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Abstract— With the increasing complexity of modern
Systems-on-Chip, the possibility of functional errors escaping
design verification is growing. Post-silicon validation targets the
discovery of these errors in early hardware prototypes. Due to
limited visibility and observability, dedicated design-for-debug
(DFD) hardware such as trace buffers are inserted to aid post-
silicon validation. In spite of its benefit, such hardware incurs
area overheads, which impose size limitations. However, the
overhead could be overcome if the area dedicated to DFD could
be reused in-field. In this work, we present a novel method
for reusing an existing trace buffer as a victim cache of a
processor to enhance performance. The trace buffer storage
space is reused for the victim cache, with a small additional
controller logic. Experimental results on several benchmarks
and trace buffer sizes show that the proposed approach can
enhance the average performance by up to 8.3% over a baseline
architecture. We also propose a strategy for dynamic power
management of the structure, to enable saving energy with
negligible impact on performance.

I. INTRODUCTION

Decreasing feature sizes have caused ever increasing levels
of on-chip component integration. The simulation or emu-
lation used in pre-silicon validation can take a prohibitive
amount of time to check for functional errors. During post-
silicon validation, applications are executed on the chip
prototype at native speeds and are analyzed using dedicated
design-for-debug (DFD) hardware, enabling the discovery
of functional bugs that may have slipped past pre-silicon
validation. The DFD hardware is used to record the state
history of important signals in the chip that could be critical
in debugging the chip. The design of the DFD structure is
non-trivial because it has to maximize the visibility while
operating under very stringent area constraints, since it be-
comes vestigial once the chip is in production. The simplest
DFD structure is the trace buffer which consists of memory
elements and records the values of signals deemed critical by
the designer. These recorded signals can be extracted outside
the chip and analyzed to determine the root cause of errors.

With increasing complexity and higher levels of integra-
tion of modules on a single chip, the area consumed by
DFD structures increases significantly. This is a challenge
for the chip manufacturers because they have to strike a
balance between the visibility and the area allocated to DFD
structures. The two goals are competing; increasing visibility
enables faster validation, but also increases the area overhead
of the DFD hardware, which becomes unusable when the
chip goes into production (i.e., normal operation in field).
We address this challenge by repurposing the DFD hardware

through reusing the trace buffer as a victim cache of the
processor.
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Fig. 1: Trace Buffer reused as Victim Cache

We propose to add a new victim cache controller which
enables us to use the trace buffer as a victim cache to
enhance performance. The scenario is illustrated in Figure
1. During the post-silicon validation phase (Figure 1a), the
DFD hardware is configured as a trace buffer. Following the
validation phase, the DFD hardware is configured as a victim
cache (Figure 1b). We outline the proposed modifications of
the traditional trace buffer structure so that it can operate
as a victim cache. Maintaining the victim cache active may
enhance performance only during some phases of program
execution. Depending on the application behavior, lookups
in the victim cache may waste energy while not improving
performance. To address this situation, we propose a dynamic
power management technique to power gate the victim cache
with minimal performance degradation.

II. RELATED WORK

Related research can be classified into two categories on
the basis of the hardware validation structures: Dedicated
DFD hardware for validation and reuse of existing architec-
tural components for validation.

Significant amounts of research efforts have already been
invested in the area of dedicated DFD hardware. Storing
signal history helps in validating the chip as it provides
visibility inside the chip. It is standard practice to maintain
trace buffers inside the chip [1]–[3]. Only a selected set
of signals can be stored in the trace buffer due to size
limitations. Researchers have proposed techniques to identify
the set of such critical signals [4]–[7]. Alternatively, several
proposals aim to reuse existing architectural components to
store traces, instead of using dedicated hardware. DeOrio et
al. [8] aimed at validating memory consistency and coher-
ence by storing activity logs in L1 and L2 caches to observe



memory operations during program execution. Along these
lines, other researchers [9] have suggested validating the
NoC interconnect by periodically taking snapshots of the
packets in flight and storing those traces in node-specific
L2 caches. Lai et al. [10] used the data cache to store traces
together with cache data during validation. They configured
some of the cache ways to store trace data which includes bus
traces, performance traces, and processor traces, and used the
write-back circuitry to dump out the trace contents. This line
of work interferes in some way with the normal functionality
of the memory system [11], as it can potentially hide some
performance bugs.

Analogous to reusing architectural components for DFD,
our work attempts to reuse a standard DFD structure as
an architectural enhancement. The DFD hardware does not
interfere with the chip functionality during validation and
is used in-field to enhance performance. To the best of our
knowledge, this is the first work proposing such reuse of
validation hardware.

