
LightSim : A Leakage Aware Ultrafast Temperature Simulator

Smruti R. Sarangi Gayathri Ananthanarayanan M. Balakrishnan

Computer Science and Engg. School of Information Technology Computer Science and Engg.
Indian Institute of Technology Indian Institute of Technology Indian Institute of Technology

Hauz Khas, New Delhi, 110016 Hauz Khas, New Delhi, 110016 Hauz Khas, New Delhi, 110016
Tel: +91-11-2659 7065 Tel: +91-11-2659 6041 Tel: +91-11-2659 1285

e-mail: srsarangi@cse.iitd.ac.in e-mail: gayathri@cse.iitd.ac.in e-mail: mbala@cse.iitd.ac.in

Abstract— In this paper, we propose the design of an ultra-fast
temperature simulator (LightSim) that can perform both steady
state and transient thermal analysis, and also take the effect of
leakage power into account. We use a novel Hankel transform
based technique to derive a transient version of the Green’s func-
tion for a chip, which takes into account the feedback loop be-
tween temperature and leakage. Subsequently, we calculate the
temperature map of a chip by convolving the derived Green’s
function with the power map. Our simulator is at least 3500 times
faster than HotSpot, and at least 2.3 times faster than competing
research prototypes [4, 12]. The total error is limited to 0.18 ◦C .

I. INTRODUCTION

Since the last ten years, on-chip temperature is increasingly
being regarded as a first class design constraint. Temperature
has a direct effect on the amount of leakage power, and lifetime
reliability. Hence, it is necessary for designers to get estimates
of chip temperature at an early stage of the design process.
In response to this requirement researchers in both industry
and academia have proposed a wide variety of simulation tools
for estimating on-chip temperature. The existing simulation
tools primarily solve two variants of thermal problems – esti-
mating steady state temperatures [1. steady state prob-
lem], and estimating transient temperatures [2. transient
problem]. If the feedback loop between temperature and leak-
age is considered, then we have two more problems namely
the [3. steady state leakage problem], and the [4.
transient leakage problem].

Researchers have mostly built on generic methodologies to
model temperature such as the finite difference and finite el-
ement methods. To take the leakage feedback loop into ac-
count most tools run the temperature simulation several times
till the temperature and leakage power values converge. Un-
fortunately, most of the finite element and finite difference
based methods are fairly slow. Some of the fastest tools de-
veloped over the last decade such as HotSpot 6 [14], and Sesc-
Therm [19] take several minutes to solve the transient and
transient leakage problems. Hence, researchers have
proposed to use novel Green’s function based methods [18, 17]
that have been shown to be 2-3X faster [19] than finite ele-
ment/difference methods. Their main drawback is that they are
not suitable for transient thermal analysis.

In this paper, we propose the design of LightSim, an ultra-
fast thermal simulator that solves all the four thermal problems

in less than 13 ms on a standard Intel i7 desktop processor. It
is primarily designed for estimating the on-chip temperature of
multicore processors. As pointed out in prior work [14, 4], the
aim of designing an architecture level temperature estimator is
to broadly estimate the high level thermal profile, and thus an
extremely high level of accuracy is not necessary. Hence, we
make a set of simplistic assumptions to speed up our simulation
time (similar to [4, 12, 7]). LightSim is at least 3500 times
faster than the most popular open source simulator, HotSpot,
and is about 2-4 times faster than the fastest research prototypes
– CONTILTS [4] and PowerBlur [12].

The crux of our technique is to create a transient version
of the Green’s function (impulse response of a point power
source) that takes the leakage feedback loop into account. We
use a novel Hankel transform based technique to arrive at this
approximate version of the Green’s function. Subsequently, we
derive the thermal profile using a standard method [18, 17],
which convolves the derived Green’s function with the power
profile. Our approach effectively combines the positive aspects
of Green’s function based methods (speed) with that of tradi-
tional finite difference based methods (incorporation of tran-
sient, and leakage effects). Our approach does have some defi-
ciencies though. At the moment, the leakage values at the rim
of the chip are not derived rigorously, and use empirical fac-
tors. Even though the error in estimation is small, we intend to
propose a more rigorous framework in the future.

