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VarSim: A Fast Process Variation-aware Thermal
Modeling Methodology Using Green’s Functions

Hameedah Sultan and Smruti R Sarangi

Abstract—Despite temperature rise being a first-order design
constraint, traditional thermal estimation techniques have severe
limitations in modeling critical aspects affecting the temperature
in modern-day chips. Existing thermal modeling techniques often
ignore the effects of parameter variation, which can lead to
significant errors. Such methods also ignore the dependence of
conductivity on temperature and its variation. Leakage power
is also incorporated inadequately by state-of-the-art techniques.
Thermal modeling is a process that has to be repeated at least
thousands of times in the design cycle, and hence speed is of
utmost importance.

To overcome these limitations, we propose VarSim, an ultrafast
thermal simulator based on Green’s functions. Green’s func-
tions have been shown to be faster than the traditional finite
difference and finite element-based approaches but have rarely
been employed in thermal modeling. Hence we propose a new
Green’s function-based method to capture the effects of leakage
power as well as process variation analytically. We provide a
closed-form solution for the Green’s function considering the
effects of variation on the process, temperature, and thermal
conductivity. In addition, we propose a novel way of dealing with
the anisotropicity introduced by process variation by splitting
the Green’s functions into shift-variant and shift-invariant com-
ponents. Since our solutions are analytical expressions, we were
able to obtain speedups that were several orders of magnitude
over and above state-of-the-art proposals with a mean absolute
error limited to 4% for a wide range of test cases. Furthermore,
our method accurately captures the steady-state as well as the
transient variation in temperature.

I. INTRODUCTION

The 1 demand for high-performance computing as well
as applications in fields such as machine learning, big data
analytics, IoT, and edge computing has led to increased power
densities in modern-day chips. The resultant temperature rise
has several harmful effects that include an increase in leakage
power and a disproportionate decrease in reliability. Hence,
thermal simulation is now one of the most critical steps in the
overall semiconductor design flow. It is typically a long and
time-consuming process, that has to be repeated several times
for a multitude of use cases in the design cycle.

To make matters worse, process variation has increasingly
been leading to large deviations in electrical and thermal
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parameters of transistors, thereby leading to a high degree of
unpredictability in key circuit parameters such as the timing
delay and leakage power consumption. With ongoing device
scaling, handling and mitigating process variation continues
to become increasingly critical. Process variation affects all
major architectural design decisions.

Sadly, thermal modeling in chips with process variation is
extremely complex and slow; till date no fast and efficient so-
lutions have been proposed; researchers still rely on traditional
Finite Element Method (FEM) and Finite Difference Method
(FDM) analysis.

There is however a strong need for fast thermal simulation
methods in this space. Many architectural techniques have
been proposed with the aim of mitigating the adverse effects of
process variation such as functional unit level body biasing and
retiming. However, to effectively incorporate such schemes,
an accurate estimate of the impact of variation is needed. This
requires extensive thermal simulations for a wide range of
power plans. Similarly, while floorplanning or cell placement,
a large number of optimization strategies need to be quickly
evaluated for a range of process variation scenarios [2], [3].
Leakage power has a strong temperature dependence and is
heavily influenced by process variation as well. The chip
temperature itself is dependent on leakage power, resulting in
a cyclic effect. Thus leakage has a significant impact on the
temperature of modern-day chips, often contributing to half of
the total temperature rise. Thus, a proper design optimiza-
tion requires performing a thorough thermal evaluation
through simulations on chips having a significant range
of process, conductivity and temperature variation, while
correctly incorporating leakage power. Hence, there is a
need for a fast thermal simulator in this space. A disclaimer
is due – at different stages of the design process the designer
has different degrees of information. Nevertheless, there is
still a need for ultra-fast thermal simulation because designers
always seek the most productive design choices with the
information that they have at that stage. For example, at
the architectural level, in the product planning stage, just a
broad idea of the power consumption is available. Hence, the
designer uses high level core power and variation models here,
which still need to factor in the effects of temperature. After
RTL signoff, placement and routing, synthesis and layout,
progressively more accurate power numbers are available at
each stage, and any change introduced at any level requires
further modeling updates to guide the optimal design choices.
This exercise needs to be done for every DCVS corner. After
tapeout in the post silicon stage, the exact dynamic power
numbers and a concrete idea of the process variation is avail-
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able. Thus at every stage of the design process, each simulation
produces crisp, exact data, and thousands of such simulations
are run with different power dissipation (variation) values for
a range of use cases. This Monte Carlo simulation yields a
distribution that helps determine the final chip design. This
is the standard practice widely used across the semiconductor
industry.

Unfortunately, existing architectural thermal simulators
do not consider the effects of process variation. Ignoring
process variation could lead to failure of the device after
fabrication [4]. Additionally, most simulators fail to factor
in the temperature dependence of conductivity, leading to
significant errors in thermal estimation. Prior work has shown
that ignoring the temperature dependence of conductivity can
result in an error of up to 5◦C [5]. Furthermore, traditional
thermal simulators are based on the costly finite element and
finite difference methods, making them slow and limiting
the scope of design space exploration. On top of that, most
existing thermal simulators consider the effects of leakage
power by iterating through the leakage-temperature feedback
loop, increasing their runtime several times. Since leakage
power is indispensable in modern-day chips, it is essential for
today’s thermal simulators to naturally consider the effects of
leakage power as part of the core modeling methodology and
avoid iterative computations.

Consequently, fast thermal estimation that takes variability
into account has hitherto remained an open problem. To solve
this problem, we propose a thermal simulation methodology,
VarSim, in this paper. VarSim is a novel Green’s function-
based analytical thermal simulator, that inherently cap-
tures the effects of both process variation as well as
leakage power, without running costly iterations. Our main
contributions can be summarized as follows:

1) VarSim considers the impact of process variation as well
as the temperature dependence of conductivity. To the extent
of our knowledge, no existing technique has done this.
2) Our method is based on Green’s functions (impulse re-
sponse of a power source), which are known to be very
fast methods [6], [7]. However, Green’s functions in thermal
estimation rely on the shift-invariance of the impulse response,
which ceases to be true when process variation is considered.
We propose a novel way of overcoming this limitation by
splitting the Green’s function into a shift-invariant component
and a shift-variant component.
3) We mathematically derive a novel, modified leakage-aware
Green’s function that incorporates in itself the impact of
temperature-dependent conductivity and leakage power. This
modified Green’s function is directly used at runtime with the
dynamic power profile to obtain an accurate estimate of the
full-chip thermal profile considering all the desired effects.
Since our method is analytical, it is also extremely fast.
4) Green’s function-based methods have great potential, since
their accuracy is not dependent on the grid size, making them
faster. However, their applicability is limited by a lack of so-
lutions for modern EDA problems. Thus our work contributes
to an ecosystem, where more researchers can propose faster
Green’s function-based solutions for newer problems.

Using an analytical Green’s function-based approach, we
obtain a several orders of magnitude speedup over state-of-the-
art approaches, while keeping the maximum error within 4%.
Thus by leveraging the underlying physics of heat transfer
and process variation, we are able to increase the accuracy
of thermal simulations by considering all the critical
temperature-affecting phenomena, while simultaneously
achieving a very high simulation speed. The speed advantage
becomes even more pronounced when thermal simulations
need to be repeated thousands of times, as is done in a typical
design cycle.

The work presented in this paper is an extension of the
work presented in Reference [8]. However, the previous work
involved solving the steady-state temperature profile only. In
this work, we solve for the transient thermal profile as well,
and include this to evaluate our method for both step and time-
varying inputs. In addition, we have made major changes to the
modeling methodology by removing simplifying assumptions
and splitting the Green’s functions into shift-varying and shift-
invariant parts. We have also removed the use of k-means
clustering for better generalizability. In addition, we have
validated our method much more thoroughly in the current
work.

The rest of the paper is organized as follows. We describe
some background information for our work in Section II. The
current state-of-the-art literature is described in Section III. We
describe our modeling methodology in Section IV. Section V
describes the evaluation of our proposed method and the
corresponding results. We finally conclude in Section VI.

II. THEORETICAL PRELIMINARIES

A. Fundamentals of Thermal Modeling

1) The Fourier Equation: The temperature distribution in a
body is governed by the Fourier heat equation [9], described
mathematically as:

∇. (κ∇T ) + q̇ = ρCv
∂T

∂t
, (1)

where ρ is the material density, T is the temperature, Cv is the
volumetric specific heat, κ is the thermal conductivity, and q̇ is
the rate of heat energy generation inside the volume. However,
this equation is too complex to be solved analytically in the
general case. Hence most chip-level thermal simulators use
numerical methods such as the finite difference and the finite
element methods to arrive at an approximate solution quickly.
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Fig. 1: Schematic of the chip with edges and corners labelled
and the direction of heat flow shown
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2) Heat Transfer in a Chip’s Package: Figure 1 shows the
schematic diagram of the chip’s package. The chip’s die area
is typically limited to 400-500 mm2 (maximum). This is much
smaller as compared to other structures in the package. There
is of course a lateral heat conduction path where heat flows
along the silicon die (in a 2-dimensional fashion). A chip has
additional metal layers; however, these layers generate very
little heat and furthermore for heat transfer, the die (along with
other structures) act as a low pass filter. This means that there
is a high spatial correlation of the temperature. As a result,
often the die temperature is modeled and also measured (using
on-die temperature sensors). Lateral heat conduction is only
considered along the transistor layer and lower-interconnect
layers (lumped into one layer).

