
PanoptiChrome: A Modern In-browser Taint Analysis Framework
Rahul Kanyal

Computer Science and Engineering
Indian Institute of Technology Delhi

New Delhi, India
rahulkanyal@cse.iitd.ac.in

Smruti R. Sarangi
Computer Science and Engineering
Indian Institute of Technology Delhi

New Delhi, India
srsarangi@cse.iitd.ac.in

ABSTRACT
Taint tracking in web browsers is a problem of profound interest
because it allows developers to accurately understand the flow of
sensitive data across JavaScript (JS) functions. Modern websites
load JS functions from either the web server or other third-party
sites, hence this problem has acquired a much more complex and
pernicious dimension. Sadly, for the latest version of the Chromium
browser (used by 75% of users), there is no dynamic taint propaga-
tion engine primarily because it is incredibly complex to build one.
The nearest contending work in this space was published in 2018
for version 57; at the time of writing, we are at Chromium version
117, and the current version is very different from the 2018 version.
We outline the details of a multi-year effort in this paper that led to
PanoptiChrome, which accurately tracks information flow across
an arbitrary number of sources and sinks and is, to a large extent,
portable across platforms.

As an example use case of the platform, we experimentally show
that we can discover fingerprinting APIs that can uniquely identify
the browser and sometimes the user, which are missed by state-
of-the-art tools, owing to our comprehensive dynamic analysis
methodology. For the top 20,000 most popular websites, we dis-
covered a total of 362 APIs that have the potential to be used for
fingerprinting – out of these, 208 APIs were previously not reported
by state-of-the-art tools.

CCS CONCEPTS
• Security and privacy → Browser security; Information flow
control.

KEYWORDS
JavaScript Taint Tracking, Program Analysis, Chromium Browser,
Browser Fingerprinting, Web Measurement, Privacy

ACM Reference Format:
Rahul Kanyal and Smruti R. Sarangi. 2024. PanoptiChrome: A Modern
In-browser Taint Analysis Framework. In Proceedings of the ACM Web
Conference 2024 (WWW ’24), May 13–17, 2024, Singapore, Singapore. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3589334.3645699

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’24, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0171-9/24/05
https://doi.org/10.1145/3589334.3645699

1 INTRODUCTION
JavaScript (JS) ranks as the most widely used programming lan-
guage, with over seventy percent of developers leveraging it for
development[6]. JS has become such a ubiquitous programming
language because of the availability of a very rich set of APIs for cre-
ating interactive web applications and dynamic server-side scripts.
In addition, through the use of the Electron [2] framework, JS can
also be used to develop full desktop and mobile applications. Due to
its widespread usage, there exist a plethora of third-party libraries
that are used across client, server, desktop and mobile applications.
Since these libraries offer a diverse range of functionalities for
collecting users’ access patterns, session record and replay, adver-
tisements, and a host of other features, it is a common practice for
websites to include third-party libraries from various domains [25].

Apart from software bugs and vulnerabilities, the security and
privacy threats to the hosting site increases manifold when third
and fourth-party libraries get included. These libraries have equal
privileges and can access and alter the shared page state (DOM, JS
variables) from other co-located scripts. As per a recent survey [1],
37% of third-party scripts are known to contain undisclosed vulner-
abilities – this puts all kinds of personal data such as passwords,
medical data and credit card details at risk. In addition to explicit in-
formation leaks, side channels can also be used to uniquely identify
browsers and characterize user behaviour, such as through the use
of battery level indicators [36]. These subtle sources of information
are the basis for the area of browser fingerprinting [21]. Hence, to
summarize, a comprehensive security analysis tool at the client side
that can track the flow of information across code from different
scripts and third-party libraries is necessary to identify APIs and
websites that display such malicious behavior.

Information flow analysis or taint analysis in web browsers is an
established problem. Here, the flow of information is tracked from
a sensitive source, such as a password field to a sink, which can
potentially exfiltrate the data to an unauthorized party. Analyses
can either be static [29, 34] or dynamic [32, 39, 40]. A criticism of
static analysis approaches is that they are either overly conserva-
tive or miss out on capturing vital dynamic information . A lot of
information is unavailable at compile time, such as the contents of
third-party APIs and the results of eval calls, where a JS statement
is created dynamically. Dynamic analysis, on the other hand, is dif-
ficult to implement because it involves invasive changes to the code
of the web browser and JS engine (V8 in the case of Chromium). To
provide context, it’s worth noting that the combined code size of
Chromium and the V8 engine is quite large: 40 million lines [10]
and 3 million lines [11], respectively. Additionally, their memory
allocation and Garbage Collection (GC) mechanisms are quite com-
plex, which can pose challenges when attempting to add metadata
to objects or track information flow, particularly implicit flows.

https://doi.org/10.1145/3589334.3645699
https://doi.org/10.1145/3589334.3645699

WWW ’24, May 13–17, 2024, Singapore, Singapore Rahul Kanyal and Smruti R. Sarangi

Hence, many researchers [22, 27] have opted for simpler meth-
ods where they annotate JS APIs and then log their executions.
This can either be easily detected or requires a complete reimple-
mentation of the entire runtime in JS. Furthermore, these methods
often miss many subtle interactions and control flow based depen-
dences. As a result, the gold standard in this area is to track flows
by modifying the browser and the JS engine, which is what the
nearest work, Mystique [17], did for Chromium version 57. At the
time of writing, we are currently at version 117, and in the last
60 versions, a lot of fundamental changes have happened in the
source code. For instance, Chromium has transitioned from a stack-
based to a register-based virtual machine, the execution pipeline
has changed, and the memory management and GC systems have
been completely overhauled.

We thus propose a bespoke dynamic taint analysis framework
called PanoptiChrome, which adds roughly 7,000 lines of code to
the existing V8 engine. Its novel features are as follows.

❶ It accurately captures all kinds of information flows (explicit
and implicit) while supporting a variable number of sources and
sinks that can be changed at runtime. ❷ It is mostly portable across
Chromium versions (requires minor changes) and is platform agnos-
tic. ❸ From a software engineering point of view, PanoptiChrome
is fairly self-contained, where all the changes are limited to the V8
engine’s Ignition module (interpreter part) only. ❹ Our solution
works with V8’s complex garbage collection and memory reloca-
tion framework. ❺ We tested the efficacy of PanoptiChrome for the
problem of identifying fingerprinting APIs across the top 20,000
websites. We identify 164 hitherto undiscovered APIs that are po-
tentially fingerprinting.

Section 2 describes the background, Section 3 elaborates on the
design of PanoptiChrome, Section 4 shows the evaluation results,
Section 5 describes the related work, and finally we conclude in
Section 6.