II. BACKGROUND AND RELATED WORK

A. Source of Power Dissipation

There are two sources of power dissipation in a processor –
dynamic and static(leakage) power. Dynamic power is dissi-
pated because of the switching activity in circuits. It is inde-
pendent of temperature. It is dependent on the workload, and
the micro-architecture.

However, the static or leakage power is a function of tem-
perature, and is traditionally described by Equation 1 in the
simplified BSIM 4 [8] model.

Pleak ∝ v2T ∗ e
VGS−Vth−Voff

η∗vT (1− e
−VDS
vT) (1)

vT is the thermal voltage (kT/q), Vth is the threshold volt-
age, Voff is the offset voltage in the sub-threshold region and
η is a constant.

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4

40 45 50 55 60 65 70 75 80

P
le

ak
(T

)/P
le

ak
(2

5
C

)

Temperature (C)

Biswas et. al ISCA, 2011

Martinez et. al ISCA, 2007

22nm, HSpice expt

Fig. 1. Leakage models

Die

Lateral heat conduction

Heat Sink
Thermal
Interface
Material

Heat Spreader

Die

Vertical heat conduction

fsilic

distance(grid points)

T

K

fsp

(a)

(b)

(c)

Fig. 2. (a) Processor package (b) Lateral heat conduction (c) fsp and fsilic

Pleak has a complex dependence on temperature, and is
exponentially dependent on temperature for high values(>
500mV) of the threshold voltage (Vth). In modern proces-
sors, the threshold voltages are about 150 mV, and the relation-
ship between leakage power and temperature becomes approx-
imately linear (based on Equation 1). Two highly cited recent
papers ([10] and [1]) have also arrived at the same conclusion
using accurate physical measurements and HSpice simulations.
We also conducted HSpice simulations for finding the depen-
dence of leakage on temperature for the 22nm technology node,
and the results are shown in Figure 1, along with the results of
[10, 1]. The operating range of a processor is typically between
45◦C and 70◦C . In this range, leakage is approximately linear
as we can see in Figure 1. This fact has been used to speed
up thermal simulators [9], and dynamic thermal management
algorithms [5, 6]. All the authors have reported less than 5%
error with a linear model of leakage. Note that to estimate tem-
perature, we need to repeatedly estimate leakage, and then the
resultant temperature, till convergence.

B. Lateral Heat Conduction

Figure 2(a) shows a diagram of the processor’s package. The
processor die generates heat because of dynamic and leakage
power dissipation. There is some amount of lateral heat con-
duction as shown in Figure 2(b); however, a larger fraction of
the heat escapes through the heat spreader and sink to the am-
bient (environment). The heat spreader is a copper plate that
helps to homogenize the temperature distribution of the silicon
die.

Now, if we apply a point heat source at the center of the
die, then the temperature distribution is mostly isotropic (in-
dependent of direction), and the relation between ∆T , and the
radial distance (measured in grid points) is conceptually shown
in Figure 2(c). We observe that the heat spread function fsp
can be divided into two parts. The first part is a rapidly de-
caying function (fsilic) that captures the temperature rise in the
adjoining grid points. It represents the fact that lateral heat con-
duction is limited to a small region because of the conductivity
of silicon (140 W/m-K) is lower than the conductivity of cop-
per (400 W/m-K). The second part is a constant κ that captures
the effect of the entire die heating up because of a point power
source. This happens because some of the heat is transferred
to the spreader, which in turn transfers some energy to all the
points in the die. This heat spread function (fsp) is also known

as the Green’s function of the system at the center of the die.
We thus have:

fsp = fsilic + κ (2)

By conducting empirical measurements using the Hotspot
simulator, we concluded that the radially symmetric fsp func-
tion accurately describes the temperature rise for most of the
points on the die other than the rim (around 10% of the total
area). This is because fsilic decays very quickly.

C. Related Work on Temperature Simulation

All the temperature simulation algorithms essentially solve
the Fourier’s heat equation:

∂U
∂t

= α1∇2U + α2Q (3)

Here, U(x, y, z, t) is the temperature field, ∇ is the Laplacian
operator, Q is the power profile, α1, and α2 are constants. The
boundary conditions typically specify adiabatic (no heat flow)
side/bottom boundaries, and a constant temperature above the
die.

