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With the advent of low-power ultra-fast hardware and GPUs, virtual reality (VR) has gained a lot of
prominence in the last few years and is being used in various areas such as education, entertainment,
scientific visualization, and computer-aided design. VR-based applications are highly interactive, and
one of the most important performance metrics for these applications is the motion-to-photon-delay
(MPD). MPD is the delay from the user’s head movement to the time at which the image gets
updated on the VR screen. Since the human visual system can even detect an error of a few pixels
(very spatially sensitive), the MPD should be as small as possible.

Popular VR vendors use the GPU-accelerated Asynchronous Time Warp (ATW) algorithm to
reduce the MPD. ATW reduces the MPD if and only if the warping operation finishes just before
the display refreshes. However, due to the competition between the different constituent applications
for the single, shared GPU, the GPU-accelerated ATW algorithm suffers from an unpredictable
ATW latency, making it challenging to find the ideal time instance for starting the time warp and
ensuring that it completes with the least amount of lag relative to the screen refresh. Hence, the
state-of-the-art is to use a separate hardware unit for the time warping operation. Our approach,
PredATW, uses an ML-based hardware predictor to predict the ATW latency for a VR application,
and then schedule it as late as possible while running the time warping operation on the GPU
itself. This is the first work to do so. Our predictor achieves an error of only 0.22 ms across several
popular VR applications for predicting the ATW latency. As compared to the baseline architecture,
we reduce deadline misses by 80.6%.
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1 INTRODUCTION

The1 virtual reality (VR) industry is growing very rapidly particularly with the advent
of the metaverse. The compound annual growth rate (CAGR) of the VR market space
was 31% in 2023 and the total market size is expected to reach 165.91 billion dollars by
2025 [28]. Head mounted displays (HMDs) such as Meta’s Oculus Quest 2 and Sony’s PS
VR2 are dominating this segment as of today [54, 62]. The key challenge is to compute a new
image based on the head’s instantaneous position, and make it appear that the movement
is smooth. This technology is maturing. At the moment, rendering VR environments with
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complex scenes is proving to be quite challenging. We need to ensure that the motion is
smooth and there is no blurring. Hence, 90 Hz displays are typically used.

This means that the rendering task for every new frame needs to be less than 11 ms [32].
In the community, it is a known problem that the resources of VR devices are insufficient
when it comes to rendering all the frames [14, 25]. There is a subtle point to be noted here.
VR devices have two modes of operation: standalone mode and tethered mode. In the former
mode, the VR device is a purely mobile device, whereas in the latter mode, the VR device
is connected to a machine such as a desktop that handles all its rendering tasks. In both the
modes, rendering at line-speed (i.e., one frame in < 11 ms) is considered to be very difficult
for realistic scenes [5, 9]. Note that scenes are getting more and more complex with the need
for better graphics and ubiquity of these devices.

Hence, in the vision literature, a classical technique known as asynchronous time warping
(ATW) [27, 69] is used. The idea at its core is quite simple – if the rendering task does
not finish on time, then display an approximation, which is computed using historical head
motion vectors and the last rendered scene. As of today, ATW is an integral part of the VR
rendering pipeline. It may not be extremely accurate all the time; however, it does provide
a sense of continuity. Unless the user sees continuous motion that has minimal blurring,
there is a threat of getting a feeling of visual disorientation [13, 53, 70], which can be quite
disconcerting. The authors have themselves experienced it on their Oculus Quest 2 device,
and that too for fairly simple scenes. Thus, the quality of the ATW algorithm’s output is
very important.

As of today, there is one dominant ATW algorithm based on the image reprojection
technique [19, 69]. Most of the proposals including commercial designs either run ATW
on a separate chip [72] or running it as an application on the same GPU that does the
rendering (like Oculus Quest 2) [9]. We have an issue with both ends of the spectrum.
Dedicated hardware for ATW has a significant cost in terms of silicon area (20-30 mm2

in[73]). We basically need a small GPU to do this operation. On the other hand, running
ATW along with the GPU is fraught with problems, which have been highlighted by a lot of
researchers [73]. There is destructive interference due to resource contention between the two
tasks: ATW and the GPU application. This degrades the quality, which we shall measure
using the metric motion-to-photon delay or MPD. It is the duration between the start of
ATW and the point at which the frame is displayed (next display refresh point). A high
MPD means that our ATW algorithm uses stale data and is possibly slow. We thus need
to minimize the MPD. This is a standard metric [56, 63, 76].

Xie et al. [73] show that applications can have a long MPD even with a fast implementation
if the time warp is not initiated at the right time. They demonstrate that the MPD is high
in two situations: the time warp is completed well before the display refreshes or if it misses
the refresh deadline. Figure 1 explains this with three possible cases. In case 𝐴, after the
frame F1 is rendered, A1 warps this frame based on the head pose at t1 and displays this
warped frame at the refresh deadline RD1 (MPD1=RD1-t1). If A1 had been invoked closer
to RD1, then it would have taken the latest head pose more than now, and MPD1 may have
been lower. Unlike the previous case, for cases 𝐵 and 𝐶, A2 and A3 preempt the rendering
of frames F2 and F3, respectively, which get resumed when A2 and A3 are completed. Since
the preemption latency is a highly variable quantity, two situations may arise: either the
refresh deadline is missed due to large latency (Case 𝐶) or it is not missed (Case 𝐵). In
case 𝐵, A2 warps frame F1 (F2 is not yet rendered completely) according to the head pose
at t2 and displays this warped frame at refresh deadline RD2 (MPD2 = RD2 - t2). Since
in case C, A3 misses the refresh deadline RD3, we see the same frame displayed at RD2,
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Fig. 1. Possible scenarios in the GPU-accelerated ATW algorithm. 𝐹1, 𝐹2, and 𝐹3 are frames. 𝐴1, 𝐴2,
and 𝐴3 are ATW tasks. 𝑃1, 𝑃2, and 𝑃3 are preemption latencies. 𝑅𝐷 stands for the refresh deadline.

leading to a much larger MPD (MPD3= RD3 – t2). Hence, the main problem is finding the
correct time instance to start the time warp operation. None of those mentioned above are
ideal cases; they show the importance of precisely initiating the ATW operation, which is
not straightforward because the ATW latency is variable.
Let us now look at some of the approaches that cannot be used. We will naturally be

tempted to use the resources of the GPU more optimally such as partitioning SMs or
using real-time scheduling algorithms to avoid the resource contention. Sadly, such software
solutions have not proven to be effective because very little is known about the internals
of the NVIDIA GPUs, which we extensively studied in the course of writing this paper.
NVIDIA only supports the creation of virtual GPUs using its MIG technology [42]. However,
Joshua et al. have recently published a paper [6] where they achieve a degree of partitioning
using a hitherto unknown set of CUDA flags. This is not commonplace as of today and is not
supported by popular graphics APIs like DirectX and Vulkan, which our workloads use. Like
core partitioning, very little is known about the internal scheduling algorithms, and thus till
date there are no proposals on making GPUs behave as competent real-time devices [4, 75].
Perhaps in the foreseeable future, we may see GPUs with the same kind of partitioning and
real-time priority setting features as CPUs; however, that is clearly not the case today.

Given that the software option is not available to us, we propose a very different idea. We
predict the latency of the ATW algorithm – mostly the time we lose due to contention –
and launch the ATW algorithm at exactly the right moment, which is just before the refresh
deadline. To the best of our knowledge, this has not been done before. To build an efficient
predictor, we conduct an elaborate set of characterization experiments, pinpoint the features
that determine the latency and build a decision tree predictor, which is both intelligent as
well as explainable. We show that the proposed algorithm reduces the MPD significantly
without degrading other performance metrics like frame quality, rendering speed, or resource
utilization.
We shall revisit the question of what to run in software and what to run in hardware

several times in the paper and conduct a few thought experiments, where we shall assume
the existence of core partitioning and real-time features in GPUs. In spite of a thorough
AI-based state space exploration, we shall show that the best software implementation is
significantly inferior to a solution that runs ATW in software and the predictor in hardware
(our chosen configuration). Even though our predictor itself runs very quickly, collecting and
processing the features requires bespoke parallel hardware.

Our primary contributions are:
1 We show that it is possible to predict the ATW latency on a GPU using simple metrics
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that are collected per frame and the values of performance counters. We perform a thorough
characterization to justify these metrics.
2 We compare the performance of various ML-based prediction models and show that a
simple decision tree along with a feedback component (a PID controller) provides accurate
results as compared to other ML-based models with the added benefit of explainability.
3 We were able to decrease the ATW refresh deadline miss rate by 80.6% as compared to a
GPU-accelerated ATW architecture. Our prediction error is a modest 0.22 ms for a refresh
interval of 11.1 ms.
4 We design an AI-based Genetic Algorithm (GA) that explores the entire solution space
for minimizing the MPD and shows that PredATW performs the best.

The paper is organized as follows. Section 2 provides the background of the VR architecture
and ML-based models. Section 3 discusses the motivation for the work. The implementation
details are given in Section 4. Section 5 shows the experimental results. We discuss related
work in Section 6 and finally conclude in Section 7.