2 BACKGROUND
The following section begins with an overview of WebIDL, in-
formation flow analysis and its usage in various aspects of web
privacy and security. We then present the reasons for adopting a
static+dynamic taint analysis algorithm over static taint analysis
approaches. Furthermore, we establish the need to instrument the
runtime system, specifically the V8 engine.

2.1 Browser APIs and WebIDL
Browser APIs allow a website to access certain features such as
the browser type, current date and time, screen dimensions, etc.
Since different browsers might offer different capabilities with dif-
fering syntax, the WebIDL [12] standard formalizes the interfaces
and properties that need to be offered by a compliant browser.
In Chromium, these APIs are implemented as a part of the Blink
rendering engine; they are exposed to web applications using the
standard Web IDL specification [12]. Figure 1 presents an overview
of the Chromium architecture and the Web IDL interface between
the V8 engine and the Web APIs.

Due to the variability in the nature of the devices that access a
given site, along with geographical differences (detected from the
IP address and time zone), browser APIs typically return different

V8 EngineWeb APIs

Blink Rendering Engine

WebIDL

Chromium

Ignition
Interpreter

Figure 1: Overview of the Chromium browser

kinds of information to different devices. These values obtained
from browser APIs, along with the meta-information about the
device, allow the site to create a unique fingerprint for each device.
The site can then use this fingerprint to track the user across differ-
ent sessions and websites, even if the network used to access the
site changes.

2.2 Information Flow Analysis
JS uses an asynchronous event-driven model, where functions are
registered as event handlers and invoked when the corresponding
event happens, such as a “mouse hover" or a “mouse click". As a re-
sult of the dynamic nature of events, static analysis approaches that
solely analyze the source code of an application are ineffective and
seldom generate accurate information/control flow information.
Another factor that complicates static analyses is the fact that JS is
a deeply object-oriented language where properties (variables/func-
tions) can be added and removed dynamically from parent classes,
and functions are treated as objects. They also may take a variable
number of arguments. To complicate matters, JS has the reflection
API[3] and functions like eval, setTimeout and setInterval [4] that
allow the interpreter to execute strings provided at runtime as code;
this makes static analysis nearly impossible. Hence, dynamic anal-
ysis approaches are required that can inspect the executing code at
runtime. Approaches that instrument the JS code instead of the run-
time cannot add hooks to all the objects’ properties without a priori
information about the properties themselves. Further, multiple API
calls like document.location exist that a proxy object with hooks
cannot wrap. Also, an adversary can easily detect such hooks.

Mystique [17] is the nearest work that added dynamic infor-
mation flow analysis to the Chromium browser. For explicit flows
(due to assignments), Mystique [17] created an edge in the Data
Flow Graph (DFG) from the R-value to the L-value. Implicit flows
where there is data transfer from caller to callee parameters during
function calls and returns are also handled in a similar manner. To
handle control dependencies, all the variables in the branch path
are tainted. The limitations of Mystique [17] are that it does not
handle dynamic sources and sinks, is not designed for a register-
based machine, modifies the garbage collection engine and memory
relocator, has extended object liveness, and requires changes in

PanoptiChrome: A Modern In-browser Taint Analysis Framework WWW ’24, May 13–17, 2024, Singapore, Singapore

Taint Sources
and Sinks

Taint MarkingTaint PropagationInstrumentation Blink Runtime

JavaScript Code

Bytecode
Generator

AST
Generator

Instrumented
Code AST

Hybrid Taint
Propagation

AST Object
Mapping Tables

API Call Logic
Bluetooth

Navigator

Cookie

Sources,
Sinks,
Leaks logConfigurable

Parameters

Logging

Function Call

Figure 2: Overview of PanoptiChrome

Chromium’s Blink rendering engine - all of these changes reduce
the portability of the design. Furthermore, because of its limited set
of sinks, it misses many information leakage paths.

3 DESIGN OF PANOPTICHROME
3.1 Design Overview
To detect data leakage from the browser, PanoptiChrome needs to
identify and mark all the values obtained from a known subset
of browser APIs as tainted. ❶ We instrument the code generated
for API methods and property accesses and add hooks (callback
functions). ❷ The custom TaintMarking Engine(TME) handles the
marking of tainted values as these APIs get accessed. ❸ Once we
have identified and marked the taint sources, the Taint Propagation
System (TPS) disseminates the taint tags via explicit and implicit
flows to all the objects that somehow use the tainted value (directly
or indirectly). ❹ On invocation of an API labelled sink, all the
parameters passed to the API are checked for their taint status.
If a parameter is found to contain data from tainted sources; the
sources, sink and the parameters are logged to a file. An overview
of the steps in PanoptiChrome for taint marking and propagation is
presented in Figure 2. The patches to the Chromium’s V8 engine
developed for PanoptiChrome are available here.

3.2 Code Instrumentation and Data Structures
The Bytecode Generator in V8 walks the AST (Abstract Syntax
Tree) generated by the JS parsing phase to emit intermediate code
that the Ignition engine interprets. The Ignition engine in V8 is
a register-based interpreter with handlers for around 230 bytecodes.
60 bytecode builders are responsible for emitting the properly for-
matted bytecode. There are 85 visitors that walk the AST generate
handlers for these 230 bytecodes. PanoptiChrome needs to modify
only three builders and eight AST visitors to track the flow of
tainted information through the execution of the JS code.

In prior work [17], the taint marking was done when the render-
ing engine called a JS function. However, in our scheme we track
dependences at a finer level and we can change the sources and
sinks at runtime. Hence, in our case, the taint marking step must
be intertwined with the taint propagation step. For every JS object

(defined in the source code), there is a runtime object (internal to
V8). Whenever we access a method or property in a JS object, we
need to use the TME engine to find if we need to taint the status of
the corresponding runtime object. The TME engine needs to check
the list of current sources.

3.2.1 Data Structures Used. PanoptiChrome uses multiple hash
tables to store the taint status of JS objects and their corresponding
runtime objects. The Object Taint Table (OTT) stores the taint
metadata of the runtime object and is indexed using the ptr (tagged
heap pointer) data member of the runtime object. This hash table
stores information about all the taint sources for the given runtime
object. There is an important design decision here. Should we store
a list of all the methods/properties via which the taint flowed to a
given object’s method or property? Given that prior work considers
few sources, they indeed store this information. This is not a scalable
solution because references to all the objects on the path will remain
live, and the GC will not be able to remove them – this results in a
large memory footprint.

