Phoenix: Detecting and Recovering from Permanent Processor Design Bugs
with Programmable Hardware*

Smruti R. Sarangi, Abhishek Tiwari, and Josep Torrellas

University of Illinois at Urbana-Champaign
{sarangi,atiwari,torrellas } @cs.uiuc.edu
http://iacoma.cs.uiuc.edu

Abstract

Although processor design verification consumes ever-increasing
resources, many design defects still slip into production silicon. In
a few cases, such bugs have caused expensive chip recalls. To truly
improve productivity, hardware bugs should be handled like system
software ones, with vendors periodically releasing patches to fix hard-
ware in the field.

Based on an analysis of serious design defects in current AMD,
Intel, IBM, and Motorola processors, this paper proposes and evalu-
ates Phoenix — novel field-programmable on-chip hardware that de-
tects and recovers from design defects. Phoenix taps key logic signals
and, based on downloaded defect signatures, combines the signals
into conditions that flag defects. On defect detection, Phoenix flushes
the pipeline and either retries or invokes a customized recovery han-
dler. Phoenix induces negligible slowdown, while adding only 0.05%
area and 0.48% wire overheads. Phoenix detects all the serious de-
fects that are triggered by concurrent control signals. Moreover, it
recovers from most of them, and simplifies recovery for the rest. Fi-
nally, we present an algorithm to automatically size Phoenix for new
processors.

1. Introduction

The complexity of today’s high-performance processor designs has
grown to a point where design verification is a major bottleneck [5,
7, 8]. Processor verification is a multi-year effort that is highly labor
and compute intensive. It involves running formal verification tools
and extensive test suites during both pre- and post-silicon stages, in a
race to meet production shipment qualification. Overall, verification
accounts for 50-70% of processor development time [4].
Unfortunately, even with all these resources, many defects still
slip into production silicon. Perhaps the most notorious one is the
Pentium floating-point division bug [11], which caused an error in the
9*" or 10"" decimal digit. It lead to a $500 million chip recall. A 1999
defect in the Pentium III [9] led original equipment manufacturers to
temporarily stop shipping Intel servers. Problems in the cache and
prefetch engine of the Pentium 4 [21] led to disabling prefetching in
multiprocessor systems. More recently, defects led to a recall of Ita-
nium 2 processors [10], incorrect results in the AMD Athlon-64 [27],
and circuit errors in the IBM PPC 750GX [28]. The latter processor

*This work was supported in part by the National Science Foundation un-
der grants EIA-0072102, EIA-0103610, CHE-0121357, and CCR-0325603;
DARPA under grant NBCH30390004; DOE under grant B347886; and gifts
from IBM and Intel.

had some instructions that could not run at the rated 1 GHz, and IBM
recommended running at 933 MHz. Less conspicuously, practically
all processors in the field have several tens of known design defects,
as reported by manufacturers in “errata” documents [1, 13, 15, 22].

There is every indication that this problem is about to get worse.
Moore’s law is enabling more design integration [18], increasing ver-
ification effort while hurting signal observability. Larger verification
teams increase the risk of defects due to miscommunication. The am-
biguities of the many new standards to support will also contribute to
defects. All this suggests that, in addition to better verification tools,
we need novel approaches to handle defects.

Ideally, we would like processor design defects to be treated like
system software bugs. When the chip vendor discovers a new defect
in a processor, it should be able to broadcast a “hardware patch” to
all the chips in the field to fix them. Once installed, the patch should
automatically detect when the defect is about to be exercised, and
either avert it or repair its effect on the fly.

Such support would have two obvious benefits. First, it would en-
able in-the-field repair of incorrect behavior, avoiding erroneous exe-
cution and expensive chip recalls. Second, it would conceivably allow
a company to release production silicon to market earlier, without so
much in-house testing, thereby gaining a valuable edge over competi-
tors. For example, the last ten weeks of testing could be saved, when
the rate of detection of new bugs decreases to near zero [8].

Sadly, the state of the art is far from this vision. Perhaps the clos-
est approaches are those of Itanium and Crusoe. In Itanium, some
important functions such as TLB and FP unit control are supported
in firmware, which is correctable with patches [17]. While this EPIC
feature gives flexibility, it is slower than a hardware implementation.
We would like the whole chip to be patchable and have no perfor-
mance cost at all. Crusoe uses code translation and, therefore, can
work around defects by changing the translation software [20]. How-
ever, most processors do not support this approach. Note also that
patchable microcode such as IBM’s Millicode [12] is not a solution
either, since a complex design defect is not very correlated with the
execution of any given instruction opcode.

As a step toward our vision, this paper makes three contributions.
First, by analyzing the design defects in AMD, Intel, IBM, and Mo-
torola processors [1, 13, 15, 22], we gain insight into how to de-
tect and recover from them. Serious design defects are consistently
concentrated in the core’s periphery and cache hierarchy. Moreover,
many of them can be detected before they have corrupted the system.

Second, we propose Phoenix, novel field-programmable on-chip
hardware that detects and recovers from design defects. Phoenix taps
key control signals and, using downloaded defect signatures, com-

Label Processor First - Last Features Freq Area # Trans | # Design
Version Considered (MHz) | (mm2) (Mill.) Defects
K6 AMD K6-2 Aug’98-July’99 4-issue core, SIMD support 550 81 9 18
P3 Intel Pentium IIT May’99-Nov’04 On-chip L2 cache, SSE instructions, P6 core 1,200 79 44 92
Athlon AMD Athlon (32 bit) Aug’00-Oct’03 9 FUs, pipelined FPU 2,200 115 54 19
P4 Intel Pentium 4 Nov’00-Nov’04 Trace cache,hyperthreading,20-stage pipeline 3,400 131 55 99
Itan1 Itanium (3 MB L3) June’01-May’03 EPIC arch, 10-stage pipeline, L3 cache 800 465 220 40
IBM-G3 IBM 750FX (G3) Apr’02-Nov’04 2-issue RISC machine 1,000 37 30 27
Itan2 Itanium 2 July’02-Feb’05 Higher frequency, more scalable than Itanl 1,800 374 410 103
Mot-G4 Motorola MPC7457 Feb’03-Nov’04 Improved FPU, AltiVec insts, L3 cache cntrl. 1,333 98 58 32
P-M Intel Pentium M Mar’03-Dec’04 Similar to P3, emphasis on power efficiency 2,200 84 140 33
Athl64 AMD Athlon-64 Apr’03-June’04 Mem. contr. on chip, hypertransport, 64 bit 2,400 193 106 48

Table 1. Processor versions examined in this paper.

bines the signals into conditions that flag defects. When a defect is
detected, Phoenix flushes the pipeline and either retries or invokes a
customized recovery handler. We also present an algorithm to auto-
matically size Phoenix for new processors.

Finally, we evaluate Phoenix. Phoenix induces negligible slow-
down. Our design taps about 200 signals and adds only 0.05% area
and 0.48% wire overheads to the chip. Phoenix detects all the serious
defects that are triggered by concurrent control signals. Moreover, it
recovers from most of them, while simplifying recovery for the rest.
Given the very high cost of processor defects, we believe this cov-
erage fully justifies Phoenix. Finally, our algorithm effectively sizes
Phoenix for new processors of completely different types.

This paper is organized as follows. Section 2 characterizes design
defects; Sections 3 and 4 present and argue for Phoenix; Section 5
evaluates it; and Section 6 describes related work.

2. Characterizing Processor Design Defects

Commercial microprocessors in the field are known to have design
defects — popularly known as hardware bugs. When these bugs
are exercised, they have serious consequences such as a processor
crash, data corruption, I/O failure, wrong computation, or a pro-
cessor hang. Moreover, as new generations of processor chips be-
come more complicated, design defects are expected to become more
prevalent [4, 18].

