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Abstract: Since the end of the nineties, power dissipation has been regarded as a first
order design constraint in processors. Increased power dissipation along with the resultant
rise in die temperature is considered as the single largest bottleneck for increasing
processor frequency and complexity. Consequently, it is very important from both a
technical as well as commercial perspective to accurately estimate processor power such
that designers can tailor their architecture, software and systems to minimize power
consumption. In this paper, we provide a survey of most of the processor specific power
estimation techniques proposed after the mid nineties. In specific, we look at estimating
power both at design time as well as runtime. The former approach is more suitable
for early stage architectural exploration, and the latter approach is more germane to
creating power efficient application software. We broadly focus on estimating power using
system level models, architectural simulation, hardware performance counters, on-chip
temperature profiles, and program execution profiles. We showcase a broad range of
methods for power estimation using simulators, compilers, profilers, and sophisticated
mathematical analysis routines.
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1 Introduction

With the advent of large multicore processors, and a wide
variety of embedded processors for tablets and smart
phones, power consumption has become a very crucial
factor in the design and marketability of processors.
Consequently, research efforts in both industry and
academia are trying to scale up to provide solutions

to mitigate the problem of high power consumption.
Over the past ten years, researchers have proposed a
plethora of schemes in the area of power optimization
and management for a wide range of processors. Given
the importance of the problem from both a technical
as well as commercial angle, we expect that research
efforts to reduce power consumption will continue to be
very important in the future also. Secondly, over the last
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decade, the related issue of temperature management
is becoming increasingly important primarily because
of the fact that high on-chip temperatures have grossly
deleterious effects in terms of lifetime reliability and
leakage power.

This survey paper focuses on a very key aspect
of research in processor power optimization and
management namely power estimation. It is important
to have a very accurate power estimation framework
because of several technical and commercial reasons.
If we are able to quickly estimate the power of an
architecture for a suite of benchmarks, then we can
rapidly sift through a large number of designs and make
optimal choices. This can be done well before the actual
processor is designed, fabricated, and tested. Likewise,
for software, we can choose appropriate algorithms. From
a commercial point of view, accurate power estimation in
the design stage avoids costly re-design cycles. Secondly,
to carry out power optimization, a rapid estimate of
the power consumption is needed. Hence, a good power
estimation methodology can possibly lead to a product
with better power consumption characteristics, and thus
ensure higher profitability.

Consequently, researchers have been looking at a
multitude of techniques to estimate power at both the
level of software as well as hardware. Some of the simple
approaches include measuring the power through digital
multimeters, loop ammeters, and embedded power
counters. However, because of the limited applicability
and accuracy of these methods, a more comprehensive
and extensive body of research work has emerged
over the last decade. We provide some background
information as well as a broad taxonomy of approaches
in Section 2.

Researchers have focused on accurate architecture
level power modeling from very high level architectural
specifications and models. These approaches predict
general trends in power consumption. They have also
proved their worth in being credible tools for research
in computer architecture as well as early stage design
exploration as described in Sections 3 and 4. Since these
are the only tools available at the design stage, so,
although they do not offer very good accuracy, these
methods are indispensable to avoid re-design cycles and
reduce the time to market.

To estimate the power consumption of an application
more accurately, it is possible to use the information
provided by performance counters. Performance
counters are registers built into processors that store
hardware activity-related statistics. Approaches based
on performance counters have been shown to have an
error limited to 5% for some benchmarks (see Section 5).

It is further possible to estimate power, especially
leakage power, by using a temperature map of a chip
as described in Section 6. Lastly it is possible to
estimate the power of an application by a combination
of power characterization, profiling, and static program
analysis. These predominantly compiler and profiler
driven approaches are described in Section 7. Finally,

in Section 8, we provide a comparison of the various
approaches discussed as well as the positive and negative
aspects of each technique. We conclude by enunciating a
set of possible future research directions in this field in
Section 9.

2 Overview

2.1 Preliminaries

2.1.1 Dynamic Power

In a CMOS inverter, the energy stored across a capacitor
is equal to 1

2CV
2, where C is the load capacitance. In

a complete charge/discharge cycle the total amount of
energy dissipated is CV 2. Since most circuits do not
have a charge and discharge event every cycle, this effect
is quantified by introducing an extra term namely the
activity factor, α. The maximum total power is obtained
by multiplying this value with the clock frequency and
the energy dissipated in a complete charge/discharge
cycle is shown in Equation 1.

This equation holds for all kinds of circuits from small
transistors to large functional units. We just need to
calculate the load capacitance, C, to accurately use this
equation.

Pdynamic = αCV 2f (1)

2.1.2 Static Power

Because of the increasing amount of miniaturization
in transistor technology, some amount of current
continually leaks through transistors even if they are
in the off state. This is known as the static or leakage
power and is estimated to be about 30-50% of the
overall power in state of the art technologies (45 nm and
beyond) (Borkar, 2001). Researchers have found several
sources of static power (see Figure 1). We list some of
them here.
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Figure 1: Different types of leakage Power

Subthreshold leakage happens when the gate to
source voltage is less than the threshold voltage of the
transistors. Ideally, the current flow should be zero.
However, some amount of current flows between the
drain and the source. An equally important source
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of leakage is gate leakage, wherein, some amount of
current flows between the gate and the channel due
to quantum mechanical tunneling (Fowler-Nordheim
tunneling). Lastly, for nanometer scale CMOS circuits,
junction leakage is emerging as an important source of
leakage power. In this case, some current leaks from the
drain or source to the substrate, when the associated p-n
junction is in reverse bias. There are some other sources
of leakage such as gate induced drain leakage, and hot
carrier injection, which we do not discuss here.

All the sources of leakage can be cumulatively
summed up using the BSIM3 (Cheng and Hu, 1999)
leakage equation given by Equation 2.

Pstatic = A× ν2T × e
VGS−Vth−Voff

n×νT

(
1− e

−VDS
νT

)
(2)

Here, A is a constant of proportionality denoting the area
of the transistor, νT is the thermal voltage (kT/q), VGS

is the gate to source voltage, Vth is the threshold voltage,
Voff is a fixed offset voltage, n is a swing constant, and
VDS is the drain to source voltage, k is the Boltzmann
constant, and q is equal to 1.6× 10−19 coulombs. Now,
the threshold voltage, Vth, is also a function of the
temperature. Vth at temperature T is equal to V 0

th −
k1∆T . Here, V 0

th is the threshold voltage at temperature
T0. k1 is typically equal to 2.6mV/◦C (Martin et al.,
2002).

Equation 2 can be slightly simplified and
approximated to yield Equation 3.

Pstatic ∝ T 2 × e
qk1∆T−qV 0

th
kT (3)

Note that the leakage power is exponentially
dependent on the temperature differential.
Consequently, we can conclude that the static
component of power is extremely sensitive to changes in
temperature, and thus estimating temperature is vitally
essential in estimating power.

2.1.3 Short-Circuit Power

When a typical CMOS gate switches between the on-off
states, there is a short period of time in which both the
transistors are in the linear region of operation. At this
point of time there is some current flow and resulting
power dissipation. This short circuit power is typically
modeled through a set of equations proposed by Nose
and Sakurai (2000).

2.2 Power Estimation and Measurement

Formal definition of the problem
The problem of power estimation is defined as the
task of calculating the power that a processor will
consume for a certain program or representative input,
given the characteristics of the processor, structure
of the reference program, and possibly details about
its execution trace. Note that we do not differentiate
between a real processor and the model of a processor

unless stated explicitly. We refer to this program as the
test program henceforth.

It is necessary to estimate the power from secondary
sources of information because there are numerous
practical difficulties in trying to measure it directly. The
most common solution (Isci and Martonosi, 2003; Joseph
and Martonosi, 2001; Bellosa, 2000) is to calculate
the power dissipation by measuring the current at
the mains and multiplying it by the supply voltage.
However, in this case we are measuring the power
consumed by the entire system inclusive of the processor,
motherboard, hard disk, and the peripheral I/O cards.
We can refine this approach by tapping the power lines
that go to the CPU on the motherboard (see Bertran
et al. (2010)). However, this approach requires invasive
changes to the motherboard, and does not work if
there are other units like the graphics processor in
the CPU package. To ameliorate this problem, the
Intel Sandybridge processor, which includes an on-chip
graphics card provides a power counter (Rotem et al.,
2011). Unfortunately, the power counter provides the
power usage for all the cores in a CMP, has limited
applicability, and cannot be used in the design stage.