We thus maintain two references in each OTT row: a reference
to the runtime object and a reference to the string encoding of
taint sources (the runtime objects on the path are not stored). An
overview of the liveness of objects and handles in PanoptiChrome
is depicted in Figure 3. If the OTT is reachable, then all the runtime
objects that it points to will also remain alive, which is something
that we do not want because many objects will not have valid
references to them in the original JS code left. V8 can create weak
references, a pointer where the destination object can be garbage
collected. Such weak references are used here. The crux of the
idea here is to use two weak references: one to the runtime object
and one to the string encoding of the taint sources. The Ephemeron
hash table ensures that if the runtime object is alive (because of
references in the JS code), then the string encoding will also be
alive (not garbage collected). This guarantees the existence of the
string object (corresponding to the taint sources) once we reach
the sink because the sink needs to be alive.

The AST Taint Table stores the taint status of the parsed nodes
in an AST for the functions in the current activation stack. Panop-
tiChrome implements the AST Taint Table in the same fashion as

https://github.com/therahulkanyal/PanoptiChrome/blob/master/panoptichrome_patches.diff

WWW ’24, May 13–17, 2024, Singapore, Singapore Rahul Kanyal and Smruti R. Sarangi

Mystique [17]. It uses a multi-level HashTable in which the first
level is indexed by the frame pointer of the currently executing
function, while the second level is indexed using the unique lo-
cation of the node in the AST. The link between the AST node
and the corresponding runtime object is maintained using the
SimpleNumberDictionary (internal to V8) that maps the location
and type (VariableProxy, Property or Call) of the AST node to the
corresponding runtime object. Like the AST Taint Table, the AST
to Object Map Table contains multiple levels wherein the current
frame pointer indexes the first level while the second level stores
the actual mapping.

3.2.2 Liveness of Objects. All the tables we add can be garbage
collected; this must be avoided at all costs. Prior work [17] mod-
ified the GC itself, a very invasive change that harms portability
and maintainability. We start with observing that all runtime ob-
jects in V8 can be referenced with the help of Handles. These
are themselves not garbage collected. The Handles are stored in
a HandleScope that is responsible for deallocating the Handles
when the scope is destroyed. To make sure that the Handles re-
sponsible for taint tables are not deallocated, we store them in a
custom PersistentHandle that is aware of the special tables and is
not deallocated until the PersistentHandle is explicitly reset. The
custom PersistentHandle is created at the start of the execution
and is destroyed only when the execution ends. The stock V8 engine
does not allow the deletion or updation of Handles added to the
PersistentHandle list; hence, we introduce new interfaces that
allow us to replace the unused handles with null runtime objects.

Stack

Persistent
Handle

Heap

Object Taint Sources

Object Taint Table

ptr
ptr ptr

Weak Reference

Runtime Object String Object

Strong
Reference

Handle

ptr

Handle
Scope

Scoped
Reference

Figure 3: Liveness in the Object Taint Table

3.3 Taint Marking Engine (TME)
The role of the Taint Marking Engine(TME) in PanoptiChrome
is to identify the sources and sinks defined in the configuration
files and taint the corresponding runtime objects. The dynamic
configuration files (user-defined) contain the object’s name and the
corresponding methods/properties, which should be considered as
sources or sinks. PanoptiChrome provides the same expressiveness
as OpenWPM[22] for specifying the sources and sinks with the
ability to selectively choose/reject specific properties or methods of
an object. TME also filters out contexts where the sources should not

be tainted. These contexts include native built-in functions (called
during initial setup) and Chromium’s intrinsic functionalities (like
settings or a new tab). The TME receives details about the object,
the API to access, values of all the parameters passed to the API
and the return value. Based on the information received and the
context derived from the object, TME sets the taint for the return
value.

A simple lookup of the object and member name (property or
method) in the custom taint configuration database is insufficient
since members can be references to runtime objects. Furthermore,
prototypal inheritance in JS allows a child object to access all the
members of superclassses. To solve these problems, TME needs
the object’s name (similar to runtime type information in C++).
Using the constructor’s details, the TME walks up the inheritance
chain and finds the object in which the member is defined (the
WebIDL specification is used to speed up this process). In some
cases, when only amember is provided, the default object isWindow
(regular JS semantics). Once we find the object, we check whether
it is a tainted source or not. This is more elegant and generic than
Mystique [17], which required patching all the Blink endpoints
(7000+ when writing this paper) and then tracking their accesses.

3.4 Taint Propagation System (TPS)
To ensure that the original execution is not affected while propagat-
ing taint information, PanoptiChrome follows a caller-saved scheme
– store the original values in a set of virtual registers and allocate
independent registers for storing taint metadata before starting the
taint propagation routines. After the routines return, the original
state is restored. To ensure proper taint propagation, we include
vital information about object constructors (see Section 3.3) in the
parameters that we pass to the taint routines as opposed to earlier
frameworks like Mystique [17] that did not do so.

On function exit, the AST Taint Table and AST to Object Map
Table are dropped (since every invocation requires a fresh AST
Taint Table and map). In contrast, the Object Taint Table persists
across invocations to further propagate the taint status. Once the
TME has marked the values obtained from a select set of browser
APIs as taint sources, TPS sends the taint tags to other objects
that receive information from the labelled tainted sources. Panop-
tiChrome performs an order-independent, intra-procedural analysis
on the source code received by the V8 engine for execution to create
the Flow Graph (FG) (combination of the data and control flow
graphs).

Initially, an AST is generated at the level of an individual func-
tion. Analysis at the function level is sound since even the top-level
scope is considered a function(unnamed). PanoptiChrome repur-
poses the parser and code generator used by the V8 JS engine to
create the ASTs. Then, the generated AST is cached for future in-
vocations. This AST is then used to construct the FG in which the
vertices are nodes from the AST (56 such types in version 11.7
of V8) representing either a property access or an API call. The
FG contains directed edges between the AST nodes if there is an
explicit flow of information (via the assignment operator) or an
implicit flow (via conditional statements).

To reduce the overhead of taint propagation, PanoptiChrome does
not create an FG unless at least one tainted source has been visited

PanoptiChrome: A Modern In-browser Taint Analysis Framework WWW ’24, May 13–17, 2024, Singapore, Singapore

in the scope of the function under analysis. Once an API call has
been marked tainted by the TME, TPS marks the corresponding
AST node in the FG as tainted with the help of the 𝑜𝑏 𝑗𝑒𝑐𝑡 →
⟨𝐴𝑆𝑇𝑛𝑜𝑑𝑒⟩ mapping table similar to theAST to Object Map Table
(see Section 3.2). Taint propagation routines are invoked only when
one of the following conditions is true: ❶ an API marked as a sink
is called, or ❷ the function returns and an object/array is created by
the function. Taint propagation is then carried out by following the
outgoing edges from the tainted AST node and updating the taint
status of each node in the forward slice (transitive closure of nodes
in the FG). Also, whenever a node is marked as tainted in the FG,
the corresponding object is marked as tainted with the help of a
reverse mapping table (AST to Object Map Table). PanoptiChrome
can propagate taint to local storage similar to prior work [17] with
the help of an additional taint marker appended to the data written
to local storage. Note that the marker is removed while reading
the tainted data. For DOM taint propagation, either an approach
similar to that used for local storage can be followed, or the string
implementation in Blink can be made aware of the taint data, the
patch for which is also available here.