The majority of heat transfer however takes place vertically.
Some of it leaks through the bottom (via the ball grid array
through the PCB). However, this is not the primary heat
transfer path. Most of the heat escapes through the heat
spreader. The spreader is a much larger metal plate (typically
5 cm × 5 cm) made of a Cu-Ni alloy with high thermal
conductivity. Its job is to homogenize the temperature profile
on the die and also transfer the heat to the heat sink. The heat
sink on top has multiple fins to increase its effective surface
area. It transfers heat to the ambient where we can either have
natural convection or we can force air over it using a fan.

We view the structure primarily as a cylinder. Heat transfer
at most points (other than the rim of the die) is isotropic
along the silicon surface (same in all directions). For every
grid point, there is heat loss in a vertical direction as well.
The mathematical abstraction is a 2D-plane with vertical heat
loss at each grid point (towards the heat sink). The heat sink
is modeled as a thermal resistance to the ambient (assumed to
maintain a fixed temperature). The horizontal boundaries are
adiabatic (no heat transfer). Note that the horizontal boundaries
are the sides of Figure 1.

B. Green’s Functions

An alternative approach to obtain the temperature profile
is based on the impulse response of the chip (or the Green’s
function [10]) (refer to Appendix B). This impulse response
is obtained by applying a unit power source to the center of
the chip and getting the corresponding temperature rise. The
Green’s function is essentially the heat spread function, fsp, of
a point power source. This Green’s function is then convolved
with the power profile to obtain the full-chip temperature
profile. This approach is analytical, and much faster than finite
difference or finite element-based approaches since the entire
heat transfer path is not modeled, rather only the power dissi-
pating layers and the boundary conditions are considered [11],
[6], [7]. This is because the accuracy of the finite element
method is dependent on the grid size, and reducing the grid
size comes at the expense of lost accuracy. However, because
of the analytical nature of the Green’s function, the grid size
here merely determines the output resolution and the accuracy
of the method is independent of the grid size.

Using the impulse response (Green’s function), the complete
full-chip temperature profile can be calculated as [12]:

T = fsp ? P (2)

where P is the power dissipation profile, fsp is the Green’s
function, and ? is the convolution operator.

The Green’s function is radially symmetric and can be
further decomposed into a rapidly decaying part fsilic, and
a constant representing heat redistributed through the heat
spreader [11].

Interested readers may read more about the Green’s function
in [11], [6], [7].

C. Process and Temperature Variation

The manufacturing of an IC involves a large number of
steps or processes that are imperfect in nature. As a result,
the properties of a manufactured chip often differ from its
nominal values. The device dimensions have reached the scale
of tens of atoms in modern-day chips. As a result, the impact
of variation has become much more prominent[13].

The parameters affected by variation include the oxide
thickness, threshold voltage, gate width, and channel length.
The variation in these parameters is classified as: wafer-to-
wafer, die-to-die and within-die variations. The first two effects
(collectively known as inter-die variation) uniformly affect all
regions of a given die. They used to have a larger significance
in older technology generations; they can be mitigated easily
by relatively simple methods such as frequency binning. These
typically cause a constant shift in the mean value of a
parameter across all the devices on a die.

For newer technology generations, within-die variation
dominates and requires more complex management strate-
gies [14]. This type of variation leads to deviations in the
electrical and thermal properties of the chip on the same die.
Within-die variation is further classified as:
1) Systematic variations: These are introduced because
of lithographic aberrations and diffraction or chemical-
mechanical polishing/planarization (CMP) effects. Systematic
variation results in proximate regions on the die having similar
values of parameters. It is modeled by a multivariate Gaussian
distribution [15] having a spherical correlation 2.
2) Random variations: These are caused by random dopant
fluctuations[16] (RDF) and line edge roughness; they are
together modeled as a zero-mean Gaussian random variable.
These variations do not exhibit any spatial correlation.

There are two variables in the heat equation that are strongly
affected by parameter variation: leakage power and thermal
conductivity. We discuss these next.

D. Leakage power

The variability in leakage power arises because of both sys-
tematic and random variations. However, it is well-known [17]
that the effects of random variation tend to get averaged out at
the architectural level when considering temperature. We have
also observed the same in our experiments.
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Fig. 2: Leakage power in the presence of variability. Note
the spatial correlation in the leakage power values (high
concentration of similar values in the bounding boxes).

The subthreshold leakage current, Ileak is given by Equa-
tion 3.

Ileak ∝ v2
T ∗ e

VGS−Vth−Voff
η∗vT (1− e

−VDS
vT ) (3)

where, vT is the thermal voltage (kT/q), Vth is the threshold
voltage, Voff is the offset voltage in the sub-threshold region
and η is a constant. Because of variability, the oxide thickness
and gate length change, which result in a change in the
threshold voltage.

The temperature dependence of Ileak can be modeled with
a reasonable accuracy using a linear equation [11], [6], [18].
Equation 3 then becomes:

Ileak ∝ (1 + β∆T )eβL∆L+βtox∆tox (4)

where β represents the change in leakage power with
temperature, βtox is a constant representing the variability in
the oxide thickness tox and βL represents the variability in the
gate length, L. The corresponding leakage power is given by:

Pleak = (1 + β∆T )Pleak0 , (5)

where Pleak0 is the leakage power at ambient temperature after
considering the impact of variability. For improved accuracy,
we can use a piece-wise linear leakage model, which provides
an accuracy of over 99% [19].

E. Conductivity of Silicon

In addition to considering the impact of variation on leakage
power, we also consider the impact of variability on the
conductivity of silicon. This is because in accordance with the
Fourier’s law, the temperature profile is impacted by both the
power consumed by the chip as well as the conductivity of the
chip. Random dopant fluctuations (RDF) cause a variation in
the doping profile, resulting in variations in the conductivity of
the material as well. To model this variation in conductivity,
we consider a Gaussian random variable, K. The range of
variation in the doping profiles because of RDF is obtained

from the literature [20]. The range of conductivity values
of silicon for these dopant densities is obtained from the
literature [21]. Using these, the variance in the conductivity
of silicon is then obtained.

In addition to the random variation in conductivity, the
conductivity of silicon also depends on temperature, as we
will see in Section IV-B (Equations in 9).

The conductivity of silicon varies with temperature accord-
ing to the following equation:

κ = k0

(
T

300

)−η
, (6)

where k0 is the conductivity of silicon at 300K, T is the
temperature in Kelvin, and η is a material-dependent constant.

As the chip gets heated, the conductivity of silicon decreases
which further affects the temperature profile.

F. Transforms used in this Paper

Thermal problems are often easier to solve in the transform
domain. We use two types of transforms in this work – the
Fourier transform and the Hankel transform.

1) Fourier Transform: The Fourier transform decomposes a
signal from the spatial domain and brings it into the frequency
domain. The result is a complex function, the magnitude of
which represents the amount of each frequency present in the
signal. In the present work, we make use of the 2-dimensional
Fourier transform, which is given by:

F (u, v) = F(f(x, y)) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−j2π(ux+vy)dxdy

(7)

where u, v are the Fourier frequency domain variables, x, y are
the spatial domain variables, and f(x, y) is the spatial domain
signal being transformed into the frequency domain.

2) Hankel Transform: The Hankel transform is equivalent
to the 2-D Fourier transform of a radially symmetric function.
It uses the Bessel function as its basis. The Hankel transform
is defined as:

H(f(r)) = H(s) =

∫ ∞
0

f(r)J0(sr)rdr, (8)

where J0 is the Bessel function of the first kind of order 0,
and H denotes the Hankel transform operator.

III. RELATED WORK

Thermal modeling has been a focus area of the EDA
industry in the last two decades, and hence researchers have
extensively worked on various aspects of this problem, such
as 2D and 3D ICs [22], [23], [24], [25], [26], smartphones
and other mobile devices [27], thermal-aware DNN accelera-
tors [28].