We desire to have a vast portfolio of approaches that
can be used in either the design stage, or in the field.
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Figure 2: Model and Input
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Figure 3: Further classification of the model

2.3 Taxonomy of Solutions

Every power estimation technique can be divided into
two parts – model and input. The model is independent
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of the test program, and is typically derived from either
first principles or by using a learning based approach.
The input is an aspect of the execution of the test
program. See Figure 2.

A model captures the relation between power
consumption and the source of information. We classify
the model based on the type of information it
uses – system level models, architectural parameters,
performance counters, thermal profiles, and program
profile information. A model is typically derived from
first principles such as circuit simulation, program CFG
analysis, or by solving heat flow equations. If it is not
possible to do so, then we can empirically derive a
model based on a large amount of training data by using
machine learning based approaches.

The input captures some aspects of the execution
of the test program. As shown in Figure 2, the
input can either be (1) functional unit access counts,
(2) instruction execution profiles, or (3) performance
counter values. We can estimate the power consumption
of the test program by applying the input to the model.

The generic approach for most techniques have the
following structure:

1. Calculate the energy per invocation, Ei, for unit i

2. Generate activity factors (accesses per cycle), αi.

3. Compute the total power using Equation 4.

P =
∑
i

αi × Ei × f + Pidle (4)

For system level models, the energy per invocation
is calculated for each transaction, while for architectural
model, it is calculated for each functional unit. For
predominantly software approaches, such as program
execution profile based models, it is calculated for each
instruction. Performance counter based approaches do
not strictly adhere to this structure. Some performance
counter based techniques do follow this generic method,
since the energy associated with a performance counter
may be calculated by exciting that counter separately.
However, this is not always possible. For thermal models,
the temperature data collected from thermal sensors or
an infrared photograph of a die serves as activity factor.

We have a two level classification in each section.
First, we classify the different techniques based on the
model, and talk about each model in a different section
(see Figure 2). The different types of models are fairly
different from each other and do not adhere to a common
structure. Consequently, we use different high level
criteria for further classifying them (level 2) as shown
in Figure 3. Models using architectural parameters are
classified structurally based on the type of functional
unit they are meant for modeling. Other models that use
a thermal profile, or performance counter based inputs,
are classified based on the mathematical flavor of the
approach.

Lastly, it is necessary to specially mention an
orthogonal direction here. Instead of using the entire
program, or large portions of it, it is possible to perform
power estimation on a significantly reduced portion of
the original program. There are methods to create a
gist of a large program such that its power profile is
significantly correlated with the power profile of the
original program in a statistical sense. Starting from
the seminal work of Hsieh and Pedram (1998), there
have been many proposals ranging from formal program
reduction to statistical sampling. Some of the important
proposals in the area of statistical sampling of programs
for power estimation are SimPoint (Perelman et al.,
2003), and SMARTS (Wunderlich et al., 2003). Since
power estimation techniques are oblivious of the genesis
of the program, we do not consider these schemes
henceforth.

Interested readers can refer to an older survey paper
by Najm et al. (Najm, 1994) on generic low level power
estimation techniques published in 1994 for some early
work in this field. A later survey by Macii et al.
(1998) published in 1999, describes some more power
estimation techniques based on software techniques, gate
level, behavioral, and RTL level models. We mostly focus
on recent results and specialize in power estimation at
the level of processors and their major components.

2.4 Scope of the Survey

We focus on important results in the area of processor
power estimation proposed in the last 10-15 years, and do
not consider generic power estimation techniques based
on gate level and RTL level approaches. Instead, we focus
on research contributions that are at a higher level, and
are aware of at least some aspect of a processing device.
In the interest of brevity, we do not focus on power
estimation of all aspects of large systems such as storage,
peripherals, and networks.

3 Approaches based on System Level
Models

3.1 Preliminaries

In this section, we focus on estimating power through
system level (high level) models. Such kind of
models typically model different entities of a system
of processing elements, and the interaction between
them. An important subset of such kind of primarily
communication oriented models are Transaction Level
Models (TLMs). TLMs model each event or a message
between modules as a basic transaction. SystemC is one
of the most common TLM based languages for high
level modeling. It provides an interface for modeling
system level designs and, additionally, it contains a basic
event driven simulation engine (kernel). Traditionally,
SystemC has only been used to estimate the execution
time.
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Figure 4: Generic flow of System-level model based approaches

Proposal Category Error
Year Authors (%)

2005 Dhanwada et al. API based 3-11%
Evaluated on a PowerPC/ CoreConnect System

2006 Damasevicius Kernel based
Designed for simple circuits.

2007 Beltrame et al. Kernel based < 20%
Fast simulation : 20-40k transactions per second

2010 Liu et al. API based ≈ 18%
Uses aspect oriented programming

2011 Kuehnle et al. API based 13%
VHDL to SystemC translation

Table 1 Summary of system level approaches

Prior work in power estimation for system
level models has mainly looked at power/energy
estimation for SystemC based designs. The first set
of approaches modify the SystemC kernel. The second
set of approaches capture events relevant to power
consumption by using additional custom APIs. No
modification is made to the kernel. The kernel based
approach is definitely more user friendly and generic;
however, it is not very flexible. The generic flow for
both these methods is given in Figure 4. Table 1 shows
a list of some of the major proposals in this area. The
error is computed by measuring the absolute value of
the difference between estimated power and measured
power for the entire chip. Power is typically measured
by physical means. Most proposals measure the current
flowing into the CPU by either using a loop ammeter
connected to the mains, or by tapping power lines on
the motherboard. In the rest of the paper, we shall use
this definition of error unless specified otherwise.

3.2 Kernel based Approaches

Damasevicius et al. (Damasevicius and Stuikys, 2007;
Damasevicius, 2006) provide the basic structure of a
kernel based approach as shown in Figure 4. Kernel
based approaches typically instrument the different
types of channels to capture the values that are

transmitted across them. Each transition (0→1 and
1→0) is associated with the flow of current, and the
consequent resistive heat dissipation. Lebreton and
Vivet (2008) adopt this methodology in designs that
have voltage scaling. Giammarini et al. (2011) propose
a tool called PowerSim on the same lines. This tool
uses extensive energy models that are collected using
empirical measurements on embedded micro-controllers.
Ahuja et al. (2009) specify the model at the system level
and generate cycle accurate description using a high level
synthesis tool. They then map the system level design to
the RTL design and obtain the activity factors using a
combination of probabilistic approaches and simulation.

Beltrame et al. (2007) extend the basic approach
to include a set of estimators with varying levels of
accuracy in the kernel. The kernel incorporates different
versions of channels and modules, differing in their
power estimation accuracy. There is a tradeoff between
accuracy and performance. Channels range from simple
FIFO queues to complicated multi-cycle split transaction
buses. The channels are mostly stateless, whereas for
modules, different versions maintain shared state. At the
outset, each simulation object (channel/module) needs
to register itself with an object request broker (ORB).
At runtime, all requests are passed to the ORB, and
the ORB subsequently chooses the right version of the
channel/module to process the request.

PowerSC and BlueSpec are two commercial tools that
support power estimation for SystemC. PowerKernel is
one of the prominent open source tools in this domain.

3.3 API based Approaches

Dhanwada et al. (Narayanan et al., 2005; Dhanwada
et al., 2005) proposed a generic flow for power estimation
at the SystemC level (Figure 4). The output of circuit
simulation is a multi-level tree (called HTLP tree), where
the granularity of the transaction gradually increases
as we move towards the root, from power consumption
values for primitive transactions, to a complex sequence
of actions. This work assumes that most of the basic
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circuit blocks are already designed at the time of power
estimation. The main advantage over circuit simulation
is that power estimation is done for significantly
larger blocks, and the final power consumption can
be characterized using some basic parameters (macro-
models). The tradeoff is between speed and accuracy.