The most commonly used method to solve Fourier’s equa-
tion is the finite difference method. The finite difference
method models the points in the package as a grid, and
then for each grid point it transforms the Fourier equation
into a linear recurrence relation. For example it transforms
∂U(x, y, z, t)/∂t to (U(x, y, z, t + h) − U(x, y, z, t))/h for
grid point (x, y, z). We can solve the resulting set of recur-
rence relations using standard techniques in linear algebra. The
accuracy of this method is a function of the number of grid
points, n. Since matrix multiplication, and inversion are es-
sentially O(n3) operations, this method is very slow. It can be
accelerated by the alternating direction implicit method [15],
model order reduction using Krylov subspaces [16], and multi-
grid methods [16]. The popular tool, Hotspot [14], creates an
electrical circuit based on the recurrence equations, and pro-
cesses it using existing circuit simulation methods. Similarly,
the CONTILTS [4] simulator significantly speeds up the sim-
ulation by using a piece wise constant approximation for the
variation of power against time, and by using results from the
theory of linear systems. Researchers have experimented with
the slower finite element method [3]. However, architectural
thermal simulations do not need such high level of accuracy, at
the cost of simulation speed.

A recent set of approaches [18, 17, 12] compute the 2D im-
pulse response (Green’s function, G) of an unit power source
in the center of the die, and compute the change in the temper-
ature field (U) as:

U = G ? Q (4)

Here, ? is the 2 dimensional convolution operator, and Q is
the power map. The Green’s function is essentially fsp in 2D
Cartesian co-ordinates for most of the die (see Section B). We
wish to create a time varying version of the Green’s function
that takes leakage power into account, and uses Equation 4 for
the transient and transient leakage problems.

III. DERIVATION OF THE GREEN’S FUNCTIONS

Symbol Full Form Meaning
U U(r, t) Temperature field
Pdyn Pdyn(x, y) Dynamic power
Pleak Pleak(x, y) Leakage power
β dPleak/dT
fsp fsp(r, t) Steady state Green’s function

(polar co-ordinates)
fsilic fsilic(r, t) Local heat spread function

(polar co-ordinates)
κ Global heat spread (fsp − fsilic)
κ1 βκ

∫ ∫
A fspdx.dy

κ2 2πβ(κ+ κ1)(H(fsilic) |s=0)
φ κ+ κ1 + κ2
fleaksp fleaksp(r, t) Leakage aware Green’s function

(polar co-ordinates)
fα fα(s) 2πC(1 + 2πβH(fsilic))
finv finv(r, t) H−1(H(fleaksp)×

e
− t
fα(s)(κδ(s)/s+H(fsilic))

)

finv = finv
ε
0 + finv

∞
ε

ftrans ftrans(r, t) Transient Green’s function
with the effect of leakage

Functions: U ,fsp, fsilic are also used
in Cartesian co-ordinates

TABLE I
GLOSSARY

A. Steady State Leakage Problem

Let us start from Equation 4, and use fsp(x, y) as the Green’s
function without considering the effects of leakage. Secondly,
let us split the power into two parts – Pdyn (dynamic), and
Pleak (leakage). Let U0 be the temperature field with no dy-
namic power, and UP denote the final temperature field. Let
Pleak0 be the leakage field at U0. We thus have:

U = UP − U0 = fsp ? (Pdyn + Pleak)− fsp ? Pleak0
= fsp ? (Pdyn + ∆Pleak)

(5)

Let us now assume Pdyn to be the Dirac delta function, δ (a
point source with total power of 1 Watt). Hence, fsp ? Pdyn =

fsp. Secondly, since we approximate leakage with a linear
model. We have ∆Pleak = βU (β is a constant of propor-
tionality). Thus:

U = fsp + βfsp ? U (6)

Using Equation 2 (fsp = fsilic + κ) we get:

U = fsilic + κ+ βfsilic ? U + β(κ ? U)