The fundamental approach of our paper – the Green’s
function-based method has been used before for thermal
modeling [12], [29]. Sultan et. al [29] model temperature in 3D
chips with micro-channels using a Green’s function approach.
They do not consider process variation, temperature-dependent
conductivity, and random variation.
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Process variation per se has been widely studied along with
techniques for mitigating its pernicious effects. However, very
rarely has the effect of process variation on temperature been
looked at. The works that do consider the effects of process
variation on temperature, often do so by neglecting the tem-
perature dependence of leakage power [30]. We demonstrate
that considering the effects of process variation on leakage
power, but neglecting its temperature dependence may result
in a 4 to 6◦C error.

Prior works have also established the importance of model-
ing the temperature-dependence of the conductivity of silicon
as well, and proposed methods to tackle the problem. However,
such approaches do not consider process variation. Since both
of these effects have never been considered simultaneously
before, we look at each of these effects in related work
separately.

A. Effects of Process Variation on Temperature

Varipower [31] models power variability at the architectural
functional unit level by performing circuit-level Monte Carlo
simulations incorporating parameter variation. However, it
does not model the effects of variability on temperature.

Humenay et al. [17] recognized the challenges imposed by
systematic variation in ensuring homogeneous performance
across cores. They demonstrated a large variation in power,
temperature and performance across cores because of core-to-
core systematic variation.

Jaffari and Anis [30] statistically calculated the expected
value of temperature considering the impact of variability.
They first obtain the leakage-converged temperature iteratively
without considering variation and then statistically compute
the effect of parameter variation. They use their technique
to iteratively update the computed power and temperature
to estimate the full-chip power and the probability density
function of the temperature distribution. However, a significant
limitation of their technique is that it is iterative, making it
extremely slow (≈ 158s for a 50 × 50 grid), 121X slower
than VarSim.

Lee and Huang [32] develop a statistical electrothermal sim-
ulator considering process variations. They solve the statistical
steady-state heat transfer equation by partitioning the active
layer into grids and model the physical parameters within a
grid by KL (Karhunen-Loeve) expansion on the channel length
and oxide thickness to simplify the within-die and die-to-
die random variables within the grid. Then they sample the
KL expanded random variables at a many sampling points.
This transforms the statistical heat transfer equation to a
deterministic heat transfer equation for each of the sampling
points (similar to the classicial FEM approach). They solve
this equation to obtain the temperature using a method similar
to that used by Huang et al. [33] for each sampling point.
They iterate a few times till the temperature values converge.
Finally, they use Newton’s interpolation polynomial formula
to obtain the statistical temperature distribution on the chip.

While their method pretty accurately provides the thermal
distribution considering process variation, it is quite expensive
in terms of time. This is because it requires solving the heat

equation iteratively for each grid point and all the sampling
points; this is followed by an additional interpolation step.
In contrast, we provide an analytical approach that adapts
the parameter values based on their physical location by a
convolution operation and Hadamard multiplication, and do
not need to separately compute the temperature of each grid
point or solve a large number of additional equations. Juan
et al. [34] use a linear regression-based model to train and
predict the maximum temperature in a 3D IC in the presence
of variability. They use measured values of leakage power
for training. They demonstrate that 3D ICs are much more
susceptible to variation, as compared to 2D ICs. However,
learning-based methods are very sensitive to input data and do
not generalize well when test conditions change. Additionally,
their method captures the maximum temperature only, and not
the complete thermal profile.

Sultan et al. [35] use a machine-learning based method
for modeling steady-state temperature in 3D chips with mi-
crochannels and process variation. However, a key limitation
of machine learning methods is that they involve a long
and extensive training phase, along with a large amount of
computational resources and a comprehensive training dataset.
This dataset must be large enough to encompass a broad
spectrum of input variations that could potentially occur during
runtime, as any deviations from anticipated inputs can yield
very inaccurate outcomes. Moreover, machine learning models
often do not generalize well to changes in the chip architecture.
Also their method is not capable of modeling the transient tem-
perature profile. In cases where a precise analytical solution
is possible, it is always favored over the adoption of machine
learning methodologies (given accuracy considerations). We
provide a detailed comparison of our method against this work
in Section V-E.

Jia et al. [36] use the proper orthogonal decomposition
(POD) method to simulate the thermal profile specifically in
interconnects. They extend the POD methodology such that
the effect of material property variation in interconnects is
included. However they do not consider process variation,
rather material property variation because of a via appearing
in the intervening dielectric, which causes a change in the
material properties.

Shafique et al. [37] propose a variability-aware dark silicon
management technique in which the cores to be throttled are
determined on their workload patterns while accounting for
the temperature map and variability. They propose a complex
heuristic for predicting the temperature profile considering
process variation. They superpose the impact of variability-
affected leakage power on the estimated temperature map for a
given thread-to-core mapping. This heuristic attempts to man-
ually approximate the underlying logic that is captured well in
our modified Green’s function based approach. Our proposed
method achieves this in a precise and efficient mathematical
manner using the convolution operations. In comparison to our
method, their technique is inexact, unnecessarily complex and
slow.

Srinivasa et al. [38] demonstrate using measurements that
because of process variation, smartphones of the same model
may show a variation of upto 10-12% in energy and perfor-
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mance.

B. Modeling the Temperature Dependence of Conductivity

Yang et al. [5] propose a temporally and spatially adaptive
thermal analysis technique that accounts for the temperature
dependence of conductivity. They assume variable thermal
conductivity across all grid cells. This necessitates the main-
tenance of a large 2D matrix of thermal conductivities. This
does not take the temperature dependence into account. After
the full simulation is done, the authors propose a post-
processing phase. Here, the varied thermal conductivities are
calculated (based on the temperature), and a small heuristic-
based algorithm is used to “patch up” the final temperature
values. Any iterative process at this stage, is considered to
be too expensive. This work does not model leakage power,
perhaps for the same reason (iterations are expensive).

Li et al. [39] calculate the leakage power in the presence of
variation, and use this as an input to the ISAC thermal model-
ing tool [5]. They additionally consider leakage power, which
is iteratively recalculated at each time step until convergence.
Finally, they use this augmented tool to study process variation
in on-chip networks. This approach is iterative, and requires
a large number of iterations to get to accurate variation-
aware leakage-converged temperature values. For the sake
of comparison, we implement a similar approach using the
HotSpot thermal modeling tool [40], and demonstrate several
orders of magnitude speedup using our method over such
approaches.

Ziabari et al. [41] adopt a different approach. Their approach
is a precursor to our approach. They consider the temperature-
dependence of conductivity by using a lookup table to store
Green’s functions with different conductivities. At runtime,
they iteratively update the Green’s function until the temper-
ature profile converges. They, however, do not model leakage
or process variation.

In comparison, our approach encompasses the effects
of leakage power, variability in leakage, and temperature-
dependent conductivity analytically without requiring costly
iterations. Previously proposed tools consider only one of these
effects.

C. ML-based and Other Models

There is an extensive body of work in fast transient thermal
modeling as well ( [42], [43], [44]). These works focus on fast
runtime thermal estimation, 2.5 and 3D stacked packages, and
thermal models for TSVs but do not take process variation
into account.

He et al. [45] propose a novel polynomial chaos for
modeling uncertainty at the architectural level using mixed
integer programming. Chittamuru et al. [46] demonstrate the
sensitivity of photonic networks-on-Chip (NoCs) to thermal
and process variation and propose a robust framework to
overcome its impact on reliability.

However, process variation, along with the variation of
conductivity with temperature, has never been considered
before in a leakage-aware thermal simulation tool.

IV. THERMAL ESTIMATION CONSIDERING VARIABILITY

A. Overview

Our approach fundamentally uses the Green’s functions to
compute the full-chip thermal profile. These can either be
theoretically calculated, or empirically obtained by applying
a unit impulse power source to the center of the chip, and
measuring the corresponding temperature rise. To consider the
feedback effect of leakage power on temperature, Sarangi et
al. [11] derived a leakage-aware Green’s function that captures
this temperature-dependence of leakage power. However, there
are two effects that have not been considered in the use of
these functions for full-chip temperature estimation:
1) The first effect is that the conductivity of silicon is
also temperature-dependent, and has a non-negligible ef-
fect on temperature. To capture this effect, we derive a
novel modified Green’s function, that not only captures the
temperature-dependence of leakage power, but also captures
the temperature-dependence of conductivity.
2) The second unmodeled effect is process variation. Process
variation poses multiple challenges in the use of Green’s
function-based methods. The first challenge is in deriving
the Green’s function itself considering the effects of process
variation as well. In a previous version of this work [8],
we had used the expected value of the leakage power map
in place of the baseline leakage power map, to simplify
the derivation of the modified temperature-dependent Green’s
function (note that the Green’s function itself had captured
the baseline variability, and this was not approximated; the
approximation was in computing the temperature-dependent
part of the leakage power). In the current work, we get rid of
this approximation, and work out the complete expression.