Liu et al. (2010) use aspect oriented programming
concepts in SystemC for power estimation. An aspect
oriented programming style proposes to divide a program
into two parts. One part of the program contains the core
logic and some specialized markers called aspects. The
second part contains a set of sub-routines corresponding
to the aspects. Based on the global configuration, and
sometimes runtime configuration, the aspect compiler
weaves both parts of the code together to produce
one program. We can think of it as a specialized pre-
processor. In the context of SystemC, the aspects contain
calls to power calculation, and reporting routines. The
second part consists of implementations of different types
of power models.

All the approaches considered up till now are
applicable after we have exact power consumption figures
for different functional units of a processor. However,
Grammatikakis et al. (2011) propose an approach that
just accumulates the number of bit transitions for
different functional units. They assign a relative cost to
each transition, and empirically demonstrate for a NOC
chip that the total cost is proportional to the actual
power dissipation.

Kuehnle et al. (Kuehnle et al., 2011, 2012) describe
a VHDL to SystemC translator that can insert power
simulation routines in the SystemC code. These special
API calls do not need input values as previous
approaches. They use stochastic approaches to estimate
the average number of bit transitions per operation.
Consequently, they are significantly faster, and for large
SystemC programs, have enviable accuracy.

4 Approaches based on Architectural
Parameters

4.1 Preliminaries

Power estimation at the architecture level is typically
done for three types of structures – caches, processors,
and on-chip networks. The model is parameterized by
high level architectural parameters such as the sizes
of the caches, number of registers, and entries in the
instruction window. The generic approach for estimating
power at the architectural level consists of the following
steps:

1. Calculate the load capacitance for each functional
unit by using either analytic equations, empirical
data, or circuit simulation.

2. Generate functional unit activity factors (accesses
per cycle), αi, through simulation.

3. Compute the total power using Equation 1.

There are two main things to be computed: load
capacitance and activity factors. To determine the load
capacitance, researchers have mostly used analytical
models for regular structures like caches. However, for
more complex units like full scale processors, prior work
has used a combination of empirical data based modeling
and circuit simulation. Note that some structures within
a processor, such as L1 caches, register files and TLBs,
are essentially caches themselves and do not need to
be considered separately. Likewise, for on-chip networks,
components such as buffers, and queues are caches.
However, units such as crossbars and arbiters require
detailed analytical modeling, and subsequent verification
using circuit simulation. Table 2 shows a list of major
contributions in this area.

4.2 Cache
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MUX Driver
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Figure 5: Structure of a cache

The earliest techniques in power estimation focussed
on the cache, since it has a regular structure and is easier
to model. Figure 5 shows the structure of a cache.

To estimate cache power, power dissipation is
computed for the (1) SRAM cell, (2) bit line, (3) word
line, (4) comparators/sense amps, and (5) input/output
drivers.

Prior work in the area of cache power estimation is
summarized in Figure 6 . One of the earliest models was
proposed by Kamble and Ghose (1997) called CAPE.
Ko et al. (1998) observed that the CAPE model is
agnostic to the nature of inputs. In reality, the energy
consumed in a cache access is also dependent on the
existing state of the cache. For example, if we write the
same data twice, we do not need to charge the drivers
and input lines the second time.

The most influential work in this area is the Cacti
model and tool designed by Reinman and Jouppi
(2000) in 2000. It was released as the first publicly
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Proposal Name of Category Error
Year Authors tool (if any) Main Sub (%)
1997 Kamble and Ghose CAPE Cache Activity sensitive
1998 Ko et al. Cache Transition sensitive
1999 Cai and Lim Processor Activity sensitive 5-25%

Classifies blocks by circuit type
2000 Reinman and Jouppi Cacti Cache Transition sensitive 20%1

1) 1 source: Mamidipaka and Dutt (2004)
2) Widely used, open source, 1Mamidipaka and Dutt (2004)

2000 Brooks et al. Wattch Processor Activity sensitive <10%
1) Classifies blocks by functionality
2) Widely used, open source, bundled with SimpleScalar

2001 Chen et al. Processor Transition sensitive 4-7%
2002 Wang et al. Orion 1.0 NOC Activity sensitive 0-84%2

1) 2 source: Kahng et al. (2009)
2) Basic NOC model, not validated extensively

2009 Li et al. McPat Processor Activity sensitive ≈ 23%
Integrated XML based power, area, timing model

2009 Kahng et al. Orion 2.0 NOC Activity sensitive ≈ 20%
Validated with an Intel 80 core processor

Table 2 Summary of architecture level approaches
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Pw=wCV2

Inputwpatternsw
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Figure 6: Cache power estimation techniques

available cache power modeling tool. It is also used as
a part of the processor power modeling toolkit, Wattch
(see Section 4.3.1). The procedure followed by Cacti is
outlined in Figure 7.

4.3 Processor Power

There are two major kinds of models for processor power
– activity sensitive models, and transition sensitive
models. The former assumes that the energy consumed
by a given functional unit is proportional to the number
of accesses. It is oblivious of the input values. The latter
model takes the input values into account. This is a
slightly more accurate approach since we can correctly
account for the energy consumed in I/O line capacitance
charging/discharging by considering line states and
transitions.

4.3.1 Activity Sensing Models

Cai and Lim (1999) divide all the functional units
by the circuit type. The types of circuits that they
consider are: static, dynamic, SRAM, programmable
logic arrays (PLAs), clock trees, synthesized logic blocks,
and custom logic blocks. They characterize the power of
each type of circuit by doing extensive RTL level power
simulations. They consider four parameters: activity,
area, active power density, and inactive power density.

Activity refers to the fraction of cycles a block is busy. Cai
and Lim model both dynamic power and leakage power.
When a block is busy, it is consuming dynamic power.
The power density is dependent on the circuit type. This
relationship is captured by the term active power density
(power dissipated per unit area). Likewise, we can
define a term, inactive power density, for leakage power.
The active power of a block (functional unit) is
computed by multiplying the activity, with the area and
active power density.

As compared to the Cai-Lim model, Wattch (wat,
2000) released by Brooks et al. classifies different blocks
by their structure and functionality. Some examples
of hardware structures considered by Wattch include
the instruction cache, wakeup logic, instruction window,
branch predictor, register file, load/store queue and the
global clock. Wattch is coupled with the SimpleScalar
simulator, and uses the simulator to get functional unit
access counts. The working of Wattch is illustrated in
Figure 8.

As compared to Wattch, the McPAT (Li et al., 2009)
model proposed by Li et. al. is an integrated timing,
area, and power model. Moreover, McPAT models the
structures of an OOO pipeline in great detail including
the effect of leakage and short-circuit power. Secondly,
instead of using linear scaling across technologies, it uses
data directly from the latest ITRS reports (itr, 2007).
Lastly, from the point of view of software engineering,
McPAT is completely standalone and is not hardwired
to any simulator. It takes an XML specification of the
architecture and returns a combined area, timing, and
power model.

To model power, McPAT analyzes each basic circuit
block to determine the load capacitance. To calculate
the activity factor, it relies on access statistics obtained
from architectural simulation. Short circuit power is
computed using equations given by Nose and Sakurai
(2000) and leakage current is determined by MASTAR
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and Intel’s data. For complex structures, McPAT adopts
an empirical modelling approach.

4.3.2 Transition Sensitive Models

Chen et al. (2001) and Ye et al. (2000) developed a
transition sensitive power model to estimate the power
of a 32 bit RISC processor having an embedded 16
bit DSP core. The functional units are classified into
two categories: bit dependent and bit independent. In bit
dependent units, the value of a bit affects the operations
of the rest of the bits. Examples of such functional units
are adders, multipliers, and decoders. For such units, the
power consumed is a function of the new input vector and
the old input vector. Such units are pre-characterized by
the model using circuit level simulation and the results
are put in the form of a large matrix for each input-
output pair. To reduce the size of this matrix the authors
use clustering techniques.

