
HAJPAQUE: Hardware Accelerator for JSON
Parsing, Querying and Schema Validation

Samiksha Agarwal
School of Information Technology

Indian Institute of Technology Delhi
New Delhi, India

agarwalsamiksha94@gmail.com

Smruti R. Sarangi
Department of Computer Science and Engineering

Indian Institute of Technology Delhi
New Delhi, India

srsarangi@cse.iitd.ac.in

Abstract—JSON (JavaScript Object Notation) is quickly be-
coming the default currency for semi-structured data exchange
on the web; hence, it is heavily used in analytics pipelines.
State-of-the-art analytics pipelines can now process data at a
rate that exceeds 50 Gbps owing to recent advances in RDMA,
NVM, and network technology (notably Infiniband). The peak
throughput of the best-performing software solutions for parsing,
querying, and validating JSON data is 20 Gbps, which is far
lower than the current requirement. We propose a novel HW-
based accelerator, HAJPAQUE, that ingests 16-bytes of JSON
data at a time and processes all the 16 bytes in parallel as opposed
to competing approaches that process such data byte by byte. Our
novel solution comprises lookup tables, parallel sliding windows,
and recursive computation. Together, they ensure that our online
pipeline does not encounter any stalls while performing all the
operations on JSON data. We ran experiments on several widely
used JSON benchmarks/datasets and demonstrated that we can
parse and query JSON data at 106 Gbps (@28 nm).

Index Terms—accelerators, ASICs, JSON parsing, query pro-
cessing, high throughput

I. INTRODUCTION

Over the last few years, JavaScript Object Notation (JSON)
has rapidly replaced XML as the preferred format for data
representation and exchange on the web, as it is more human-
readable and memory-efficient [20]. Major companies such
as Twitter and Facebook are now using JSON to transmit
web API requests and responses. It has become the default
medium of data exchange in high-throughput streaming ana-
lytics pipelines such as Azure Stream Analytics by Microsoft
[11], Apache Crail, Cloudflare, and Kafka [7], and Amazon
Kinesis [2].

Over the years, the processing throughput of these pipelines
has increased manifold owing to advances in technology. The
current wave is being driven by RDMA over Infiniband,
DDR5, and NVMe technologies such as 3D-XPoint. As a
result, many of the latest commercially available pipelines
support data analytics with a throughput that exceeds 50
Gbps such as Microsoft Azure (@50 Gbps) [11], and Apache
Crail(@100 Gbps) [17]. Sadly, we don’t have the infrastructure
to parse and validate JSON data at these rates. The best
software-based systems offer a best-case throughput of roughly
20 Gbps [9], [10].

In this work, we propose HAJPAQUE, a fully-featured hard-
ware accelerator engine for parsing as well as post-processing

JSON data; it is capable of sustaining a throughput of about
106 Gbps. In addition to high throughput, HAJPAQUE is a
low-latency solution, comprising a 10-stage stall-free hardware
pipeline (capable of running at a clock frequency of 833
MHz). Given the plethora of hardware accelerators that sustain
such throughputs (albeit for other applications [4], [8], [18]),
HAJPAQUE can easily fit in any popular SoC architecture
as long as it meets the specifications of advanced analytics
pipelines.

We propose novel hardware techniques to tackle the prob-
lem of sustaining high rates of parallelism without inducing
any stalls in the pipeline. These techniques are generic in
nature whose potential impact extends well beyond the scope
of this paper and can be utilized in hardware designs dealing
with any kind of semi-structured data. Unlike SW parsers,
the throughput sustained by HAJPAQUE is not susceptible
to the nature of JSON data (size of records or depth of
nesting/frequency of JSON fields) and the nature of queries
(frequency/depth of nesting of queried fields), subject to
reasonable limits.

The paper is organized as follows: Section II explains the
necessary background, we explain the design of the accelerator
in Section III, the evaluation results are shown in Section IV,
Section V discusses the related work and we finally conclude
in Section VI.

II. BACKGROUND

A. JSON Language, Query and Schema

A JSON document is a collection of objects, where every
object is an unordered set of key-value pairs.