Processor manufacturers list these bugs in errata documents [1,
13, 15, 22] that are updated every few months, as defects are discov-
ered and fixed — typically, with a silicon re-spin. For each defect, the
document lists the condition that triggers it. A condition is a set of
events, such as an L2 cache miss, a snoop request, and an I/O inter-
rupt, with timing information. Sometimes, the document also gives
a workaround to avoid exercising the defect. Workarounds often in-
volve disabling hardware features such as the power control manager
or multiprocessor support.

In Table 1, we take ten recent processors and list the version range
considered, key architectural features, frequency, approximate area
and number of transistors, and number of design defects reported. In
the number of defects, we include all the different ones in all versions.
While some may have been fixed in some revision, they still exist in
the field.

From the table, we see that the number of design defects per pro-
cessor ranges from 18 to 103. As an illustration, Table 2 describes
three defects. The first one can occur if the L1 suffers a cache miss
while the power manager is on and the L2 is being flushed. In this
case, some L2 lines may get corrupted. The second defect involves
four concurrent bus and cache conditions that cause a system dead-

lock. The third defect is a pipeline timing issue that induces incorrect
results.

[[Defect [[Proc. [Defect Description I

Defectl IBM- If the L1 suffers a miss while the power man-
G3 ager is on and the processor is flushing its L2,
some L2 lines may get corrupted. [Signal con-
dition: LIWAITMISS & DPM (dynamic power
management) & L2FLUSH].

If a cache hits on modified data (HITM) while
a snoop is going on, and there are pending re-
quests to defer the transaction and to re-initialize
the bus, then the snoop is dropped, leading to a
deadlock. [Signal condition: SNOOP & HITM
& DEFER & BUSINIT].

When an Adjust after Multiply (AAM) instruc-
tion is followed by another AAM within three
instructions, or is preceded by a DIV instruction
by up to 6 instructions, the ALU produces incor-
rect results.

Defect2 P4

Defect3 Athl64

Table 2. Examples of processor defects.

Figure 1 classifies the defects into those appearing in non-critical
structures (NonCritical) and the rest (Critical). NonCeritical are de-
fects in modules such as performance counters, error reporting reg-
isters, or breakpoint support. They also include Itanium firmware
defects, which are correctable with patches.

84

60
» 50 complex
=)
g 4
m 40
5 H concurrent

30 =
g /7 n
£20 i = e - {4
g &
b4 H Ml n

o

i I

Athlon P4 Itan1 IBM-G3 Itan2 Mot-G4 P-M

o

K6 P3 Athl64 Mean

M NonCritical O Critical

Figure 1. Classification of design defects in each processor.

Focusing on the Critical defects, we see that, on average, there
are slightly over 25 of them per processor. We divide them into two
groups. One group is those that are triggered by a relatively simple
combination of concurrent signals. We call these defects Concurrent.
Defectl and Defect2 in Table 2 are Concurrent defects. The remain-
ing Critical defects have more complex triggering conditions. They
typically depend on some internal state and a sequence of events (e.g.,
when event E has occurred in the past, if signal S is asserted ...). We

Number of Defects(%)

K6 P3 Athlon P4 Itan1 IBM-G3 Itan2 Mot-G4 P-M Athlé4 Mean

B Fetch [J Exec B Mem 1/0+Int B System

Figure 2. Classification of the Critical defects based on
which module they are in.

call these defects Complex. Defect3 in Table 2 is a Complex defect.
From Figure 1, we see that on average 69% of the Critical defects are
Concurrent.

2.1. Where Are the Critical Defects?

Figure 2 classifies the Critical defects according to the module in
which they are: fetch unit (including L1 I-cache); execution unit;
memory subsystem (rest of the caches, memory bus, and multiproces-
sor modules); I/O and interrupt subsystems (//O+Int); and “system-
related” units (System). The latter include the power and temperature
management unit, the voltage/frequency scaling control unit, and the
clock distribution network.

The largest fraction of defects occurs in the memory subsystem.
Moreover, if we add up the Mem, I/O+Int, and System defects, we
see that the defects in the “periphery” of the core dominate. This is
because the inner core (Fetch and Exec) is usually more thoroughly
tested and its components are typically reused across projects more.

Figure 3 classifies memory system defects based on where they
are: data-L1, L2, L3, TLB plus virtual memory system, multiproces-
sor structures (Mp), and memory controller (MemCntrl). We see that,
on average, TLB plus virtual memory and MP structures dominate.
Overall, a defect-detection scheme largely focused on the inner-core
such as DIVA [2] will not work well. Instead, our field-programmable
scheme should draw most of its input signals from the periphery in
general, and from the TLB plus virtual memory and multiprocessor
structures in particular.

2.1.1. Analysis Across Generations

We gain additional insight by examining how the Critical defects
change across generations of the same processor family. Figures 4
and 5 show the Intel Pentium and AMD processor families, respec-
tively. The figures contain the relevant bars from Figure 2 in absolute
terms. Figure 4 also includes bars for the Pentium and Pentium-II.

The defect profile from the Pentium to the Pentium 4 remains sim-
ilar, both in absolute and relative terms. This is despite the fact that
design teams reuse their know-how across generations, and that it can
be shown that a given defect very rarely persists across generations.
This suggests that when designers lay out the Phoenix hardware, they
can use their experience from prior generations to decide how to dis-
tribute it in the new chip.

The Pentium-M in Figure 4 and the Athlon-64 in Figure 5 sug-
gest that when a design is significantly simplified (the Pentium-M
has no MP support) or enhanced (the Athlon-64 has an on-chip mem-
ory controller and more), the absolute number of defects can change

Number of Bugs(%
o
o

K6 P3 Athlon P4 Itan1 IBM-G3 Itan2 Mot-G4 P-M Athlé4 Mean

IR O L2 H 13 Tlo+Virtual B mp MemCntrl

Figure 3. Classification of the Critical defects in the mem-

ory module.
60
50
30
20
10
0

P3 P4 P-M

Number of Defects
iy
o

Pentium Pentiumll

B Fetch [Exec M Mem

1/0+int M System

Figure 4. Critical defects across Pentium processors.

Number of Defects
N
o

K6 Athlon Athl64

B Fetch [J Exec M Mem

1/0+Int M System

Figure 5. Critical defects across AMD processors.

a lot. Designers can use this knowledge to size the Phoenix hardware
for a new chip.

2.2. How Do Defects Manifest & Can Be Worked Around?

To further understand the Critical defects, Figure 6 shows how they
manifest. They corrupt caches or memory (Corruption), hang the
processor (Hang), cause an 1/O failure (I/O-failure), compute, load or
store wrong data or addresses (Wrong), or have unpredictable effects
(Unpred). The latter range from application error to processor shut-
down, and are often caused by defects in the temperature or power
manager. We observe that the manifestations are largely catastrophic.

Figure 7 shows the type of workarounds that the vendor proposes
for these defects. Workarounds can be based on hardware (HW),
compiler (Compiler), operating system (OS), firmware (FW), or be
non-existent. Table 3 shows some examples.

Number of Bugs(%.
o
o

K6 P3 Athlon P4 Itan1 IBM-G3 Itan2 Mot-G4 P-M Athlé4 Mean

B Corrupton [J Hang B 1/O-failure Wrong B Unpred

Figure 6. Classification of the Critical defects based on how
they manifest.

)

Number of Bugs(%,
o
o

Ké P3 Athlon P4 Itan1 IBM-G3 Itan2 Mot-G4 P-M Athlé4 Mean

W Hw [0 Compiler M os Fw I None
Figure 7. Classification of the workarounds for Critical de-

fects.

[[Type [[Process [Examples of Workarounds

Hardware Change bios chip or

modify motherboard

Disable certain feature (hyperthreading, MP, prefetching, ECC, memory scrubbing). Limit the voltage or
frequency modes of different parts of the system (CPU, memory, I/O). Limit the settings for clock
gating or memory refresh. Connect pins to certain logic values.