2 BACKGROUND

2.1 The VR-Architecture Loop

A brief overview of a typical VR-architecture loop is shown in Figure 2. In a VR system,
the HMD tracker first gathers the user’s position or motion data and then transmits that
information to the application. The application copies the entire data to the GPU memory
and sets up the rendering process. Finally, the rendering system generates two frames for the
two eyes and displays those frames on the head-mounted displays (HMDs). In this process,
a delay exists from the user’s head’s movement to the time at which the image gets updated
on the VR screen; it is known as the motion-to-photon delay (MPD). The MPD should be as
small as possible to provide a good user experience. Time warping is an image reprojection
technique that is used to reduce this delay.
As discussed, time warping maps the previously rendered frame to the correct position

based on the latest head-orientation information. Figure 2 depicts a high-level overview of
this architecture. Note that ATW only applies to head rotational tracking, which means
that the previously displayed frame is modified solely keeping in mind rotational changes of
the head’s position.

UserHMD
tracker

Display
device

Application
Rendering setup

Warped
frame

Rendered 
frame

Time warpTracker
data

Rendering

User
inputs

Fig. 2. Overview of the VR-architecture Loop

2.2 Inter-Frame Similarity

Zhao et al. show [77] that there exists reasonably high Inter-Frame similarity in VR applica-
tions. However, there are cases where genuinely similar frames may have significant MPD
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variations (as explained in Appendix A.1). We will utilize both aspects of VR applications
to predict the ATW latency. Our study utilizes two methods to establish the existence of
inter-frame similarity in a VR application. The first method is to just compare the contents
(after pre-processing). Whereas, the second method is to compare a few frame-specific
features (image features and runtime performance counter based). Let us discuss the first
method here because that relies on prior work whereas the second method will be described
in Section 3; it requires some bespoke mechanisms that we develop. The detailed discussion
is given in Section 3.5.

2.2.1 Method 1: Macroblock Similarity. To calculate the similarity of frame contents, we use
the DCT (Discrete Cosine Transform) based approach mentioned in [7, 20]. In this approach,
the computation of frame similarity is solely based on the DC (zero frequency) coefficients
of the DCT since they capture important features of a frame. We analyze the similarity at
the level of macroblocks to efficiently capture frame differences. A macroblock is a 2 × 2
matrix that has traditionally been used in linear block transform-based image and video
compression [71]. Let the two frames be 𝐴 and 𝐵. We construct 𝑛 macroblock matrices
given as 𝑀1...𝑀𝑛 for each frame. Two frames are similar if at least a minimum number of
macroblocks are similar.

2.3 ML-based Prediction Models

In machine learning, there are two types of prediction problems: classification and regression.
In classification, we look for a model that can assist us with assigning a class to a datum.
Regression, on the other hand, is a method for assigning continuous real values to data
rather than classes or labels. Since we are predicting the ATW latency, our problem falls
under the regression category. A regression model typically uses the Mean Square Error
(MSE) as the loss function.

2.3.1 Linear Regression. Linear Regression is one of the simplest models used for regression.
It tries to find a linear relationship between a dependent variable 𝑌 and a set of independent
variables 𝑋1 . . . 𝑋𝑛. In other words, it fits a straight line or a surface such that the errors
between the actual values and the predicted values are minimized.

2.3.2 Decision Tree Regression. The decision tree is used for both classification and regression
tasks. One of the most essential aspects of this model is its explainability and the fact that its
performance does not get affected by the non-linearity of the data. The decision tree builds
models in the form of a tree. It recursively splits the entire dataset into smaller subgroups
in order to decrease the error. There are two types of nodes in the tree: decision (internal)
nodes and leaf nodes. The root node is a decision node at the top of the tree and covers all
the features. Each decision node has a condition that determines which path to take based o
the values of its features. Whereas the leaf node contains the final predicted outcome.
To build the model, we start with the root node. For deciding on a feature at the root

node, we iterate through all the features and find the optimal split of the dataset. The
splitting of the dataset happens until the error is minimized or a certain threshold is reached
such as a limit on the depth of the tree or the number of leaf nodes. The metric which is
used to decide the splitting of the dataset is the sum of the squared error. This process
is continued recursively. To predict the value for a given data point, we traverse through
the entire tree following the conditions present at the decision nodes and reach a leaf node,
which gives the final output.
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2.3.3 Random Forest Regression. Random Forest, as the name implies, is a collection of
decision trees. It combines the results of these decision trees to get the final result. This
merging of the outcomes from various models or weak learners to produce the final result
is known as ensemble learning. First, we randomly divide the dataset into 𝑘 parts. Then,
decision trees are built independently for all the parts. During the prediction process,
outputs of all the individual decision trees are averaged out to yield the final outcome.
The disadvantage of this model is that it needs rigorous training, hence is slower and more
complex than a regular decision tree, even though may produce better results.

2.3.4 Gradient Boosting Regression. A gradient boosting regressor is also a variant of
ensemble methods. It builds multiple decision trees and then combines their outcomes to
produce final results. Unlike the random forest regressor, it creates regression trees from
residuals—the difference between the actual and expected output. These residuals and
features are used to train regression trees and the residual predicted by these models are
incorporated into the input model. This process is repeated several times and the input
model is pushed towards the correct prediction.

2.3.5 Convolutional Neural Network (CNN). A CNN is a type of neural network that is used
for prediction purposes. We do not use CNNs in our case because of the following reasons.

∙ The structure of a CNN is very complex, each of its layers uses multiple multipliers
and adders. Hence, it becomes slow and also requires a lot of storage. Since we want
to predict the ATW latency so that the MPD is reduced, it is not suitable to have a
predictor with a large delay.

∙ The second reason is that CNNs are not explainable. We cannot tell how each feature
is contributing to the final prediction. As we want to analyze the application’s and the
system’s behavior, we need an explainable model.

3 MOTIVATION

In this section, we shall first show the list of benchmarks that we use for experiments
and then discuss the motivation for the methodology. Then, we evaluate the latency of
GPU-accelerated ATW to identify the factors other than the time warping operation itself
that are contributing to the latency overhead resulting in a larger MPD. After that, we show
that in a VR application, there exists a substantial similarity between consecutive frames,
which our predictor needs to exploit. Finally, we note that since the resolution of the foveal
part of the human eye is very high, there is a very strong need to reduce the MPD as much
as possible – this motivates our approach.

3.1 Overview of the Benchmarks

Table 1 shows the benchmarks used in this study. Orange Room is a benchmark test
included in the VRMark benchmark suite [61]. The rest of the benchmarks are well-known
VR applications and taken from NVIDIA VRwork [46] and Steam [64] similar to prior
work [72, 73]. For a more accurate evaluation of the impact of the workload size on our
solution, we render the applications at various resolutions (mentioned in Table 1).

3.2 Methodology

In this paper, we propose a method to predict the ATW latency before hand to reduce the
MPD. The proposed predictor uses a few features (as shown later in Table 4). The features
can be categorized into the following groups: frame-specific features (FS), parameters of the
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Table 1. VR benchmarks

Abbr. Name Platform API Resolution

SPZ Sponza NVIDIA VRWorks [46] Vulkan 1080p
IM InMind VR [34] Steam DX11 1080p
IM2 InMind VR 2 720p
SH Shooter Custom DX11 1080p
SH2 Shooter 2 720p
Sanc Sanctuary VR [21] Steam DX11 720p
AS Altspace VR [3] Steam DX11 1080p
OR VRMark [61] Steam DX11 1080p

Orange Room
SM San Miguel NVIDIA VRWorks [46] DX11 1080p
DD Dreamdeck [49] Oculus store [50] DX11 1080p
FH Fun House [65] SteamVR DX11 1080p
LB The Lab [68] SteamVR DX11 1080p

functions responsible for rendering frames (FP), and hardware performance counters. We
use Meta’s Oculus Quest 2 as our baseline VR device because it is the most popular VR
headset currently due to its affordable price and ease of use; it accounts for almost 80%
of the market share [17]. Oculus Quest 2 works in two modes: Standalone and Tethered.
In the standalone mode, the headset does not need a PC or smartphone and rendering is
performed on the headset itself. In the tethered mode, on the other hand, the headset only
acts as a screen for a PC or smartphone to give a VR experience. To decide which mode we
should use for this paper, we need to answer the following research questions.
RQ1: Can we use the standalone mode for this work?
To predict the ATW latency, the predictor needs the values for many features. Unfortu-

nately, there is no profiler or software that can provide these values for the standalone mode
of Oculus Quest 2. Hence, we cannot use the standalone mode, leaving just the tethered mode
as an option. For the tethered mode, there is better profiling support available. The default
choice for the profiler is the Oculus Debug Tool [36], which is a part of the official SDK
(software development kit). Yet it only exposes highly abstracted performance parameters
such as the frame rate and the total ATW latency, hence it is not suitable for this work and
we thus needed to look for other profilers.

For the tethered mode, NVIDIA provides developer tools that enable the user to profile
VR applications running on an NVIDIA GPU. These tools also provide the instruction
traces for a running VR application. Hence, these tools can be used to collect the values
for all our features. Details of this profiling tool, NVIDIA Nsight Graphics [45], are given
in Section 3.3. Thus, our default configuration for experiments is the tethered mode of the
Oculus device with a profiler from NVIDIA’s tool suite. But before we move forward, we
have two more questions to answer.
RQ2: Is the profiler enough or do we need the simulator to collect the features?