In contrast, bit independent units have no functional
dependence across bits such as register files, and
memories. They calculate the energy consumption by
dividing a large unit into a group of subcells. One subcell
might correspond to one input bit. The model calculates
the load capacitance, and then the power consumed.
For the control path, the model tries to deduce the
power from the instruction format. It starts out by
characterizing the control path power consumption for
a given instruction in a reference processor. This value

is saved in a table, which is used later to compute the
power consumption for processing a given instruction.

4.4 On-chip Network

The Orion tool (Wang et al., 2002) designed by Wang et
al. was the first widely available framework to estimate
the power of the on-chip network (NOC). The NOC is
estimated to account for about 20% (Kahng et al., 2009)
of the total power budget in modern processors.

Figure 9 shows the different types of units modeled
by Orion. The first class of units are message transport
agents such as links, crossbars, and routers. The second
class of units have message storage capacity, and can also
generate and modify messages. Examples include buffers,
arbiters, message sending and receiving circuits. The
Orion tool can faithfully model most interconnection,
network topologies, and routing schemes. It models
FIFO buffers as traditional SRAMs using the Cacti tool
(see Section 4.2).

The crossbar is a matrix of inputs and outputs,
where each unique input-output pair is connected by a
specialized connector unit, typically a pass transistor.
Orion gets the values of the effective capacitance of
each of the interconnect lines and transistors (gate and
drain capacitance) from the Cacti tool. The energy per
access is then computed as CV 2. Orion considers three
kinds of arbiters (Figure 10(b)): matrix, round-robin,
and queuing. The matrix arbiter is similar to a crossbar
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Figure 10: Crossbars and arbiters

with some extra logic to effect a priority encoder. The
round-robin and queuing arbiters use SRAM arrays and
combinational logic circuits.

The Orion 2.0 model and toolkit (Kahng et al.,
2009) was proposed in 2009. The authors observed
that Orion 1.0 did not model power very accurately
for some recently proposed multicore chips. Orion 2.0
models some extra structures namely latch based FIFO
queues, clocks, and on-chip links. Secondly, instead of
being dependent on Cacti, it takes transistor parameters
directly from process technology files, or from the ITRS
report (itr, 2007). Orion 2.0 also models leakage power.
First, the tool characterizes different basic circuits for
leakage power using HSpice based models. For larger
circuits, Orion 2.0 estimates the leakage power using
linear regression. The authors tried to calibrate Orion
with an Intel 80 core processor and found it to be
accurate within ± 20%.

5 Performance Counter Based Methods

5.1 Preliminaries

5.1.1 Performance Counters

Hardware performance counters are a set of machine
specific registers, which store statistics about the activity
of different subsystems of a processor. These registers are
typically readable by user level or kernel level software
modules.

L1 misses
L1 hits
L1 MSHR accesses
L1 bus events

ALU add ops
ALU divide ops
ALU multiply ops
ALU subtract ops

Branch mispreds
BTB accesses
RAS accesses
Fetch stalls

Fetch Class ALU Class L1 Class

Perf Cntr 1 Perf Cntr 2

Figure 11: Performance counters

Figure 11 shows a conceptual diagram of performance
counters. Most architectures divide the set of counters
into a set of disjoint classes. For example, one class might
contain a set of events for just the load-store queue.
To reduce the hardware overhead, at most one event is
chosen from each class. For further reduction, designers
provision for a lesser number of performance counter
registers than the number of event classes, allowing
monitoring of only a subset of events a processor can
generate at any moment of time. There are methods to
increase the set of available counters by combining the
data from multiple separate runs of the program (Joseph
and Martonosi, 2001).

5.1.2 The Problem

P = F(V) (5)

P = VW + Pidle (6)

We provide two formulations of the problem in
Equations 5 and 6. Here P represents the total power,
and the vector V represents the sampled values of n
performance counters. The first equation is a generic
formulation that simply says that the total power is
a function of the sampled performance counter values.
The second equation specializes the function F by
considering a a linear relationship. Here, W is a vector
of weights, where Wj refers to the weight associated
with the jth performance counter. Pidle represents the
static power. If we want to estimate the power for each
functional unit, then we can treat W as a matrix.

There are two main research problems:

1. Choose the appropriate set of counters.

2. Accurately estimate the unknowns – function F

For the first problem, prior work has mainly
considered counters that have a good correlation with
the measured power. However, estimating F is a far
more challenging problem. The first set of approaches
are purely mathematical. They view the problem as
an optimization problem and typically try to find a
least squares based estimate. Since regression based
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Proposal Name of Category Error
Year Authors tool (if any) (%)

2000 Bellosa et al. JouleWatcher Microbenchmark < 10%
Limited scope

2001
Joseph and
Martonosi

Castle Assistive < 6%

Uses Wattch, SimpleScalar for getting FU
access counts, energy per access

2003
Isci and
Martonosi

Microbenchmark < 10%

2005
Contreras
and
Martonosi

Mathematical <4%

Model for Intel XScale
2006 Wu et al. Assistive < 5%

Clustering with phase based analysis
2009 Singh et al. Assistive 4− 6%

Non-linear techniques
2009 Powell et al. CAMP Mathematical 8%

Per-component power in Intel processors

2010
Bertran et
al.

Microbenchmark 1.9− 6%

Very accurate

Table 3 Summary of approaches

techniques are oblivious of the underlying architecture,
they sometimes produce inaccurate or infeasible results.

Consequently, prior work has looked at architecture
based approaches that try to derive W from first
principles. W can be assigned a physical connotation.
Wj might be made to represent the average power
consumption associated with each instance of the jth

performance counter event. It is thus possible to estimate
the value of Wj by measuring the total power dissipated
by a micro-benchmark that exclusively generates events
for the jth performance counter. Note that it might not
always be possible to isolate a given set of functional
units associated with a performance counter.

Hence, recent work has looked at combining
the micro-benchmark based approaches with purely
mathematical approaches. We call such approaches –
assistive approaches. These approaches typically enforce
additional constraints in the optimization process by
taking inputs from micro-benchmark based approaches
or data from architectural simulators.

Table 3 presents a summary of some of the major
contributions in this area, along with the broad class of
techniques that they belong to.

5.2 Purely Mathematical Approaches

Contreras and Martonosi (2005) developed a power
model for the Intel PXA255 processor using purely linear
regression. Out of the 15 events that can be monitored in
the target processor, the authors choose 5 performance
events. To get the value of the number of cycles lost due
to data dependencies, the authors estimate the number
of cycles it would have taken for the application to run
without any data dependencies.

Bircher et al. (Bircher and John, 2007; Bircher et al.,
2005) use linear regression to create power models for
the entire system including SMPs. At the outset, they
classify the target system in to five subsystems: memory,

chip set, I/O, disk and processors, and then separately
estimate the power for each subsystem.

CAMP (Powell et al., 2009) proposed by Powell et
al., considers W to be a matrix, and uses it to compute
the power dissipation for each individual component
using linear regression. For each component, the authors
train a regression model by collecting samples across
a broad suite of 73 applications. Instead of measuring
power directly, they use Intel’s power simulator to yield
reference values. They further observe that just nine
performance counters are enough to accurately account
for 95% of the total dynamic power.

5.3 Micro-benchmark based Approaches

The earliest work in this field called JouleWatcher
was done by Bellosa (2000). They consider four
types of events namely integer micro-ops, floating
point operations, second level cache accesses and
memory transactions. The first task is to find the
power consumed by an integer/control flow micro-
operation. The authors run the integer micro-benchmark
repeatedly. Additionally, they put in a variable sleep
interval between consecutive runs. Subsequently, they
plot the power consumed as a function of the number
of micro-operations. The slope of this line is equal
to the power consumption per integer micro-operation.
It is hard to trigger floating point operations alone.
Hence, JouleWatcher interleaves floating point and
integer operations, and uses the same procedure for
computing the average power per operation. Since the
power consumption of an integer operation is known
from the first step, it is possible to deduce the power
associated with a floating point operation. We can
extend this procedure to deduce the values for L2
accesses and memory transactions. This scheme is rather
coarse grained in nature and does not consider a lot of
performance counters.