Compiler Compiler changes Add fences. Separate certain instruction types. Put no-ops. Avoid certain instruction combinations.

oS OS patch Use certain order to initialize memory or I/O devices. Process interrupts in a certain order. Add fences.
Disable prefetching. Limit the settings for power, frequency, or paging (size and segmentation parameters).

Firmware Firmware patch Change firmware for FP ops, interrupt handling, ECC checking, page table walking, and TLB miss handling.

Table 3. Characterization of existing workarounds. They typically impair the system in some way.

Figure 7 shows that on average less than 60% of the Critical de-
fects have workarounds. Of these, HW workarounds are mostly tar-
geted to chip-set designers and equipment manufacturers, and typi-
cally impair the processor. OS and Compiler workarounds are tar-
geted to OS and compiler developers, respectively. They range from
minimal to significant software patches, often have as many versions
as supported OS versions, and can lead to the removal of features.
Finally, FW workarounds are found only for some Itanium defects.
Note that the defects are not in the firmware — the workarounds
are. They involve patches that the user can download. These are
not patches that implement an operation differently; they typically
disable functionality. Overall, except for FW workarounds, the user
can do little to avoid these defects. Our goal is to extend a FW-like
workaround procedure to all defects without any performance cost.

2.3. How Can Defects Be Detected and Avoided?

Finally, we examine some traits of the defects that can help us detect
and avoid them. To detect a defect, we must identify the combination
of signal conditions that can trigger it. This is reasonably easy to
do for Concurrent defects. However, it is harder for Complex ones
because they are caused by complex state and sequences of events.
Therefore, in this paper, we focus on Concurrent defects, which are
69% of the Critical ones.

Among the Concurrent defects, we observe that there are those
whose triggering condition can be detected before any damage is
done. We call these defects Pre, for pre-detection. One example is
Defectl in Table 2: if the processor is about to flush its L2 (L2FLUSH
signal on) and the dynamic power manager is on (DPM signal on),
there is a possibility that, in the middle of the flush operation, the L1
suffers a miss and Defect! is triggered. As another example, there
are combinations of instructions that trigger a defect when they exe-
cute or commit, and such combinations can be detected earlier in the
pipeline, before exercising the defect.

The other Concurrent defects have triggering conditions that can-
not be detected before the damage is potentially done. We call these

defects Post, for post-detection. An example is Defect2 in Table 2:
by the time we detect that the four conditions occur, the snoop may
have been dropped.

Figure 8 breaks down Concurrent defects into Pre and Post. In
nearly all cases, Pre dominate. On average, they account for 60%
of the Concurrent defects. Typically, their triggering conditions are
detected several cycles before the defects actually occur. Most of the
Post defects are detected when they occur or at most a handful of
cycles afterward.

To handle Post defects, we must understand the extent of the dam-
age they cause. This is shown in Figure 9. Local are defects that
affect only a very localized module. An example is the corruption of
a threshold register in the power manager module. The other defects
affect larger parts of the system: Pipeline affect the pipeline; Cache
can additionally affect the caches; Mem can also affect the memory;
finally, 7/O can additionally affect the I/O subsystem. The Figure
shows that most Post defects affect caches and/or memory. Local and
Pipeline only account for 7% of the defects.

3. Phoenix: An Architecture for Defect Detection
and Recovery

3.1. Proposed Solution

Based on the data analyzed, we propose to handle processor de-
sign defects by including novel field-programmable hardware called
Phoenix in the processor chip. The goal is to patch buggy hardware in
the field as we do today for software. Ideally, when a processor ven-
dor discovers a new design defect, it will release a patch that chips in
the field use to re-program their Phoenix hardware. Thereafter, every
time that the defect is (or is about to be) exercised, Phoenix will de-
tect it and hopefully avert it or help recover from it. Phoenix can be
re-programmed multiple times.

Specifically, we program Phoenix to: (i) tap all the control signals
that participate in triggering Concurrent bugs, and (ii) flag when the
signals take the combinations of values that exercise Concurrent bugs.

Number of Defects(%)

K6 P3 Athlon P4 Itan1 IBM-G3 Itan2 Mot-G4 P-M Athlé4 Mean

B pPre [Post

Figure 8. Classification of the Concurrent defects based on
when they can be detected.

On detection of one such combination, the pipeline is flushed and
a supervisor recovery handler is invoked with low overhead. The
recovery action depends on the type of defect. If the defect is Pre,
it has not been exercised yet. Phoenix averts the defect by having
flushed the pipeline and, possibly, by temporarily disabling one of
the signals that contributes to the defect. For example, in Defectl
of Table 2, the power manager is temporarily turned off while L2
is being flushed. As the pipeline refills, the defect will very likely
be averted. The reason is that these defects require a very specific
interleaving of events, and flushing and re-filling the pipeline (with
possibly a disabled signal) changes this interleaving. Indeed, pipeline
flushing is used by the Pentium Pro to eliminate corner cases after
manipulating control registers [14], and was used by the IBM 3081
to work around design bugs.

While we expect this to suffice, if the defect re-occurs, Phoenix
flushes the pipeline again and emulates the subsequent few instruc-
tions in software. In this case, event interleaving changes consider-
ably.

If the defect is Local Post or Pipeline Post, the defect has affected
a limited section of the processor. Consequently, we follow the same
procedure as in Pre defects. In the case of Local Post, the corrupted
module (e.g., the power manager module) is also reset.

For the rest of Post defects, a pipeline flush is insufficient, since
caches, memory, or I/O may already be corrupted. In this case, a
recovery handler customized to that defect is executed (if provided
by the vendor) or an exception is passed to the OS. Some form of
recovery may be possible because the defect has just occurred, and
corruption may not have propagated widely. A more generic (and
expensive) recovery approach would be to rely on a checkpointing
scheme to roll back execution to a prior checkpoint. The scope of
the rollback would depend on the type of defect (Figure 9). Cache
defects require cache state rollback, like in thread-level speculation
systems; Mem defects require memory rollback, such as e.g., [25, 26];
1/0 defects need I/O rollback, such as e.g., [23]. How to tune these
schemes for the very short detection latency and low frequency of
Post defects is beyond our scope.

Overall, by tapping the necessary signals, we argue that Phoenix
can detect all Concurrent defects (69% of Critical). Moreover, by
flushing the pipeline and possibly disabling a signal or emulating in-
structions in software, Phoenix can recover from the Concurrent Pre,
Local Post, and Pipeline Post ones (63% of Concurrent). For the rest
of Concurrent defects, Phoenix may simplify recovery by immedi-
ately invoking a customized recovery handler. Section 3.3 discusses
what it would take for Phoenix to additionally detect the remaining
Critical defects, namely the Complex ones.

Number of Defects(%)

Ké P3 Athlon P4 Itan1 IBM-G3 Itan2 Mot-G4 P-M Athlé4 Mean

B Local [J Pipeline M Cache Mem H /0

Figure 9. Classification of the Post defects based on the
extent of the damage caused.

Note that Phoenix’s coverage of design defects is lower than the
coverage of hard or soft faults by certain reliability schemes — often
over ninety five percent. However, given the very high cost of de-
sign defect debugging, we claim that Phoenix is very cost-effective
(Section 4).

3.2. Detailed Design

Conceptually, Phoenix consists of four units (Figure 10(a)). The Sig-
nature Buffer is a software structure that contains information to pro-
gram Phoenix. The Signal Selection Unit (SSU) is programmable
hardware that selects the logic signals to be monitored. The Bug De-
tection Unit (BDU) is programmable hardware that combines the se-
lected signals into the logic expressions that flag when defects occur.
Finally, the Global Recovery Unit takes the outputs of the BDU and,
if any is asserted, initiates recovery.

Since centralized SSU and BDU units are not scalable, we de-
velop a distributed design. We logically divide the chip into several
Subsystems, such as the fetch unit, data cache, or memory controller,
and assign one SSU and one BDU to each of them. Then, rather than
directly connecting all SSUs to all BDUs, we logically divide the chip
into Neighborhoods of several subsystems each. Each neighborhood
has one Hub, which collects signals from the neighborhood’s SSUs
and passes them to other hubs, and brings in signals from other hubs
into the neighborhood’s BDUs.