Since the implementation details of the time warp algorithm used by Oculus Quest 2 are
not available publicly, we need to simulate it. We adopt the time warp algorithm employed
in the popular toolkit ILLIXR [27] and implement it on our own. First, we capture the
instruction traces of the VR application running our time warp algorithm by the profiler
and then run those traces on the simulator to collect the values of features. One more thing
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to notice is that as discussed earlier, there are three categories of features. We can collect
the features of the first two categories (frame-specific and functions called during rendering)
directly with the help of the profiler. However, the third category which consists of the
GPU’s performance counters are quite challenging to collect [38], and thus a simulator is
more useful.
RQ3: Can the proposed algorithm be implemented entirely in software?
A VR application or any other user program uses APIs to communicate with the GPU.

APIs such as DirectX, OpenGL, and Vulkan translate high-level code to shader commands
and directly communicate with the GPU’s device driver. To run the predictor in software, we
need to extract GPU-related performance counters and other features within the application
itself. However, the latency of this feature collection process in software is very high (refer
to Section 5.8).
Therefore, we propose using a hardware predictor. Here one may ask why we cannot

offload the ATW algorithm to specialized hardware where we won’t require a predictor. But
in this case, an external component incurs a significant HW overhead [59]. Our proposed
predictor is a simple decision tree with a few parameters; it has an insignificant hardware
footprint. Another alternative to the HW predictor is to use spatial multiplexing, in which
we dedicate a small number of GPU cores to ATW tasks so that there is no preemption and
the ATW latency is fixed. But this approach results in inefficient utilization of GPU cores
and does not provide satisfactory results (refer to Section 5.8).

3.3 Experimental Setup

As discussed in Section 3.2, we use one of the profilers from the NVIDIA tool suite. Since
we need to debug the application at the frame-level, we use NVIDIA Nsight� Graphics
(NG) [45, 47], a profiler that helps us analyze every single frame in a stream of frames. This
tool works seamlessly with various graphics APIs such as DirectX [37], Vulkan [23], and
OpenGL [22]. In a graphics application to render a frame, the application issues several
draw calls that are translated to PTX/SASS code. NG profiles each frame of an application
at the granularity of draw calls. Using this profiler, we collect the following information:
contents of the rendered frame, number of draw calls required for rendering the frame, the
shader/kernel executed by the GPU (instruction traces), and the number of instances of
each draw call, i.e., #software threads. We also capture the final rendered frame to calculate
its perceived brightness [10].
The collected instruction traces are run on a simulator. We use the latest version of

GPUTejas [35], a Java-based cycle-accurate GPGPU simulator, which simulates the archi-
tecture of GPU NVIDIA RTX�A4000. The configuration details of the simulator are given
in Table 2. Here one can argue that if we are using the simulator-based approach, we can
simulate the architecture of the GPU present in Oculus Quest 2 and run the instruction
traces on that to imitate the standalone mode of the device. We simulate this architecture
too on our simulator for the sake of completeness. For obvious reasons, we get much better
results when we simulate the standalone mode as opposed to the tethered mode because
the GPU on the HMD is far weaker (refer to Figure 4). However, the challenge is to show
much better operation in the tethered mode because a desktop has a powerful multicore
CPU and GPU; hence, our primary results are for the tethered mode because we wish to
show a benefit for the case that is more disadvantageous to us, i.e., the tethered mode.
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Table 2. Platform Configuration

Parameter Type/Value

Desktop Configuration

CPU Intel®Xeon®Gold 6226R

@ 2.90GHz
GPU NVIDIA RTX�A4000

GPU memory 16 GB

VR Device Oculus Quest 2

Simulator Configuration

Tethered Mode Standalone Mode

GPU Architecture Ampere [41] Kepler [40]

Clock Frequency 1 GHz 1 GHz
#TPCs, #SMs, #CUDA Cores 24, 48, 6144 8, 16, 128

Warp Size, #Warp schedulers per SM 32, 4 32, 2

Register file size per SM 256 KB 64 KB
I-cache size per SM 8 KB 4 KB

L1 data cache per SM 128 KB 64 KB

L2 cache size 4 MB 1.5 MB
Main memory 16 GB 2 GB

3.4 Latency of GPU-Accelerated Asynchronous Time Warp

In this section, we measure the latency of the GPU-accelerated ATW algorithm (ATW). As
mentioned earlier, we adopt the time warping algorithm from ILLIXR [27], a well-known
open-source XR system and testbed that implements the entire pipeline of a VR/AR
application. The inputs to the time warp algorithm are the frame that needs to be warped
and the HMD (head mounted display) matrices at the render and display times. These HMD
matrices are 4×4 homogeneous matrices that contain the head’s position at a given time.
Frames and head poses are collected from the NG profiler and the VR headset, respectively.
In this case, we do not take consecutive frames rendered by the application rather we select
those frames that are graphically more complex so that we have more variation in the
inputs because consecutive frames are generally similar in nature as discussed in Section
2. We shall delve into the inter-frame similarity in Section 3.5. To evaluate the latency,
we simulate two types of real-life scenarios in GPUTejas: 1 All the cores are utilized by a
single VR application which uses GPU-accelerated ATW. 2 The VR application shares the
graphics resources with another application. We do not consider the case where more than
two applications run on the same GPU because it is generally not the case. As discussed,
the ATW kernel must preempt the already running rendering task. NVIDIA GPUs with the
latest architecture, such as Ampere, support a fine-grained preemption model for graphics
tasks that work at pixel-level [43]. We use the same model in our simulator by preempting
at the thread-level because the pixel is merely another thread.
The ATW latency has three components: time warp latency, preemption latency, and

context-switch time. To show that the preemption of the rendering process is the main reason
for the increased and uncertain ATW latency in GPU-accelerated ATW, we first plot the
ATW latency (refer to Figure 3a) and then we measure only the time warp latency ignoring
the preemption latency and context-switch time (refer to Figure 3b). The large variation
in the ATW latency and almost constant time warp latency for a particular benchmark
and across the benchmarks show that the ATW latency depends upon the frame whose
rendering is getting preempted and the graphics resources’ availability.
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Fig. 3. (a) Variation in the ATW latency; (b) Latency of the time warping operation.

We make the following observations from the figure:
1 The maximum ATW latency is almost 15 ms which is much larger than the latency of
the time warping kernel (≈ 2.02 ms).
2 There is a lot of difference among the minimum, maximum and average values of the
ATW latencies for a benchmark, which means that the ATW latency varies a lot across
frames and it is highly unpredictable and uncertain. The results shown in Figures 3a and 3b
confirm that the preemption of the rendering process results in a large ATW latency value
(2 𝑚𝑠 to 15 𝑚𝑠).
3 For a particular benchmark, the maximum and average values of the time warping kernel
are roughly the same, which means that it takes almost the same amount of time irrespective
of the frame complexity and head poses. The maximum difference between the average and
maximum value of the latency is 0.04 ms for all the benchmarks.
As mentioned in Section 3.3, we also simulate the architecture of the GPU present in

Quest 2. Figure 4 shows the ATW latency of all the benchmarks for this case. We make the
following observations from the figure:
1 The ATW latency ranges from 3 ms to almost 22 ms across benchmarks; this was 2 ms to
15 ms for the previous case (refer to Figure 3a). This is because Adreno GPU is slower than
NVIDIA RTX�A4000 in terms of the processing capabilities, memory size, and memory
bandwidth.
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3.5 Inter-Frame Similarity

To show the similarity between frames, we extracted 100 consecutive frames from every
application.

3.5.1 Frame-Level Similarity: As mentioned in Section 2.2.1, we use the macroblock similarity
metric to find the similarity at the frame-level. Figure 5 shows the macroblock similarity
percentage between two consecutive frames. It is evident from the figure that for all the
benchmarks except for one benchmark (OR), all the frames are at least 70% similar to their
neighboring frames. Even for OR, 90% of the frames have at least 70% inter-frame similarity.
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Fig. 5. Macroblock similarity percentage between two consecutive frames (X)

3.5.2 Feature-Level Similarity . To check the similarity, we collect a few frame-specific
features/attributes (Table 3) from various sources and compare the corresponding values. For
brightness, we take the rendered frame from NG and calculate the value using Equation 1 [10];
it is a function of the 𝑅𝐺𝐵 values. For opacity, we read the frame’s alpha channel and count
pixels for which the normalized alpha value is >0.5 [1]. #Threads and #Pixels are collected
directly from NG. GPUTime is obtained from the simulation results. Comparing the trends
in the sub-figures (Figure 6) , we make the following observations:
1 For 75% of the frames, variation in all the features’ values from the previous frame’s
values is at most 25%.
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Table 3. Frame-specific attributes

Parameter Abbr. Description Collected From

Brightness 𝐵𝑟 Perceived brightness of the NG

frame [10]

#Threads 𝑇ℎ Number of software threads
spawned for drawing the frame

NG

#Pixels 𝑃𝑥 Number of pixels rendered in a NG
frame

Opacity 𝑂𝑝 % of opaque pixels NG

GPUTime 𝐺𝑡 GPU execution time or GPUTejas
rendering time (in ms)

ATW Latency 𝐴𝑡 ATW Latency (in ms) GPUTejas

2 Features that show almost constant behavior across the frames are brightness, #threads,
and #pixels.

𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 = 0.299×𝑅+ 0.587×𝐺+ 0.114×𝐵 (1)

where R, G, and B represent the average pixel intensities in each channel.