Isci and Martonosi (2003) compute the jth entry of
the vector W as follows. Here, Cj corresponds to the jth

component in the core.

Wj = architecture scaling(Cj)×max power(Cj)

+ non gated clock power(Cj) (7)

architecture scaling is a piece-wise linear function if the
concerned component exhibits a non linear behavior;
otherwise, it is a constant factor. The initial assumption
for the value of max power for each component is
determined by scaling the value of the maximum total
power documented in the processor specifications by the
physical area occupied by the component in the die.
The authors further refine this approach by running a
set of micro-benchmarks. A micro-benchmark exercises
a given set of components in a pre-determined manner.
They try to minimize the error by adjusting the values
of max power for the concerned components.

Bertran et al. (2010) find the power usage
of each architectural component. The authors group
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related performance counters into sets. For example,
the number of fetched instructions, and the number
of decoded instructions show a very high degree of
correlation. Consequently, the authors treat the fetch
and decode stages as one set. However, the fetch
stage and the L2 cache can be treated as separate
sets. Subsequently, the authors create targeted micro-
benchmarks, which only exercise a particular set of
performance counters. These need to be extremely
specific such that the power estimates are very accurate.
Subsequently, they compute the power usage based on
performance counter values using an iterative technique
(similar to JouleWatcher (Bellosa, 2000)).

5.4 Assistive Approaches

In this section we consider approaches that try to
combine a set of two or more basic approaches.

Joseph and Martonosi (2001) observed that it is
hard to deduce the activity factors of many units such
as the select logic, register file, and the instruction
window from performance counters alone. To solve this
problem, they calibrated a version of the Simplescalar
simulator to accurately model the Alpha 21264 processor
along with its performance counters. Subsequently, they
model the correlation between functional unit access
counts and performance counter values using a regression
based model. Then, they use the architecture level power
modeling tool, Wattch (wat, 2000), to get the average
energy per access for different functional units. They
subsequently compute the average total power by using
Equation 4.

Wu et al. (2006) observe that for small benchmarks
that have a highly homogeneous behavior, linear
regression produces good results. However, most
programs especially the SPEC benchmarks do not yield
favorable results. Hence, they divide their execution
into 1 to 100 milliseconds long phases (Sherwood
et al., 2003), where each phase has its unique power
characteristics. They propose an approach that uses
only one representative sample from each phase to
derive the regression line. This helps in reducing noise.
Consequently, Wu et al. start out by isolating all
the power phases from different runs of representative
programs (SPEC benchmarks). For each phase they
collect the following information: (1) power dissipation
over time as measured by a digital multimeter, and
the (2) values of 18 different performance counters.
Subsequently, they cluster the measured power vectors
of different phases based on a novel similarity metric,
shown by Equation 8, into K different clusters using the
K-means clustering algorithm. Correlation refers to the
Karl Pearson’s correlation coefficient, and Dman is the
Manhattan distance between two vectors(Dman =

∑
i |

ai − bi |).

Sim(a,b) = Correlation(a,b)× (1−Dman(a,b)) (8)

They only consider the centroids of each cluster while
deriving the linear relationship between performance

counter values and the power dissipation. They further
propose to optimize this process by using additional
constraints for the coefficients by considering empirical
data obtained through targeted micro-benchmarks.

Singh et al. (2009) introduce a more sophisticated
model to improve the accuracy of regression based
analysis. The authors look at linear, generalized non-
linear, and exponential transformations of performance
counter values. They conclude that piecewise linear
functions are the best transformation functions. They
figure out the parameters of each function using
results gathered from the execution of targeted micro-
benchmarks. They subsequently calculate the total
power as a weighted linear sum of the transformed
performance counter values. The weights are calculated
using linear regression.

6 Thermal Profile based Approaches

6.1 Preliminaries

6.1.1 Thermal Equivalent of an Electrical Circuit

q = −k∇T (9)

Equation 9 shows the Fourier law of conductance. q
is the heat flux (Watts per unit area). k is the thermal
conductivity and ∇T is the temperature gradient. This
law has the same structure as Ohm’s law (V = IR).
We can thus map the temperature to voltage, the heat
flow to current, and we can denote the quantity 1/k as
the thermal resistance. Likewise, we can define thermal
capacitance and proceed to make a thermal circuit of
a semiconductor package. Each core is represented as a
current (thermal power) source.

6.1.2 Inverse Heat Conduction Problem (IHCP)
and Research Challenges

The problem of finding the power distribution map of a
die, given the temperature map is known as the inverse
heat conduction problem(IHCP). If we consider steady
state values, then we have a linear system of equations as
shown in Equation 10. Here P and T are column vectors
representing the power and temperature of each core.
The challenge is to estimate the matrix, A, which we
refer to as the conductance matrix.

P = AT (10)

We can have a transient version of the same equation
as given by Equation 11. Here C is a diagonal matrix,
which contains the thermal capacitance of each node.

P = AT + C.
dT

dt
(11)

The main research challenge in this area as succinctly
stated by Cochran et al. (2010) is to minimize the
error in power estimation given the two main sources of
inaccuracies:
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Proposal Name of the Category Error
Year Authors tool (if any) (%)

2006 Hamann et al. SIMP w/o noise < 1%
CFD analysis + laser based excitation

2007 Martinez et al. w/o noise < 1%
IR photography (oil based heat sink)

2009 Wang et al. with noise < 10%
Uses image processing

2010 Qi et al. PowerTrace with noise < 7%
Uses constrained optimization

2010 Oh et al. w/o noise < 3%
Single thermal sensor

Table 4 Summary of approaches

1. The first source of inaccuracy owes its basis to the
physics of heat transfer. The silicon substrate and
the packaging have a low pass filtering effect. This
blurs the temperature map significantly. The low
pass filter effect is inversely proportional to the
lateral heat conductance.

2. The second source is the discretization introduced
in the process of collecting thermal measurements.

6.1.3 Organization

To compute solutions to the IHCP problem, the first
step is to collect the temperature data. This can be
done either through embedded performance counter
based thermal sensors (Oh et al., 2010), or an IR
(InfraRed) photograph of a die (Hamann et al., 2006;
Mesa-Martinez et al., 2007; Wang et al., 2009). The
latter represents functional unit activity. In either case,
the mathematical techniques are the same. Prior work
has mostly looked at two variants of this problem. The
first set of approaches try to directly solve Equation 10
or Equation 11 by assuming that the temperature values
are exact. The latter set of approaches consider some
thermal noise, which can arise due to measurement error
or the fundamental limits of heat transfer. Table 4 shows
a summary of approaches.

6.2 Systems without Thermal Noise

In the SIMP project (Hamann et al., 2006), the authors
try to solve IHCP from an infrared photograph of a die
in operation. To compute the conductance matrix the
authors propose two approaches as shown in Figure 12.

In 2007, Martinez et al. (Mesa-Martinez et al., 2007)
extended SIMP. Unlike SIMP, Martinez et al. use a very
accurate IR camera and an IR transparent oil based heat
sink. The authors start out by creating an analytic model
of chip power consumption by considering the standard
equations for dynamic and leakage power as defined in
Section 2. For modeling the thermal RC circuit, they use
parameters from the popular HotSpot (Skadron et al.,
2003) temperature modeling tool. They consider both
dynamic and leakage power. In their system of equations
for each functional unit, they have four unknowns, Pdyn

(dynamic power), Pleak0, Pleak1, and Pleak2. The latter

Simulate=heat=flow=using=
advanced=computational
thermodynamics=based
techniques

SIMP

Coefficients=of=
conductance=

matrix,=A

P===AT

System=of=equations

Power

IR=photo=of=die

IR=transparent
micro-duct

=based=heat=sink

Apply=a=power=source=
at=each=mesh=point,=

measure=temperature=
at=other=mesh=points

Figure 12: SIMP methodology

three are constants in the leakage power equation (see
Equation 2). The inputs are the values of temperature
for each floorplan block and the total power as measured
by a digital multimeter. To compute the dynamic and
leakage power for each block, we need to solve a
complex non-linear optimization problem. The authors
start out by collecting a lot of samples for 14 different
applications (mostly SPEC benchmarks) across many
program phases, and use these samples to train a genetic
algorithm. To calculate the fitness value of a candidate
solution, the authors first compute the predicted total
power and temperature of each block using analytical
models. The discrepancy between the measured and
computed values of die temperature and total power
is the fitness value. Based on the fitness value of each
solution, they discard some solutions.