Figure 10(b) shows the chip with one hub per neighborhood.
Neighborhoods are selected based on the chip floor-plan. They con-
tain subsystems that are both physically close and functionally re-
lated. As an example, Figure 10(c) lists the four neighborhoods used
for the Pentium 4. Figure 10(d) shows one neighborhood. It has
one SSU-BDU pair per subsystem, each one supplying signals to and
taking signals from the neighborhood hub. Figure 10(e) lists all the
subsystems that we consider, although not all chips have all the sub-
systems. We now describe each Phoenix component in turn.
Signature Buffer. This is a software structure where a supervi-
sor process stores a Defect Signature downloaded from the processor
vendor. A signature is a bit-vector with as many bits as there are pro-
grammable transistors in the Phoenix hardware. The OS reads the
signature and writes it to memory-mapped locations that re-program
the SSUs, hubs, and BDUs. If more defects are discovered, an aug-
mented signature is downloaded and used to re-program Phoenix.
From our evaluation of the hardware in Section 5, we estimate that
the size of a signature needs to be no larger than 1Kbyte.

Signal Selection Unit (SSU). The SSU is a field-programmable
switch (Figure 11(a)). Its inputs are all the control signals generated
by the subsystem that, in the designers’ judgment, could possibly help

Global — 1: L1 Data Cache, L2 Cache, I/O, Virtual Memory, Fetch Unit, MP & Bus
Recovery Unit Defects Reg 2: FP ALU, Instruction Cache, Decode Unit
3: Scheduler, Interrupt, Status, Ld/St Queue, Int ALU, Register File
BDU 4: System Control (controllers for power, temp, and voltage)
T T T (c) The Four Neighborhoods in the Pentium 4
. SSU e
Neighborhood
Signature Buffer Subsystem Subsystem
(Software) CHIP :
‘ ‘ . To Gl?bal SSU BDU To (?lobal
(a) Conceptual Design Recovery Unit Recovery Unit
Global Recovery borrmr H
/ Unit |
/ . Hi her Hubs
Neighborhood ‘. Neighborhood ub Other Hubs
(d) A Neighborhood
- ” i Instruction Cache FP ALU Virtual Memory
BERES i Fetch Unit Ld/St Queue 1/0 Controller
Decode Unit L1 Data Cache Interrupt Handler
R o Scheduler L2 Cache System Control
Neighborhood Neighborhood Y
| Signature Buffer|/ CHIP Register File L3 Cache MP and Bus Unit
1 (Software) Integer ALU Mem. Controller Processor Status
Manager

(b) Implementable Design

(e) All the Subsystems Considered

Figure 10. Phoenix design: conceptual (a) and implementable ((b)-(e)).

flag any yet unknown defect condition. For example, for the L2 cache
subsystem, they could include the signals for cache hit, access, read
or write, snoop, invalidation, lock, flush, unaligned access, and access
size. At the intersection of each SSU’s input and output line there is
a programmable pass transistor. Each output line can be connected to
at most one of the inputs.

Hub. A hubis a field-programmable switch that takes signals from
the neighborhood SSUs and from the other hubs, and has outputs
going to neighborhood BDUs and to other hubs (Figure 11(b)).

Bug Detection Unit (BDU). The BDU is a Field-Programmable
Logic Array (FPLA) (Figure 11(c)). Its inputs are some of the outputs
of the local SSU (i.e., the SSU in the same subsystem) and some of
the outputs of the neighborhood hub. The reason for the latter is that
defect conditions sometimes combine signals from multiple subsys-
tems. The BDU outputs are the defect conditions that this particular
BDU flags.

Since signals are routed across the chip, they may take varying
numbers of cycles to reach their destination BDU. However, a BDU
must capture a snapshot of signals corresponding to a given cycle. To
accomplish this, we insert delay compensation buffers at every BDU
input. They can be programmed to delay a signal for a number of
cycles (Figure 11(d)).

Global Recovery Unit. The outputs of the BDUs are routed to the
Global Recovery Unit (Figure 10(a)). Each of them is connected to
one bit of the Defects register. When one of these bits gets set, the
hardware automatically flushes the pipeline and jumps to the entry
point of the recovery handler.

Recovery Handler. The Phoenix recovery handler is a set of super-
visor software routines downloaded from the vendor that are stored

in memory. Figure 11(e) shows the recovery handler algorithm. De-
pending on which bit in the Defects register was set, a different action
is taken.

For Pre or Pipeline Post defects, the handler attempts to further
change the processor state by possibly turning off one of the signals
contributing to the defect condition. Then, it sets a timer and resumes
execution. If the timer expires before the same BDU output is as-
serted again, the defect has been averted, and the handler turns the
corresponding signal on again. Otherwise, the handler is retried from
the beginning. In this case, however, the handler emulates in software
a set of instructions to completely change the interleaving.

For Local Post defects, the handler performs the same operations
except that it also resets the corrupted module.

For the rest of Post defects, if the appropriate checkpointing
scheme is supported, the handler triggers a roll back to a previous
checkpoint and resumes execution. Otherwise, it sends an exception
to the OS or, if a specialized recovery handler was provided by the
vendor, it invokes it.

3.3. Handling Complex Defects

Enhancing Phoenix to also detect Complex defects would have to ad-
dress two issues. First, the triggers for these defects are described as
sequences of events (Defect3 of Table 2 is a simple example). Con-
sequently, Phoenix would have to include hardware to capture the
sequences, most likely using string matching algorithms. These algo-
rithms typically combine multiple FSMs to match a string. Therefore,
Phoenix would have to include FSMs that are programmed dynami-

To local BDU
and neighborhood
Hub

‘ Field—Programmable

Subsystem Pass Transistor

(a) Signal Selection Unit (SSU)

To neighborhood BDUs
and other Hubs

From neighborhood SSUs and other Hubs
From local SSU and

neighborhood Hub (b) Hub
u

)

Bug Detection Unit

To Global Recovery Unit
(c) Bug Detection Unit (BDU)
From local SSU

and
neighborhood Hub

Field-Programmable
Pass Transistor

Flush Pipeline
Software Recovery Handler

i Local Post Type o Rest of Post !
: Defect?
; Pipeline Post Exception

i to OS or
i Specialized
i Recovery

i | Reset or Pre
3 Module

| Possibly Turn Signal Off 1

Set Timer
Software Emulation

Set Timer
Continue Execution

Retry

Possibly Turn
Signal On

Continue

(e) Recovery Handler

(d) Delay Compensation Buffers

Figure 11. Phoenix components.

cally. This can done by using lookup tables to store the state transi-
tions for the FSMs.

The second, harder problem is the way in which the signals of
Complex bugs are specified. They are given as a set of microarchi-
tectural events like in Concurrent defects in only a few cases. In some
cases, they are instead given as one event and some unspecified “in-
ternal boundary condition”. Moreover, in most cases, they are given
as obscure internal conditions, often corresponding to RTL-level sig-
nals. These signals are both hard to tap and very numerous. For
example, one Complex defect starts with a prefetch that brings er-
roneous data into the cache, setting some internal error state but not
notifying the OS because the program correctness has not been af-
fected. If the data is later read, no error is reported (this constitutes
the Complex defect) because it appears that the existing internal error
state inhibits any error reporting. This internal error state is given in
terms of RTL level-like signals. Overall, handling Complex defects
involves an unappealing quantum loss in cost-effectiveness.

3.4. Sizing Phoenix Hardware

As engineers design a new processor, they do not know what design
defects it will have and, therefore, how to size its Phoenix hardware.
However, it is at this time that they need to choose the signals to tap,
and the size and spatial distribution of the Phoenix logic structures,
wires, and delay buffers.