= fsilic + κ+ βfsilic ? U + βκ

∫ ∞
−∞

∫ ∞
−∞
Udx.dy

≈ fsilic + κ+ βfsilic ? U + βκ

∫ ∫
A
fspdx.dy︸ ︷︷ ︸
κ1

= fsilic + κ+ βfsilic ? U + κ1

(7)

We make a simplifying assumption here by assuming that
the integral of U over the area of the chip (A) is approximately
equal to the integral of fsp over A. Let us now compute 2D
Fourier transforms of the LHS and RHS. The 2D Fourier trans-
form is defined as:

F(s, t) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

e−j(xs+yt)dxdy (8)

Note that the Fourier transform (as defined by Equation 8)
of a convolution is equal to the product of Fourier transforms
multiplied by 2π. We thus have from Equation 7:

F(U) = F(fsilic) + (κ+κ1)F(1) + 2πβF(fsilic)F(U) (9)

Now, fsilic is radially symmetric because we are assum-
ing a large (theoretically infinite) die size. As mentioned in
Section B, this assumption holds for about 90% of the area
of a typical 2x2 cm2 die. Let us now use zero order Han-
kel transforms(H) [11] to reduce the 2D problem to a 1D
problem. A zero order Hankel transform is equivalent to 2D
Fourier transforms of radially symmetric functions in polar co-
ordinates [11]. A Hankel transform is defined as:

H(k) =

∫ ∞
0

f(r)J0(sr)rdr (10)

Here J0 is a Bessel function of the first kind of order 0. The
inverse Hankel transform has exactly the same form with r re-
placed by the transform variable s. The Hankel transform of a
2D convolution is the product of the transforms multiplied by
2π. From Equation 9, we have after converting to polar co-
ordinates.

H(U) = H(fsilic) + (κ+ κ1)H(1) + 2πβH(fsilic)H(U)

⇒H(U) =
H(fsilic) + (κ+ κ1)H(1)

1− 2πβH(fsilic)
(11)

β is typically a small value (0.09 to 0.006), and the peak
value of H(fsilic) is limited to small values(≈ 1) as observed
in our simulations. Thus, we can simplify Equation 11 by con-
sidering the fact that (1− x)−1 ≈ 1 + x, when x� 1. We use
the result: H(f(r) ? g(r)) = 2πH(f(r)H(g(r).

H(U) = (H(fsilic) + (κ+ κ1)H(1))× (1 + 2πβH(fsilic))

= H(fsilic) + 2πβH(fsilic)
2 +H(κ+ κ1)

+ 2πβ(κ+ κ1)H(1)H(fsilic)

(12)

H(1) is δ(s)/s, and is thus 0 everywhere other than 0.
Hence,H(1)H(fsilic) =H(1) (H(fsilic) |s=0). Thus:

U = fsilic + 2πβH−1(H(fsilic)
2) + κ+ κ1

+ 2πβ(κ+ κ1)(H(fsilic) |s=0)︸ ︷︷ ︸
κ2

= fsilic + 2πβH−1(H(fsilic)
2) + (κ+ κ1 + κ2)︸ ︷︷ ︸

φ

fleaksp = fsilic + 2πβH−1(H(fsilic)
2) + φ

(13)

Here U (referred to as fleaksp) is the modified Green’s func-
tion that takes into account the effect of leakage.

B. Transient Leakage Problem

If we consider the transient case, the resultant temperature
field is defined by: (refer to [14]).

U = fsp + βfsp ? U − Cfsp ?
∂U
∂t

(14)

Here, C is a constant (thermal capacitance). By following
the same set of steps that we followed to derive Equation 12,
and the Leibnitz rule, we get:

H(U) = H(fleaksp)−

2πC(1 + 2πβH(fsilic))︸ ︷︷ ︸
fα

×H(fsp)H
(
∂U
∂t

)

= H(fleaksp)− fαH(fsp)H
(
∂U
∂t

)
= H(fleaksp)− fαH(κ+ fsilic)

∂H(U)

∂t

(15)

Solving for t, and applying the boundary conditions:
H(U) = 0 |t=0, andH(U) = H(fleaksp) |t=∞.