Consider the definition of the JSON format:

JSON text = OBJECT...OBJECT
OBJECT = { KEY:VALUE, ... , KEY:VALUE }
KEY = STRING
VALUE = STRING | NUMBER | true | false | null | OBJECT | ARRAY
ARRAY = [VALUE, ..., VALUE]

On the lines of Mison [10], we would like to distinguish
between the terms JSON object and JSON record. The term
record is used to represent a top-level object. This implies that
a JSON record can be a single object or can contain one or
more nested objects. In this paper, we assume the uniqueness

of keys within an object (similar to [10]) and do not implement
any special mechanism to detect the duplication of keys.

Let us use an example to understand the JSON language.

{“Name”: “John”, “Age”: 50, “Car”: NULL}
{“Name”: “Ray”, “Age”: 45, “Car”:{“attributes”:{“color”: “Black”,
“electric”: Yes}}}

This example consists of two JSON records. Each record
has three top-level key-value pairs. The first record does not
contain any nested JSON object. The second record represents
an example of multi-level JSON object nesting.

Currently, an adaptation of the XML query language XPath
in the context of JSON (called JSONPath [3]) is quite popular
and is predominantly used for querying JSON data. In this
paper, we will refer to a JSONPath query as a JSON query.

A JSON Query consists of a sequence of JSON keys, each
of which is referred to as a query key. Let us understand JSON
queries using two distinct queries for the same example.

Query1: “Name”
Query2: “attributes.electric”

The first query consists of a single query key (“Name”) and
its results are expected to be “John” and “Ray”. The second
query consists of two query keys (“attributes” and “electric”).
The queried keys appear only in one of the two JSON records
and the result of this query is “Yes”.

There are popular draft proposals for a formal schema:
JSON Schema [3] and the grammar by Pezoa et al. [12].
The schema rules specified below are examples of some of
the JSON Schema rules.

Rule1: The value of the “Name” key must be a string
Rule2: The value of the “Age” key must be a number and must lie in the
range 10-100
Rule3: The following keys are mandatory in every JSON record: “Name”
and “Age”

III. DESIGN IMPLEMENTATION

A. Overview

Error

UTF-8
valida�on

Check-map
construc�on

& compac�on

Key/Value
address loca�on

& extrac�on

Depth-processing
& Key-Value Pair

crea�on

Stream Parser

Online
Schema

Validator

Online
Query

Processor

Schema
Rule
Table

Query
Table 1

Query result

Schema error

QueriesSchema keys

Applica�on

JSON
Data

Schema error

Memory address
generator

Node
crea�on

stage

Memory
write

controller
S
R
A
M

Memory Read
Controller

Query
Table k

Offline Query
Engine

DOM Constructor

Query result

Fig. 1. Design of HAJPAQUE

Figure 1 shows the block diagram of the proposed ac-
celerator engine, which includes the stream parser, parse
tree (Document Object Model (DOM)) constructor, query

processors (online and offline) and the online schema validator.
Along with traditional offline querying, we also support high-
throughput online query processing; they are integral features
of modern analytics pipelines [5], [6], [19].

B. Parsing engine

1) UTF-8 Character Checking: JSON data is received by
HAJPAQUE in blocks of 16-bytes at a time, which we refer
to as a set. Each byte is encoded as either a leading byte
or a continuation byte and the character-length information is
associated with every leading byte. All the bytes of a set are
simultaneously analyzed to check whether they conform to the
UTF-8 encoding standard. In case of an error, the application
is informed using an UTF-8 encoding error signal and the
bytes are ignored.

2) Locating and Extracting the Fields: This submodule
finds the presence of a key or value or both in a set of 16
bytes and subsequently finds their exact location. To start with,
we create a new structural token, called a qcolon. Whenever
a quotation mark is immediately followed by a colon (we
assume there are no whitespaces between quote and colon),
these two structural tokens are unified and referred to as a
single qcolon (”:). If a quotation appears without a succeeding
‘:’ we refer to it as a quote. The aim is to find the locations
of all the quotes and qcolons in the set in parallel.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

“ K 1 “ : V A L 1 , “ K 2 “ : V

1 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0

0 3 10 13 0 0 0 0 0 0 0 0 0 0 0 0

1 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0

0 3 10 13 0 0 0 0 0 0 0 0 0 0 0 0

Key Value Key

1 0 0 2 0 0 0 0 0 0 1 0 0 2 0 0

JSON set

Check-Map

Type CCM

Posi�on CCM

Byte No.