The victim cache idea was first introduced by Jouppi [12]
as an auxiliary structure that is looked up when a data cache
miss is encountered. All the evicted lines of the data cache
are placed in the victim cache. A miss in the data cache
that hits in the victim cache is addressed by swapping the
contents of the data cache line and the matching victim cache
line. Bahar et al. [13] suggested parallel look-up in the victim
and data cache for improved performance. In our proposed
design, the victim cache is accessed in parallel to the data
cache.

Another related research area is power optimization using
performance counters. Gilberto et al. [14] suggested the use
of performance counters such as IPC, data cache misses, data
dependencies, and TLB misses to estimate run-time power
consumption of CPU and memory. Chen et al. [15] proposed
a DVFS algorithm to minimize energy. It uses a power model
that utilises hardware performance counter values to adapt to
application phase changes. These principles are used in our
proposed optimization. In this work, we aim to save energy
by the dynamic power management of the victim cache using
performance counters.

III. REUSING THE TRACE BUFFER

Our main proposal is to reuse the trace buffer when
the processor-based system is in field, so that the area
dedicated towards the DFD structure is reclaimed and reused
to enhance the functionality.

A. Trace Buffer as Victim cache

We outline here the architectural changes that enable the
reuse of the trace buffer as a victim cache (VCache). These
include the addition of a victim cache controller logic to
improve performance. The DFD hardware can be configured
to be used as either a trace buffer during validation, or as a
victim cache during normal operation.

1) Baseline architecture: Figure 2 depicts the architecture
of the LEON3 SPARC-based CPU. The standard design
includes debug infrastructure in the form of a distributed

set of trace buffers, organized as queues. The trace buffer in
the processor core is used to store the pipeline trace data.
The trace buffer controller is used to control the data stored
in the trace buffer and receive control instructions as well as
timestamp information from a central Debug Support Unit
(DSU).
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Fig. 2: Baseline architecture of LEON3

2) Proposed architecture: The memory space dedicated
to the trace buffer is proposed to be reused as victim cache
storage. The changes made in the modified LEON3 architec-
ture are highlighted in blue in Figure 3. A new component
victim cache controller is added to the architecture to support
the new functionality. Unlike the standard victim cache [12]
which is architected as a small fully-associative structure,
we use a set-associative structure, which is easier to adapt
from the trace buffer. However, we impose no size limit on
the victim cache size, which can be derived from the trace
buffer size.

To configure the DFD hardware as either a trace buffer
or a victim cache, a new control signal vc en is added, sent
by the central DSU, as shown in Figure 3. The victim cache
controller is connected to the data cache (DCache) and the
trace buffer controller, but not to the main pipeline.

Data Storage and Address Mapping: The default trace
buffer is a monolithic single-port memory structure. To reuse
it as a victim cache, we logically divide the address space
into tag and data regions, as in a data cache. In the data
region, each line represents a cache line of the data cache and
its corresponding tag is present in the tag region. Considering
a trace buffer width of 128 bits (i.e., 4 words), one line in
the tag region corresponds to 4 lines in the data region. For
each request, the victim cache controller reads a tag line
and compares all four tags simultaneously, as in a 4-way set
associative cache.

When a memory request to address maddress arrives, the
victim cache controller indexes the request in the tag region
and the corresponding data line is fetched from the data
region and passed to the data cache controller. The data cache
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Fig. 3: Modified LEON3 architecture

controller updates its memory with this new value and returns
the result to the pipeline. For a trace buffer of size T Bytes,
the victim cache mappings for the above configuration are
determined as:
Size of Data region = 4T/5 Bytes
Size of Tag region = T/5 Bytes
Width of Trace buffer = 16 Bytes
TagIndex = (maddress� log2 16)&(nsets− 1)
DataIndex = si+ [TagIndex× 4 +HitIndex]
where nsets = T/5 × 1/16, si is the starting index of the
data region, and HitIndex is one of {0, ..., 3} depending on
the matching tag within the tag line.

Victim Cache Controller: Figure 4 depicts the finite
state machine based implementation of the victim cache
controller for read and write requests. When a core initiates
a memory access request, the victim cache controller checks
the hit/miss status in the trace buffer and notifies the data
cache controller. Simultaneously, the DCache controller also
notifies its status to the VCache controller. There are three
possible scenarios:

1) Data cache hit and Victim cache miss: The data cache
controller processes the request and the victim cache
controller returns to idle state without performing any
action.

2) Data cache miss and Victim cache hit: The two
controllers exchange their data and the victim cache
controller updates its content with the line evicted from
the data cache. The data cache controller passes the
data to the pipeline for the read request and updates it
in memory for the write request. For our experiments,
we have used write-through data caches with write
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Fig. 4: FSM of the victim cache controller. DC: data cache,
VC: victim cache

allocate cache miss strategy.
3) Data cache miss and Victim cache miss: The data cache

fetches a line from the next level and evicts one line.
The victim cache controller updates the trace buffer
with this evicted line.