To solve this problem, we propose to use the errata documents of
the 10 processors analyzed in Section 2 to determine, for these pro-
cessors, what signals to tap, how to combine them into defect condi-

tions, and how to route them to minimize logic, wires, and buffers.
From these “train-set” processors we can extract parameterized rules
of the Phoenix hardware required, which we can then apply to new
processors. In Section 5, we apply the rules to 5 completely different
processors.

To understand the procedure, we note that Phoenix taps two types
of signals: Generic and Specific. Generic signals are microarchitec-
tural events largely common to all processors, such as cache miss, bus
transaction, or interrupt. In practice, their number is largely bounded
by very low hundreds. Specific signals are specific to a processor,
such as hyperthreading enabled or thermal duty cycle settings. They
are special pins or registers in the processor, and can be compiled
from the processor’s manual.

From the train-set processors, we generate two pieces of informa-
tion. First, we compile the list of Generic signals that participate in
Concurrent defects in any of our 10 processors. This list has ~150
signals. Second, we generate rules of thumb that, given the number
of signals tapped from a subsystem or from a neighborhood, provide
the recommended sizes of the Phoenix logic structures, wires, and
buffers for the subsystem or neighborhood, respectively. We gener-
ate these rules by generating scatter plots of the hardware needed by
all subsystems and neighborhoods of the train-set processors and tak-
ing the envelope lines of the plots. The rules for our 10 processors
are shown in Table 4, where s is the number of signals tapped in a
subsystem, and 74 and np are the total number of signals tapped in
neighborhoods A and B, respectively.

With this information, Table 5 shows the 3-step Phoenix algo-
rithm, used to size the Phoenix hardware for a new processor. In the

Wires from local SSU to neighborhood Hub: s/4

Wires from local SSU to local BDU: s/4

Wires from neighborhood Hub to local BDU: s/3

Local BDU outputs: s/3

Wires from Hub in neighborhood A to Hub in
neighborhood B: (n4 + np)/20

One-bit buffers in each BDU input: Maximum
number of cycles to traverse the chip

Table 4. Rules of thumb to size the Phoenix hard-
ware. They are based on our 10-processor train set.

Phoenix Algorithm

1. Generate the list of signals to tap
1.1. Take the list of Generic signals from train set
1.2. Compile the list of Specific signals from manual
1.3. Combine the two lists

2. Place the SSU-BDU pair of each subsystem,
group subsystems into 3 — 6 neighborhoods,
place the hub of each neighborhood

3. Size the Phoenix logic structures, wires, and buffers
based on the rules of thumb

Table 5. Phoenix algorithm to size the Phoenix hardware
for a new processor.

first step, we generate the list of signals that Phoenix needs to tap.
They are the sum of the Generic signals (obtained from the train-set
processors) and the Specific ones for this processor (taken from the
processor’s manual).

In the second step, we decide the locations of the SSU-BDU pairs
and hubs in the chip floor-plan'. For this, we identify the subsystems
of Figure 10(e) in the chip floor-plan. For each subsystem, we place
its SSU-BDU pair at a boundary of the subsystem, close to adjoin-
ing subsystems. Then, we apply the k-means clustering algorithm to
automatically group subsystems into 3-6 neighborhoods. Typically,
subsystems that are related to each other are already laid out close
by and, therefore, end up in the same neighborhood. In practice,
however, what subsystems end up in what neighborhoods is not very
important. In each neighborhood, we place a hub approximately in
the centroid of all the SSU-BDU pairs.

Finally, in the third step, we use the rules of thumb of Table 4 and
the number of tapped signals per subsystem and neighborhood (from
steps one and two) to size and lay out the Phoenix logic structures,
wires, and buffers.

4. Usefulness of Phoenix

This section addresses several questions regarding the usefulness of
Phoenix.

Why We Believe that Phoenix Detects All Concurrent Defects.
Phoenix uses control signal conditions to detect defects. The rea-
son why we believe this approach works is the way errata documents
are written. First, since the defects are meant for system designers,
they are given as conditions that designers can manipulate — generic
microarchitectural events such as “cache miss” or processor-specific
ones such as “pin A20 asserted”. Second, for a vast community of
system software writers and other equipment manufacturers to avert
the bug with a modest amount of effort, the conditions need to be

'We used this same procedure to place the SSU-BDU pairs and hubs in the
train-set processors.

simple. In fact, they are likely to be a superset of the real condi-
tions. Consequently, if the defect is exercised, these simple signal
conditions must be asserted. Concurrent defects are easier to detect
because there is a time window when all participating signals are as-
serted.

There is evidence from another scheme [29] that capturing high-
level signal conditions is effective. Such scheme uses signal condi-
tions to activate a hardware module that breakpoints the processor
(Section 6).

Why We Believe that Phoenix Recovers from the Concurrent Pre,
Local Post, and Pipeline Post Defects. Design defects are subtle
by definition and, therefore, exercised only with a very specific inter-
leaving of events. With a different interleaving, the defect disappears.
Flushing and re-filling the pipeline (especially if one participating
signal can be disabled) is known to change event interleaving [14]. In
the worst case, Phoenix emulates a set of instructions in software in
the re-execution, which completely changes the interleaving. There-
fore, this approach is effective to avert Pre, Local Post and Pipeline
Post defects.

What Fraction of the Manufacturer Workarounds Is Still
Needed. Each workaround corresponds to a single defect. Con-
sequently, for each defect that Phoenix recovers from, there is one
less workaround needed — although, as shown in Figure 7, over 40%
of the defects have no known workaround to start with. Based on
Phoenix’s coverage, about 69 x 63 = 43% of the workarounds are
unneeded. If, with specialized handlers, Phoenix can additionally re-
cover from the remaining Post defects, then it could eliminate up to
about 69% of the workarounds.

This has a very significant impact, as workarounds are very ex-
pensive. Moreover, they are quite different than Phoenix recovery
handlers. First, hardware workarounds typically impair the system
performance, while Phoenix recovery handlers do not. Second, soft-
ware workarounds are likely to be OS-specific and, therefore, require
multiple versions, while Phoenix handlers are not.

Why Existing Techniques such as Patchable Microcode or Op-
code Traps Do Not Work. Popular past and current proces-
sors support microcode patching or opcode traps — e.g., IBM’s
zSeries [12] and Intel’s Pentium 4 [16]. These techniques cannot be
used to effectively detect the defects considered here. The reason is
that each of our defects occurs when there is a subtle combination of
events; such occurrence is not very correlated with the execution of
any given instruction opcode. For example, Defect2 in Table 2 ap-
pears when a cache hit occurs at the same time as a snoop, a request
to defer the transaction, and a request to re-initialize the bus. It is un-
productive to handle this defect by performing additional checks or
trapping at every single load and store. Even if we did, it is unclear
what change to the instruction microcode could avoid the defect. This
is why vendors propose expensive workarounds for these defects.