3.5 Logging Data
The V8 engine utilizes an Isolate to separate different execution
contexts on the same web page. These multiple execution contexts
get created due to the inclusion of numerous iframes (webpages
loaded from different origins) in the same web page. For every
iframe, a separate Isolate is instantiated with its copy of global
objects and built-in functions. Distinct isolates on the same web
page execute concurrently using separate threads and behave as
individual sandboxed instances of the V8 runtime. Since Panop-
tiChrome attaches all the tables required for taint marking and
propagating with an Isolate, multiple runtime instances can exe-
cute in parallel without treading on each other’s data. We log all the
data for each isolate separately in a different file similar to Visible
V8 [27]; hence, the problem of inter-process synchronization is
solved by design. For every Isolate PanoptiChrome logs all the
origins (multiple sub-domains can be loaded in the same Isolate
as long as they share the same origin) along with the tainted source
APIs and sink APIs invoked during the execution. Additionally, the
leaks are logged (along with the string-encoded list of taint sources)
whenever data from a tainted source flows into a sink API.

4 EVALUATION
4.1 Setup
We used an AMD EPYC 7702P powered workstation with 64 physi-
cal cores and 128 GB RAM for crawling and post-processing tasks.
Log files, averaging 150KB per website, were stored on a 1 TB SSD.
The crawling process utilizes the latest Chromium browser (ver-
sion 117.0) compiled with our custom V8 engine (PanoptiChrome).
Websites are loaded concurrently in independent browser windows
with transient user profiles that get erased after each website visit.
Additionally, navigation and website loading are facilitated through
a commercial off-the-shelf ISP used by more than 38% of the active
internet users in the author’s country [9], India.

4.2 Crawling Methodology
We instantiate each browser instance from the command line and
pass the website URL as a parameter. We do not use any automation
framework; this makes our approach as indistinguishable as possi-
ble from a regular user accessing the site. The driver script closes
the browser after a preset time of 180 seconds and then starts an-
other instance. Figure 4 summarizes the steps in the data collection
pipeline. We use the top 20,000 websites from the Tranco list [7]
as the seed URLs for data collection. We perform a connection test
for each URL by requesting the HTTP header from the website. To
request the HTTP header containing the website’s status code, we
initially attempt to connect to the website by appending HTTPS://
with the domain name from the Tranco list. If the connection suc-
ceeds, we log the schema and URL to the list of reachable URLs. If
we fail to connect to the site within 15 seconds, we try with the
HTTP protocol for the next 15 seconds. If we still fail, we log the
URL with the corresponding error code.

Fi
lt

e
ri

n
g

C
o
lle

ct
io

n
A

n
a
ly

si
s

Live URLs

URLs Connection Testing

Task
Manager

Sources, Sinks

List of suspicious
sensitive-APIs

Analyzer

Custom Crawler

Logs

Figure 4: Overview of the data collection pipeline

Crawling results From our network vantage point, 61.91% of
the Tranco top 20,000 websites were reachable (status code 200).
Around 14% returned a 404 (not found) error, and around 24% timed
out with both the HTTPS and HTTP protocols. Table 1 represents
the status codes for the URLs in the list. Our crawler could log 12,846
unique origins and recorded 45,942,545 API calls and 24,486 leak
entries. Furthermore, the recorded origins invoked 5,673 unique
APIs, of which 3,426 are DOM manipulation APIs.

Table 1: Status Codes for the top 20,000 Tranco URLs

Status Code Number of Sites Percentage
200-299 (Success) 12382 61.91%

300-399 (Redirection) 5 0.03%
400-499 (Client Error) 2770 13.85%
500-599 (Server Error) 141 0.7%

Exception 4701 23.5%

4.3 Web API Categorization
Web API categorization is required to identify the DOM manipula-
tion APIs that are used to get the static properties of elements in the

https://github.com/therahulkanyal/PanoptiChrome/blob/master/dom_storage_blink_patch.diff

WWW ’24, May 13–17, 2024, Singapore, Singapore Rahul Kanyal and Smruti R. Sarangi

D
O

M

Lo
ca

tio
n

U
se

r A
ge

nt
Ba

ck
gr

ou
nd

Ta
sk

s

Sc
re

en

Pe
rfo

rm
an

ce

W
eb

St
or

ag
e

H
ist

or
y

C
SS

O
M

XM
LH

�p
Re

qu
es

t
Tr

us
te

d
Ty

pe
s

W
eb

C
ry

pt
o

U
RL

C
ha

nn
el

M
es

sa
gi

ng

Pl
ug

in

Web API Category

0

20

40

60

80

100

%
of

si
te

s

Access
Leaks

Figure 5: API access and leak in sites vs top 15 Web API categories (based on access)

web page. The values returned by these APIs are always the same
for a particular element across browsers and, hence, cannot be used
to fingerprint the user. In our analysis, we do not consider these
APIs as sensitive. To classify the APIs, the category was decided
using the developer documentation provided by Mozilla Developer
Network (MDN)[5]. Out of 5,673 unique APIs in our crawl, MDN
had no categorization for 1,246, which we manually classified after
analyzing the documentation. The complete list of API categories
can be found here. Also, for APIs categorized in multiple categories,
we give the lowest priority to the DOM category and classify the
API manually into the bin with the highest specificity. For exam-
ple, Navigator.clipboard is categorized as both ‘Clipboard’ and
‘User-Agent’ according to MDN; in our case, the ‘Clipboard’ cate-
gory is chosen (because of more specificity/relevance).

4.4 Data Leakage from APIs
We define data leakage as the flow of information from any web
API to any sink (storage, network). Every API invocation marks the
returned data as tainted. An entry is logged whenever any tainted
data reaches a sink. Out of the 5,673 unique web APIs that are
accessed by 12,846 origins, our analysis reveals that data from a
total of 675 unique APIs is leaked. We observe that, on average, 115
unique APIs are accessed on a website and data from 11 unique
APIs is leaked. The maximum number of APIs accessed from a
single origin is 531, whereas the maximum single-origin leakage
was 144. DOM-related APIs (such as NodeList.length) are leaked

on 33.84% of the sites, followed by the Location, the Background
Tasks and the User Agent category (30.31%, 19.74% and 17.15%,
respectively).