An orthogonal approach as described by Oh et al.
(2010) considers power estimation with just one thermal
sensor. In this case, we do not have sufficient information
to compute the power dissipation for every block. The
authors show that with some simplifying assumptions,
it is possible to estimate the total chip power by
considering the transient form of the power equation
(Equation 11). Subsequently, the authors estimate the
power per functional unit, by apportioning the total
power on the basis of performance counter data.

6.3 Systems with Thermal Noise

The approaches described in this section consider some
degree of temperature measurement error. They use
Equation 12 as the governing equation. Here, N,
represents the measurement error/ Gaussian noise.

T = BP + N (12)

As a first line approach, we can use a least squares
based estimate to compute the optimal power map
given the Gaussian noise. The formulation is shown in
Equation 13. This method has stability issues (Wang
et al., 2009) and does not consider the diffusive nature
of heat flow.

P̂ = ArgMin
P

|| BP−T ||2 (13)
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Wang et al. (2009) adopt an approach from the
world of image processing known as BTV regularization.
They observe that the power map of a chip contains
crisp boundaries, whereas a temperature map is very
blurry in nature. Consequently, they adopt an approach
that conceptually deblurs the temperature map to obtain
the power map. They modify Equation 13 to produce
Equation 14.

P̂ =ArgMin
P

(|| BP−T ||2

+ λ

p∑
m,l=−p

α|m|+|l| || P− Sm
x S

l
yP ||)

(14)

Here, the term λ is a weight for the regularization.
It properly balances the mean square error with the
regularization. Sm

x and Sl
y are two operations, which

effectively shift the power map m positions in the
horizontal direction, and l positions in the vertical
direction, to cancel out the blurring effect of the image.
α is another scalar term that properly weights this shift.
The authors solve this equation using steepest gradient
descent techniques. This technique proves to be very
effective in canceling out noise and in giving a fairly
accurate and crisp power map.

Qi et al. (2010) take the help of architectural
simulation to obtain stable solutions for Equation 13.
They add two more sets of constraints: (1) One for the
power range of each block, (2) and the other for the
total power. These constraints substantially improved
the accuracy of the solution.

Cochran et al. Cochran et al. (2010) study the
IHCP problem in FPGAs. They augment a standard
FPGA with a set of micro-heaters, which are small
circuits with a known power dissipation profile. Using
representative power and temperature samples, they
calibrate a regularization function (see (Wang et al.,
2009)) to deblur the temperature map. Nowroz et al.
Nowroz et al. (2011) add to this work by exciting the
micro-heaters with an AC signal rather than a fixed
DC signal. The authors observe a significantly enhanced
accuracy.

7 Program Execution Profile Based
Approaches

7.1 Preliminaries

In this section, we look at approaches that use a group
of instructions as the basic atomic unit. The generic
approach is to characterize the energy consumption
of each instruction, and then profile the code to get
instruction counts. This is done at the basic block
level. We describe such approaches in Section 7.2. It
is possible to do characterization and profiling at a
higher level of granularity – functions or traces (see
Section 7.3). Lastly, we describe a set of approaches that

try to predict the functional unit access counts by using
program analysis or from instruction access counts in
Section 7.4. Subsequently, they compute the total energy
by multiplying the access counts with pre-characterized
energy values. Table 5 shows a summary of approaches
in this area.

7.2 Instruction Level Power Estimation

All the approaches presented here have a similar
structure. The first phase contains a profiling run,
which executes different snippets of code repeatedly, and
measures their energy usage. This allows us to estimate
the energy associated with the set of instructions. In the
second phase, we need to embed counters in software
that give the execution frequency of each basic block.
Lastly, we can obtain the total energy consumption
by multiplying the number of executed instructions of
each type by their corresponding energy values. Energy
divided by the execution time yields the average power.

7.2.1 Data Independent Approaches

Jouletrack (Sinha and Chandrakasan, 2001) estimates
power at the basic block/instruction level. Additionally,
using equations presented in Section 2, it calculates
the leakage power. Fournel et al. (2009) use a similar
approach but do not model leakage power explicitly.
Their model clubs all sources of power that cannot be
classified as dynamic power into a lumped constant.

Sami et al. (2002) extend the instruction level
profiling schemes to VLIW processors. Since these
processors execute a group of instructions as a bundle,
the paper characterizes power at the level of each
bundle of instructions. Here, the power consumed by
an instruction is dependent on three parameters –
opcode/operands of the instruction, other instructions in
the bundle, and the pipeline/circuit state. Benini et al.
(2001) adopt a simpler approach for VLIW processors.
They pass the instruction trace to an architectural power
simulator that is calibrated with RTL models.

Brandolese et al. (2010) propose a very low level
method for modeling the power and timing of C
programs. They propose to break every statement in the
C language to a set of micro-instructions that resembles
a very primitive RISC ISA. For each such micro
op, the authors characterize the power consumption.
Subsequently, they embed software counters in a block
of C statements corresponding to a high level construct
such as a loop or a switch case statement. Based on the
access counts, they estimate the total power.

7.2.2 Semi-data Dependent Approaches

Tiwari et al. (1994, 1996) and Mehta et al. (1996)
were the first to propose a systematic methodology for
calculating the power cost associated with the execution
of each instruction as well as account for inter instruction
effects in a stochastic sense. They take three types
of inter-instruction effects into account – change in
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Proposal Category Error
Year Authors Main Sub (%)

1994 Tiwari et al. Instruction Level Semi-Data Dependent < 3%
For Intel 486 and Fujitsu SparcLite

1999 Sarta et al. Instruction Level Data Dependent < 8%
Considers a host of dependences across instructions

2000 Qu et al. Function Level ≈ 3%
Embedded Toshiba core

2001 Tan et al. Function Level < 5%
Considers algorithmic parameters also

2001 Sinha and Chandrakasan Instruction Level Data Independent < 3%
(Jouletrack) StrongArm and Hitachi microprocessors

2004 Muttreja et al. Function Level < 1%
Automated model creation

2005 Senn et al. Functional Unit Based Compiler Directed 1− 4%
(SoftExplorer) Uses simulators to convert code access profiles to

functional unit access profiles
2005 Kadayif et al. Functional Unit Based Compiler Directed < 6%

Elaborate compiler framework
2007 Blume et al. Functional Unit Based Hybrid < 9%

Uses instruction profiles also
2010 Brandolese et al. Instruction Level Data Independent < 1− 5%

Tailored for C programs

Table 5 Summary of architecture level approaches

circuit state, pipeline stalls, and cache misses. The
authors try to measure the average number of bits
that need to change their state for every consecutive
pair of instructions using extensive simulations. They
model other effects by adding a constant to the overall
instruction energy/power.

The comprehensive instruction level power model
including all the above components gives the overall
energy cost, EP , of program P.

EP =
∑
i

(Bi ∗Ni) +
∑
i,j

(Oi,j ∗Ni,j) +
∑
k

Ek (15)

Here, Bi is the base cost of each instruction i, Ni

is the number of times instruction i is executed, Oi,j is
the circuit state overhead associated with each pair of
consecutive instructions (i,j), Ni,j is the number of times
the instruction pair is executed and Ek is the energy
contribution due to all other inter instruction effects.

Russell and Jacome (1998) slightly simplify the
model by proposing to use a constant power dissipation
per instruction for homogeneous programs. This includes
the effects of some inter instruction relationships.