3.6 Resolution of the Human Eye and Low MPD

A human with 6/6 vision has a resolution of 0.59 arc minute per line pair [16] (resolution: ≈
0.3 arc-minutes). Now assume that the head rotates at the rate of 200 degrees per second [66]
(in a fast VR game). The minimum eye resolution thus corresponds to 0.02 ms. If the MPD is
more than that we will perceive a lag, which may lead to discomfort and visual disorientation.
We have sadly experienced this on Oculus Quest 2 when we were playing a Harry Potter
style game with a broom and an orb. This calculation is however theoretical and the vision
system can compensate to some degree. Thus, the concept of JND (just-noticeable difference)
has been proposed, which represents practical limits (measured in lab settings). The JND
for regular yaw-based head motion has been measured to be as low as 1 ms [30] when
there are other stimuli that last for more than 60 ms, and roughly 3.2 ms without other
stimuli [29]. For haptics-VR applications for robotic arms, the JND limit is 2 ms [2]. We
conducted various in-vivo experiments and found that the JND for HMDs is even lower
than 1 ms (refer to Appendix A.4). Hence, this means that we cannot miss frame deadlines
(one frame appears every 11 ms) or delay ATW by more than 0.5 ms. The differences will
be perceived by at least some users with good visual acuity. This explains why in prior
works [73], the authors have tried to reduce the MPD by 4-5 ms and why the
gaming industry is moving towards 144 to 360 Hz displays.

Insights:
1 The ATW latency varies from 2 ms to 15 ms across our benchmarks. Inter-process
resource contention on a GPU accounts for this.
2 There exists high inter-frame similarity in VR applications (≈ 80% of the time).
3 The human vision system is very sensitive to deadline misses and latencies of even
1 ms.
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Fig. 6. Percentage variation from the last rendered frame’s value (denoted by 𝑋)

4 IMPLEMENTATION

As mentioned in Section 2, our aim is to predict the ATW latency for VR applications.
We broadly divide our implementation into various sub-components as follows: 1 We first
create an environment that simulates the GPU-accelerated ATW algorithm. 2 We then
identify the input features for the regression model. 3 We run the simulations to collect
the sample data and divide the collected data into a training and testing set. 4 We then
train multiple predictors and compare their performance for the test data. 5 After selecting
the best performing predictor, at run time we check its performance in terms of the refresh
deadline miss rate and how close the completion of the time warping is to the display refresh
point. 6 We finally design a hardware for our predictor.

4.1 Simulation Environment

As mentioned in Section 3.5, we use the GPUTejas [35] simulator for our experiments. Table
2 shows the simulator configuration. We implemented two types of scenarios: 1 Only one
benchmark runs with GPU-accelerated ATW on the simulator. Since, the display refresh
rate is 90 Hz, in the period of every 11.11 ms, we need to preempt the frame’s simulation
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and initiate the ATW operation. 2 The VR benchmark shares cores with a desktop game
and a CUDA application. For this, we divide the cores equally among the applications and
the cores are assigned to the other running application if one application finishes.

4.2 Identifying the Features

The important task in designing any prediction model to predict the ATW latency is to
define the set of input features. Good feature selection is critical to the success of the model.
In our case, the selected features must be correlated with the frames’ characteristics and the
amount of resource contention. The features should also have a correlation with the ATW
latency that we want to predict.

To achieve this, we must first examine the GPU activities in operation at the time of ATW
initiation. To capture this information, we plot various micro-architectural parameters and
performance counters for the GPU as a time-series graph. A smaller portion of the time-series
plot is displayed in Figure 7, which shows the MPDs for three different refresh intervals. In
the figure, we have four vertical lines, each representing a specific type of event. The red
line shows when ATW is invoked, the blue line represents when preemption completes and
the time warp operation starts, the green line shows when the time warp ends, and the grey
line indicates when the display is refreshed. Ideally, we would want the red and green lines
to be as close as possible. The time lost in clearing the active queue (preemption latency) is
the time interval between the red and the blue lines.
In Figure 7, we can see that the interval between the red and blue lines varies across all

the three cases, while the blue and green lines remain equally spaced. This indicates that
the time warp latency remains almost constant across frames while the preemption latency
varies. Moreover, the rate at which the active queue empties differs. The reason is as follows.
When ATW is invoked, the GPU treats it as a high-priority thread and starts preempting
all currently running threads present in the active queue. These threads could belong to
the rendering task of the primary VR application or could belong to any other applications
that were also running on the GPU. We have incorporated a thread-level preemption model
similar to the latest NVIDIA GPUs (refer to [43]), which means that every warp must be fully
executed and the active queue needs to be emptied before starting the time warp operation.
Since, GPUs typically execute thousands of threads concurrently to achieve high throughput,
and each thread may have a different execution time, the preemption latency becomes large
and unpredictable. The most important variable here is the number of semi-executed warps
that are waiting to finish. They may be delayed for a lack of access to GPU’s computational
resources or memory values. Examples of such threads that pose such problems are as follows
(as seen in our experiments): threads performing vertex transformations, computation of
lighting effects (ambient, diffuse, specular, and other forms of lighting), etc. Recall that we
can run the time-warping kernel only after the warps have fully finished executing because
the intra-warp context switching is still not there in NVIDIA GPUs. To see such effects in
real-world devices, please refer to Appendix A.1.3.
The summary of this discussion is that the variation in preemption latency is correlated

with the workload on the GPU at the time of ATW initiation. For instance, Case 3 had fewer
active threads, which completed faster. However, in the first two cases, the total number
of active warps was large, resulting in a more extended preemption latency as compared
to Case 3. But, there is a difference in the two latencies because it depended upon which
threads were getting executed and the nature of the work they were doing. All of this needs
to be captured by our decision tree. Hence, we select these hardware performance counters
as features because these are highly correlated with the MPD (refer to Appendix A.2).
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As mentioned earlier, the ATW latency depends upon the frame currently getting rendered
and our model should be able to learn the frame’s behavior. Hence, we consider a few frame-
specific metrics as input features. These features are #vertices,#pixels rendered, #draw
calls, and #threads for those draw calls. We used these features to calculate the inter-
frame similarity too in Section 3. Similarly, the level of opacity in a frame is an important
characteristic that we include as one of the input features. Any opaque regions in the frame
have an impact on the complexity of the rendering process. This is because transparent
fragments are not subjected to the pixel shading process. Therefore, the complexity of the
shader varies depending on the opacity of the frame, which in turn affects the preemption
latency [1]. This information can be retrieved from the alpha channel which is associated
with the frame buffer and stores a related opacity value for each pixel. We define this feature
as opacity. Similarly, the GPU execution time or rendering time of a frame depends upon
the resources’ availability and the frame’s complexity (refer to Section 3.4). Hence, we make
the GPU execution time an input feature. Since, the frame which the time warping preempts
is not rendered completely, we do not have its execution time at the time of prediction. So,
we take the execution time for the last rendered frame. In Section 3.4, we observed that
the ATW latency varies across frames due to the activities associated with the preemption
of the current frame’s rendering tasks, in other words, on the current resource usage. This
means that it incorporates the effect of resource contention. As a result, we use the ATW
latency of the previous refresh interval as one of the input features.

We only take into account those parameters that model the characteristics of the frames
or in any way influence the resource contention because these are the primary factors
affecting the prediction. The head pose, for instance, is one possible feature because the
time warp algorithm takes the head pose as an input. However, our simulations show that
the computational part of the ATW procedure remains unchanged regardless of the features’
values (Refer to Figure 3b). Thus, we do not list it among our features. Table 4 shows all
the input features. Note that we have a column that says whether the data is for the current
frame or the previous frame. Many features such as the rendering time can only be collected
for the previous frame; they are in the process of getting computed for the current thread.

It is worth noting that we have carefully selected the features for prediction in our approach
to make it insensitive to the number of other applications (noise) running within the GPU.
To clarify, let us take the example of the number of active warps feature. The predictor is
only concerned with the total number of active warps at a particular moment, irrespective of
which applications generated those warps or how many of them did so. The same principle
applies to the other features as well.

4.3 Prediction Model

We implement four regression models, as explained in Section 2.3. We use scikit-learn v1.0.1
[57], an open-source machine learning library, for implementing these regression models.
The entire dataset is first divided into disjoint training and test sets. The splitting of the
dataset is done randomly. Our results show that the Decision Tree Regressor gives the
least prediction error. Moreover, as mentioned in Section 3, the decision tree provides an
explainable model and we require explainability in our case. We check the importance of
all the features in the prediction process and the sensitivity of the model with respect to
some of these features. Here, one concern is the generalizability of the predictor for the
different types of graphics applications and ATW algorithms. Section 5.1 shows that the
predictor works well across benchmarks. Regarding ATW algorithms, as of today, all the
time-warping algorithms use the same core computations: matrix (re)projections, and for
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Table 4. List of features

Feature Abbr. Description Type Source Frame

GPUTime 𝐺𝑡 Frame rendering time HPC GPUTejas prev

Prev ATW Latency 𝐴𝑡 The ATW latency HPC GPUTejas prev

L2 Miss* 𝐿𝑚 L2 cache miss rate HPC GPUTejas prev

SM Active* 𝑆𝑀𝐴 (Total cycles when SMs were active/

total elapsed cycles)*100

HPC GPUTejas prev

Active Warps* 𝐴𝑊 # active warps HPC GPUTejas prev

Active Instructions* 𝐴𝐼 # executed instructions HPC GPUTejas prev

DRAM Read Bandwidth* 𝐷𝑅 (DRAM read cycles / total elapsed cy-

cles) * 100

HPC GPUTejas prev

DRAM Write Bandwidth* 𝐷𝑊 (DRAM write cycles / total elapsed
cycles) * 100

HPC GPUTejas prev

Opacity 𝑂𝑝 % of opaque pixels FS NG prev

#Pixels 𝑃𝑥 # rendered pixels FS NG prev

#Vertices 𝑉 𝑟 # vertices in the frame FS NG curr

#Threads 𝑇ℎ # software threads FP NG curr

#DrawCalls 𝐷𝑐𝑙 #draw calls FP NG curr

NG: Nsight Graphics, HPC: HW performance counter, FS: Frame-specific, FP: Function parameter

*: These values are for the duration in which the preemption is happening.

them, our predictor works nicely. We don’t currently have enough information to establish
whether our prediction will work for a drastically different method that hasn’t yet been
developed.
The decision tree is an open-loop system and does not capture the short-term history.