The second challenge is in computing the full-chip thermal
profile using the derived Green’s function. Temperature esti-
mation using the Green’s function relies on its shift-invariance,
which means that a power applied to any location of the
chip will cause the same temperature rise, irrespective of the
location of the power source on the chip (aside from the
boundary effects, which need to be handled separately). This
stops being true when process variation is considered. Hence,
we split the Green’s function into random and deterministic
components. Then, we propose a novel way of combining the
two components to generate the full-chip temperature profile.
The deterministic component of the full-chip temperature
profile is computed the regular way, using a convolution
operation. The random component is location-dependent and
hence is computed using the Hadamard product.

We provide an overview of our proposed approach in
Figure ??. Table I lists the terms used in our derivations.

Thus, our contributions can be summarized as follows:
¶ We derive an analytical expression for a novel leakage
aware Green’s function accounting for variability and the
dependence of leakage power and conductivity on temperature.
This Green’s function has two components – a shift-invariant
component that accounts for the temperature dependence of
conductivity and leakage power, and a shift-variant component
that accounts for process variation. We derive separate modi-
fied Green’s functions for the steady-state (Section IV-C) and
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Fig. 3: A high-level overview

the transient case (Section IV-D). Furthermore, we describe
the use of the transient Green’s function to compute the
temperature profile for a time-varying source in Section IV-E.
· We calculate the full-chip variability-aware thermal profile
in the presence of leakage as well as dynamic power by con-
volving the shift-invariant modified Green’s functions with the
dynamic power map and multiplying the shift-varying Green’s
functions with the baseline leakage power map considering
process variation.

TABLE I: Glossary

Symbol Meaning

Pleak0 Leakage power at ambient temperature considering variability
β Temperature dependence of leakage power
α Temperature dependence of conductivity
κ Conductivity of silicon
T Temperature
T Temperature rise above ambient temperature
fsp0 Green’s function without considering leakage and

temperature-dependent conductivity = fsilic0 + φ
F Fourier transform operator
H Hankel transform operator
x, y Spatial coordinates
u, v Fourier frequency domain variables
h Hankel variable
t Time
C Thermal capacitance

fkleaksp Leakage aware Green’s functions considering temperature
dependence of conductivity

k′0 Nominal conductivity of silicon at ambient temperature

B. Variation of the Thermal Conductivity with Temperature
The conductivity of silicon varies with temperature accord-

ing to the following relation [47]:

κ = k0

(
T

300

)−η
, (9)

where k0 is the conductivity of silicon at 300K, T is the
temperature in Kelvin, and η is a material-dependent constant.

In the operating range of ICs (40− 100◦C ), we can linearize
Equation 9:

κ(T ) = k0
′(1− c∆T ), (10)

where k′0 is the nominal conductivity of silicon at the ambient
temperature, and c is a constant.

Next, we vary the conductivity of silicon and observe the
change in the Green’s function fsp. We then obtain an em-
pirical relation between the Green’s function and conductivity
(using HotSpot [48]):

fsp(κ) = fsp0(1− c′(κ(T )− k′0)), (11)

where, fsp0 is the baseline Green’s function when the
temperature dependence of conductivity is not considered (the
variation in conductivity because of random dopant fluctua-
tions is captured in fsp0 ), and c′ is a constant. Combining
Equations 10 and 11, we obtain a relation for the Green’s
function that captures the dependence of conductivity on
temperature.

fsp(T ) = fsp0(1 + α∆T ), (12)

where α is a constant that captures how much the Green’s
function varies because of a change in conductivity with
temperature.

C. Modified Green’s Functions for the Steady-State
1) Formulating the equation for the modified Green’s func-

tion considering all effects: Next, we derive the Green’s
function considering temperature-dependent conductivity, as
well as temperature-dependent leakage power. We start with
an approach that is similar to that adopted by Sarangi et al. [11]
while also incorporating the effects of process variation and
the temperature dependence of conductivity.

The total power consumption (P ) is the sum of the dy-
namic power (Pdyn) and the leakage power (Pleak). Using
Equation 5, we get:

P = Pdyn + Pleak0(1 + β∆T ). (13)
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We assume that the dynamic power dissipation in the chip is
initially zero. This implies that any temperature rise above the
ambient temperature is because of leakage. From Equation 2,
we have (subscript 0 refers to the initial state):

T0 = fsp0 ? Pleak0 (14)

Now, let us apply a unit impulse (Dirac delta function) dy-
namic power source to the center of the chip. Using the results
in Equations 2, 12, and 13 we get the updated temperature,
Tf :

Tf = fsp0(1 + α∆T ) ? (δ(x, y) + Pleak0(1 + β∆T )) (15)

where x, y are the spatial coordinates.
Next, we find out the increase in temperature because of

the unit power source considering process variation and the
temperature-dependent effects. We also use the property that
the convolution of a function and a delta function is the
function itself. We then arrive at:

T = Tf − T0

= fsp0(1 + αT ) + fsp0(1 + αT ) ? Pleak0(1 + βT )

− fsp0 ? Pleak0

(16)

We need to solve for the temperature rise, T , here. To con-
vert the convolution operation into multiplication, we compute
the Fourier transform on both sides and apply the property that
the Fourier transform of the convolution of two functions is
equal to the product of their individual Fourier transforms. We
compute the Fourier transform of both sides of Equation 16
to arrive at Equation 17.

In Equation 17, F is the Fourier transform operator, term
I is the baseline Green’s function, term II corresponds
to the increase in temperature because of the temperature-
dependence of conductivity, term III is the increase in tem-
perature because of the temperature-dependence of leakage
power, term IV corresponds to the compounded effect of the
baseline leakage power and the temperature-dependence of the
conductivity, and term V is the increase in temperature because
of the compounded effects of temperature-dependent conduc-
tivity and leakage. The last term here is small because each
of the temperature-dependent variables (conductivity/leakage
power) by itself do not cause a large enough change in the
other variable to result in a large temperature change. Hence,
we neglect this term.

2) Reducing the bottleneck term (Term II): The most dif-
ficult term to compute in the above equation is F(fsp0T ).
Let G(u, v) = F(fsp0T ). For this we make use of Lemma I
described below:

Lemma I: : G(u, v) = F(fsp0T ) = F(T )gsp0 , where
gsp0 = (fsp0 − κ+ fsp0(0, 0))

Interested readers may refer to the proof of Lemma 1 in
Appendix A.
Using Lemma I in Equation 17, we have:

F(T ) = F(fsp0) + αgsp0F(T ) + βF(fsp0)F(Pleak0T )

+ αgsp0F(Pleak0)F(T )
(18)

3) Separating the random and deterministic terms: The
modified Green’s function considering variability (solution of
Equation 18) is not shift-invariant because of process variation
(terms III and IV ), which means that we will not be able to
directly convolve the modified Green’s function with a power
profile without a loss of accuracy. To overcome this limitation,
we split the modified Green’s function into two components: a
deterministic component fdetleaksp, which is shift-invariant and
is obtained by assuming the variability to be zero (replacing
the baseline leakage power profile with its mean value), and a
random component frandleaksp, which is shift-variant and accounts
for all the variation in leakage power.

To arrive at the respective expressions for the modified
Green’s functions, we first split the variable leakage power,
Pleak0 , into two components – a constant equal to its mean (µ)
and a randomly varying part P varleak0

. Thus, Pleak0 = µ+P varleak0
.

Using this in Equation 18, we get:

F(T ) = F(fsp0)+αgsp0F(T )+βF(fsp0)F
(
(µ+ P varleak0)T

)
+ αgsp0F

(
µ+ P varleak0

)
F(T )

= F(fsp0) + αgsp0F(T ) + µβF(fsp0)F(T )

+ βF(fsp0)F(P varleak0T ) + αgsp0F(µ)F(T )

+ αgsp0F(P varleak0)F(T )
(19)

Now, the temperature profile T is itself composed of a
deterministic and a variable part, T = T det + T var. The
deterministic part can be obtained by assuming the variability
to be zero, P varleak0

= 0. Applying this to Equation 19, we arrive
at Equation 20:

F(T det) = F(fsp0) + αgsp0F(T det) + µβF(fsp0)F(T det)+
αgsp0F(µ)F(T det)

(20)

F(T det) = F(fdetleaksp) =
F(fsp0)

1− αgsp0(1 + F(µ))− µβF(fsp0)
(21)

Next, we use an equation similar to Equation 48 for
F(P varleak0

T ). We get:

F(P varleak0T ) = F(T )
(
P varleak0 − P

var
leak0(∞,∞) + P varleak0(0, 0)︸ ︷︷ ︸

=Qrandleak0

)
= F(T )Qrandleak0

(22)

Substituting Equation 22 and T = T det + T var in Equa-
tion 19 and simplifying, we finally get:

F(T det + T var) =F(fsp0) + αgsp0F(T det + T var)
+ µβF(fsp0)F(T det + T var)+
βF(fsp0)F(T det + T var)Qrandleak0