Check-Map builder

Compac�on engine

Sliding Window based Field-Locator

Type of field

Fig. 2. Stages involved in locating JSON fields

To proceed, let us define a check-map, which is a 16-bit
vector of 2-bit values. A 0 represents the fact that at a given
location we do not have a token of interest. 1 represents the
presence of a quote and 2 represents the presence of a qcolon
at the corresponding byte location in the set of 16 bytes. Let us
now define a compacted check-map (CCM), which is a vector
of 2-bit values. The ith entry indicates the position and type
of the ith structural token of interest: quote or qcolon. The
check-map can be generated in parallel by 16 parallel logic
blocks. Refer to Figure 2 for the rest of the discussion.

¶ The compaction engine takes in the check-map as input
and creates the CCM, which consists of two compacted sub-
checkmaps: a type check-map to indicate the type of the
token of interest (quote or qcolon) and a position check-
map to indicate the actual position of the token in the set.

Subsequently, we create 4 logic blocks – each one of them
considers 4 positions in the check-map. For example, the
first block considers positions 〈0, 1, 2, 3〉, the second considers
positions 〈4, 5, 6, 7〉, and so on. Each logic block reads the
8 bits assigned to it (2 per position), and accesses a lookup
table that stores the corresponding CCM. Now, we have four
CCMs. We then proceed to create a tree-like structure, where
each internal node takes in the CCMs of its two children and
merges them to create a combined CCM using a lookup table.
The final output is the CCM for the entire set of 16 bytes.

“ K 1 ” : { “ K 2 “ : V A L 2 ,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

“ K 1 ” : V A L 1 , “ K 2 ” : V

“ K 1 ” : V A L 1 } { “ K 2 “ :

Byte No.

JSON set

JSON set

JSON set

Fig. 3. Filtering the value fields

· This CCM is then given to the Field Locator engine,
which examines each pair of consecutive positions of the
check-map using a 2-entry sliding window. Note that this
sliding window is applied to the compacted check map in
a parallel manner instead of sequential manner. This means
that we have one logic block for analyzing positions 0 and
1, one more for positions 1 and 2, and so on. Using this
parallel sliding-window based analysis, the CCM is decoded to
determine the location of the keys or values or both, if present
in a set. We then use an elaborate set of rules to derive the
meaning of token pairs. There are many possible combinations.
We are listing a few simple ones in the table shown below. A
qcolon followed by another qcolon is not valid JSON syntax,
hence a syntax error is flagged to the application and the field
enclosed between the two qcolons is excluded from further
processing. The value might contain a few structural tokens
like a comma or curly braces; they need to be filtered out later
(see Figure 3).

〈current token, next token 〉 type of the field
quote, qcolon key
quote, quote value
qcolon, quote value
qcolon, qcolon error

The information of the presence of a key or value using the
last valid structural tokens of the CCM is registered and then
used while analyzing the first structural token of the next set’s
CCM; this is because a field may straddle sets.

¸ This sub-module works on the start and end addresses of
the keys/values received from the previous stage and extracts
the corresponding field. A single field often does not start and
end in the same set, resulting in the need to buffer bytes and
store the incomplete key/value of the previous set until the
ending location of the key/value is found, so that the entire
field can be extracted as a whole. In case, the length of the
key or the value to be buffered exceeds the size of the buffer,
a buffer overflow error is indicated to the application and the
key/value that caused the buffer to overflow is excluded from
further processing in entirety. Each key is stored in an array of
keys, where the ith entry stores the ith key in the set. Likewise

is the case for values. The underlying hardware structure
essentially implements a 2D array of characters. These arrays
are not compacted.

Compac�on engine

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

KEY 0 0 KEY 0 0 0 0 0 0 VALUE 0 0 0 0 0Pair Array

Sliding Window based approach

KEY KEY VALUE 0 0 0 0 0 0 0 0 0 0 0 0 0Compacted
Pair Array

Key-Value PairKey-Key Pair

Array index

Fig. 4. Establishing relationships between JSON fields

3) Depth Processing and Key-Value Relationship Building:
Once the keys and values are extracted, the next task is to
establish the relationships among different fields namely the
parent-child relationships among nested keys and find key-
value pairs. A dedicated depth-processing engine calculates
the depth of every extracted field with the help of the CCM
of the left and right curly braces. A global register stores the
current depth information for a set, which is then passed to
the next set and serves as the starting depth value for the next
set.