Hence, we propose a solution based on cascaded learning, which uses a simple PID controller
to learn from previous prediction errors in the recent past – this enhances the accuracy of
the predictor. At any given time 𝑡, the controller takes the previous prediction error 𝑒𝑡−1,
computes its PID component 𝐸𝑡, and feeds it to the decision tree along with the features ⟨𝑓𝑡⟩.
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This allows for a more accurate prediction and better performance overall. Equation 2 shows
that 𝐸𝑡 consists of three elements: the scaled version of the most recent prediction error (𝑃 ),
the integration of past errors over time (𝐼), and the rate of change in the prediction error
(𝐷). The complete design of the proposed predictor is shown in Figure 8.

To check the robustness of our prediction model, we rely on the leave-one-out cross-
validation (LOOCV) [12] a method to avoid overfitting. In this approach, we leave a data
point out and train the model on the rest of the date points. This process is repeated for
every single data point in the dataset (basically rotate the train-test set). The final prediction
accuracy is the mean accuracy computed across all train-test pairs.

𝐸𝑡 = 𝑃 + 𝐼 +𝐷

𝑤ℎ𝑒𝑟𝑒,

𝑃 (𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙𝐶𝑜𝑛𝑡𝑟𝑜𝑙) = 𝑘𝑝 * 𝑒𝑡−1

𝐼(𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝐶𝑜𝑛𝑡𝑟𝑜𝑙) = 𝐼𝑡−1 + 𝑘𝑖 * 𝑒𝑡−1 *∆𝑡

𝐷(𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝐶𝑜𝑛𝑡𝑟𝑜𝑙) = 𝑘𝑑 * (𝑒𝑡−1 − 𝑒𝑡−2)/∆𝑡

∆𝑡 = 0.011𝑠, since the refresh interval is 11.11 ms.
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Fig. 8. Design of the proposed predictor. ⟨𝑓⟩, 𝐸(𝑡), and 𝑒𝑡 are features, the controlled error, and the
prediction error at time 𝑡, respectively.

4.4 Workflow of PredATW

After identifying a suitable ML model and features for predicting the MPD, we will explain
the workflow of the PredATW method in detail in this section. The proposed method can
be divided into two stages: feature collection and prediction using a decision tree-based
predictor. All the features required for the prediction, except Opacity, are either available
from the application at runtime or are hardware performance counters that can be directly
captured from the GPU. Therefore, we propose a hardware module to calculate opacity. For
the second stage i.e. prediction, we propose a hardware structure too. Hence, the proposed
hardware accelerator has two components: 1 opacity calculator and 2 a decision tree-based
predictor. As mentioned in Section 1, the ATW runs once in each refresh interval, and we
need to predict its latency for that interval. Therefore, PredATW runs once in each refresh
interval, just after the display refreshes. To delay the launch of the ATW kernel based on
the predicted latency, we envisage a high-resolution timer that raises an interrupt when
ATW needs to be started. Then, the OS sends a signal to the application, which invokes
the ATW function registered as a callback. The final architecture for the proposed design is
shown in Figure 9. The details of the hardware accelerator are given in Section 4.5.
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4.5 Hardware Accelerator

As mentioned in Section 4.4, the proposed HW accelerator consists of two components. One
calculates opacity, and the other is the predictor (decision tree). We design the hardware
using Verilog. The opacity computation simply takes values from the frame buffer’s alpha
channel and count pixels with an alpha value greater than 0.5 (8-bit binary representation:
10000000) [1]. To determine if a pixel’s alpha value exceeds the threshold, we check the most
significant bit (MSB) of each pixel. If the MSB is 1, then the value exceeds the threshold.
We do not need a comparator to do this; we can simply count the number of pixels with
MSB as 1 by adding the MSB of all the pixels. To compute the opacity, we need to transmit
the alpha channel of the frame from the GPU memory to the accelerator through the PCIe
bus. Since we only require the most significant bits (MSBs), we transmit only those. The
data is transferred using the GPU’s PCIe Gen4 bus with a bandwidth of 64 GBps. The
memory interface bandwidth of the NVIDIA RTX A4000 is 256 bits, so we cannot access all
the data at once. Therefore, we need to add these 256 bits before the next set of bits arrives.
To achieve this, we use a binary adder tree of depth 𝑐𝑒𝑖𝑙(𝑙𝑜𝑔2(256)) which enables us to add
256 bits in parallel. We do not compute the opacity in percentage because we only need
relative values. Furthermore, we implement the decision tree as a tree of multiplexers. Our
decision tree has 103 leaf nodes and a depth of 10. There are 102 decision nodes, so we have
102 multiplexers. The select signal of each multiplexer is the threshold value of that decision
node. We store the values of decision nodes and leaf nodes in registers. For leaf nodes, we
use registers of 8 bits. Due to a wide range in threshold values, decision nodes’ register sizes
are not uniform across the tree. The minimum and maximum sizes of the registers are 5 and
32, respectively. The overheads of the hardware accelerator are the overheads of PredATW.

5 RESULTS AND ANALYSIS

As discussed earlier, we use a simulator-based approach to evaluate our proposed design,
PredATW. The configuration details of the physical system and the simulator are given in
Table 2.

5.1 Performance of Various Predictors

As mentioned in the previous section, we implement four prediction models: random forest,
linear regression, gradient boosting, and a decision tree. We use the same set of features for
all the models. We compare the performance of these models in terms of the Mean Absolute
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Error (MAE). The formula for MAE is shown in Equation 3.

𝑀𝐴𝐸 =

∑︀𝑁
𝑖=1 |𝑌𝑖 − 𝑌𝑖|

𝑁
(3)

5.1.1 Performance without the PID Controller. The results are shown in Figure 10. We
observe that the decision tree-based regressor performs the best among all the models. It
achieves an error of 0.33 ms on an average for all the benchmarks which is very modest. The
prediction error of the decision tree is less than 0.38 ms for all the benchmarks.

Consider the case of the random forest predictor. The average error in this case is 0.55 ms,
which is 83.3% greater than the prediction error in the case of the decision tree. In spite of
having 100 randomly created decision trees, we were not able to observe a higher accuracy.
There is no benefit gained by the randomness. On the other hand, each decision tree was
trained with fewer samples, which reduced the accuracy of all the constituent trees. Consider
the case of linear regression, the average error we get for this is 0.41 ms, 37% greater than
that of the decision tree. We can infer that the relationship is far from linear. Hence, such
simple models will not work. Similar to random forest, the complex gradient boosting model
has a prediction error of 0.42 ms that is 40% more than the prediction error of the decision
tree.
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Fig. 10. MAE of the different prediction models

5.1.2 Performance with the PID Controller. As mentioned in Section 4.3, we include a
feedback component in the predictor to improve the performance of the predictor further.
Figure 11 shows the MAEs after using the PID component of prediction error as an input
feature to the predictor. Similar to the previous case, the least prediction error is for the
decision tree i.e. 0.22 ms. Figure 12 shows that the average error of the decision tree is
reduced by 31.37%. To understand the impact of the PID controller on the prediction error
better, please refer to Appendix A.3.

5.2 Effect of the Predictor on the MPD

To see the effect of our proposed approach on the MPD, we record the deadline miss rate
with and without the predictor. We also see how close the completion of the time warp
operation is to the display refresh point. As mentioned in Section 4, the display refresh rate
is 90 Hz, which means that the display is refreshed every 11.11 ms. We analyze the refresh
deadline miss rate for the following three cases:
1 GPU-accelerated ATW, which is the Baseline architecture.
2 ATW is invoked just after the frame is rendered (no preemption) or before 2.02 ms of the
screen refresh operation, whichever occurs first. Recall that 2.02 ms is the average latency of
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Fig. 11. MAE of the different prediction models
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Fig. 12. Improvement in the MAE of the decision tree after applying the PID control

the time warping kernel. (Refer to Figure 3b) (we refer to this as the Eager approach). Note
that simply starting it before 2.05 ms (maximum latency) will not work because in this case
there will always be a deadline miss unless the preemption latency is very close to zero.
3 ATW is invoked on the basis of the predicted ATW latency, which is our proposed
approach. We call it PredATW.