+ αgsp0F(µ)F(T det + T var)
+ αgsp0F(P varleak0)F(T det + T var)

(23)
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F(T ) = (F(fsp0) + αF(fsp0T )) + (F(fsp0) + αF(fsp0T ))×
(F(Pleak0) + βF(Pleak0T ))−F(fsp0)F(Pleak0)

= F(fsp0)︸ ︷︷ ︸
I

+αF(fsp0T )︸ ︷︷ ︸
II

+βF(fsp0)F(Pleak0T )︸ ︷︷ ︸
III

+ αF(fsp0T )F(Pleak0)︸ ︷︷ ︸
IV

+αβF(Pleak0T )F(fsp0T )︸ ︷︷ ︸
V

(17)

F(T det) (−α (1 + F(µ)) gsp0 − µβF(fsp0)−
βF(fsp0)Qrandleak0 − αF(P varleak0)gsp0

)
+

F(T var) (1− α(1 + F(µ))gsp0 − µβF(fsp0)

− βF(fsp0)Qrandleak0 − αF(P varleak0)gsp0
)

= F(fsp0)

(24)

Now, we substitute the expression for F(fsp0) from Equa-
tion 20 in Equation 24. After cancelling the common terms
(shaded/green ones) we get:

F(T var) (1−α(1+F(µ))gsp0−µβF(fsp0) −βF(fsp0)Qrandleak0

− αF(P varleak0)gsp0
)

= F(T det)
(
βF(fsp0)Qrandleak0 + αF(P varleak0)gsp0

)
(25)

F(T var) = F(frandleaksp)

= F(T det)×
(
βF(fsp0)Qrandleak0

+ αF(P varleak0
)gsp0

)(
1− α

(
1 + F(µ) + F(P varleak0

)
)
gsp0

−µβF(fsp0)− βF(fsp0)Qrandleak0

)
(26)

The deterministic part of the Green’s function remains
the same for every variation profile. Hence, it needs to be
computed once for a given chip only. The random part needs
to be recomputed every time we get a new variation map.

4) Full-chip steady-state thermal profile: The total tem-
perature profile is a sum of the random and deterministic
components. The standard approach to compute the determin-
istic thermal profile is to convolve the deterministic Green’s
function (Equation 21) with the respective power profile. The
random component of the thermal profile is not shift-invariant
and cannot be computed using the convolution operation, since
it is location-dependent. Hence, we compute the Hadamard
product of the random component with the leakage power
profile and scale it by the total dynamic power applied to
the chip. This is an approximation that we justify empirically
after conducting exhaustive experiments.

Thus the total thermal profile is given by:

T = fdetleaksp ? Pdyn + frandleaksp ∗ P varleak0 ∗
n∑
i=1

n∑
j=1

Pdyn(i,j)

(27)

where ∗ represents the Hadamard product, ? represents the
convolution operation, and n represents the number of grid
points in the chip in one direction.

D. Modified Green’s function for the Transient Case

Next, we look at the temporal evolution of temperature.
Because of the complexity involved in obtaining the transient
solution, we do not split the transient Green’s function into
shift-variant and shift-invariant components.

The basic transient Green’s function equation is given by
[11]:

T = fsp ? P − Cfsp ?
∂T
∂t
, (28)

where C is the thermal capacitance.
Proceeding in the same manner as the steady-state solution,

and looking at Equation 48 (see Appendix A), we arrive at
the following equation for the transient case:

F(T ) = F(fsp0) + αgsp0F(T ) + βF(fsp0)F(Pleak0T )+

αgsp0F(Pleak0)F(T )−C
(
F(fsp0)+αF(fsp0T )︸ ︷︷ ︸

G(u,v)

)
F
(
∂T
∂t

)
= F(fsp0) + αgsp0F(T ) + βF(fsp0)F(Pleak0T )+

αgsp0F(Pleak0)F(T )−C
(
F(fsp0)+αgsp0F(T )

)
F
(
∂T
∂t

)
(29)

The first three terms on the RHS correspond to the steady-
state temperature profile, Tss. Thus we have:

F(T ) =F(Tss)− C
(
F(fsp0) + αF(T )gsp0

)
F
(
∂T
∂t

)
=F(Tss)− CF(fsp0)

(
∂F(T )

∂t

)
− αCF(T )gsp0

(
∂F(T )

∂t

)
(30)

The shaded term is of the form F(T )∂F(T )
∂t , making the

solution complex.
We separate the partial derivative term next:

∂F(T )

∂t
= − F(T )−F(Tss)

CF(fsp0) + αCF(T )gsp0
(31)

Separating the variables and replacing partial derivatives
with total derivatives (since there is only one variable):

CF(fsp0) + αCF(T )gsp0
F(T )−F(Tss)

dF(T ) = −dt (32)
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Integrating on both sides:

CF(fsp0)ln(F(T )−F(Tss)) + αCgsp0(F(T )−F(Tss))+
αCgsp0F(Tss)ln(F(T )−F(Tss)) = −(t+C1)

ln(F(T )−F(Tss))
(
CF(fsp0) + αCgsp0F(Tss)

)
+ αCgsp0(F(T )−F(Tss)) = −(t+ C1)

(33)

We need to solve for F(T ) here. We observe that the last term
on the LHS is small since both α and C are small numbers.
Hence, we ignore this term.

Thus we have:

ln(F(T )−F(Tss))
(
CF(fsp0)+αCgsp0F(Tss)

)
= −(t+C1)

(34)

Taking the exponential on both sides and simplifying:

F(T ) = F(Tss) + e
− t+C1
CF(fsp0

)+αCgsp0
F(Tss)

= F(Tss) + k1e
− t
CF(fsp0

)+αCgsp0
F(Tss)

(35)

where k1 is a constant.
To compute k1, we see that at t = 0, the temperature rise

T is zero. Substituting these in Equation 35, we get k1 =
−F(Tss).

Thus the final transient leakage and variation-aware Green’s
function is given by:

F(T )=f tranleaksp=F(Tss)
(
1− e

− t
CF(fsp0 )+αCgsp0F(Tss)

)
(36)

E. Full-chip Transient Thermal Profile for Time-varying
Sources

Next, we use the transient Green’s function to compute
the full-chip thermal profile corresponding to a time-varying
power profile. Note that the transient Green’s function is a 3D
function of space as well as time.

We observe that the thermal response decays to under 1%
of its peak value within 5 ms after a power source is removed.
Thus, we conclude that incorporating the thermal response
corresponding to the power sources in the last 5 ms only
should be sufficient to attain a reasonable accuracy. In the
general case, we need to consider the power sources from the
last k time instants.

Let P (ti) denote the instantaneous power profile at time ti,
and let T (ti) be the temperature profile. The Green’s function
is obtained by applying a power source of unit magnitude and
1 ms width at t = 0 at the center of the chip. The resulting
thermal response is measured for the entire chip at intervals
of 1 ms, resulting in a 3D tensor.

We start with an initial temperature T0, and at every time
instant, we either increase or decrease the temperature depend-
ing on the change in power values in each time interval. To
determine the amount of change in temperature, we compute a
difference of the power profiles at time instant ti and ti−1 and
convolve this with the corresponding leakage-aware Green’s
function sampled at ti. We do this for each of the last k

time steps, and sum the effects up. Beyond k time steps, the
power values in the past would have achieved steady-state
and their effects would already have been considered. Let
us first describe our full-chip transient estimation approach
mathematically for a 2D chip without leakage. Without any
loss of generality, let us assume the initial temperature T0 to
be zero.

Let the Green’s function at time instant t0 be denoted by
fsp(x, y, t0). Let the power dissipation profile be P (x, y, t).

Let us apply a power source at t = 0, and continue to do so
at every subsequent time instant: t = 1 (t1), t = 2 (t2), t = 3
(t3), . . ., t = n (tn).

T (t1) = fsp(t1) ? (P (t1)− P (t0))

= fsp(t1) ? (P (t1)− 0)

T (t2) = fsp(t1) ? (P (t2)− P (t1)) + fsp(t2) ? (P (t1)− 0)

T (t3) = fsp(t1) ? (P (t3)−P (t2)) +fsp(t2)? (P (t2)−P (t1))

+ fsp(t3) ? (P (t1)− 0)

...

T (tn) = fsp(t1) ? (P (tn)−P (tn−1)) + fsp(t2) ? (P (tn−1)−
P (tn−2)) + ...+ fsp(t5) ? (P (tn−4)−P (tn−5))+

fsp(t6) ? (P (tn−5)−P (tn−6)) + ...+ fsp(tn)?

(P (t1)−P (t0))

(37)

Now, beyond 5 ms, we assume that the step response
saturates.

Thus fsp(t5) = fsp(t6) = fsp(t7).... = fsp(t∞).
Equation 37 reduces to:

T (tn) ≈ fsp(t1) ? (P (tn)−P (tn−1))+fsp(t2)?