Once the depth information is available to us, we need to
know the actual order of the extracted keys and values in the
raw JSON data stream in order to establish the parent-child
relationships between the fields. Hence, we merge the arrays
corresponding to keys and values to form a new array called
the Pair Array. Once again, we use the compaction engine to
compact the Pair Array. Then we use a 2-entry sliding-window
in parallel to examine consecutive entries of the Pair Array and
build parent-child relationships between consecutive keys and
form key-value pairs(see Figure 4).

〈current field, next
field 〉

〈current depth,
next depth 〉

Type of current field

key, key d, d+1 Non-terminal key
key, value d, d Terminal key

If the ith position of the Pair array has a key and the i+1th

position has a value, then the key at the ith position becomes
a terminal key, if the depth of the key and the value are same.
We can say that the key and the value at the ith and i + 1th

positions, respectively, form a Key-Value Pair. If there is a
key at the ith position followed by another key at the i+ 1th

position of the Pair Array, then the key at the ith position
becomes a non-terminal key, if its depth is one less than the
depth of the succeeding key.

The novel contribution of this section is the parallel
application of sliding-windows, which is used extensively, and
is responsible for the achieved parallelism. The outputs of the
stream-parsing engine can be utilized by either the online post-
processing blocks like the online query analyzer or schema
validator; they can also be passed to the DOM parser. The
DOM parser constructs a parse tree in memory, which can
then be accessed by any application later. An offline query
engine has also been implemented, which can traverse the
tree stored in memory and return the results of an application

query. We omit a detailed discussion on the implementation
of the conventional DOM parser due to a lack of space.

C. Online Query Processor

The online query processing engine receives parsed keys
and values from the Stream Parser and then evaluates a set of
queries (standard single-variable queries [3]). The assumption
is that before the JSON data begins to stream into HAJPAQUE,
the queries from the application are compiled and loaded into
the hardware accelerator. We use a register-based data structure
called the Query Table for each query (see Figure 5). For each
entry in the Query Table, the Valid bit indicates whether the
corresponding entry of the table contains a valid query key –
note that a query can contain a sequence of keys, where a key
is the child of the previous one in the list. The sequence of
keys need not start from the root of the entire JSON document.
The query key with the lowest depth (say d) fills the first entry
of the Query Table, the key with depth d+ 1 fills the second
entry of the Query Table, etc.

In case the Query Table is re-programmed at runtime, the
new queries will only be applicable to the JSON stream data
that arrives at the accelerator post re-programming.

VALID QUERY
KEY

QUERY-
MATCH

DEPTH

1 Name 1 1

0 X

0 X

0 X

VALID QUERY
KEY

QUERY-
MATCH

DEPTH

1 Car 1 1

1 a�ributes 1 2

1 color 1 3

0 X

{“Name”: “Ray”, “Age”: 45, “Car”: {“a�ributes”: {“color”: “Black”, “electric”: Yes}}}

Query1 : {Name} Query2 : {Car. a�ributes. color}

JSON record

Expected Result : Ray Expected Result : Black

Query Table 1 Query Table 2

Fig. 5. Example a of Query Table

We propose a novel hardware unit called the Highly-
Parallel Query Matching Engine (HPQME) for query process-
ing. Every key in a JSON set (terminal or non-terminal) is
matched with all the entries of the Query Table in parallel.
Note that every query has to end at a terminal key.

In the case of a successful match, the Query-Match bit is set
to 1 for the corresponding entry of the Query Table, provided
the entry is valid. Before setting the Query-Match bit of a
Query Table entry, the following conditions are also checked:
¶ If the match is due to a non-terminal key, the Valid bit
of the succeeding entry of the Query Table must be ‘1’ ·
If the match is due to a terminal key, the Valid bit of the
succeeding entry in the Query Table must be ‘0’, except if the
match is for the last table entry. These checks are important
to ensure the correctness of the pre-compiled query. In case,
any of these conditions are not satisfied, a query processing
error is signaled to the application and the Query-Match bits
of all the entries of the Query Table are reset.