H(U) = H(fleaksp)×
(

1− e−
t

fαH(κ+fsilic)

)
⇒ H(U) = H(fleaksp)× (1− e−

t
fα(s)(κδ(s)/s+H(fsilic)))

(16)

The Hankel transform of κ is κδ(s)/s. It is ∞ for s =
0, and is 0 for all other values of s. Let us now eval-
uate the inverse Hankel transform (finv) of H(fleaksp) ×
e
− t
fα(s)(κδ(s)/s+H(fsilic)) .
Let us approximate δ(s) as a function that is equal to 1/ε

from 0 to ε, and is 0 everywhere else. Here, ε→ 0. We can thus
break the inverse Hankel transform finv into two parts – finvε0,

and finv∞ε . finv∞ε can be calculated by using the formula for
the inverse Hankel transform, and numerical integration.

finv
∞
ε (r, t) =

∫ ∞
ε

(
H(fsilic) + 2πβH(fsilic)

2
)
×

e
− t

2πC(1+2πβH(fsilic))(H(fsilic))J0(sr)sds

(17)

Let us now compute finvε0. Since δ(s)/s� H(fsilic) when
s < ε, we can ignore all the terms with H(fsilic). We can thus
approximate H(fleaksp) = φδ(s)/s (Equation 13). We thus
have:

finv
ε
0(r, t) =

∫ ε

0

(φδ(s)/s)× e−
t

fα(s)(κδ(s)/s) sJ (sr)ds

=

∫ ε

0

(φ/ε)× e−
tsε

fα(s)κJ (sr)ds (δ(s) = 1/ε)

(18)

Since ε → 0, the product sr → 0, and thus J0(sr) → 1.
Secondly, fα tends to (fα0 = 2πC(1 + 2πβH(fsilic)(0)), be-
cause s tends to 0. By making these substitutions, we get:

finv
ε
0(r, t) =

∫ ε

0

(φ/ε)× e−
tsε
fα0κ ds

=
φfα0κ

tε2

(
1− e−

tε2

fα0κ

) (19)

Note that when t is small, finvε0 tends to φ. It becomes zero
as t → ∞. To conclude, the Green’s function, ftrans, for the
transient leakage problem is:

ftrans(r, t) = fleaksp(r)− finvε0(r, t)− finv∞ε (r, t) (20)

finv
ε
0 incorporates the effect of heating up of the entire pack-

age. This is a slowly increasing function. finv
∞
ε is a much

faster growing function and models the transient temperature
rise in the neighborhood of the power source. Lastly, note that
we assume that the leakage power increases instantaneously
(quasi-static assumption). Thermal time scales are at least of
the order of microseconds, and this is too large for non quasi
static effects to set in [8, 2].

C. Corrections for the Edges and Corners

We use the technique proposed by Park et. al. [12] to make
corrections for the rim of the chip. Park et. al. use three dif-
ferent Green’s functions corresponding to the center, edge, and
corner of the chip. We do the same and use the appropriate
version of fsp in Equations 6, and 14. We need to also make a
correction to the term βfsp?U in Equations 6 and 14. This term
represents the feedback component in the temperature leakage
loop. A primary power source increases the temperature in the
neighborhood, and each point in the neighborhood starts acting
as a secondary power source dissipating leakage power. Since
the size of the neighborhood is reduced to a quarter for the
corners, and reduced to half for the edges, we divide the term
βfsp ? U by 4 for the corners, and 2 for the edges. These two
corrections help us significantly reduce the error in temperature
estimation for the rim of the chip.

D. Using the Green’s Functions

This part of the algorithm is the same as prior approaches
that use Green’s functions [18, 17]. They compute the 2D con-
volution of the Green’s function and the power map. This is
typically done by computing the Fourier transform of both the
functions, multiplying them, and then computing the inverse
transform. We use Equations 12, and 16, to get the 2D Fourier
transform of the Green’s function, and then proceed to obtain
the temperature map. We accelerate the process of temperature
estimation by pre-computing the Green’s function, and using a
fast lookup table based approach similar to [17].

IV. RESULTS

A. Setup

We implemented LightSim in two parts. The offline part is
written in R [13], and the online part in C. The offline part first
invokes the popular Hotspot [14] tool to compute three differ-
ent Green’s functions (center, edge, corner) for a chip with the
parameters shown in Table II.