(P (tn−1)−P (tn−2)) + ...+ fsp(t∞)?(
P (tn−4)−P (tn−5)+P (tn−5)−P (tn−6)+...+P (t1)−P (t0))︸ ︷︷ ︸

=P (tn−4)

)
(38)

We can see that all terms cancel each other in the third
convolution term, and only P (tn−4) remains.
Thus we can calculate the transient thermal profile by consid-
ering the last 5 time instants only. To incorporate leakage, we
simply need to substitute the modified leakage aware Green’s
functions in place of the basic Green’s function.

F. Thermal Estimation at the Edges and Corners

In the Green’s function approach, the edges and corners
have to be handled separately. The standard procedure to do
so is to use an analogy with the method of images from
electromagnetics (also used in [12]). In this approach, the
power matrix is extended to twice its size and padded with
mirror image sources on the other side of the boundary
at an equal distance from the edge. To compute the full-
chip thermal profile, we convolve the modified deterministic
Green’s functions with the dynamic power profile and multiply
the random Green’s function with the baseline leakage power
profile (Equation 27).
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V. EVALUATION

A. Setup

We use an augmented version of the thermal modeling tool
Hotspot [48] to carry out simulations with variable leakage
power and conductivity. The scripts to invoke HotSpot has
been written in R. We run all our HotSpot simulations on an
Intel i7-7700 4-core CPU running Ubuntu 16.04 with 16 GB
of RAM. We implemented and tested our proposed algorithm
in Matlab on a Windows 8 desktop with an Intel i7-2600S
processor and 8 GB of RAM. We discretized the chip into a
64 × 64 grid. The parameters of the modeled chip are given
in Table II.

TABLE II: Parameters of the chip [48]

Parameter Value

No. of grid points per layer, n 64× 64
β 0.0275
Die size 100 mm2

Die thickness 0.15 mm
Nominal Silicon conductivity 130 W/m-K
TIM thickness 0.02 mm
TIM conductivity 4 W/m-K
Spreader thickness 3.5 mm
Spreader conductivity 400 W/m-K
Ambient temperature 318.15K
α 0.0021
k0 135 W/m-K

Error Metric: We use the mean absolute error and the
percentage error relative to the maximum temperature rise
(calculated temperature minus the ambient temperature) as the
error metric. Other thermal modeling tools often report errors
relative to the absolute maximum temperature in the die, which
under-represents the error [12], [5].

B. Calibration of the Setup

To calibrate our HotSpot setup, we use the commercial
CFD software Ansys Icepak. It is an industry-standard tool
widely used for high-accuracy thermal simulations. We model
an identical layout in HotSpot and Icepak and compare the
temperature values obtained from the two tools. We find that
the normalized temperature values obtained using both of these
tools conform well (within 1.5%).

C. Steady-State Results

1) Modified Green’s functions for the steady-state: The
first step in our proposed method is to compute the modified
Green’s functions that we have derived in our work. To do
so, we first need the baseline leakage power map considering
variation at ambient temperature. To obtain the variation-
aware baseline leakage power maps, we use the popular
variation modeling tool, Varius [15]. Using a similar approach,
we model the randomness in conductivity values because of
random dopant fluctuations.

Next, we obtain the corresponding baseline Green’s func-
tions using a modified version of HotSpot. We apply a unit
impulse power source to the center of the chip and obtain the

Simulator Considering
κ(T )

Without consid-
ering κ(T )

Hotspot2 18 minutes 4 s
3D-ICE – 1.36 s
Icepak 15 minutes 15 minutes
Jaffari et al.[30] – 158 s
Sultan et al.3[35] 0.65 s 0.65 s
VarSim 2.9 ms 2.9 ms

VarSim det. Green’s func. (Offline) 0.55 ms 0.55 ms
VarSim rand. Green’s func. (Offline) 1.6 ms 1.6 ms
VarSim full-chip (Online) 0.74 ms 0.74 ms

1. To model temperature-dependent conductivity, detailed thermal modeling
is done in HotSpot, since the properties of each block are different.
2. HotSpot, 3D-ICE and Icepak do not consider variability
3. Although the inference time is small in Sultan et al. [35], the training
time is extremely large and resource-intensive.

TABLE III: Speed of the studied simulators

baseline Green’s function considering the variability in con-
ductivity. We then use Equation 21 to obtain the deterministic
part of the modified Green’s function accounting for the effects
of temperature-dependent conductivity and leakage power. Our
approach takes 0.55 ms to compute the deterministic modified
Green’s function. Next, we compute the random part of the
Green’s function using Equation 26. This takes a further
1.86 ms. This part needs to be computed once for a chip.

2) Full-chip steady-state thermal simulations: At runtime,
the dynamic power profile is mirrored and the full-chip thermal
profile is computed using the calculated Green’s functions
using Equation 27. This step takes an additional 0.74 ms.
Thus the total time taken by our algorithm is 2.89 ms (online
time = 0.74 ms + deterministic Green’s function computation
= 0.55 ms + random Green’s function computation = 1.6 ms).
The mean absolute error is limited to 2% (as demonstrated by
multiple test cases, Table V).

To validate our proposal, we adopt the following approach:
the leakage power obtained from Varius is added to the dy-
namic power profile, and HotSpot is invoked iteratively. After
each iteration, we update the leakage power and conductivity
values based on the current temperature. We keep iterating
until the temperature values converge. HotSpot supports mod-
eling of variable conductivity only when detailed 3D modeling
is enabled, since different conductivity values for different
blocks result in a change of the parameters of the differential
equation from block to block. As a result, HotSpot requires
18 min to compute the final temperature. If we do not model
variable conductivity, the simulation completes within 4s.
Thus, our method provides a 370000× speedup over HotSpot
in steady-state thermal simulation.
Test Case 1 [Real floorplan]: We validate our approach using
the floorplan of the Alpha21264 processor [1]. The power
values are taken from the ev6 test case of HotSpot. The leakage
and dynamic power profile and the corresponding temperature
profiles are shown in Figure 4. We can see in Figure 4b that the
calculated thermal profile matches the actual thermal profile
very well (mean absolute error = 0.36◦C , i.e., within 2%).
Test Case 2 [Stress testing]: In this case, multiple dynamic
power sources are applied to different locations on the chip.
The total dynamic power is 8 W . Although the total power
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TABLE IV: Errors in various scenarios

Effects considered Test Case 1 (Alpha21264) Test Case 2
Max. Temp. (K) Max. Deviation (K) Percent Deviation Max. Temp. (K) Max. Deviation (K) Percent Deviation

No effects 341.36 6.77 22.6 372.90 9.01 14.1
Rand.-cond., Cond.(T) 341.86 6.27 20.9 377.59 4.32 6.8
Leakage-var 344.04 4.09 13.6 375.29 6.62 11.6
Leakage(T) 344.30 3.83 12.8 374.56 7.35 12.2
Rand.-cond., Cond.(T), Leakage(T) 344.91 3.22 10.7 378.39 3.52 5.8
Leakage-var, Leakage(T) 347.43 0.70 2.33 377.16 4.75 7.5
Cond.(T), Leakage-var, Leakage(T) 348.12 0.01 0.03 381.36 0.55 0.86
Rand.-cond., Cond.(T), Leakage-
var, Leakage(T)

348.13 – – 381.91 – –

VarSim 347.58 0.55 1.8 379.31 2.60 4.1
Leakage(T) = temperature-dep. leakage, Leakage-var = variability in leakage, Rand.-cond. = random conductivity, cond.(T) = temperature-dep. conductivity

(a) Dynamic Power (b) Actual thermal profile (c) Calculated thermal profile

Fig. 4: Evaluation for test case 1: Alpha21264
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(a) Calculated thermal profile

Hotspot thermal profile
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(b) HotSpot thermal profile

Calculated ignoring shift varying term
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Fig. 5: Evaluation for test case 3: high variance

applied is lower than test case 1, the power density of
the sources is much higher, resulting in a higher maximum
temperature. In this case, too, the temperature obtained using
our algorithm matches the actual value very well, with a mean
absolute error limited to 0.7◦C (1.1%).