When the Query-Match bits corresponding to all the valid
entries of the Query Table are set to ‘1’, a valid result of the

query is generated. The result of the query is the “value” field
of the terminal key that caused the Query-Match bit of the last
valid entry of the Query Table to be set to 1.

Despite a successful match, the result can be erroneous in
case the order of keys in the data is not the same as the order
desired in the query. To overcome this challenge, we make
use of the depth of the parsed keys calculated by the Depth
Processor. Whenever there is a match between the incoming
key and the key stored in the Query Table, the depth of the
key is also stored in the Query Table in the corresponding
query entry. When the Query-Match bits of all the valid table
entries are set to ‘1’, we examine the stored depth information
of the keys. We apply a 2-entry sliding-window in parallel for
each pair of consecutive entries of the Query Table. A valid
response to the query is generated by the Query Processor if
and only if the following condition is satisfied:

If the Query Table has k valid entries,
Depth[i] = (Depth[i-1] + 1) where (i=0,1,...k-1)

D. Schema Validator

In this work, we implement the three schema rules (shown
as an example in Section II). For checking Rules (1) and
(2), the hardware matches each of the terminal keys with the
reference key. In the case of a successful match, it examines
the value field of the matching key. All the characters of the
value field are checked to find if it is a string or a number,
and in case any character is found to be not in the allowed set
of characters, a schema validation error is flagged.

For checking Rule (3), it is important to identify the
starting point of a new JSON record because the checking of
mandatory keys must happen for each record. We create a set
of parallel, 2-entry sliding windows that consider consecutive
pairs of entries in the CCM and look for the ‘}{’ pattern.
For every new record, all the parsed keys of a set are verified
against the mandatory reference keys using a Schema Match
table (see Figure 6).

VALID SCHEMA
KEY

SCHEMA-
MATCH

1 Name 1

1 Age 1

0 X X

0 X X

{“Name”: “Ray”, “Age”: 45, “Car”: {“a�ributes”: {“color”: “Black”, “electric”: Yes}}}JSON Record

VALID SCHEMA
KEY

SCHEMA-
MATCH

1 Name 1

1 Age 1

1 Height 0

0 X X

CASE1 : Schema OK CASE2 : Schema NOT OK

JSON schema 1
{“required”: [“Name”, “Age”]}

JSON schema 2
{“required”:[“Name”, “Age”, “Height”]}

Fig. 6. Examples of Schema Validation

IV. RESULTS AND PERFORMANCE EVALUATION

A. Experimental Setup

The design was coded in Verilog, functionally verified
using the Xilinx Vivado simulator and synthesized using
the Synopsys Design Compiler (DC) using 28nm (ASIC)
technology libraries of a major silicon vendor. All the results

have been reported using the technology library for the slow-
slow(SS), low-voltage(0.75 V) and low temperature(-40 ◦C)
corner (worst case scenario for this technology). All the
software was run on a desktop-based system with an i7-8700
CPU running at 3.20GHz with the Ubuntu Linux 18.04.5 LTS
OS. We assume an SRAM of size 1 MB for storing the
DOM tree representation of the JSON datasets (larger trees
can overflow into lower-level memory).

B. Datasets

We tested our design using standard datasets, which have
been extensively used in prior work [9], [10]. Table I shows
the different attributes of these datasets. The throughput values
saturate for data sets greater than 10 KB; hence, there is no
point in considering larger data sets.

TABLE I
CHARACTERIZATION OF JSON DATASETS. VALUES NORMALIZED TO 10

KB CHUNKS.

JSON dataset Number of
fields (keys /
values) to be
parsed

Maximum
depth of
nested fields

Number
of JSON
records

iris.json 976 1 99
covid features.json 600 2 33
business.json 870 3 13
twitter.json 410 6 2

C. Synthesis Results

We found that the design operates correctly without any
timing violations (at the slowest process corner) for clock cycle
times of 1.2 ns and more. Hence, for reporting all the results
in this paper, we operate our design at the maximum clock
frequency of 833 MHz (cycle time=1.2 ns).