We cannot have a hit in both caches simultaneously as the
two are mutually exclusive. One limitation of this method-
ology is we cannot debug the victim cache together with the
base architecture simultaneously. However the victim cache
controller in our proposed design is similar to the standard
victim cache controller and memory of the victim cache can
be extracted by switching to the validation phase.

B. Power optimization of victim cache

Utilizing the trace buffer as a victim cache incurs power
overheads due to the buffer lookups. Since the actual per-
formance improvement using the victim cache varies with
program behavior, this provides a possibility for significant
power optimization. Figure 5 plots the variation in the
number of victim cache hits while executing the perlbench
benchmark. Each point of the graph represents the number
of victim cache hits after executing 0.1 million instructions.
We observe that there are some phases with a high victim
cache hit rate, contributing to significant improvements in
performance, while there are other phases where the hit rate
is relatively low. The power consumed by the victim cache
in the low-hit-rate phases represents an overhead without
any significant performance benefit. This overhead can be
reduced by detecting low-hit-rate phases at run-time and
applying the power gating optimization on the victim cache.
To achieve this, we maintain a victim cache hit counter
and a store misses counter to control power-gating of the
victim cache using the DSU. If the number of recent victim
cache hits is below a certain threshold, the DSU power
gates the victim cache. A trigger is also required to turn the
victim cache on when the program reaches a phase where
it can benefit from the victim cache again. If the number of
recent store misses (accumulated in the store misses counter)
exceeds a threshold, the DSU turns the victim cache back on.
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Algorithm 1 outlines the decision-making process for
power gating the victim cache, made by the Debug Support
Unit. A block refers to a sequence of executed instructions,
and the decision for a possible change in power gating status
is triggered on block boundaries. A window is a sequence
of consecutive blocks during which the cache and victim
cache statistics are monitored for possible power gating
status change. Figure 6 illustrates an example scenario. When
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Fig. 6: Power gating of the Victim cache. N = 2

VCache hits drop for N consecutive blocks, to below a
fraction P of the maximum hits in a window or an absolute
limit T , the VCache is power-gated. When the store misses
exceed fraction P of the maximum misses in a window, the

VCache is turned back on. Lines 1-10 keep track of the
maximum values for VCache hits and store misses. Lines
11-16 implement the power gating logic. The values of
block size, window size, P , T , and N are experimentally
determined.

To implement our power optimization technique, two rel-
atively narrow (commensurate with the maximum expected
victim cache hit count) registers are required on the core’s
victim cache controller to maintain the victim cache hit count
and store misses count, and four registers and a comparator
on the DSU.

Algorithm 1 Victim cache control

Inputs: storeMisses: #store misses in a block, VCacheHits:
#VCache hits in a block, P : Power gating threshold
fraction

Output: vc en : Control signal to VCache
1: if VCacheHits > maxVHits then
2: maxVHits← VCacheHits.
3: end if
4: if storeMisses > maxSMisses then
5: maxSMisses← storeMisses.
6: end if
7: if windowBoundaryEvent then
8: maxSMisses← storeMisses.
9: maxVHits← VCacheHits.

10: end if
11: if (VCacheHits < (P × maxVHits) for N consecutive

blocks) OR (VCacheHits < T ) then
12: vc en← OFF
13: end if
14: if storeMisses > (P × maxSMisses) then
15: vc en← ON
16: end if

IV. EXPERIMENTS

A. Setup
We implemented our victim cache design on the LEON3, a

synthesizable VHDL model of a 32-bit SPARC V8 processor.
The standard design consists of an instruction trace buffer
on every core; the trace buffer is a circular queue of 128-bit
width and a configurable size of 1KB-64KB. We synthesized
our design using Cadence Encounter RTL compilerwith a
90nm technology standard cell library to understand the area,
timing, and power costs of our proposal in the normal and
power gated mode. As the large SPEC benchmarks could not
be simulated with the detailed VHDL model, we modeled the
hardware separately in the Sniper full system simulator [16]
to study the performance effects and to keep track of time
intervals in which the victim cache was power gated. We
varied the size of the L1 data cache across our experiments
and used a 512KB L2 cache. We evaluated our proposed
architecture using several SPEC 2006 benchmarks and for
each benchmark, we used the Simpoint [17] tool to identify
a representative dynamic instruction sequence of length one
billion.