Test Case 3 [Variance testing]: In this case, we apply the
same dynamic power as test case 1, but the baseline leakage
power has a higher variance. The calculated thermal profile is
shown in Figure 5a, while the corresponding thermal profile
obtained from HotSpot is shown in Figure 5b. This test case
is a limit study. We see that here, too, the calculated and the

actual thermal profiles match closely. The mean absolute error
is 0.61◦C for a maximum temperature rise of 32.3◦C (1.9%),
while the maximum temperature is 77.3◦C . The maximum
error at the hotspot location is 2.8◦C . In Figure 5c, we
show the temperature profile if the random component of the
solution is ignored (Equation 27). We see that the errors are
larger in this case, and the main hotspot location is missed. The
mean absolute error upon ignoring the random effects is 1.2◦C
(3.7%), while the maximum error is 5.9◦C (18.3%). Thus, we
are able to lower the error in modeling process variation-aware
thermal profile by up to 52% using our proposed approach.
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Error obtained upon considering partial effects

0 2 4 6 8

Error (K)

All ignored

Ignoring variability in leakage 

=> large errors
Variability ignored

Temp. dep. leakage ignored

Temp. dep. cond.
ignored

Leak variation

 considered

 Temp dep. leak 

considered

Leakage effects ignored
Cond. effects

considered

Random cond.

ignored

Fig. 6: Error in various scenarios: considering variability in
leakage power is as important as considering the temperature
dependence of leakage

Moreover, our proposed method helps in capturing the location
of the hotspot much more accurately, which would otherwise
get missed.
Test Case 4 [Variance + Stress testing]: In this case, we
have a uniform power applied to the entire chip. The total
power dissipated is 204.8 W . In this case, the mean absolute
error using our proposed approach is 1.5◦C for a maximum
temperature rise of 77◦C (1.9%). The mean absolute error
upon ignoring the shift-varying Green’s function goes up to
3◦C (3.9%).
Test Case 5 [Variance + Stress testing]: In this case, the
alternate grid points have power sources applied to them. The
total power dissipated is 51.2 W . Our proposed method results
in a mean absolute error of 0.6◦C for a maximum temperature
rise of 29.2◦C (2%).

The steady state test cases are summarized in Table V. Note
that across variation maps, the error remains roughly steady.
The reported values are mean values. The maximum value is
never more than the mean value by 20%.

Test Case Total power (W ) Max. temp. (◦C ) Mean abs. error (◦C )

Test case 1 48.9 74.9 0.36◦C (1.2%)
Test case 2 8.0 108.8 0.70◦C (1.1%)
Test case 3 48.9 77.3 0.61◦C (1.9%)
Test case 4 204.8 122.1 1.45◦C (1.9%)
Test case 5 51.2 74.2 0.59◦C (2%)

TABLE V: Steady-state test cases summary

D. Transient Results

1) Modified transient Green’s functions: We obtain the
modified transient Green’s function using the leakage-aware
steady-state Green’s function as the starting point. Figure 7
shows the temporal evolution of the calculated transient
Green’s function using Equation 36 at the center of the chip.
The estimation error is less than 3% at all times. We compute
the modified Green’s function at 100 time instants between

Simulator Time

Hotspot 18− 20 minutes
VarSim 0.29 s (150 time steps)

VarSim modified Green’s func. 120 ms (100 time steps)
VarSim full chip step response 70 ms (100 time steps)
VarSim full chip time varying temp. 290 ms (150 time steps)

1. To model temperature-dependent conductivity, detailed thermal modeling
is done in HotSpot, since the properties of each block are different.
2. HotSpot, 3D-ICE and Icepak do not consider variability

TABLE VI: Speed of existing simulators
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Fig. 7: Transient Green’s function considering all effects

0 and 10 ms. Our algorithm takes 0.12 s to compute the
temperature profiles for the 100 time steps (Table VI).

2) Full chip transient thermal profile: Next, we use the
derived transient Green’s function to obtain the transient
thermal profile for the floorplan of Alpha21264, corresponding
to the power profile in Figure 4a. The error at all times was
observed to be less than 5% with a simulation time of 70 ms
for 100 time steps. The corresponding computed transient
thermal profiles at 0.5 ms, 1 ms, 2 ms, and 5 ms are shown in
Figure 9. The corresponding actual thermal profiles obtained
from a modified version of Hotspot are shown in Figure 8.

3) Full chip time-varying transient thermal profile: Test
Case 1 [Real floorplan]: We randomly vary the power profile
in Figure 4a every 1 ms and obtain the thermal profile for
this time-varying power input using HotSpot as well as our
proposed method (Equation 37). We simulate the temperature
until 15 ms at intervals of 0.1 ms. Using our algorithm, we
needed 290 ms to compute the thermal profile for 150 time
steps (≈ 2 ms per time step), while HotSpot took nearly 20
minutes (4000× speedup). The average error in our case was
3.8%. The evolution of the dynamic power profile at the hottest
location is shown in Figure 10a, while the corresponding
thermal profile is shown in Figure 10b.
Test Case 2 [Stress testing]: Next, we randomly vary the
power profile in test case 2 of the steady-state every 1 ms and
observe the evolution of temperature over 30 time steps. The
power profile at one of the locations and the corresponding
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(b) Temperature rise at 1 ms
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(c) Temperature rise at 2 ms
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(d) Temperature rise at 5 ms

Fig. 8: Power and temperature map, transient, actual
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(b) Temperature rise at 1 ms
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(c) Temperature rise at 2 ms
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(d) Temperature rise at 5 ms

Fig. 9: Power and temperature map, transient, calculated
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Fig. 10: Transient evolution of temperature: test case 1

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.2

0.4

0.6

0.8

1

t (s)→

N
o

rm
a

liz
e

d
 P

o
w

e
r 

a
t 

H
o

ts
p

o
t 
→

(a) Transient power variation

0 0.005 0.01 0.015 0.02 0.025 0.03
5

10

15

20

25

30

t (s)

Te
m

pe
ra

tu
re

 R
is

e 
at

 H
ot

sp
ot

lo
ca

tio
n 

(K
) 

Proposed Method

Hotspot

(b) Transient evolution of temperature at one location

Fig. 11: Transient evolution of temperature: test case 2
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thermal profiles are given in Figure 11. Our algorithm takes
59 ms to compute the thermal profile for 30 time steps at
intervals of 1 ms each (2 ms per time step). In contrast,
HotSpot takes over 15 minutes to compute the same thermal
profile (15000× speedup). These results are summarized in
Table VI.

E. Analysis of the Results

We have established through a wide range of test cases
that our proposed method provides fast as well as accu-
rate solutions for the effects considered. Next, we ana-
lyze the importance of modeling each of the individual ef-
fects – temperature-dependent leakage, variation in leakage,
temperature-dependent conductivity, and variation in conduc-
tivity profiles.

To do so, we sequentially consider a subset of these effects
while ignoring the rest of the effects. This helps us determine
the individual thermal contribution of each of these effects in
the cases we have modeled.

Table IV summarizes the results obtained in various scenar-
ios. Figure 6 graphically represents this error. We see that not
accounting for any kind of variability leads to a temperature
estimation error of up to 22%. If we ignore the temperature
dependence of conductivity but consider variability and tem-
perature dependence of leakage, the error varies from 2 to
7.5%. Ignoring variations in the conductivity profile leads to
< 1% error in thermal estimation. Thus in thermal modeling,
the effects of random variations in the conductivity profile can
be safely ignored. The need to model temperature-dependent
conductivity would depend on the accuracy requirement of
the design. However, considering variability in leakage power
along with the temperature dependence of leakage power
is absolutely essential to achieve a meaningful simulation
accuracy.

F. Comparison with State-of-the-art Approaches

We compare our results against the modified version of
HotSpot as well as with a CNN-based approach, similar to
[35]. Our algorithm provides a 4000−370000× speedup over
HotSpot, while maintaining the error within 4% in all cases.

We implemented the same CNN architecture that is there
in in Tensorflow for thermal modeling as was done in [35]
for a similar setup as Test Case 1 in the present work. We
used an Intel i7-7700 4-core desktop PC with 16 GB RAM
running Ubuntu 16. To collect the training data, we used the
open-source tool Varius [15] to create a large set of variation
maps. We then obtained several dynamic power profiles by
modifying the power values in the ev6 test case of HotSpot.
We then added those two to get the baseline power map
and provided them as an input to HotSpot. We iteratively
ran HotSpot multiple times to close the leakage-temperature
feedback loop, and finally obtain the final leakage-converged
thermal maps.

It takes 18-30 minutes to generate a single map using
HotSpot. We found that 100 training maps is acceptable. In
the next step, we provided this dataset to the 3-CNN-layer
architecture proposed in [35]. However, again the training

time was very large and did not converge even after 48
hours. So we used the simpler 1-CNN layer architecture for
validation purposes, along with 5-fold cross validation. This is
a known problem with CNNs that handle big data and is one
of the prime reasons for not preferring ML-based approaches.
Figure 12 shows some qualitative results.

We were able to reduce the training time to 8 hours with
such reductions in the model capacity and input samples. The
training mean absolute error was 0.8◦C. In the inference stage,
we used 20 maps. The test accuracy was 0.93◦C with an
inferencing time of 0.65 s.
In comparison, the mean absolute error of our analytical
method is 0.36◦C, with a total time requirement of 2.9 ms. In
addition, our analytical method does not require any special
hardware resources for training such as large GPUs.