The HTMLAnchorElement.hostname and the Window.location
are the most commonly leaked APIs in the Location category. These
APIs are used to get the domain name of the page for construct-
ing dynamic links or fetching web resources. In the Background
Tasks category, the Window.setTimeout API (used to execute a
JS function after a set amount of time) while Window.navigator
and Navigator.userAgent from the User-Agent category (used to
customize the website for different screen resolutions and sizes)
are the most prominent in the set of leaks. The complete category-
wise distribution of API accesses and leaks for the top 15 Web API
categories (based on access) is shown in Figure 5. Of all the APIs
that get leaked in a site, 55.58% belong to the DOM category. The
average distribution of API categories (in the remaining 44.42%)
that get leaked per site is shown in Figure 6.

4.5 Fingerprinting APIs
Sensitive APIs are those APIs that can be potentially used for fin-
gerprinting. PanoptiChrome analyzes all the parameters passed to a
sink and records the sources from which the information sent to a
sink was generated. Out of the 675 unique APIs that get leaked, 269
APIs are DOMmanipulation APIs. 121 APIs from the remaining 406
APIs have already been classified in previous work [38] as sensitive,
and 33 have been categorized as URL or sink-related APIs that are

https://github.com/therahulkanyal/PanoptiChrome/blob/master/api_category.json
https://github.com/therahulkanyal/PanoptiChrome/blob/master/all_leaked_apis.md
https://github.com/therahulkanyal/PanoptiChrome/blob/master/leaked_dom_manipulation_apis.md

PanoptiChrome: A Modern In-browser Taint Analysis Framework WWW ’24, May 13–17, 2024, Singapore, Singapore

Location

32.4

Performance
21.6

Screen

12.1
User Agent

7.0

Background Tasks4.3

XMLH�pRequest4.0
History2.2
Plugin2.2

Others
14.2

Figure 6: Average API leak distribution per site

used for fingerprinting indirectly (as a means of ferrying already
fingerprinted data).

For the classification of the remaining APIs (252 APIs), we fol-
lowed a method similar to prior work [38], where we investigated
known fingerprinting websites for the use of the discovered APIs.
In total, 78 APIs were confirmed to be fingerprinting using this
method. For the remaining 186 APIs, we manually consulted the
documentation for each API and the source code of the websites
that use the API to establish the association with fingerprinting. 82
APIs were manually classified to have the potential to be used for
fingerprinting, while 48 APIs were classified as sinks or providing
URL-related data. To summarize, we discover a total of 362 APIs
(121 + 33 + 48 + 78 + 82) that are probably being used for finger-
printing or have the potential to be misused. The complete list of
APIs can be accessed here. Out of these 362 APIs, 208 APIs were
previously unreported by state-of-the-art works.

4.5.1 Effect of Co-location of API Calls on Precision and Recall. Out
of the 675 APIs that are leaked by the sites, 39.85% are used for DOM
manipulation and 89.16% of the remaining APIs (total minus DOM)
were confirmed to have the potential to be used as fingerprinting
vectors (sensitive). For each sink, PanoptiChrome reports a list of
sources that are used to compute the tainted value. For each such list,
we check if it contains more APIs than a pre-defined threshold. For
this experiment, we do the following: if this threshold is breached,
we mark all the APIs in the list as sensitive. This follows from the
observation in [14, 26] that browser fingerprinting often clubs data
from multiple sources to form a unique identifier. After removing
DOM manipulation APIs, we vary the threshold from 0 (all sources
included) to 12 (maximum number of seeds found in a single leak)
and plot the resulting distribution of the percentage of suspicious
APIs found in Figure 7. It can be observed that the percentage of
APIs detected to be sensitive increases with the threshold (precision
increases at the cost of recall). With a threshold of 0, 406 APIs are
marked for further analysis (with 89.16% being sensitive), while
with a threshold of 10, only 92 APIs are marked for further analysis.
Out of the 92 APIs marked, 96.74% are confirmed to be sensitive.

Comparison with State-of-the-art: For comparative analysis
with the state-of-the-art tool for fingerprinting – BFAD[38] – we
collected the API logs using VisibleV8 [27] for the Tranco top 1000
sites. The results are shown in Figure 8. Only 608 of these 1000 sites

0 1 2 3 4 5 6 7 8 9 10 11 12

Threshold

80

85

90

95

100

%
Se

ns
it

iv
e

A
PI

s

89.16
91.5

93.19

96.22 95.97 96.74 96.74

Figure 7: Variation of the #sensitive APIs with the threshold

were reachable from our network vantage point. BFAD confirmed
68 APIs to be potentially fingerprinting (sensitive). PanoptiChrome
discovers 438 unique APIs from which the data is leaked. Of these
438 APIs, 183 are used for DOM manipulation and are not consid-
ered for fingerprinting. In the remaining 255 APIs, we verify 237
APIs as potential vectors for fingerprinting manually or by using
the known fingerprinting approaches.

PanoptiChrome BFAD198 39 29

Figure 8: Comparison with the state-of-the-art, BFAD[38]

5 RELATEDWORK
Dennings [19, 20] pioneered the formalization of static analysis
approaches in the 1970s. Fenton [23] then studied purely dynamic
monitors for managing information flows. Much of the later work
has focused on adapting the work of Denning and Fenton to differ-
ent languages and proposing solutions with various limitations.

Dynamic analysis techniques using virtual machines [24], source
code instrumentation [37], and runtime instrumentation [15] have
been employed for numerous use cases ranging from JS execution
visualization [33] and record/replay [37] to privacy and security
analysis of browser extensions [17] and policy enforcement[8].
Table 2 summarizes the features and limitations of existing informa-
tion flow approaches for JavaScript engines. Fine-Grained Taint
Tracking (FGTT) specifies the granularity of the taint tracking
mechanism. For example, in [13], the taint is tracked at the level
of scripts, whereas in the case of PanoptiChrome, the granularity
of taint tracking is at the level of individual JS objects. In essence,
any mechanism that instruments the binding between V8 and Blink
only, without instrumenting the flows inside V8, is coarse-grained,
whereas mechanisms with instrumentations of flow inside V8 are

https://github.com/therahulkanyal/PanoptiChrome/blob/master/sinks_uri_related_apis.md
https://github.com/therahulkanyal/PanoptiChrome/blob/master/potential_fingerprinting_apis.md

WWW ’24, May 13–17, 2024, Singapore, Singapore Rahul Kanyal and Smruti R. Sarangi

Table 2: Summary of information flow analysis in different JS runtimes.