5.2.1 Refresh Deadline Miss Rate. As mentioned in Section 1, when the ATW fails to get
completed before the display refreshes, the MPD is increased and the user sees an anomalous
or blurry view of the world. Figure 13 shows the refresh deadline miss rates for the three
cases. The figure shows that for all benchmarks, our predictor decreases the deadline miss
rate. For GPU-accelerated ATW (the baseline), the deadline miss rate starts at 5% and goes
up to almost 27% for all the benchmarks. The average miss-rate is around 9.8%, which is
significant.

For the Eager case where the ATW is invoked just after the frame is rendered, the average
deadline misses are less than 1% . However, this will ensure a large MPD and the reason
for this is clear: we have a large gap between the time that ATW finishes and the display
refresh point. The result shows that PredATW (our scheme) reduces the number of deadline
misses substantially: from 9.8% to 1.9%. In this case, the miss rates are in the range of 1.2
to 4.1 % for all the benchmarks. The relative reduction in the deadline misses is substantial.
The overall reduction in the miss rate of PredATW is 80.6%.

5.2.2 ATW Completion → Display Refresh Point. In Section 1, we discussed that the MPD
is increased if ATW is finished too early before the refresh deadline. Table 5 shows that
PredATW brings the ATW completion much closer to the refresh deadline and reduces the
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Fig. 13. Effect of the predictor on the refresh deadline miss-rate

Table 5. The average duration between ATW completion and the display refresh point (milliseconds)
when a deadline is not missed.

Benchmarks Baseline Eager PredATW

SPZ 3.17 6.31 0.26

IM 3.28 8.78 0.34

IM2 2.34 6.96 0.19

SH 3.58 7.3 0.42

SH2 3.25 5.63 0.36

Sanc 2.67 6.87 0.21

AS 2.87 7.12 0.35

OR 2.66 7.01 0.23

SM 3.75 8.10 0.24

DD 3.25 7.65 0.36

FH 3.34 6.87 0.32

LB 3.15 5.78 0.29

Mean 3.10 7.03 0.29

MPD. We observe that as compared to Eager, PredATW reduces the duration by 92.4%. It
is also 90.6% lower than Baseline. The important point to note is that since the prediction
error is very less, for 𝑃𝑟𝑒𝑑𝐴𝑇𝑊 this duration is on an average less than 0.42 ms all the
time, which will most likely not be perceived (see Section 3.6). For the other two schemes,
we saw a lot of high values in our results which will be perceived by the users.

5.3 Sensitivity Analysis

As mentioned in Section 3.3, we identify a list of hardware performance counters that show
the contention effect on the ATW latency. To show how these features affect the prediction
error, we train and test the model with and without these features.

5.3.1 Effect of Different Feature Combinations on the Prediction Error (Ablation Study). The
features used for the proposed predictor are classified into three categories: HPCs, frame-
specific features (FSs), and function parameters(Fps). We try different feature combinations
to show the importance of each category (refer to Figure 14). The average prediction error
when considering all the features is 0.22 ms, which is increased by 59%, 850%, and 459%
when considering only HPCs, frame-specific features, and function parameters, respectively.

, Vol. 1, No. 1, Article . Publication date: July 2024.



22 Akanksha Dixit and Smruti R. Sarangi

SPZ IM IM2 SH SH2 Sanc AS OR SM DD FH LB Avg
Benchmarks

0.0
0.5
1.0
1.5
2.0
2.5

M
ea

n 
Ab

so
lu

te
Er

ro
r (

in
 m

s)
FSs Fps HPCs Full

Fig. 14. Effect of various feature combinations on the prediction error

5.4 Explanability of the Predictor

A common concern with machine learning-based predictors is that they are opaque and
difficult to understand. However, we delve into the internals of the prediction process and
investigate the decision making process. We examine the features utilized in the decision
paths in great detail and obtain a bunch of insights that are intuitively explainable. We
have used abbreviations for features instead of their full names. Table 4 provides the list of
features with their abbreviations.

5.4.1 Analyses of the Decision Paths. We have conducted an extensive analysis to gain a
deeper understanding of which features are used in the decision-making process. To achieve
this, we thoroughly reviewed the decision paths of all test data points and kept track of how
many times each feature was used at least once in the decision making process. We have
presented our findings in Figure 15. We make the following observations from the figure:
1 We note that 𝐴𝐼 and 𝑆𝑀𝐴 are used in 100% of the data points. This was expected
because we have already established that these features have a strong correlation factor with
the MPD.
2 𝐺𝑡, 𝐷𝑅, and 𝐸𝑡 are used in almost 50% of the data points. This indicates that these
features are also essential in the decision-making process.
3 The remaining features are also utilized in the decision-making process to a decent extent.
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Fig. 15. Percentage of the test data points containing a feature in their decision path

5.4.2 Importance of each feature. To show the importance of each feature in the prediction
process, we find the frequency of each feature in the decision path for 100 representative test
samples and plot them using the radar plot in Figure 16. We make the following observations
from the figure:
1 The radar plot in the figure shows that three features – AI, AW, and SMA – are used the
maximum number of times in the decision paths.
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2 𝐺𝑡 and 𝐸𝑡 play a major role in the sense that they are close to the root and are used to
make the first few decisions. This basically means that the predicted value is very sensitive
to this parameter.
3 𝐷𝑅 is at the other end of the spectrum – it is used 0-2 times.
4 The rest of the features have a moderate frequency and thus have a moderate amount of
sensitivity.

Table 6. Platform Configuration

Parameters GPU 1 GPU 2 GPU 3

Mode Tethered Tethered Standalone

GPU Architecture Ampere [41] Ada Lovelace [44] Kepler [40]

Clock Frequency 1 GHz 1 GHz 1 GHz
#TPCs, #SMs, #CUDA Cores 24, 48, 6144 38, 76, 9728 8, 16, 128

Warp Size, #Warp schedulers per SM 32, 4 32, 4 32, 2
Register file size per SM 256 KB 256 KB 64 KB
I-cache size per SM 8 KB 8 KB 4 KB

L1 data cache per SM 128 KB 192 KB 64 KB
L2 cache size 4 MB 6 MB 1.5 MB
Main memory 16 GB 16 GB 2 GB

5.5 Effect of Underlying Hardware on the Predictor Performance

To demonstrate how the underlying hardware influences the performance of our proposed
method, we conducted simulations on three different GPU architectures. For standalone
mode, we simulated the architecture of the Adreno GPU that is present in Oculus Quest 2.
For tethered mode, we simulated two NVIDIA GPUs: RTX�A4000 and RTX�4080, based
on the Ampere [41] and Ada Lovelace [44] architectures, respectively. Table 6 provides
configuration details for the simulated architectures.

5.5.1 ATW Latency for Simulated Architectures. Figures 17a, 17b, and 17c show the ATW
latency for the three scenarios (the standalone mode and the tethered mode with two
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Fig. 17. (a) Variation in the ATW latency (Tethered mode with NVIDIA RTX�A4000); (b) Variation
in the ATW latency (Tethered mode with NVIDIA RTX�4080); (c) Variation in the ATW latency
(Standalone mode).

different GPUs). We make the following observations from the figures:
1 The ATW latency ranges from 4 ms to almost 22 ms across benchmarks for the standalone
mode; this is 2 ms to 15 ms for the tethered mode. This is because the Adreno GPU is
slower than NVIDIA RTX�A4000 and RTX�4080 in terms of its processing capabilities,
memory size, and memory bandwidth.
2 Both the NVIDIA GPUs have nearly an equal ATW latency range due to their higher
computational power.

Conclusion drawn from these results: The summary of these results is that the broad
trends across different architectures are the same. Given that our design is meant to capture
those trends, it tends to work well.
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5.5.2 Predictor Performance. Figure 18 shows the prediction accuracy for the three simulated
scenarios. We make the following observations from the figure:
1 The range of the prediction error is very little, i.e., from 0.19 ms to 0.24 ms.
2The average prediction errors for all the three simulation setups are nearly the same and
hover around 0.22 ms. Given these results, we believe that our solution will work for other
setups too (in the future as well).

It is worth noting that despite the differences in the range of the ATW latency across the
three simulation setups and the varying microarchitectural resources, the prediction errors
were nearly identical. This indicates that the prediction accuracy is not influenced by the
underlying hardware and remains more or less consistent across GPU architectures.
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Fig. 18. Performance of PredATW under different design scenarios

5.6 Overheads of PredATW

The overheads of the proposed hardware accelerator are the overheads of PredATW. As
mentioned in Section 4.4, the hardware accelerator has two modules: the opacity calculator
and the predictor. We implemented the HW design in Verilog and synthesized it. Specifically,
we synthesized, placed, and routed the hardware using the Cadence Genus Tool (TSMC
7 nm technology) and obtained the power, area, and timing numbers. Table 7 shows the
latency, area, and power overheads of the hardware accelerator and its individual modules.
The results are for the 1080p image resolution. We make the following observations from the
results:
1 The latency of opacity calculation is 16.86 𝜇𝑠, which includes a 15.6 𝜇𝑠 data transfer
latency.
2 The latency of the decision tree is 2.626 𝜇𝑠 which is insignificant.
3 The total area is 0.27 𝑚𝑚2, and the total latency of the hardware accelerator is 19.49 𝜇𝑠.
Both values are negligible.

