.
94

6
0.

97
2

75
1

0.
72

5
0.

92
8

0.
62

9
0.

66
4

0.
66

8
0.

95
7

0.
97

8
A

ve
ra

ge
1

0.
76

7
0.

91
5

0.
69

0
0.

72
2

0.
68

9
0.

94
4

0.
97

2

12
1

25
1

0.
81

7
0.

87
7

0.
76

8
0.

79
6

0.
67

9
0.

90
5

0.
95

9
50

1
0.

74
6

0.
87

4
0.

66
3

0.
70

3
0.

66
1

0.
90

4
0.

96
3

75
1

0.
69

5
0.

85
7

0.
62

3
0.

66
5

0.
63

7
0.

88
9

0.
97

0
A

ve
ra

ge
1

0.
75

2
0.

86
9

0.
68

5
0.

72
1

0.
65

9
0.

89
9

0.
96

4

22
5

25
1

0.
81

3
0.

82
3

0.
71

2
0.

76
6

0.
64

0
0.

85
8

0.
94

4
50

1
0.

74
1

0.
80

5
0.

60
8

0.
67

4
0.

61
3

0.
83

7
0.

94
6

75
1

0.
65

7
0.

78
7

0.
56

4
0.

60
2

0.
56

7
0.

81
6

0.
95

4
A

ve
ra

ge
1

0.
73

7
0.

80
5

0.
62

8
0.

68
1

0.
60

6
0.

83
7

0.
94

8



7.3 Power Performance Tradeoffs

Our algorithm is capable of computing schedules representing the trade-offs between power consumption
and throughput achieved. We show through extensive experimentation (refer Figures 10a and 10b) that our
algorithm computes different trade-off solutions under different experimental configurations, which are very
close to the solutions (on an average 7% difference) computed by the optimal solver while being orders of
magnitude faster. The main idea behind the speedup of our algorithm is the generation of several trade-off
solutions in parallel. The size of the trade-off solutions (K) is provided as input by the user. Depending on
the value of K, our algorithm generates appropriate powCoeff and perfCoeff values and computes the
tradeoffs. We also consider the quality of solutions generated. Our method of computing G Rank takes care
of this. We only consider solutions that are not dominated by another solution. The net system throughput and
power consumption percentages plotted in Figure 10a represents the following. For a given workload mix,
100% throughput represents the maximum possible net system throughput for that mix. The corresponding
power consumption required for achieving that throughput is represented by 100% power consumption. All
the other throughput and power consumption values are percentages of this maximum value. In figure 9, for
225 cores, workload Mix3, 25% utilization we show for different coefficient values, the solutions generated
by QCQP solver and and VLA TAA. Relative STPT denotes the net system throughput normalized with
respect to the maximum possible net system throughput for that workload. Similarly, Relative TP de-
notes the total power consumption normalized with respect to the power consumption required for achieving
maximum net system throughput for that workload.

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
����

����

����

����

����

����

����

�
�
��
�
��
�
��
�
�
�

����

�������

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��������������������

���

���

���

���

���

���

�
�
��
�
��
�
��
�

Figure 9: Sample tradeoff solutions
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Figure 10: Power Performance Trade-off comparisons between solutions of Optimal and VLA TAA Algo-
rithms



7.4 Mapping computation time

For a given bag of tasks, Table 10 shows the time taken by various algorithms to compute the task mapping.
We can observe that, for larger number of cores (225), the proposed algorithm VLTAA performs 4000x faster
than the optimal solver. Even though, the computational overhead of Pinned algorithm is very similar to that
of VLA TAA, it is clear from the results in Tables 6 to 9, the quality of mappings generated by VLA TAA is
better than that of Pinned algorithm.

In Table 10, the row VLA TAA Speedup denotes the speedup of VLA TAA algorithm over the optimal
QCQP solver.

Table 10: Time taken for mapping computation in (ms)
Algorithm 20 36 64 121 225
VLA TAA 2.95 5.54 14.04 47.54 92.02
Checkered 3.54 6.69 15.58 50.55 102.58

Greedy 8.30 16.12 39.16 133.29 370.67
Pinned 3.24 5.91 13.82 44.36 93.47

Random 3.32 6.28 16.86 56.16 109.49
Teodorescu et al. [14] 5.04 10.16 25.17 80.7 236.91

CoolMap [1] 4.3 8.26 19.8 64.81 182.24
QCQP 38.39 254.94 1595.95 14526.33 380945.08

VLA TAA Speedup 13.01 46.01 113.67 305.56 4139.81

8 SUMMARY OF RESULTS AND CONCLUSION

In this work, we proposed an efficient task assignment approach for multicore systems that are affected with
process variations. We formulated the mapping problem as a quadratic constraint problem and proposed a
heuristic to efficiently solve it. Our work also takes into account the trade-off in multiple conflicting objec-
tives like reducing power consumption as well as maximizing throughput and efficiently generates multiple
trade-off solutions at the sametime. The quality of the proposed algorithm was evaluated extensively with 5
different core configurations, 5 different workload mixes and 3 different utilization scenarios. Experimental
results indicate that VLA TAA incurs a maximum error of 5% (for 25% activity) and 3% (for 50 and 75%)
activity when compared to the optimal results for the case of maximizing the performance under power con-
straints. Similarly, for the case of minimizing power consumption under predefined throughput requirement,
the difference between the optimal solution and VLA TAA is on an average 6% across all the utilization sce-
narios and workloads.

For the case of maximizing the performance under power constraints,VLA TAA outperforms the QCQP
in the performance per watt metric, as VLA TAA takes into account both the throughput as well as effect of
lateral heat interference while computing the global rank. Thus VLA TAA achieves significant power savings
for a small degra- dation in throughput.

Our algorithm also computes different trade-off solutions under different experimental configurations,
which are very close to the solutions (on an average 7% difference) computed by the optimal solver and order
of magnitudes faster. Approximately 4000x speedup is achieved for 225 core configuration.

The technique CoolMap [1] does not take into account the impact of process variations. The performance
of CoolMap on an average 11% worser when compared to the performance of all the solutions that take
process variations into account. This establishes the need for considering process variations while attempting
task mapping algorithms.

Future Work

Another challenge will be to include the effect of dynamic voltage and frequency scaling. Characterizing and
modeling the thermal behaviour under various frequencies and utilizing the insights from it while designing
DVFS algorithms will improve the effectiveness of the designed algorithm. These approaches will have to
take into consideration neighbourhood thermal effects to perform efficiently.
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