7.2.3 Data Dependent Approaches

Sarta et al. (1999) extended the work of Tiwari et al.
(1994, 1996). They primarily focus on the execution unit
(EX + MEM stage) of the ST20-C1 embedded processor
in their work. They use Equation 16 to estimate power.

Pj = K0 + Cij +K1 ∗ n1 +K2 ∗ n2 + ...+Kn ∗ nn(16)

Pj is the power cost for instruction, j. K0 is the
base power cost of a functional unit. For example, the
authors found that the fetch unit consumes at least
13mA of current in their target processor irrespective of

the amount of work. Thus, for the fetch unit, K0 is equal
to the fixed current (13 mA) times the supply voltage.
Likewise, the authors measure the fixed power cost for
the execution unit also. Cij is the cost of executing
instruction j after instruction i due to the changes
introduced in the datapath/control path when we try
to execute a new instruction. Lastly, Ki and ni are the
weights and number of transitions of the activity indices
respectively. Activity indices are the elements that have a
strong influence on the power consumption. The activity
indices used in this work are the address bus, data write
bus, and ALU bus, as they are representative of the
switching activity inside the processor. Ki and ni are
measured by simulating the program on a VHDL model
of a processor.

Wendt et al. (2010) propose an automated method
for characterizing the instruction set. They decompose
the energy per clock cycle into four parts: instruction-
dependent, data-dependent, cache energy dissipation
and the dissipation of other external components. For
instruction dependent energy dissipation, they use a
method similar to Tiwari et al. (1994).

Park et al. (2011) propose a multigranularity power
estimation model for three design stages, with each stage
more finely grained than the previous one. They create
a 3D lookup table that stores the power consumption
of each instruction, at each pipeline stage, for each
functional unit in the processor.

7.3 Function/Program Level Power Analysis

Function level power analysis aims at estimating the
power consumption of the processor at the granularity
of functions and library calls. The main idea is to
put software counters at the entry point of functions
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that we expect to be invoked very frequently. The
power dissipation of these functions needs to be pre-
characterized.

Qu et al. (2000, 2002) observed that a majority
of machine code executed on embedded microprocessors
is part of either library functions or large user defined
routines. There is some intermittent glue code, which
is part of the core application logic. The power
characteristics of each routine is more or less constant
across benchmarks. Russell and Jacome (1998) had
also arrived at a similar conclusion. Consequently, it is
possible to estimate the power consumption of a large
embedded program by just measuring the number of
instances, the average duration, and energy of execution
of each library call/user defined routine. The authors
observed a good agreement between predicted and
measured values.

Tan et al. (2001) factor in the effect of algorithmic
parameters also. The total number of steps in an
algorithm that has θ(n2) time complexity can be
represented as c1 + c2n+ c3n

2, where n is the input size
and c1, c2, and c3 are constants. These co-efficients can
be found by measuring the total time it takes to run the
algorithm for different values of n. We can further use
linear regression techniques to minimize the least square
error. The total energy is highly correlated with the total
number of steps. Note that such kind of methods have
limited applicability.

For the profiling based estimation techniques, Tan
et al. look at several ways of collecting profiles in
software – basic block counts, basic block correlation
profiles and trace profiles. Like Tiwari et al. (1994),
the authors first count the number of invocations of
different basic blocks. Basic block A can be succeeded
by B or C. The sequence AB might have a very
different power profile from the sequence, AC. The
authors consider a second order model that takes such
correlations into account. They further extend this to
consider long traces consisting of tens of basic blocks.
Like the case of complexity based macro-modeling, they
try to create a relationship between the parameters
obtained through profiling and the energy consumption.
Using regression based techniques, the authors arrive at
a set of coefficients that efficiently weight the different
profiling parameters.

Muttreja et al. (2007) observe that a program
such as gzip mostly calls C libraries or well defined
subroutines that have predictable power behavior. Only
2% of its code can be characterized as glue code. They
provide an automated method to characterize these
functions/library calls by figuring out the right set
of parameters, collecting data through simulation, and
creating models using symbolic regression. This method
can be used for many embedded and DSP based codes.

7.4 Functional Unit based Approaches

The generic structure of such approaches is to estimate
the activity of relevant functional units, and to compute

the total energy by multiplying the activity by the
corresponding energy per access obtained through
architectural analysis, or from empirical data. Here,
estimating functional unit activity is the main research
challenge.

7.4.1 Compiler Directed Approaches

Senn and Laurent (Laurent et al., 2004; Senn
et al., 2005, 2004; Julien et al., 2003) propose a
family of approaches to estimate power for generic
C programs. These efforts have culminated in a
tool called SoftExplorer for digital signal processors
(DSPs). The authors define two kinds of parameters –
algorithmic and architectural. Examples of algorithmic
parameters are IPC, issue rate, and cache miss rate.
They represent the flow of data across functional units.
The frequency setting or memory mode is an example
of an architectural parameter. The authors create a
regression model between a sample set of parameters
(representative of functional unit activity), and the
energy consumption from empirical data. Subsequently,
to use the model, they create a specialized compiler that
can automatically compute the algorithmic parameters
by statically analyzing C programs meant to be run on
DSPs. It starts out by estimating the average number
of memory accesses, and estimated number of bank
conflicts and cache misses. Since most DSP programs
fit in the cache, do not use pointers, and have well
defined memory requirements, it is fairly easy to estimate
these parameters using static analysis. It is hard to
do so for generic programs. Based on these, the tool
computes the pipeline stall rate (PSR) due to memory
accesses. Assuming that memory is the main bottleneck,
it is possible to calculate the fetch rate, α, and the
execution rate, β. SoftExplorer computes the final power
via the already derived regression based model using the
parameters – PSR, α, β, and some generic parameters
such as the memory mode and frequency. This method is
also known as Functional Level Power Analysis (FLPA).
Schneider et al.( Schneider et al. (2004) ) show that using
FLPA, it is possible to achieve accurate results for digital
signal processors. They were able to bound the error
within 3%.

Kadayif et al. (2005, 2002) propose an elaborate
compiler framework for energy estimation. Using
static analysis they find the number of data path
accesses, cache misses, memory transactions, and bus
transactions. Their method is also able to estimate
the total execution time for simple programs, giving
an estimate of the total energy dissipated by the
clocking network. For each high level construct in C,
they estimate the number of assembly instructions
that are required to implement it. Subsequently, for
each assembly instruction, they try to find out how
many times it will access different functional units.
For example, for a load instruction, they estimate the
number of cache misses. For a branch instruction in a
loop, they estimate the number of iterations. For an
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ALU instruction, they estimate the number of register
file accesses. They multiply these estimates with the
corresponding energies per access to get the total
estimated energy.

Kremer et al. (Kremer et al., 2003; Heath et al.,
2004) look at programs that have a lot of interaction
with devices especially disk drives. They instrument
the program to track the time that different devices
including the CPU are active. For example, the compiler
instruments a disk read/write system call to find out the
approximate duration of disk activity. The model uses
average values of CPU and disk power to compute the
total power.

7.4.2 Hybrid Approaches

Blume et al. (2007) describe a hybrid approach between
FLPA and instruction level techniques. The first step
of the algorithm is to collect detailed instruction level
traces using methods similar to those described in
Section 7.2. In the next step, the authors try to derive the
functional unit activities from the instruction execution
profile. This can be done either analytically by taking
a look at the specifications of the processor, or through
regression based arithmetic models. The rest of the
approach is similar to classic FLPA analysis as described
by Senn and Laurent (see Section 7.4.1).

8 Comparison of Approaches

8.1 Preliminaries

Even though most of the proposals that we have
presented, vary widely in terms of content, approach,
experimental methodology, PVT (process, voltage,
temperature) parameters, technology, and year of
publication, there are some striking similarities. The first
is that the method of reporting errors is very similar for
all the proposals. They first estimate the power using
custom algorithms and then compare the total estimated
power of the chip with power that is measured by
physical means. Here the aim is to measure the current
and multiply it by the voltage to calculate power. The
second important trend is that different proposals in
the same family of approaches have more or less similar
amounts of error. For example, all architecture level
approaches have an error equal to almost 20%, whereas
all performance counter based approaches have an error
between 3-10%. Consequently, we can infer some degree
of consistency across the results.