Work FGTT Implicit flows Custom sources Completeness Upgradability Platform agnostic
Vogt et al.[40] ✓ ✓ ✗ ✗ ✗ ✗

DOMsday[35] ✓ ✗ ✗ ✗ ✗ ✗

WebPol[8] ✓ ✓ ✓ ✓ ✗ ✓

Runtime monitoring[15] ✗ ✗ ✗ ✗ ✓ ✓

Crowdflow[30] ✓ ✗ ✗ ✓ ✗ ✗

FPDetective[13] ✗ ✗ ✗ ✗ ✓ ✓

JSgraph[33] ✗ ✗ ✗ ✗ ✓ ✓

Visible V8[27] ✗ ✗ ✗ ✗ ✓ ✓

Mystique[17] ✓ ✓ ✗ ✓ ✗ ✗

25 million flows[32] ✓ ✗ ✗ ✗ ✗ ✗

Foxhound[31] ✓ ✓ ✗ ✗ ✗ ✓

PanoptiChrome ✓ ✓ ✓ ✓ ✓ ✓

fine-grained. Upgradability describes the feature of a taint track-
ing mechanism to be conducive to constant code updates in the
original engine. Specifically, we classify a taint tracking mecha-
nism as non-upgradable if the instrumentation requires patching
all the possible flow paths individually and sensitizing all the data
structures involved in the taint flow. A taint system is classified
as platform agnostic if all the changes are independent of the
underlying system architecture and the system can be easily ported
(with modifications in the build system only). PanoptiChrome is
platform agnostic, has been tested with Android and Linux, and can
be built for other platforms. Custom sources represents a taint
engine’s ability to accommodate a different set of taint sources and
sinks that can be revised without requiring any modification in the
engine’s source code.Completeness of a taint engine describes the
ability to track taint flow across all eight data types (for example,
string, number, object) in JavaScript.

5.1 Augmenting Browsers with Taint Tracking
Vogt et al.[40] supplement dynamic taint tracking with static anal-
ysis to detect DOM-XSS vulnerabilities. They use static analysis to
propagate taint information along implicit flows. On the same lines,
in reference [32], the authors instrument the Chromium browser
to track tainted strings (limited use case). Their goal was to de-
tect and validate DOM-XSS vulnerabilities. Based on the source
and context of the tainted data, they automatically generate the
breakout sequence to validate the vulnerability. Like [32], Domsday
[35] also instruments the Chromium browser to detect DOM-XSS
vulnerabilities. The authors add one byte to each string object to
keep track of the encoding and decoding functions and the data’s
provenance. This is also a limited use case. Another such work is
FP-Detective [13], which only looks at font-related APIs.

Bauer et al. [15] treat the V8 JS engine as a black box and track
information flow only across the Blink-V8 boundary; this can be
used to sandbox scripts based on their respective origins. Their
coarse-grained information flow approach cannot handle implicit
flows and cannot reason if a source API is exploited for illegitimate
use. In Crowdflow [30], the authors aim to minimize the limita-
tions of information flow tracking by probabilistically switching
between partial taint tracking and information flow monitoring in

a distributed setting. The clients report a violation to an aggregator
that takes appropriate action. Similar to Domsday [35], Crowd-
Flow employs heavyweight instrumentation and uses a fixed set of
sources and sinks tailored to detect XSS-based vulnerabilities.

PanoptiChrome is much more generic than all the prior work
and is not meant to target taint information for specific data types
(or object types). Its taint tracking is also much more fine-grained.
Unlike prior work, it does not rely on any custom JS engine that
only handles a subset of the language; it can handle any site that
the Chromium browser can handle.

5.2 Study of Third-Party Data Exfiltration
In this space, the closest approaches that are similar to Panop-
tiChrome are Mystique[17], Jest [18], Ichnaea [28], and JSFlow [24].
JSFlow [33] uses a bespoke JS interpreter for a subset of JS. Jest
[18] is a source-code instrumentation-based approach that con-
verts every statement and expression to a function call, and these
instrumented functions are responsible for implementing the dy-
namic analysis methods. Ichnaea [28] is built on top of Jalangi [37],
which is also a source-code instrumentation-based approach. The
instrumentations proposed by both Jest and Ichnaea can be detected
easily by an adversary [16].

6 CONCLUSION
We showed in this paper that it is indeed possible to build a compre-
hensive dynamic taint tracking engine that is completely generic
and is portable across platforms and browser versions to a large
extent. This was achieved by limiting the changes to a small part
(interpreter) of the V8 engine and suggesting smart solutions for
the dynamic addition of sources/sinks, creating persistent handles
to circumvent the issues caused by the GC and memory relocation
engines and optimizing the process of taint propagation by using
an on-demand algorithm. We used PanoptiChrome to perform a de-
tailed characterization of the information leakage in the top 20,000
websites. We further use the locality information inherent in the
logs generated by PanoptiChrome to significantly reduce the set of
APIs to be considered for manual analysis. The need for having
PanoptiChrome is attested by the fact that we discovered 208 APIs
that were not known to have a fingerprinting character.

PanoptiChrome: A Modern In-browser Taint Analysis Framework WWW ’24, May 13–17, 2024, Singapore, Singapore

REFERENCES
[1] 2022. Thou Shalt Not Depend on Me: Analysing the Use of Outdated

JavaScript Libraries on the Web - NDSS Symposium. https://www.ndss-
symposium.org/ndss2017/ndss-2017-programme/thou-shalt-not-depend-me-
analysing-use-outdated-javascript-libraries-web [Online; accessed 24. Feb.
2023].

[2] 2023. Build cross-platform desktop apps with JavaScript, HTML, and CSS |
Electron. https://www.electronjs.org [Online; accessed 1. Mar. 2023].

[3] 2023. ECMAScript 2015 Language Specification – ECMA-262 6th Edition. https:
//262.ecma-international.org/6.0 [Online; accessed 11. Oct. 2023].

[4] 2023. ECMAScript® 2024 Language Specification. https://tc39.es/ecma262
[Online; accessed 11. Oct. 2023].

[5] 2023. HTMLAnchorElement: hostname property - Web APIs | MDN. https:
//developer.mozilla.org/en-US/docs/Web/API [Online; accessed 11. Oct. 2023].

[6] 2023. Stack Overflow Developer Survey 2023. https://survey.stackoverflow.co/
2023 [Online; accessed 11. Oct. 2023].

[7] 2023. Tranco: A Research-Oriented Top Sites Ranking Hardened Against Manip-
ulation - NDSS Symposium. https://www.ndss-symposium.org/ndss-paper/
tranco-a-research-oriented-top-sites-ranking-hardened-against-manipulation
[Online; accessed 11. Oct. 2023].

[8] 2023. WebPol: Fine-grained Information Flow Policies for Web Browsers (JSTools
2017) - ECOOP 2017. https://2017.ecoop.org/details/JSTools-2017-papers/6/
WebPol-Fine-grained-Information-Flow-Policies-for-Web-Browsers [Online;
accessed 24. Feb. 2023].

[9] 2024. India: wireless subscriber market share by provider 2022 |
Statista. https://www.statista.com/statistics/258797/market-share-of-the-
mobile-telecom-industry-in-india-by-company [Online; accessed 2. Feb. 2024].