Why Phoenix’s Coverage Justifies its Cost. Phoenix detects 69%
of defects and, of those, recovers from 63% and helps recover from
the rest. This coverage of design defects is lower than the coverage of
hard or soft faults attained by certain reliability schemes — often over
ninety five percent. However, we argue that Phoenix is still very cost-
effective. The reason is the high cost of debugging design defects. In-
deed, while well-known redundancy-based techniques such as ECC
or parity handle hard and soft faults well, they do not work for subtle
design defects. Only laborious design verification can detect such de-
fects. Those that are detected before releasing silicon may require 2-3

of # of SSuU Hub BDU Total Area

Proc. Neigh. | Subsys. | Avg | Avg Avg, (Max) Avg | Avg Avg, (Max) Avg | Avg Avg, (Max) (% Chip)
In Out Pass Trans In Out Pass Trans In Out Pass Trans

K6 3 15 10.2 5.1 84.4, (288.0) 229 | 272 680.1, (1165.9) 5.9 34 32.8,(112.0) 0.11
P3 3 16 15.6 7.8 197.6, (968.0) | 37.4 | 443 | 1717.1,(2654.2) 9.1 52 76.8, (376.4) 0.06
Athlon 5 16 11.6 5.8 104.7, (364.5) | 242 | 273 737.5, (1182.9) 6.8 3.9 | 40.7,(141.7) 0.03
P4 4 16 16.5 8.2 219.8,(968.0) | 36.3 | 41.8 | 1902.3, (4647.5) 9.6 5.5 85.5,(376.4) 0.06
Itanl 4 17 10.5 5.3 92.2,(312.5) 24.6 | 283 748.5, (1230.7) 6.1 3.5 35.9, (121.5) 0.01
IBM-G3 4 16 11.6 5.8 115.2,(450.0) | 25.6 | 294 855.0, (1640.0) 6.8 39 | 44.8,(175.0) 0.10
Itan2 4 17 11.4 5.7 106.3, (392.0) | 26.7 | 30.7 902.4, (1609.5) 6.7 3.8 41.3, (152.4) 0.01
Mot-G4 6 17 12.2 6.1 121.4,(450.0) | 259 | 28.7 814.4, (1429.7) 7.1 4.1 47.2,(175.0) 0.05
P-M 3 16 15.2 7.6 183.8,(684.5) | 36.4 | 43.2 | 1655.2,(2658.1) 8.9 5.1 71.5, (266.2) 0.06
Athl64 5 17 12.9 6.4 127.6, (420.5) | 28.5 | 32.1 1241.7, (4349.8) 7.5 4.3 49.6, (163.5) 0.03
A.Mean 4.1 16.3 12.8 6.4 135.3,(529.8) | 28.8 | 33.3 | 1125.4,(2256.8) 7.4 4.3 52.6, (206.0) 0.05

Table 6. Characterization of the logic structures in Phoenix.

person-months each to debug, and may cause costly shipping delays;
those that slip into production silicon require performance-impairing
or software-intensive workarounds, or risk expensive recalls and se-
curity breaches. Either type may require a costly chip re-spin.

Consequently, even with a modest coverage, Phoenix substantially
reduces costs. Alternately, Phoenix can enable earlier release of a
processor to market, which gives a very significant edge to a com-
pany. Overall, therefore, given Phoenix’s simplicity, it fully justifies
its cost. Moreover, it will become more useful as chips become more
complex and as processors change generations faster.

5. Evaluation of Phoenix

In this section, we address three key issues: Phoenix’s hardware over-
head, Phoenix’s execution overhead and, most importantly, Phoenix’s
defect coverage for new processors.

5.1. Phoenix Hardware Overhead

To estimate Phoenix’s hardware overhead, we apply the rules of
thumb of Table 4 to each of the 10 processors and size the result-
ing hardware. While this approach may be a bit conservative because
these rules were obtained from these same processors, we will see
that the hardware overhead is so small anyway, that this matters very
little. In the following, we examine the signal, area, wire, and buffer-
ing requirements.

5.1.1. Signals Tapped

Figure 12 shows the number of tapped signals, grouped according to
the modules in Figure 2. There is a bar for each processor, which
includes both its Specific signals and the Generic ones for the sub-
systems it has. The leftmost bar shows all the Generic signals, most
of which are included in all processors. Overall, Phoenix taps 150-
270 signals, of which around 150 are Generic. The processors with
the most taps are the most complex ones, namely the Pentiums and
the Athlon-64. Importantly, most of the taps come from the core’s

periphery.
5.1.2. Area Required

Table 6 characterizes the sizes of SSUs, hubs, and BDUs. Columns
2 and 3 list the number of neighborhoods and subsystems per chip.
The values are 3-6 and 15-17, respectively. The subsequent columns
show the average number of inputs, outputs, and pass transistors for
the SSUs, hubs and BDUs. In parenthesis, we show the size of the

w
1=}
S

N

@

=}
t

n

o

S
t

Number of Signals
B &

o
=}
t

o

Generic K6 P3 Athlon P4 Iltan1 IBM-G3 Itan2 Mot-G4 P-M Athlé4 Mean

B Fetch M Exec [1 Mem 1/O+Int M System

Figure 12. Classification of the signals tapped by Phoenix.

largest such structures in the chip in number of pass transistors. We
can see that these structures are small. Averaged across all processors,
an SSU has 12.8 inputs and 6.4 outputs, a hub has 28.8 inputs and
33.3 outputs, and a BDU has 7.4 inputs and 4.3 outputs. The table
also shows that even the largest hubs only have a few thousand pass
transistors.

To estimate the area and delay of these structures, we use data
from Khatri et al. [19]. Their PLA area estimates include the related
overhead. The last column of Table 6 combines the area of all these
structures for each processor, and shows the result as a fraction of
the chip area. Overall, the area required is a negligible 0.05%. For
the delay, we use Khatri er al.’s worst-case model and scale it for the
appropriate technology using [6]. We find that the delays inside our
structures are typically a fraction of a processor’s cycle, and rarely go
up to 2 cycles for the larger structures.

To size the logic to include in the BDUs, we examine all the
defect-flagging logic functions. We generate them using sum-of-
products logic. Figures 13 and 14 show the distribution of the number
of minterms per defect-flagging function, and the number of inputs
per minterm, respectively. We can see that over 90% of the functions
only need a single minterm of 1-3 inputs. Considering that a BDU
has on average 4.3 outputs (Table 6), we conclude that the amount of
programmable logic in a BDU is very modest.

5.1.3. Wires Needed

Table 7 shows the number of wires added by Phoenix. Column 2
shows those added between neighborhoods, while Column 3 shows
those added inside neighborhoods. The former are global wires; the
latter can be considered intermediate-level [18]. On average, Phoenix
adds 58 global wires and 115 wires within neighborhoods.

To assess the wiring impact of Phoenix, we use Rent’s rule [30],
which relates the number of wires connected to a structure with the

Number of Defects(%)

K6 P3 Athlon P4 Itan1 IBM-G3 Itan2 Mot-G4 P-M Athlé4 Mean

H1 [J2 W3 4 W >4

Figure 13. Distribution of the number of minterms per
defect-flagging function.

Number of Minterms(%)
[4))
o

Ké P3 Athlon P4 Itan1 IBM-G3 Itan2 Mot-G4 P-M Athlé4 Mean

H1 [J2 W3 4 W >4

Figure 14. Distribution of the number of inputs per
minterm.

number of transistors in the structure. The rule is T = k x NP, where
T is the number of wires, N is the number of transistors, and k£ and p
are constants. For each unmodified processor, we use Rent’s rule to
estimate the number of wires connected to each subsystem. We use
the values of k£ and p given in Table II of [30]. Then, we compute
the increase in the number of wires due to Phoenix (Column 4 of
Table 7). The average increase is a very modest 0.48%.

To gain further insight, Columns 5 and 6 show the subsystem that
produces the most signals for other subsystems and the one that con-
sumes the most signals from other subsystems, respectively. Such
subsystems are typically in the core’s periphery, especially in the
memory hierarchy. They tend to be the virtual memory, L2 cache,
system control (i.e., power, temperature, or voltage control), interrupt
handler, and processor status manager subsystems.

5.1.4. Compensation Buffers

To capture a snapshot of signals at a given clock cycle, Phoenix adds
programmable 1-bit buffers to all BDU inputs. Given all the signals
that contribute to a given BDU output, the one (i) that is routed

Number of Wires Increase Highest Highest

Proc. Total Total in # of Producer Consumer
Between | Inside Wires Subsystem Subsystem

Neigh Neigh (%) (# Signals) (# Signals)
K6 28 85 0.80 L1(Q2) vmem (4)
P3 46 139 0.62 vmem (15) vmem (22)
Athlon 66 103 0.48 vmem (3) system (5)
P4 76 147 0.86 status (11) L2 (14)
Itanl 48 98 0.15 L2(5) L2 (6)
IBM-G3 52 102 0.54 L2 (6) system (7)
Itan2 54 106 0.18 interr (6) interr (9)
Mot-G4 90 113 0.49 vmem (8) mp&bus (7)
P-M 46 136 0.41 status (5) interr (10)
Athl64 78 121 0.29 system (6) memcontr (10)
A.Mean 58.4 115.0 0.48 — -

Table 7. Characterization of the wiring required by
Phoenix.

from the farthest SSU should have all its delay buffers disabled; any
other input should have as many buffers enabled as the difference in
arrival times in cycles between i t4,. and its signal.