We use the following parameters for comparing the
various approaches: (1) Granularity, (2) Leakage power
modelling, (3) Intrusiveness, (4) Accuracy. A summary
of the various approaches is shown in Table 6.

Granularity refers to the level of detail used
by a technique to estimate power. A fine-grained
power estimation technique that requires details of the
underlying hardware cannot be used at higher levels of

abstraction. Similarly, a coarse grained approach when
applied to a lower level, may not be able to utilize all
the information available at that design stage.

Some approaches discussed in this paper have an
inherent ability to model leakage power, some have to
be augmented for this purpose by additional methods,
while others cannot model it at all. So, the techniques are
compared on the basis of their ability to model leakage
power. The next parameter, intrusiveness tells about the
invasiveness of the approach.

All these factors, combined with the average accuracy
obtained, primarily determine the applicability of a
technique at a particular design stage. To some extent
accuracy is not an independent factor, since methods
applicable at higher levels of abstraction usually have
a lower accuracy. The targeted accuracy is different at
each level of design.

8.2 Features of Various Approaches

8.2.1 Granularity

Thermal models (based on IR photography) have
the finest granularity, architecture level power models
have an intermediate level of granularity, performance
counter-based and program execution profile-based
models are relatively coarsely grained. However, if
thermal sensors are used to obtain the temperature map
of a chip, then the model becomes coarse grained and
depends on the number of sensors. In comparison, an
IR photograph can give as much detail as required by
setting the resolution of the IR camera. The granularity
of system level models tends to vary based on the level
of instrumentation.

8.2.2 Leakage power modelling

Since a substantial portion of the power consumption
in modern processors is due to leakage power, hence
methods that can accurately model leakage power
preponderate over the other methods. Performance
counter-based and program execution profile-based
techniques can fundamentally model all kinds of power
without any distinction between them. Thermal models
also take leakage power into account. Architectural
parameters-based techniques need to include some
additional method to model leakage power. System level
techniques usually do not consider it.

8.2.3 Intrusiveness

Intrusiveness of a technique limits its applicability and
ease of use. A highly intrusive technique can be used
at the design and fabrication stage but may not be
used after that, and additionally may not be useful at
the customer’s end. Software techniques are the least
intrusive, while architectural and system level model
based techniques are the most intrusive, since they are
dependent on the structure of the processor. Thermal
models need the temperature map of a chip and hence,
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Technique Granularity Intrusiveness
Leakage
power

modelling
Accuracy(%) Primary advantage

Architectural-level Low High No 80-90% Availability at design stage
System-level Low High No 85-95% Availability at design stage
Performance counter based Intermediate Low Yes 90-95% Ease of use
Thermal High Intermediate Yes 92-97% Very accurate
Program profile based Intermediate Low Yes 97-99% At higher abstraction

Table 6 Comparison of approaches

some mechanism to obtain this must be incorporated
while fabricating the processor. If we are using in-
built temperature sensors, then the technique is almost
non-intrusive; otherwise, if it is necessary to take an
IR photograph, then it is necessary to remove the
packaging. The latter technique is moderately intrusive.
Similarly, for performance counters-based techniques,
the appropriate performance counters are most often
embedded in hardware, and we do not require additional
support for using them. We thus conclude that thermal
and performance counter based techniques fall in the
middle of the spectrum.

8.2.4 Accuracy

Table 6 shows the average error rates of each of the
broad family of approaches. We can conclude that
early stage exploration approaches using system level
models and high level architectural parameters have
the least accuracy (about 80-90%). System level power
estimation is more accurate than purely architecture
level power estimation because it uses a more detailed
implementation of hardware. Nevertheless, both the sets
of approaches have been found to be extremely useful in
predicting high level trends. In comparison, performance
counter based methods have an error between 5-10%,
and most temperature profile based methods have an
error typically less than 1-3%. This is because these
methods are much more specific and intrusive. Secondly,
these methods are only applicable to processors that
have already been fabricated and are in operation.
Lastly, we observe that program profile based methods
are in the middle with an error rate between 3-8%.

8.3 Explanation of Trends

Architecture level power models such as Wattch are
designed with a given processor and technology in mind.
Most of the time, researchers try to apply standard
scaling rules to get the power dissipation values for a
target technology. However, (Govindan et al., 2009)
establish that scaling methodologies underestimate the
latch capacitance by up to 40%. As the design
methodology evolves, the original assumptions regarding
the design of a certain functional unit cease to hold.
Moreover, architectural models need cycle accurate
micro-architectural detail and can not be used until
this information is available. Also, all accesses to a

given set of functional units do not consume the
same amount of power, and the mean value is not
sufficiently representative. Lastly, architecture level
power estimators do not accurately take clock gating and
leakage into account.

For system level models, there can be different
physical realizations of a TLM based model. Each such
design will have its own set of idiosyncrasies. Since
system level models are formulated early in the design
process, the implementation of different blocks keeps
getting modified and refined till the last tape-out. Every
such minor modification increases the risk of a modeling
error. Secondly, system level models are at a fairly high
level, and thus they suffer from abstraction errors.

As compared to architectural and system level
modeling based approaches, the other three types of
estimation (performance counter/ thermal/ program
profile) have fewer errors, because these are in-vivo
methods that operate directly on the target system while
it is running.

Out of the three approaches, performance counter
based methods are the most inaccurate. This is so
because it is not possible to read all the performance
counters of interest simultaneously. Most architectures,
typically allow the user to read one counter from each
class at any time. Consequently, it is necessary to read
the performance counters in several rounds and stitch
the values together. It is hard to achieve synchrony,
and secondly there are several sources of jitter such
as operating system and cache activity that can skew
results. Lastly, most works use linear models. However,
proposals such as Singh et al. (2009) have reported
significant gains by using non-linear models.

Program profile based approaches have been reported
to be slightly more accurate. However, it would not
be wise to make an apples-to-apples comparison with
performance counter based methods because, most
instruction/function profile based approaches have been
evaluated on custom embedded codes or snippets of large
programs. Whereas, performance counter based methods
have been evaluated using SPEC benchmarks.

Approaches that look at instructions in isolation
suffer from large abstraction errors because tens of
instructions are simultaneously considered for execution
in a complex superscalar processor. Hence, it is necessary
to consider large sequences of instructions for accurate
power modeling. The basic problem is that it is
hard to infer important statistics such as cache miss
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rates, branch misprediction rates, and TLB miss rates.
These figures can have a significant impact on power
dissipation. It is also very difficult to model clock gating
and leakage power using such approaches. Temperature
profile based approaches are clearly the best in terms
of accuracy. They capture leakage and clock gating
very accurately. IR camera based approaches have an
error less than 1% because they do not suffer from
significant abstraction errors. It is possible to accurately
infer the temperature at any point on the die. The
relationship between power (both dynamic and leakage)
and temperature is fairly stable, and depends on the
thermal properties of the package and the technology.
Once this relationship is determined, power estimation
is very accurate. The main issue arises when we have
a limited number of sensors. In this case, inferring the
total power becomes a difficult problem because it is not
possible to accurately guess the temperature values at
all the points on a die.

9 Future Research Directions

The next decade is expected to throw up some new
challenges in power estimation. We are moving to an
ultra-nanoscale CMOS era, which will be characterized
by extreme process variation, and high leakage. It will
be necessary to bring in a lot of statistical techniques to
measure the power dissipation. We are simultaneously
moving into an era of 3D chips. Estimating the leakage
power for such chips will be very difficult because
of the extra dimension of heat flow. The on-chip
interconnects are expected to incorporate disruptive
technologies such as photonics, wireless technologies,
and free space networks. They will have novel power
dissipation characteristics. Probably towards the end of
the next decade, we will move to non CMOS based
technologies such as quantum or biological computing,
which will radically change the way conventional power
estimation is done.
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