This exercise underscores two things: 1) analytical methods
almost always outperform machine learning based methods,
since machine learning methods have long training times and
require specialized hardware resources. ML algorithms should
only be used when an analytical solution is not possible or the
requirement for accuracy is not there.

2) The existing methods, such as HotSpot, CNN-based or
FEM-based solvers/inference engines have severe limitations
when it comes to modeling process variation. Our current
work hopes to alleviate these limitations of the state-of-the-
art methods.

Table III summarizes the simulation speed of various tools
for the steady-state case.

Memory and Energy Analysis: Since we use compact
thermal models in our work, our method consumes a lot
less memory compared to the existing simulators. For the
steady-state, our method uses 4MB memory only, compared
to 360MB for HotSpot. Similarly, in the transient case, we
use approximately 85MB, compared to the 900 MB used
by HotSpot. The high memory consumption in HotSpot is
primarily because finite difference methods involve matrices
with a very large number of nodes, whereas Green’s function
methods need just as many nodes as the required temperature
resolution.

Owing to its analytical nature and ultra-high speed, we
outperform state-of-the-art methods in terms of energy con-
sumption as well.

VI. CONCLUSION

In this paper, we propose a fast leakage and variability-
aware thermal simulation method that also captures the tem-
perature dependence of conductivity. We derive a closed-form
of the Green’s function considering all these effects using
novel insights and algebraic techniques. Our approach provides
fast and accurate solutions for both the steady-state and the
transient thermal profile and has been validated with a wide
variety of test cases. As device dimensions continue to shrink,
process variation has become a serious problem. The methods
proposed in this work can equip designers to tackle this
problem and may spawn further research in this area.
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APPENDIX A
HANKEL TRANSFORM AND ITS PROPERTIES

The Hankel transform is a mathematical transform that
decomposes any function f(r) into an infinite number of
Bessel functions of the first kind. It is defined as:

H(f(r)) = H(s) =

∫ ∞
0

f(r)J0(sr)rdr, (39)

where J0 is the Bessel function of the first kind of order 0,
and H denotes the Hankel transform operator.

The inverse Hankel transform of H(s) is defined as:

H−1(H(s)) = f(r) =

∫ ∞
0

H(s)J0(sr)sds, (40)

where H−1 denotes the inverse Hankel transform operator.

Theorem I: The Hankel transform of a radially symmetric
function in polar coordinates is equivalent to its 2D Fourier
transform.

Proof:

The 2D Fourier transform is given by:

F(f(r)) = F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−j(ux+vy)dxdy,

(41)
Let x = rcosθ and y = rsinθ. Let u = ρcosφ and v = ρsinφ

Substituting these in the above equation:

F (ρ, φ) =

∫ ∞
0

∫ π

−π
f(r, θ)e−irρcos(φ−θ)rdrdθ (42)

If f(r) is radially symmetric, it is independent of the angle.
Thus we can rewrite the above equation as:

F (ρ, φ) =

∫ ∞
0

rf(r)dr

∫ π

−π
e−irρcos(φ−θ)dθ (43)

Using the definition of the zeroth-order Bessel function:

J0(x) =
1

2π

∫ π

−π
e−ixcos(φ−θ) (44)

Using this in the equation above, we get:

F (ρ) = F(f(r)) = 2π

∫ ∞
0

f(r)J0(ρr)rdr (45)

which is the same is 2π times the Hankel transform of order
0. Thus:

F (ρ) = F(f(r)) = 2πH(f(r)) (46)

Lemma I: : G(u, v) = F(fsp0T ) = F(T )gsp0 , where
gsp0 = (fsp0 − κ+ fsp0(0, 0))
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Proof:

We use the zero order Hankel transform on G(u, v) to
reduce the 2D Fourier transform to a 1D Hankel transform.
We denote the variables in polar coordinates by the ˜ operator.
Next, we apply integration by parts:

H(h) = H(f̃sp0 T̃ ) =

∫ ∞
0

(f̃sp0 T̃ )J0(hr)rdr

= f̃sp0

∫ ∞
0

T̃ J0(hr)rdr−
∫ ∞

0

f̃ ′sp0dr

∫ ∞
0

T̃ J0(hr)rdr

= f̃sp0H(T̃ )−
∫ ∞

0

f̃ ′sp0dr ×H(T̃ )

= H(T̃ )

(
f̃sp0 −

∫ ∞
0

∂f̃sp0
∂r

dr

)
= H(T̃ )

(
f̃sp0 − f̃sp0(∞) + f̃sp0(0)

)
(47)

where ′ denotes the derivative with respect to r.
Let f̃sp0(∞) = κ. The equivalent expression in the Carte-

sian coordinates becomes:
G(u, v) = F(fsp0T ) = F(T ) (fsp0 − κ+ fsp0(0, 0))︸ ︷︷ ︸

=gsp0

= F(T )gsp0

(48)

where F is the Fourier transform operator.

APPENDIX B
MATHEMATICS OF GREEN’S FUNCTIONS

Let L be a linear partial differential operator. Let us consider
the inhomogeneous equation:

L(f(x)) = q(x) (49)

Let us define a function G(x), which is the solution to
the equation when q(x) = δ(x). Here, δ(x) is the Dirac
delta function. It is defined as having a value of 0, ∀x 6= 0.
Furthermore, ∫ ∞

−∞
δ(x).dx = 1

We thus have:

L(G(x)) = δ(x) (50)

Let G(x) be referred to as the Green’s function or the
fundamental solution. Let us show how we can construct
solutions for Equation 49 using the fundamental solution,
G(x). Using the properties of the convolution operation ?,
we can argue as follows:

L(G(x) ? q(x)) = L(G(x)) ? q(x)

= δ(x) ? q(x) =

∫ ∞
−∞

δ(x− x′)q(x′)dx′

= q(x)

(51)

Hence, G(x)?q(x) is a solution to the equation L(f(x)) =
q(x) (Equation 49). For the multi-variable case, the explana-
tion is exactly similar.

Now, the Fourier’s heat equation (steady state) is of the
form:

∇2(y) = q(x)

Here, ∇2 is the Laplacian operator ( ∂
2

∂x2 + ∂2

∂y2 + ∂2

∂z2 ). y
represents the temperature and q(x) stands for the dynamic
power (or is proportional to it). We thus observe that the
temperature can be computed by calculating a convolution
between the Green’s function and the dynamic power profile.
This approach can be extended to the transient case as well
where there is an additional temperature derivative term. The
basic idea is to compute a Green’s function that is a function
of time.

Green’s functions can be readily computed for the 2D
Laplacian operator ∇2 (given our 2D Laplacian geometry).
The fundamental solution or Green’s function is of the form
A.ln(r)+B, assuming circular symmetry in polar coordinates
(as is our case without variation). ln stands for the natural
logarithm. Here A is a constant (- 1/2π). We can modify A
and B subsequently to satisfy all the boundary conditions.
The result equation will be of the form C − Dln(r), where
C and D are positive constants. If we plot this equation, we
will have a rapidly decaying component for small r (shape
of -ln(r)), which will asymptotically appear to converge to a
constant line. This graph is very similar to that produced by
the expression that we have used for the Green’s function,
fsp = fsilic + κ. This is the Green’s function for a simple
geometry without leakage and variation. Here, fsilic is the
rapidly decaying part. κ is a constant, which represents the
roughly constant asymptote. This is the intuition behind the
form of the Green’s function that we have chosen (also
observed experimentally). Figure 13 shows an example of a
Green’s function solution for a 2D Laplacian equation that has
the same form. We can clearly see the rapidly decaying part
and the constant part.

10-2ln(r)

f

r

10

Fig. 13: Examples of a Green’s function solution for a 2D
Laplacian equation

The Green’s functions in practice are often not computed
directly. The resulting expressions are too complex once fac-
tors like leakage and process variation are taken into account.
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We instead require the Fourier or Hankel transform (Fourier
transform in polar coordinates) of the Green’s function in
practice. This can be directly multiplied with the Fourier
transform of the power profile to obtain the Fourier transform
of the temperature profile. Multiplication is clearly a much
faster operation than convolution.

The final temperature field is obtained after computing
an inverse Fourier transform of the Fourier trasform of the
temperature (computed using a convolution operation). This
is computed only once, at the very end.

The final expressions for the Fourier transform of the
Green’s functions for the steady and transient versions of the
problem are shown in Equations 26 and 36, respectively (in
the manuscript). This is the closest that we get in terms of
closed-form analytical solutions. Note that these equations
do not produce an analytical solution for the final Green’s
function. They show the relationship between the baseline
Green’s function (under ideal conditions like no leakage) and
the real Green’s function (assumes all kinds of effects inclu-
sive of leakage and process variation) using simply analytic
expressions. Hence, in practice, the expressions for the final
Green’s function are computed numerically given the baseline
Green’s function. However, there is almost never any need to
explicitly compute an inverse Fourier transform of the Green’s
functions themselves.