Using the floor-plan of each chip, we compute the worst-case la-
tency of a Phoenix signal from when it is tapped by an SSU until it
arrives at a BDU. For this computation, we use [19] to estimate the la-
tency of crossing SSUs and hubs, and the ITRS [18] to estimate wire
delays. Column 2 of Table 8 shows that this number ranges from 1 to
6 cycles®. This is the number of 1-bit buffers we add to every BDU
input. Column 3 shows the resulting total number of 1-bit buffers
added to the chip. This number represents very little storage.

Max Signal | Total 1-bit

Proc. Latency Buffers

in Cycles per Chip
K6 1 89
P3 2 290
Athlon 2 216
P4 6 924
Itanl 2 208
IBM-G3 1 108
Itan2 4 452
Mot-G4 2 240
P-M 5 705
Athl64 4 508

Table 8. Characterization of the buffers added by Phoenix.

5.2. Phoenix Execution Overhead

Phoenix has negligible execution overhead. To see why, consider first
issues unrelated to exercising defects. Phoenix increases wire load
by tapping signals. However, if designers see a benefit to Phoenix,
they will make slight modifications to the circuits to ensure such
load increase has no performance impact. Moreover, while large pro-
grammable logic is slow, we have seen that Phoenix uses very small
and, therefore, fast structures (Section 5.1.2).

Even if defects are exercised, the overall overhead is negligible.
The typical cost of correcting a Pre defect is to flush the pipeline,
disable a signal, and set a timer. Even if we have one error every
million cycles, the overhead is noise. In practice, defect activation
is rarer — otherwise designers would have detected and fixed the
defects.

5.3. Phoenix Defect Coverage for New Processors

We now consider the case where designers are building a new pro-
cessor and want to use our algorithm of Table 5 to size Phoenix. A
key question is what defect coverage should they expect? To answer
this question, we consider a “test-set” group of five additional pro-
cessors from domains different than the ten in the train set (Table 9).
They include embedded, network, and multicore processors. To these
processors, we apply the algorithm of Table 5.

After the Phoenix hardware is completely laid out for these five
processors, we examine their errata documents for the first time, and
try to program all their Concurrent defects into their Phoenix hard-
ware. We are interested in the Detection Coverage and the Recovery
Coverage. The former is the fraction of Critical defects in the pro-

2Qur distinction between Pre and Post defects took into account these cy-
cles.

Processor Characteristic Freq
(MHz)
Ultra Sparc 11 Advanced embedded processor 450
Intel IXP 1200 Network processor 232
Intel PXA 270 Advanced embedded processor 520
IBM PPC 970 Core for the IBM Power 4 2500
Pentium D Chip multiprocessor 3400

Table 9. New processors analyzed.

cessor that are Concurrent and that we can program into the Phoenix
hardware; the latter is the fraction of Critical defects that are Concur-
rent Pre, Local Post, or Pipeline Post and that we can program into
Phoenix. The higher these coverages are, the more useful Phoenix is.

Figure 15 shows the results obtained. Each processor has three
bars, from left to right: the number of Critical defects (both Concur-
rent and Complex) in the errata document (Original), the Concurrent
defects that we program into the Phoenix hardware (Detected), and
the Concurrent Pre, Local Post, or Pipeline Post defects that we pro-
gram (Recovered). For each processor, the ratio between the second
and first bars is the Detection Coverage, while the ratio between the
third and first bars is the Recovery Coverage. In addition, the second
and third bars have a number on top of them, which is the height of
the bar as a percentage of the height of the same bar with unlimited
Phoenix resources — both in terms of signals tapped and size of logic
structures.

0 A: Original B: Detected C: Recovered ‘

7!

o 60

8 50t 96

S 40t

S 30 1 96

5 a 9%

0 20 1 94 94

8 10 | 100 H Hm%o H91 Hgs
ABC ABC ABC ABC ABC ABC
Ultra Intel Intel IBM Pentium D Mean
Sparc Il IXP 1200 PXA 270 PPC 970

B concurrent] complex

Figure 15. Using Phoenix in five additional processors
from different domains.

The high numbers on top of the bars show that our algorithm of
Table 5 appropriately sizes the Phoenix hardware on entirely new pro-
cessors. Only an average of 4-5% of the relevant defects cannot be
programmed due to lack of hardware resources.

If we consider the Mean bars and take the ratio between the sec-
ond and first, and between the third and first, we obtain an average
Detection Coverage equal to 65%, and an average Recovery Cover-
age equal to 39%, respectively. These numbers are remarkably sim-
ilar to those obtained for the 10-processor train set (69% and 43%,
respectively). They show that these different processors have an er-
rata profile similar to that of the train set — about two-thirds of the
defects are Concurrent and about two-thirds of them are Pre, Local
Post, or Pipeline Post. Furthermore, they show the broad applicability
and effectiveness of Phoenix for different types of processors.

5.3.1. Sufficient Size of the Train Set

Finally, we compute how many processors are needed in the train
set to properly size Phoenix for new processors. We proceed by tak-
ing the processors in Table 1 in order and building the train set with

the first processor only, then with the first two only, then the first
three only, etc. For each train set, we build the corresponding list
of Generic signals and rules of thumb as per Section 3.4 and, based
on them, size the Phoenix hardware for the five new processors of
Table 9. Finally, we attempt to program the defects of the new pro-
cessors on their Phoenix hardware.

We record how the numbers on top of the two Mean bars of Fig-
ure 15 change with the train-set size, and show it in Figure 16. The
figure shows that, as the size of the train set increases, such numbers
increase, both for detection and recovery. Overall, we only need a
seven-processor train set: the resulting Phoenix hardware is able to
program all the defects that a ten-processor train set would enable to
program. Importantly, the processors in the train set do not have to
closely resemble the new processor.

100
9 |
80
70
60
50
40|
3t /
20 f

10 ’ Detected —— -
ol . . . Recovered

i 2 3 4 5 6 7 8 9 10
Number of Processors in the Train Set

Figure 16. Impact of the train set size on the ability to

program defects from the five new processors in Phoenix.

% of Relevant Defects Programmed

6. Related Work

Existing techniques for permanent defect detection/recovery. Ita-
nium implements many functions in firmware, such as TLB and FP
unit control, and interrupt and ECC handling [17]. While execution
of such functions is slower, defects can be corrected with patches.
Phoenix is more general in that patches can be applied to the whole
chip. Moreover, Phoenix has negligible performance cost. Crusoe
uses code translation and, therefore, “fixes” design defects by chang-
ing the translation software [20]. For the many processors without
this support, this approach is not an alternative.

A related approach to fix defects is patchable microcode and op-
code traps. This approach was popular in the past and is still used
in processors such as IBM’s zSeries (Millicode) [12] or Intel’s Pen-
tium 4 [16]. As indicated in Section 4, this approach is inappropriate
for the design defects considered: a defect is not very correlated with
the execution of any given instruction opcode. Trapping or perform-
ing additional checks at every instance of a given opcode would be
unproductive.