[10] 2024. The Chromium (Google Chrome) Open Source Project on Open Hub:
Languages Page. https://openhub.net/p/chrome/analyses/latest/languages_
summary [Online; accessed 13. Feb. 2024].

[11] 2024. The Google V8 JavaScript Engine Open Source Project on Open Hub: Lan-
guages Page. https://openhub.net/p/v8-js/analyses/latest/languages_summary
[Online; accessed 13. Feb. 2024].

[12] 2024. Web IDL Standard. https://webidl.spec.whatwg.org [Online; accessed 3.
Feb. 2024].

[13] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank
Piessens, and Bart Preneel. 2013. FPDetective: dusting the web for fingerprint-
ers. In CCS ’13: Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. Association for Computing Machinery, New York, NY,
USA, 1129–1140. https://doi.org/10.1145/2508859.2516674

[14] Pouneh Nikkhah Bahrami, Umar Iqbal, and Zubair Shafiq. 2021. FP-
Radar: Longitudinal Measurement and Early Detection of Browser Finger-
printing. Proceedings on Privacy Enhancing Technologies (2021). https:
//www.semanticscholar.org/paper/FP-Radar%3A-Longitudinal-Measurement-
and-Early-of-Bahrami-Iqbal/72bb8e71702fef660b44133d34b9a8a5456e99c3

[15] Lujo Bauer, Shaoying Cai, Limin Jia, Timothy Passaro, Michael Stroucken, and
Yuan Tian. 2015. Run-time Monitoring and Formal Analysis of Information Flows
in Chromium. In Network and Distributed System Security Symposium.

[16] Darion Cassel, Su-Chin Lin, Alessio Buraggina, William Wang, Andrew Zhang,
Lujo Bauer, Hsu-Chun Hsiao, Limin Jia, and Timothy Libert. 2022. Omn-
iCrawl: Comprehensive Measurement of Web Tracking With Real Desktop
and Mobile Browsers. Proceedings on Privacy Enhancing Technologies (2022).
https://petsymposium.org/popets/2022/popets-2022-0012.php

[17] Quan Chen and Alexandros Kapravelos. 2018. Mystique: Uncovering Information
Leakage from Browser Extensions. In CCS ’18: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. Association for
Computing Machinery, New York, NY, USA, 1687–1700. https://doi.org/10.1145/
3243734.3243823

[18] Andrey Chudnov and David A. Naumann. 2015. Inlined Information Flow Moni-
toring for JavaScript. In CCS ’15: Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. Association for Computing Machin-
ery, New York, NY, USA, 629–643. https://doi.org/10.1145/2810103.2813684

[19] Dorothy E. Denning. 1976. A lattice model of secure information flow. Commun.
ACM 19, 5 (May 1976), 236–243. https://doi.org/10.1145/360051.360056

[20] Dorothy E. Denning and Peter J. Denning. 1977. Certification of programs for
secure information flow. Commun. ACM 20, 7 (July 1977), 504–513. https:
//doi.org/10.1145/359636.359712

[21] Peter Eckersley. 2010. How Unique Is Your Web Browser? In Privacy Enhancing
Technologies. Springer, Berlin, Germany, 1–18. https://doi.org/10.1007/978-3-
642-14527-8_1

[22] Steven Englehardt and Arvind Narayanan. 2016. Online Tracking: A 1-million-
site Measurement and Analysis. In CCS ’16: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. Association for Computing
Machinery, New York, NY, USA, 1388–1401. https://doi.org/10.1145/2976749.
2978313

[23] J. S. Fenton. 1974. Memoryless subsystems. Comput. J. 17, 2 (Jan. 1974), 143–147.
https://doi.org/10.1093/comjnl/17.2.143

[24] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. 2014. JSFlow:
tracking information flow in JavaScript and its APIs. In SAC ’14: Proceedings of the
29th Annual ACM Symposium on Applied Computing. Association for Computing
Machinery, New York, NY, USA, 1663–1671. https://doi.org/10.1145/2554850.
2554909

[25] Muhammad Ikram, Rahat Masood, Gareth Tyson, Mohamed Ali Kaafar, Noha
Loizon, and Roya Ensafi. 2019. The Chain of Implicit Trust: An Analysis of the
Web Third-party Resources Loading. In The World Wide Web Conference (San
Francisco, CA, USA) (WWW ’19). Association for Computing Machinery, New
York, NY, USA, 2851–2857. https://doi.org/10.1145/3308558.3313521

[26] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. 2021. Fingerprinting the
Fingerprinters: Learning to Detect Browser Fingerprinting Behaviors. In 2021
IEEE Symposium on Security and Privacy (SP). 1143–1161. https://doi.org/10.1109/
SP40001.2021.00017

[27] Jordan Jueckstock and Alexandros Kapravelos. 2019. VisibleV8: In-browser
Monitoring of JavaScript in the Wild. In IMC ’19: Proceedings of the Internet
Measurement Conference. Association for Computing Machinery, New York, NY,
USA, 393–405. https://doi.org/10.1145/3355369.3355599

[28] Rezwana Karim, Frank Tip, Alena Sochůrková, and Koushik Sen. 2018. Platform-
Independent Dynamic Taint Analysis for JavaScript. IEEE Trans. Software Eng.
46, 12 (Oct. 2018), 1364–1379. https://doi.org/10.1109/TSE.2018.2878020

[29] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons,
John Sarracino, BenWiedermann, and BenHardekopf. 2014. JSAI: a static analysis
platform for JavaScript. In FSE 2014: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. Association for
Computing Machinery, New York, NY, USA, 121–132. https://doi.org/10.1145/
2635868.2635904

[30] Christoph Kerschbaumer, Eric Hennigan, Per Larsen, Stefan Brunthaler, and
Michael Franz. 2013. CrowdFlow: Efficient Information Flow Security. In ISC 2013:
Proceedings of the 16th International Conference on Information Security - Volume
7807. Springer-Verlag, Berlin, Germany, 321–337. https://doi.org/10.1007/978-3-
319-27659-5_23

[31] D. Klein, T. Barber, S. Bensalim, B. Stock, and M. Johns. 2022. Hand Sanitizers in
the Wild: A Large-scale Study of Custom JavaScript Sanitizer Functions. In 2022
IEEE 7th European Symposium on Security and Privacy (EuroS&P). IEEE Computer
Society, Los Alamitos, CA, USA, 236–250. https://doi.org/10.1109/EuroSP53844.
2022.00023

[32] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 million flows later:
large-scale detection of DOM-based XSS. In CCS ’13: Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security. Association for
Computing Machinery, New York, NY, USA, 1193–1204. https://doi.org/10.1145/
2508859.2516703

[33] Bo Li, Phani Vadrevu, Kyu Hyung Lee, and Roberto Perdisci. 2018. JSgraph:
Enabling Reconstruction ofWeb Attacks via Efficient Tracking of Live In-Browser
JavaScript Executions. In Network and Distributed System Security Symposium.