Table 7. Overheads of the hardware accelerator

Step/ Module Area Power Latency

Opacity calculator 0.09 𝑚𝑚2 11.42 𝜇𝑊 16.86 𝜇𝑠

Decision Tree 0.17 𝑚𝑚2 31.96 𝜇𝑊 2.626 𝜇𝑠

Total 0.27 𝑚𝑚2 43.38 𝜇𝑊 19.49 𝜇𝑠
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5.7 Comparison with the State-of-the-Art

We compared the performance of our proposed method with two state-of-the-art methods [59,
73] that accelerate the time warp operation by offloading it to a separate hardware unit. Both
schemes propose preemption-free ATW designs that asynchronously execute on separate
hardware without interrupting the rendering tasks on the host GPU. The difference between
the two is that Smit et al. [59] propose a dual-GPU architecture in which the scene is rendered
on the host GPU and warping is done on a separate GPU. Both the GPUs share data using
a producer-consumer buffer, which is implemented using interprocess shared memory. On
the other hand, PIM-VR is a processing-in-memory-based design that executes the ATW
within a 3D-stacked memory. It connects the host GPU directly with an off-chip Hybrid
Memory Cube (HMC). Figure 19 shows the MPDs for these two solutions along with that of
PredATW, which clearly uses far less hardware. It is important to note that the additional
GPU that they use is as powerful as the primary GPU that runs the VR application. One
more point to note here is that since both of these solutions are preemption-free, there are
no deadline misses. Hence, the MPD for PredATW is also for the cases with no deadline
misses.

We make the following observations from the results:
1 The ATW latency is almost constant across benchmarks for the state-of-art solutions
because of no preemptions.
2 The proposed solution, PredATW, has an average ATW latency of 2.87 ms, which is
47.91% and 53.78% less than that of PIM-VR and the dual-GPU architecture, respectively.
This is a massive advantage of our design. The reasons are mentioned in point 3 .
3 The high ATW latency values for the two related works are due to the fact that the data
transmission latency tends to play a very major role. The entire frame including all the
metadata needs to be transferred to the secondary GPU, and then transferred back. In the
case of PIM-VR, this overhead is somewhat lower because it uses a high-bandwidth off-chip
memory; however, it is still present and is sizeable.
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Fig. 19. MPD of various state-of-the-art solutions

5.8 Solution Space Exploration (CPU, GPU, Accelerator)

An important question that needs to be answered is bespoke hardware really required? Why
not run all of it in software (on the CPU or GPU)? Section 3.2 briefly explained that feature
collection in software is a high-latency task and thus CPUs are not idea for running the
predictor. Let us investigate this issue in depth in this section. We have three types of tasks,
rendering (𝑅), ATW (𝐴) and prediction (𝑃 ), and three possible choices to run these tasks,
CPU, GPU and a HW accelerator. The solution space is shown in Table 8. Furthermore, we
can spatially partition the CPU or GPU cores among the tasks [59, 60]. Note that at the
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moment NVIDIA GPUs do not provide support for spatial partitioning ; however, there
are reports that some undocumented features can possibly be used [6]. It would thus not
be unwise to speculate that such support may become commonplace in the future. Hence,
we assume the existence of fine-grained core partitioning in the GPU as well. Our solution
space is thus very large and finding an optimal solution necessitates an AI algorithm that
minimizes the MPD and at the same time minimizes frame staleness (relying too much on
ATW because of slow frame rendering). We experimentally found that the refresh deadline
miss rate is roughly proportional (directly) to the MPD. Second, the frame staleness, defined
as the number of times ATW uses an old frame for warping is inversely correlated with the
output frame’s quality [8]. This increases the judder perceived by the user, which also induces
motion sickness. Because ATW alters the frame only for the head and eye movements and
does not handle any other temporal changes; hence it works efficiently and reduces the MPD
only when the most recently rendered frame is used as input [58, 69, 74]. Table 8 shows
the best performance in a software-only scheme with and without spatial partitioning. We
needed to use the simulator for the spatial partitioning experiment. It was calibrated with
our hardware (±10%). We prioritize MPD over staleness unless mentioned otherwise.

Because the search space does not have a predefined structure, we used Genetic Algorithms
(GA), which have previously worked effectively for similar unstructured problems [31, 39].
The key concept of a GA is crossover and mutation, which implies that we start with a set of
good candidate solutions and then prune them to build the next set of solutions until we get
the desired solution or the algorithm converges. In the crossover technique, we choose a point
and swap configuration parameters beyond that point between the two parent solutions.
For example, in our case, after one-point crossover, the two parent solutions– 𝑅(CPU),
𝐴(GPU), 𝑃 (CPU) and 𝑅(GPU), 𝐴(CPU), 𝑃 (CPU) yield two new solutions– 𝑅(CPU),
𝐴(CPU), 𝑃 (CPU) and 𝑅(GPU), 𝐴(GPU), 𝑃 (CPU). Our algorithm uses one-point and
two-point crossover techniques. Then we mutate the new solutions by introducing changes
in the partitioning percentages by adding or subtracting a random number (in %) from the
original values. We experimentally measured the performance of all the solutions generated
by this algorithm and arrived at a couple of solutions that are at the Pareto-optimal front.
Without spatial partitioning, the best solution corresponds to the case – CPU (𝑃 ) and

GPU (𝑅,𝐴) (real hardware). The refresh deadline miss rate we get is 42%. The staleness
is the same as PredATW. In comparison, for PredATW, it is 1.99%. The reason for such
a high deadline miss rate is the latency of the feature collection process. For our best SW
case (CPU-based predictor), we need to rely on the NVIDIA NSIGHT Perf-SDK APIs [48]
and application-specific annotations to collect our features, which itself takes 2.1 ms. This
results in a very high latency of the predictor.
With partitioning, the two extreme ends at the Pareto-optimal front are as follows. The

solution at one end minimizes the deadline miss rate (less than 1%) when we reserve 50% of
GPU cores for ATW and rendering (resp.) and do not use the predictor at all; however, this
results in very low utilization of the GPU, only 59.6% which was almost 91% for PredATW.
This increased the frame staleness by 1.67×. Other solutions where we reserve fewer cores for
ATW provide a slight improvement in frame staleness and utilization values but considerably
increase the deadline miss rate. The other solution that optimizes the staleness is when the
entire GPU is reserved for rendering, and ATW runs on the CPU. In this case, the deadline
miss rate is almost 48% due to slow ATW; however, the frame staleness is decreased only by
8.9% compared to PredATW. All these SW solutions are significantly inferior as compared
to PredATW.
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With a HW accelerator, we have two choices: offload either the predictor (PredATW ) or
ATW to the accelerator (no predictor needed). The area overhead for the latter choice is
37× of PredATW.

Table 8. All possible solutions for designing an ATW latency predictor. R, A, and P stand for rendering,
ATW and prediction, respectively.

Solution CPU GPU HWA
Best case performance

Without With

partitioning partitioning

Pure SW

- R,

A, P

-

49% refresh
deadline miss

rate,
21× of

PredATW

<1% deadline

miss rate,

only 59.6%
GPU utilization,

rendering time
and frame

staleness 1.8×
and 1.67×

of PredATW

R,
A, P

- -

R, A P -
R, P A -

R A, P -
A, P R -
A R, P -
P R, A -

SW + HW
- R A 37× area of

PredATW [73]
-

- R, A P PredATW -

6 RELATED WORK

Since the MPD in VR systems adversely affects the user’s experience, over the last few years,
multiple approaches have been explored to reduce this latency for interactive VR systems.
Recent works focus on 1 predictive tracking [26, 33]; 2 motion prediction + a programmable
display layer (PDL) [59, 60]; 3 accelerating the time warp operation by offloading it to a
separate hardware unit [72, 73]; and 4 optimizing the rendering process [51, 52]. We present
a brief comparison of related work in Table 9.
1. Recent works [26, 33] focus on machine learning-based approaches to anticipate viewing
directions and positions to satisfy the ultra-low latency requirement of VR systems. Xueshi et
al. [26] propose to do predictive pre-rendering on the edge device. Kunda et al. [33] investigate
a few common prediction algorithms, dead reckoning and Kalman filtering to predict future
viewing directions and locations based on past behavior. FlashBack [11] predicts all the
possible positions as well as orientations and pre-renders all views corresponding to these
predictions. But pre-computing all the possible views and storing them in the memory
increases the compute and storage overhead substantially.
2. In this work, we use the latest pose obtained from the tracker device to warp the frames
instead of predicting the head motion, which can be reasonably inaccurate. The only thing
that we predict is the latency of ATW so that we can invoke the time warping kernel on
time such that it finishes just before the display refresh point. Furthermore, our predictor is
a simple decision tree-based predictor that does not require as much computing power as
other CNN-based predictors and is very fast also.
3. Some works [59, 60] implement a dual-GPU architecture to avoid preemption. In this
architecture, the first GPU, client, is responsible for rendering application frames as well as
generating motion information and the colour, depth, and intensity attributes of the pixels.
The data is transferred via the PCIe bus to a shared system memory, and the second GPU,
server, uses this data to bring the display device up to date with a new frame. The second
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GPU, server runs a custom program that takes the most recent application frame and data
saved in shared memory and warps the frame based on the data and the current viewpoint.
The second GPU, server runs a custom program that takes the most recent application
frame and data saved in shared memory and warps the frame based on the data and the
current viewpoint. However, these solutions [59, 60] have high hardware overheads and also
high power overheads because of the additional memory accesses and writes to the PCIe bus.
4. One way to reduce the MPD significantly is to make the time warp operation fast. Waveren
et al. [69] investigate various hardware platforms for implementing a low-latency time warp
algorithm. Xie et al. [73] propose PIM-VR, a Processing-In-Memory based ATW design
that asynchronously executes ATW within a 3D-stacked memory without interrupting the
rendering activities being performed on the host GPU. They also identify a mechanism for
reducing redundancy, which further simplifies and speeds up the ATW operation. Some
works [51, 52] optimize the rendering process itself to reduce the MPD. Toth et al. [67] show
that the number of rendered pixels can be reduced by up to 36% by rendering multiple
optimized sub-projections without compromising on the visual quality. Foveation is the
quality degradation that increases with distance from the fovea (center of the retina) [24].
Foveated rendering algorithms exploit this phenomenon to improve performance [51, 52].
These algorithms reduce the rendering complexity and quality in the periphery while keeping
the image quality in the foveal area of the display at a high level. Q-VR [72] merges foveated
rendering with the time warping operation to further improve the rendering performance.
Note that these ideas are orthogonal to our approach and don’t target the main culprit:
variable context switch times.