B. Performance improvement over baseline architecture

We first evaluate the overall system performance improve-
ments obtained by using the trace buffer as a victim cache
compared to the base architecture without applying the power
gating optimization of Algorithm 1. Figure 7 shows the
speedup attained in ten benchmarks for different data cache
sizes while fixing the trace buffer at 2.5KB, a small size
compared to the data cache, which highlights the usefulness
of reusing the trace buffer as a victim cache. The relatively
high speedup of 14% for the Gamess benchmark is due to
the high fraction of memory operations performed by it. In
the case of Povray for 32KB cache, we observe that the
fraction of data cache lines that are used after the eviction
is around 90%. These observations are independently cor-
roborated by other studies [18]. In the case of bzip2, we
observe that around 55% of the lines that are evicted from
the data cache are unused, resulting in small performance
improvements. We observe no significant improvement with
the mcf benchmark, although it is a cache intensive program.
The reason for this is, 50% of the evicted lines are not reused
and therefore, do not benefit from the victim cache.

Fig. 7: Performance improvement for different data cache
sizes. Trace buffer size = 2.5KB

Figure 8 shows the performance improvements when vary-
ing both the trace buffer and data cache sizes, averaged over
all the ten benchmarks. We observe that the victim cache
is more effective for smaller caches as compared to larger
caches. This is expected, as the small trace buffer translates to
a higher relative size increment for smaller caches. However,
even relatively small trace buffer sizes result in non-trivial
performance gains, which is significant considering that the
DFD structure would have gone unutilized without this reuse.

C. Impact on Energy Delay Product

We evaluate the EDP gains obtained by enabling the power
gating optimization of Algorithm 1. This optimization saves
energy but could potentially reduce performance because
when the victim cache is power gated, the data cache misses
that could have been served by the victim cache have to be
directed to the memory.

We performed extensive exploration over an independent
set of applications to determine suitable values for the various
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Fig. 8: Impact of varying trace buffer sizes

parameters of Algorithm 1. We omit the details due to lack
of space. In summary, we used block size = 0.1 million,
window size = 400, P = 0.1, T = 20, and N = 2.

Figure 9a shows the victim cache power gating duration
as a fraction of the total execution time. These results are
consistent with the observations in Figure 7; the performance
of the benchmarks bzip2, h264ref, perlbench, and xalancbmk
does not improve significantly with the victim cache addi-
tion; hence, its power gating saves energy. Figure 9b reports
the EDP gain obtained for the overall design (including the
victim cache and all other processor subsystems) for different
data cache sizes, keeping a 2.5KB trace buffer. The relatively
higher overall EDP gain for the perlbench benchmark is due
to the higher extent of power gating achieved without losing
significant performance. The high power gating duration for
H264ref is accompanied by some performance loss, leading
to lower overall energy savings. The energy savings for
Gamess benchmark is negligible which is consistent with the
significant performance improvement already obtained with
the victim cache (Figure 7).

Figure 10 shows the impact of the power gating opti-
mization, where we compare the EDP gain with optimiza-
tion turned off and on, over the base architecture. Using
Algorithm 1, we were able to reduce the EDP overhead
for most benchmarks and configurations without affecting
performance. It is worse with the 8KB cache because of the
high power overhead observed (Section IV-D). The power
gating optimization leads to slightly higher latencies on
victim cache misses. However, our experiments showed that
with the power optimization turned on, the average loss
observed is only 0.15% over all the benchmarks and cache
sizes.

D. Synthesis Results

We observe an area overhead of 0.41% for a 3KB trace
buffer mainly because of victim cache controller, and minor
changes in the data cache controller design. The power over-
head for different data cache sizes are 10.1% (8 KB), 5.35%
(16 KB), 2.45% (32 KB) and 1.41% (64KB), mostly due to
the additional dynamic power when the trace buffer is treated
as victim cache. There is no change in the critical path, and
hence, no cycle time overhead. The latency overheads due
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Fig. 9: (a) Power Gating duration and (b) System EDP gain for different DCache sizes, P=0.1 and window size=400

Fig. 10: Impact of victim cache power optimization for
varying data cache sizes. Top: EDP gain without power opt.
Bottom: EDP gain with power opt. P=0.1, window size=400

to power gating are very small in comparison to the gating
durations, and have been ignored.

V. CONCLUSION AND FUTURE WORK

We proposed and evaluated an approach to reuse the
trace buffer as a victim cache in order to enhance in-
field performance. Since the victim cache is of variable
utility to applications, we also proposed a technique for
identifying stretches of time when it is not very useful, and
integrated this into a power gating optimization. The result is
a non-standard victim cache design which reuses the storage
area of the trace buffer, that improves both overall system
performance and EDP. In the future we plan to study other
reuse possibilities of on-chip debug structures, along with

generalized algorithms for dynamic multiplexing between
specific reuse scenarios.
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