Hardware workarounds proposed by vendors typically impair per-
formance (e.g., chicken switches); Phoenix has negligible perfor-
mance impact. Some processors have advanced monitoring capabil-
ities such as trigger-based trace arrays or trap-on-event capabilities.
For example, Pentium 4 can start tracing branches when an event hap-
pens, or trap when an address is accessed. These techniques are too
limited to detect the defects detected by Phoenix. Finally, pipeline

flush and retry has been used to recover from design defects in the
past (e.g., in IBM 3081).
Research proposals for permanent defect detection/recovery.
DIVA adds a checker processor to a pipeline to re-execute instruc-
tions as they retire [2]. If the results differ, a fault has been detected.
If the checker is assumed defect-free, it could be used to check for
permanent defects. However, DIVA is not as suitable as Phoenix for
design defects. First, DIVA focuses mostly on checking the pipeline,
while most defects are in the core’s periphery. Second, many de-
fects cause incorrect side effects (e.g., cache corruption); simply re-
executing the instruction will not help. Finally, instructions with I/O
or multiprocessor side-effects cannot simply be re-executed.
Vermeulen et al. [29] describe a design automation compiler that
takes a user’s description of when a hardware breakpoint should hap-
pen, and generates an RTL breakpoint module. The user specifies the
breakpoint in terms of a condition of signals. Such compiler could
potentially be usable to generate RTL code for Phoenix modules.
Concurrently to our work, Narayanasamy et al. [24] analyze the
design errors found in the AMD 64 and Pentium 4 processors. They
discuss the applicability of techniques to patch hardware in the field
(instruction editing, replay, checkpointing, and hypervisor support).
Analysis of design defects in processors. Avizienis and He [3]
examine the Pentium II errata to see if it could be used in high-
confidence systems. They propose a taxonomy of design defects.
One main conclusion is that 50% of the defects are in the part of the
processor that is not devoted to deliver performance, but to handle
faults. We perform a much deeper analysis and examine ten more re-
cent and complex processors. While some of our observations agree
with theirs, we classify many of the defects in non-performance com-
ponents as NonCritical.

7. Conclusion

Ideally, we would like hardware bugs to be handled like system
software ones, with vendors releasing periodic patches. Costly
workarounds and expensive chip recalls would be avoided and, con-
ceivably, production silicon could be released to market earlier, giv-
ing a significant edge to the company. Toward this vision, this paper
made three contributions.

First, we analyzed the design defects of AMD, Intel, IBM, and
Motorola processors, to gain insight into how to detect and recover
from them. Processors have on average about 30 Critical defects,
consistently concentrated in the core’s periphery and cache hierarchy.

Second, we proposed Phoenix, novel on-chip field-programmable
hardware that detects and recovers from design defects. Phoenix taps
key signals and, based on downloaded defect signatures, combines
them into conditions that flag defects. On defect detection, Phoenix
flushes the pipeline and either retries or invokes a customized recov-
ery handler. We also presented an algorithm to automatically size
Phoenix for new processors.

Third, we evaluated Phoenix. Phoenix induces negligible slow-
down. Our design taps about 200 signals and adds only 0.05% area
and 0.48% wire overheads to the chip. Of all the Critical defects,
Phoenix currently detects the 69% that are triggered by concurrent
signals (Concurrent). Of these, Phoenix easily recovers from the
63% that are Pre or Local/Pipeline Post, and can simplify recov-
ery for the rest by immediately invoking a customized handler. We
argue that this coverage fully justifies Phoenix, given the very high

cost of processor defects — extensive pre-release debugging, costly
shipping delays, chip re-spins, performance-impairing or software-
intensive workarounds, expensive chip recalls and security breaches.
Increasing the coverage further requires adding relatively expensive
programmable FSMs to Phoenix to detect Complex defects. Lastly,
our algorithm effectively sizes Phoenix for new processors of differ-
ent types.

References

[1] AMD. Technical documentation. http.://www.amd.com.

[2] T.M. Austin. DIVA: A reliable substrate for deep submicron microarchitecture de-
sign. In International Symposium on Microarchitecture, pages 196-207, November
1999.

[3] A. Avizienis and Y. He. Microprocessor entomology: A taxonomy of design faults
in COTS microprocessors. In Conference on Dependable Computing for Critical
Applications, November 1999.

[4] F. Bacchini, R. F. Damiano, B. Bentley, K. Baty, K. Normoyle, M. Ishii, and E. Yo-
gev. Verification: What works and what doesn’t. In Design Automation Conference,
page 274, June 2004.

[5] B. Bentley and R. Gray. Validating the Intel Pentium 4 processor. Intel Technology
Journal, Q1 2001.

[6] S. Borkar. Design challenges of technology scaling. IEEE Micro, 19(4):23-29,
1999.

[7]1 A.Carbine and D. Feltham. Pentium Pro processor design for test and debug. IEEE
Design & Test of Computers, 15(3):77-82, 1998.

[8] A. Gluska. Coverage-oriented verification of Banias. In Design Automation Con-
ference, pages 280-285, June 2003.

[91 M. Hachman. Boot-up bug discovered in Intel’s desktop Coppermine chips.
http://www.my-esm.com, December 1999.

[10] M. Hachman. Bug found in Intel’s Itanium 2 could cause data loss.
http://www.extremetech.com, May 2003.

[11] T. R. Halfhill. The truth behind the Pentium bug. http://www.byte.com, March
1995.

[12] L.C. Heller and M. S. Farrell. Millicode in an IBM zSeries processor. IBM Journal
of Research and Development, May 2004.

[13] IBM. 750FX technical documentation. http://www.ibm.com.

[14] Intel. Pentium processor family developer’s manual, volume 3: Architecture and
programming manual. http://www.intel.com.

[15] Intel. Technical documentation. Attp://www.intel.com.

[16] Intel. TA-32 Intel Architecture software developer’s manual volume 3B: System
programming guide, part 2. http://www.intel.com, March 2006.

[17] Intel. Intel Itanium processor firmware
http://www.developer.intel.com/design/itanium/firmware.htm, 2006.

[18] International ~ Technology =~ Roadmap for Semiconductors
http://www.itrs.net, 2004.

[19] S.P. Khatri, R. K. Brayton, and A. Sangiovanni. Cross-talk immune VLSI design
using a network of PLAs embedded in a regular layout fabric. In International
Conference on Computer Aided Design, pages 412—418, November 2000.

[20] A. Klaiber. The technology behind Crusoe processors.
http://www.transmeta.com/about/press/white_papers.html, January 2000.

[21] M. Magee. Intel’s hidden Xeon, Pentium 4 bugs. http://www.theinquirer.net, Au-
gust 2002.

[22] Motorola. MPC7457CE technical documentation. http://www.freescale.com.

[23] J. Nakano, P. Montesinos, K. Gharachorloo, and J. Torrellas. ReVivel/O: Efficient
handling of I/O in highly-available rollback-recovery servers. In International Sym-
posium on High-Performance Computer Architecture, pages 203-214, February
2006.

[24] S. Narayanasamy, B. Carneal, and B. Calder. Patching processor design errors. In
International Conference on Computer Design, October 2006.

[25] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: Cost-effective architectural
support for rollback recovery in shared-memory multiprocessors. In International
Symposium on Computer Architecture, May 2002.

[26] D. Sorin, M. Martin, M. Hill, and D. Wood. SafetyNet: Improving the availability
of shared memory multiprocessors with global checkpoint/recovery. In Interna-
tional Symposium on Computer Architecture, May 2002.

[27] Inquirer Staff. AMD Opteron bug can cause
http://www.theinquirer.net, June 2004.

[28] Inquirer Staff. IBM Power PC 1GHz chip only runs properly at 933MHz.
http://www.theinquirer.net, August 2004.

[29] B. Vermeulen, M. Z. Urfianto, and S. K. Goel. Automatic generation of breakpoint
hardware for silicon debug. In Design Automation Conference, June 2004.

[30] P.Zarkesh-Ha, J. A. Davis, and J. D. Meindl. Prediction of net-length distribution
for global interconnects in a heterogeneous system-on-a-chip. /EEE Trans. Very
Large Scale Integration Syst., 8:649—-659, December 2000.

specifications.

(ITRS).

incorrect results.