Table 9. A comparison of related work

Work ML-
based

Predicted
Data

ATW In-situ
ATW

Optimizing
Time

Warp

Optimizing
Render-

ing

Overhead

Prediction-based

Tracking [26, 33]

✓ Head and body

motions

× - - × High latency

FlashBack[11] × All possi-

ble viewing
positions

× - - × High latency

Motion Predictions

+ PDL [59, 60]

✓ Head and body

motions

✓ × ✓ × Additional GPU

PIM-VR [73] × × ✓ × ✓ ✓ ATW accelerator

Q-VR [72] × × ✓ × × ✓ ATW accelerator

OpenUVR [55] × × ✓ ✓ × ✓ External HW

PredATW ✓ ATW latency ✓ ✓ × ×

7 CONCLUSION

In the light of the pantheon of work in this field, we adopt a very different approach. Instead
of focusing on new rendering algorithms or predicting the head motion or using separate GPU
hardware, we propose a relatively low-budget solution that requires only a small hardware
unit. We show that we can predict the ATW latency reasonably accurately in the presence
of noise, even when other GPU applications are running. The average prediction error is
limited to 0.22 ms, and the deadline miss rate is minimal (≈ 2%). Hence, our submission is
that sophisticated solutions that require extra hardware support are not required. Even our
software solution is reasonably potent and outperforms prior work that use dedicated GPUs
(for MPD). We conducted a wide range of experiments with a large variety of benchmarks,
GPU architectures and prediction models. Our results are robust and tend to generalize.
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A APPENDIX

A.1 MPD Variation in Similar Frames

Frames that are genuinely similar may experience sizeable MPD variations. There are two
main reasons for this: extraneous factors like other tasks executing concurrently and a small
but important “butterfly effect”. Let us show a bunch of simulation results and correlated
real-world data for a representative benchmark: Sponza.

A.1.1 Impact of Extraneous Factors: In this section, we shall discuss how the GPU workloads
affect the MPD. Figure 20 shows the MPDs for three different refresh intervals. In the figure,
we have four vertical lines, each representing a specific type of event. The red line shows
when ATW is invoked, the blue line represents when preemption completes and the time
warp operation starts, the green line shows when the time warp ends, and the grey line
indicates when the display is refreshed. Ideally, we would want the red and green lines to be
as close as the possible. To time lost in clearing the active queue (preemption latency) is the
time interval between the red and the blue lines.

When ATW is invoked, the GPU treats it as a high-priority thread and starts preempting
all currently running threads present in the active queue. These threads could belong to
the rendering task of the primary VR application or could belong to any other applications
that were also running on the GPU. We have incorporated a thread-level preemption model
similar to the latest NVIDIA GPUs (refer to [43]), which means that every warp must be fully
executed and the active queue needs to be emptied before starting the time warp operation.
Since, GPUs typically execute thousands of threads concurrently to achieve high throughput,
and each thread may have a different execution time, the preemption latency becomes large
and unpredictable. The most important variable here is the number of semi-executed warps
that are waiting to finish. They may be delayed for a lack of access to GPU’s computational
resources or memory values. Examples of such threads that pose such problems are as follows
(as seen in our experiments): threads performing vertex transformations, computation of
lighting effects (ambient, diffuse, specular, and other forms of lighting), etc. Recall that we
can run the time-warping kernel only after the warps have fully finished executing because
of intra-warp context switching is still not there in NVIDIA GPUs.
In Figure 20, we can see that the interval between the red and blue lines varies across

all the three cases, while the blue and green lines remain equally spaced. This indicates
that the time warp latency remains almost constant across frames while the preemption
latency varies. Moreover, the rate at which the active queue empties differs. This variation
is correlated with the workload on the GPU at the time of ATW initiation. For instance,
Case 3 had fewer active threads, which completed faster. However, in the first two cases, the
total number of active warps was large, resulting in a more extended preemption latency
as compared to Case 3. But, there is a difference in the two latencies because it depended
upon which threads were getting executed and the nature of work they were doing. A lot of
this is captured by our decision tree.

A.1.2 Butterfly Effect. Next, we show the butterfly effect and illustrate how small changes
in the scheduling of threads can lead to very different ATW latencies (time from the red
line (ATW start) to the green line).

The warp scheduler works as follows (reference:[15, 35]). If threads get free SMs; they are
moved to the active queue and start getting executed while the rest of the threads wait in
the scheduling queue. We deliberately shuffled the order of threads in the scheduling queue
1000 clock cycles before invoking the ATW kernel for Case 1. This had the effect of altering
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their order within the active queue. In Figure 21, we can see that this change resulted in a
significant reduction in the preemption latency, which decreased from 2.54 ms to a mere 1.1
ms. We repeated the process of changing the order of threads again, and in Figure 22, we
can see that this time, the preemption latency increased significantly to 4.1 ms.

0

100

A
Q

O
cc

u(
%

)

0

2

A
W

1e7

0

100

SM
A

(%
)

0

20

L2
M

is
s

0
25

D
W

0

50

D
R

462.9
474.0

485.1

Time (in ms)

0

5

IP
C

ATW Starts Preemption Ends ATW Ends Refresh

1.1 ms
Case 1

466.46

Preemption Latency
(when scheduling
order is changed)

Fig. 21. Illustration of the butterfly effect

A.1.3 Comparison with Real-world Data. We were interested to investigate whether such
effects are seen in real-world devices as well. A skeptical reader can always point out that
this is an artefact of our simulation. The variance in the ATW latency is evident across
benchmarks in real-world data too. We captured this information using the Oculus Debug
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Tool. We measured this variance by calculating the standard deviation of the latency for
1000 consecutive frames – that were similar – and then normalizing it to the average latency
(refer to Figure 23). We plotted the ATW latency for 200 consecutive refresh intervals for one
of the benchmarks (refer to Figure 24). The results reconfirm that even when the consecutive
frames are similar, the latency fluctuates significantly.

A similar time series plot is shown for Oculus 2 data in Figure 25. We can clearly see the
same trends. Note the distance between the red (ATW start) and the blue (preemption end)
lines. They show a degree of variance that we also saw in our simulated data. This clearly
shows the effect of contention. Given that this data was collected at a different time instant,
the absolute figures will not match; however, we should focus on the trends.

This proves that our simulation results mimic real-world effects.
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Fig. 23. Normalized variance in the ATW latency (note the similarity between simulated and real-world
data)

A.2 Correlation of HPCs with the MPD

Since we have a time series plot for the MPD and all the activities happening on the GPU,
we can easily find the correlation coefficient between the MPD and all the microarchitectural
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parameters. Figure 26 shows that active SMs, warps, and instructions are the top three
highly correlated features with the MPD across benchmarks. Hence, these features are the
ideal choice for predicting the MPD. However, other features also have a decent correlation
coefficient, and they can also be considered for the prediction.

A.3 Effect of the PID Controller on Prediction Errors

To investigate the cause of the reduction, we analyzed the histograms of the prediction errors
both before and after applying the PID controller for each benchmark. We can find some of
these histograms in Figures 27 and 28. One point that is evident from these figures is that
the feedback component reduces the tails of the histograms, which means the range of the
prediction error is minimized. Also, it makes the prediction error symmetrical around zero.
For instance, in the case of the Sponza benchmark, the prediction error initially ranged from
-1.622 to 1.730 ms, but after applying the PID controller, it was reduced to -0.695 to 0.583
ms.
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Fig. 27. Histogram of the prediction errors without the PID controller

A.4 Importance of MPD

We have invested a fair amount of effort in showing that even small changes to the MPD have
a substantial effect on the quality of experience. Please refer to the videos at the following
link [18]. The baseline video has zero additional MPD and there is a sequence of videos with
an additional MPD of 1 ms, 2ms, 4ms and 8 ms, respectively. Even though these videos
were originally made for HMDs, we can still see that on a monitor the quality difference is
quite perceptible. The effect is far more pronounced on HMDs. In fact, even for the 1 and
2 ms cases, it is so bad that it induced a significant amount of nausea to one of our older
team members. The JND (just noticeable delay) in the case of HMDs is much lower than
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Fig. 28. Histogram of the prediction errors with the PID controller

1 ms as we found out in our in-vivo experiments and thus the need to reduce the MPD is
very important. The effect of the MPD on the visual quality of experience and the overall
well-being has been documented in the following references [13, 53, 56, 70].
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