[34] Magnus Madsen, Benjamin Livshits, and Michael Fanning. 2013. Practical static
analysis of JavaScript applications in the presence of frameworks and libraries.
In ESEC/FSE 2013: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering. Association for Computing Machinery, New York, NY, USA,
499–509. https://doi.org/10.1145/2491411.2491417

[35] William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and Limin Jia.
2018. Riding out DOMsday: Towards Detecting and Preventing DOM Cross-Site
Scripting. In Network and Distributed System Security Symposium.

[36] Łukasz Olejnik, Gunes Acar, Claude Castelluccia, and Claudia Diaz. 2016. The
Leaking Battery. In Data Privacy Management, and Security Assurance. Springer,
Cham, Switzerland, 254–263. https://doi.org/10.1007/978-3-319-29883-2_18

[37] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013.
Jalangi: a selective record-replay and dynamic analysis framework for JavaScript.
In ESEC/FSE 2013: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering. Association for Computing Machinery, New York, NY, USA,
488–498. https://doi.org/10.1145/2491411.2491447

[38] Junhua Su and Alexandros Kapravelos. 2023. Automatic Discovery of Emerging
Browser Fingerprinting Techniques. InWWW ’23: Proceedings of the ACM Web
Conference 2023. Association for Computing Machinery, New York, NY, USA,
2178–2188. https://doi.org/10.1145/3543507.3583333

[39] Omer Tripp, Pietro Ferrara, and Marco Pistoia. 2014. Hybrid security analysis of
web JavaScript code via dynamic partial evaluation. In ISSTA 2014: Proceedings of
the 2014 International Symposium on Software Testing and Analysis. Association
for Computing Machinery, New York, NY, USA, 49–59. https://doi.org/10.1145/
2610384.2610385

[40] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher
Krügel, and Giovanni Vigna. 2007. Cross Site Scripting Prevention with Dynamic
Data Tainting and Static Analysis. In Network and Distributed System Security
Symposium.

https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/thou-shalt-not-depend-me-analysing-use-outdated-javascript-libraries-web
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/thou-shalt-not-depend-me-analysing-use-outdated-javascript-libraries-web
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/thou-shalt-not-depend-me-analysing-use-outdated-javascript-libraries-web
https://www.electronjs.org
https://262.ecma-international.org/6.0
https://262.ecma-international.org/6.0
https://tc39.es/ecma262
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API
https://survey.stackoverflow.co/2023
https://survey.stackoverflow.co/2023
https://www.ndss-symposium.org/ndss-paper/tranco-a-research-oriented-top-sites-ranking-hardened-against-manipulation
https://www.ndss-symposium.org/ndss-paper/tranco-a-research-oriented-top-sites-ranking-hardened-against-manipulation
https://2017.ecoop.org/details/JSTools-2017-papers/6/WebPol-Fine-grained-Information-Flow-Policies-for-Web-Browsers
https://2017.ecoop.org/details/JSTools-2017-papers/6/WebPol-Fine-grained-Information-Flow-Policies-for-Web-Browsers
https://www.statista.com/statistics/258797/market-share-of-the-mobile-telecom-industry-in-india-by-company
https://www.statista.com/statistics/258797/market-share-of-the-mobile-telecom-industry-in-india-by-company
https://openhub.net/p/chrome/analyses/latest/languages_summary
https://openhub.net/p/chrome/analyses/latest/languages_summary
https://openhub.net/p/v8-js/analyses/latest/languages_summary
https://webidl.spec.whatwg.org
https://doi.org/10.1145/2508859.2516674
https://www.semanticscholar.org/paper/FP-Radar%3A-Longitudinal-Measurement-and-Early-of-Bahrami-Iqbal/72bb8e71702fef660b44133d34b9a8a5456e99c3
https://www.semanticscholar.org/paper/FP-Radar%3A-Longitudinal-Measurement-and-Early-of-Bahrami-Iqbal/72bb8e71702fef660b44133d34b9a8a5456e99c3
https://www.semanticscholar.org/paper/FP-Radar%3A-Longitudinal-Measurement-and-Early-of-Bahrami-Iqbal/72bb8e71702fef660b44133d34b9a8a5456e99c3
https://petsymposium.org/popets/2022/popets-2022-0012.php
https://doi.org/10.1145/3243734.3243823
https://doi.org/10.1145/3243734.3243823
https://doi.org/10.1145/2810103.2813684
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/359636.359712
https://doi.org/10.1145/359636.359712
https://doi.org/10.1007/978-3-642-14527-8_1
https://doi.org/10.1007/978-3-642-14527-8_1
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1093/comjnl/17.2.143
https://doi.org/10.1145/2554850.2554909
https://doi.org/10.1145/2554850.2554909
https://doi.org/10.1145/3308558.3313521
https://doi.org/10.1109/SP40001.2021.00017
https://doi.org/10.1109/SP40001.2021.00017
https://doi.org/10.1145/3355369.3355599
https://doi.org/10.1109/TSE.2018.2878020
https://doi.org/10.1145/2635868.2635904
https://doi.org/10.1145/2635868.2635904
https://doi.org/10.1007/978-3-319-27659-5_23
https://doi.org/10.1007/978-3-319-27659-5_23
https://doi.org/10.1109/EuroSP53844.2022.00023
https://doi.org/10.1109/EuroSP53844.2022.00023
https://doi.org/10.1145/2508859.2516703
https://doi.org/10.1145/2508859.2516703
https://doi.org/10.1145/2491411.2491417
https://doi.org/10.1007/978-3-319-29883-2_18
https://doi.org/10.1145/2491411.2491447
https://doi.org/10.1145/3543507.3583333
https://doi.org/10.1145/2610384.2610385
https://doi.org/10.1145/2610384.2610385

	Abstract
	1 Introduction
	2 Background
	2.1 Browser APIs and WebIDL
	2.2 Information Flow Analysis

	3 Design of PanoptiChrome
	3.1 Design Overview
	3.2 Code Instrumentation and Data Structures
	3.3 Taint Marking Engine (TME)
	3.4 Taint Propagation System (TPS)
	3.5 Logging Data

	4 Evaluation
	4.1 Setup
	4.2 Crawling Methodology
	4.3 Web API Categorization
	4.4 Data Leakage from APIs
	4.5 Fingerprinting APIs

	5 Related Work
	5.1 Augmenting Browsers with Taint Tracking
	5.2 Study of Third-Party Data Exfiltration

	6 Conclusion
	References