Parameter Value
Die size 400 mm2

Silicon conductivity 130 W/m-K
Spreader conductivity 370 W/m-K
Heatsink conductivity 237 W/m-K
Convection resistance 0.1 K/W
Spreader thickness 3.5 mm
Heatsink thickness 24.9 mm

TABLE II
HOTSPOT CONFIGURATION

We conducted experiments with 4 to 1024 mesh points, and
concluded that using 256 mesh points is appropriate for archi-
tectural simulation (error was limited to 2%, also see [19]).
The offline component of LightSim processes the data from
Hotspot, and finds the Hankel transforms of the Green’s func-
tions for the center, rim, and corner. Subsequently, the on-
line part computes the Hankel transform of the final temper-
ature field for a given time interval (only for transient and
transient leakage problems). It then converts the Han-
kel transform into a 2D FFT by converting to Cartesian co-
ordinates. We divide the power map into three portions – cen-
ter (90% of area), corners (2%), and edges (8%). We compute
the 2D FFT of each power map, and convolve it with the 2D
FFT of the corresponding Green’s function. The final tempera-
ture field is a superposition of the three individual temperature
fields. We assume 20% leakage at ambient temperature (30◦C
). We collect all our results on a Quad core, Intel i7 (3.1 GHz)
desktop processor (memory 4GB) running Ubuntu Linux 12.1.

B. Accuracy

We compare LightSim with the popular Hotspot simulator.
Figure 3 shows a plot of the Green’s function for the steady
state leakage problem. For Hotspot, we get the Green’s

function with leakage by applying a point heat source to the
136th grid point (die center), and then running the simula-
tion multiple times till convergence. For LightSim, we plot
leakspread. Note that the x-axis shows the number of the grid
point (printed row wise). The error is less than 2%. Figure 4
compares the obtained Green’s functions using both the ap-
proaches for the transient leakage problem (for the ori-
gin). We observe a maximum divergence of 0.18◦C (4.5%) at 1
ms. For 100 random power maps, we show the maximum error
in Table 5 computed at 2ms. For Hotspot, we compute the leak-
age using the BSIM4 model. For a sample power map(Fig. 6),
we show the results of transient simulation at 0.01 ms (Fig. 7),
0.1ms (Fig. 8), 1 ms (Fig 9), and 5 ms (Fig. 10). The y-axis
shows the increase in temperature, ∆T .

C. Speed

Simulator Steady
state

Transient

leakage leakage
(5ms)

Hotspot 5 30.3ms 45s
CONTILTS 25.2 ms 206.4 ms
Liu et. al. [7] 39.3 ms 264.8 ms
PowerBlur 20.1ms 58.2 ms
LightSim 8.7 ms 12.8 ms

TABLE III
COMPARISON OF EXECUTION TIMES

We compare LightSim with Hotspot, CONTILTS, Liu et.
al.[7], and PowerBlur in Table III. We simulate all the al-
gorithms (other than Hotspot) in C. The open source C code
for Hotspot 5 is freely available for download. Secondly, for
the purpose of fair comparison, we precompute all the Green’s
functions and steady state matrices before hand. These param-
eters are specific to a chip, and do not change with the power
map, or transient simulation interval. For the steady state case,
LightSim is at least 2.3 times faster than PowerBlur. For tran-
sient simulation with leakage, LightSim is 3500 times faster
than Hotspot for a 5ms interval, and is 4.5 times faster than the
nearest competitor (PowerBlur). Fundamentally, LightSim is
faster than Green’s function based methods (PowerBlur) be-
cause it incorporates the effect of leakage, and does not re-
quire multiple iterations. Moreover, it is significantly faster
than finite difference based methods because they rely on costly
O(n2) or O(n3) time matrix operations, whereas LightSim
uses faster FFT based methods (O(nlog(n)) time), and using
Hankel transforms makes the computation of the Green’s func-
tion a 1D problem.

V. CONCLUSION

We conclude that our Hankel transform based approach to
quickly compute the Green’s function for steady state and tran-
sient analysis with leakage, is useful for fast architecture level
temperature estimation.

0 50 100 150 200 250
Grid Point

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

In
cr

ea
se

 in
 T

em
pe

ra
tu

re
 (∆

T) Hotspot
LightSim

Fig. 3. Steady state Green’s function

0 1 2 3 4 5
Time(ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

In
cr

ea
se

 in
 T

em
pe

ra
tu

re
 (∆

T)

Hotspot
LightSim

Fig. 4. Transient Green’s function at the origin

Location Error (%)
steady state transient(at 2ms)

Center 0.6% 1%
Edge 1% 1.8%

Corner 1.8% 2.4%

Fig. 5. Errors of different configurations

Fig. 6. Power Map Fig. 7. ∆T at 0.01 ms

Fig. 8. ∆T at 0.1 ms Fig. 9. ∆T at 1 ms Fig. 10. ∆T at 5 ms

REFERENCES

[1] S. Biswas, M. Tiwari, T. Sherwood, L. Theogarajan, and F. T. Chong.
Fighting Fire with Fire: Modeling the Datacenter-Scale Effects of Tar-
geted Superlattice Thermal Management. In ISCA, 2011.

[2] Elmar Gondro, Oskar Kowarik, Gerhard Knoblinger, and Peter Klein.
When do we need non-quasistatic cmos rf-models? In Custom Integrated
Circuits, 2001, IEEE Conference on., pages 377–380. IEEE, 2001.

[3] B. Goplen and S. Sapatnekar. Efficient thermal placement of standard
cells in 3d ics using a force directed approach. In ICCAD, 2003.

[4] Y. Han, I. Koren, and C. M. Krishna. Tilts: A fast architectural-level
transient thermal simulation method. J. Low Power Electronics, 3(1):13–
21, 2007.

[5] H. Huang, V. Chaturvedi, G. Liu, and G. Quan. Leakage aware schedul-
ing on maximum temperature minimization for periodic hard real-time
systems. J. Low Power Electronics, 8(4), 2012.

[6] H. Huang, G. Quan, and J. Fan. Leakage temperature dependency mod-
eling in system level analysis. In ISQED, 2010.

[7] P. Liu, Z. Qi, H. Li, L. Jin, W. Wu, S. X. D. Tan, and J. Yang. Fast
thermal simulation for architecture level dynamic thermal management.
In ICCAD, pages 639–644, 2005.

[8] W. Liu, K.M. Cao, X. Jin, and Chenming Hu. Bsim 4.0.0 technical notes.
Technical Report UCB/ERL M00/39, EECS Department, University of
California, Berkeley, 2000.

[9] Y. Liu, R. P. Dick, L. Shang, and Huazhong Y. Accurate Temperature-
dependent Integrated Circuit Leakage Power Estimation is Easy . In
DATE, 2007.

[10] F. J. Mesa-Martinez, J. Nayfach, and J. Renau. Power Model Validation
through Thermal Measurements . In ISCA, 2007.

[11] P. K. Mittal. Integral Transforms for Engineers and Physicists. Har
Anand Publishers, 2007.

[12] J. Park, S. Shin, J. Christofferson, A. Shakouri, and S. Kang. Experimen-
tal validation of the power blurring method. In SemiTherm, 2010.

[13] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2013.

[14] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan. Temperature-Aware Microarchitecture. In ISCA, 2003.

[15] T. Wang and C.C.P. Chen. Thermal-adi - a linear-time chip-level
dynamic thermal-simulation algorithm based on alternating-direction-
implicit (adi) method. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 11(4):691–700, 2003.

[16] T. Wang and C.C.P. Chen. Spice-compatible thermal simulation with
lumped circuit modeling for thermal reliability analysis based on model-
ing order reduction. In ISQED, 2004.

[17] Y. Zhan and S. S. Sapatnekar. Fast computation of the temperature distri-
bution in vlsi chips using the discrete cosine transform and table look-up.
In ASPDAC, 2005.

[18] Y. Zhan and S.S. Sapatnekar. A high efficiency full-chip thermal simula-
tion algorithm. In ICCAD, 2005.

[19] A. Ziabari, E. K. Ardestani, J. Renau, and A. Shakouri. Fast thermal
simulators for architecture level integrated circuit design. In SemiTherm,
2011.