TABLE II
DESIGN PARAMETERS USED FOR REPORTING RESULTS

Parameter Value
Number of Query Processors/Tables 1
Number of entries in the Query Table 7
Width of a Query Table entry 32 bytes
Number of entries in the Schema Table 4
Width of a Schema Table entry 32 bytes

For reporting the area/power figures, we configured our
design as per the parameters mentioned in Table II. It is
assumed that the designer has an estimate of the sizes of
structures required. Just in case, more entries are required,
we can handle these cases in software. Given that such tables
are not in the critical path, the clock frequency remains the
same even when we scale the number of Query or Schema
Table entries to 64. With these sizes we were able to process
all our data sets.

Table III summarizes the area and power consumption
figures of the design. We observe that HAJPAQUE is a
combinational-logic intensive design, as it is highly parallel in
nature and extensively utilizes combinational-logic resources
to achieve this parallelism. The sequential logic area required

TABLE III
AREA AND POWER CONSUMPTION OF HAJPAQUE

Total Area 292839 µm2

Combinational Area 184097 µm2

Non-combinational Area 108742 µm2

Static Power 0.008 mW
Dynamic Power 43.31 mW

for HAJPAQUE is primarily attributed to the pipeline registers
(10-stage pipeline).

D. Performance Analysis

1) Parsing Throughput: The first experiment evaluates the
throughput for varying sizes of JSON datasets. We show the
results for twitter.json, whose size was varied from 100 B to
0.6 MB.

Table IV reports the throughput provided by HAJPAQUE
for DOM-based parsing and stream parsing, respectively. As
the datasets become larger (>10 kB), the throughput values
saturate at 98.4 Gbps and 106 Gbps, respectively (at an
operating frequency of 833 MHz). This happens as fixed
overheads such as the pipeline latency become insignificant
as compared to the total execution time. It is fair to consider
large files of size >10 kB for evaluating the throughput
since practical JSON applications do not deal with very small
datasets. Moreover, there is no need to evaluate our design
with datasets larger than the ones we have used; we achieve
steady state performance with our datasets. In the case of
DOM-based parsing,the achieved CPB (cycles per byte) is
slightly lower than the theoretical CPB of 0.0625 (1/16) cycles
per byte due to the memory accesses for storing the parse-tree
representation of the JSON data in memory.

TABLE IV
CPB/THROUGHPUT FOR DIFFERENT SIZES OF DATASETS (CPB IS CLOCK

CYCLES PER BYTE). WE APPROACH A STEADY STATE AFTER 10 KB.

Dataset size DOM parsing Stream parsing
CPB Parsing

throughput
CPB Parsing

throughput
100 B 0.18 37.0 Gbps 0.16 41.6 Gbps
1 kB 0.079 84.4 Gbps 0.072 92.6 Gbps
10 kB 0.0685 97.2 Gbps 0.0634 105.1 Gbps
100 kB 0.0679 98.1 Gbps 0.0625 106.6 Gbps
0.6 MB 0.0677 98.4 Gbps 0.0625 106.6 Gbps

A key feature of the stream parsing engine of HAJPAQUE
is that its performance is not impacted by the nature of
the JSON data or the JSONPath queries. We examined the
impact of the nature of JSON datasets on the performance of
the stream parser using 10 KB of JSON data from each of
the four JSON datasets (shown in Table I). We also studied
the impact of the variation in the nature of queries on the
performance of HAJPAQUE (we show the results for 10
kB of the business.json dataset by evaluating three different
types of queries on it). The queries vary from each other in
terms of the frequency and depth of the valid results (see
Table V). For both the cases, we do not see any impact on the

CPB/throughput of the stream parser. This is expected because
there are no pipeline stalls due to memory accesses in the
stream parser. Hence, even if there are more JSON fields to
be parsed/queried, we will still not have any stalls. Further, the
depth of the parsed/queried fields is calculated by the depth
processing module, whose performance is not impacted by the
maximum depth of the field of the JSON keys. Of course, there
are limitations set by the number of entries, buffer sizes, etc.
However, these values can be increased at design time with a
minimal impact on the cycle time.

TABLE V
VARIATION OF CPB WITH QUERIES IN THE STREAMING MODE

business.json query Number of
valid query
results

Maximum
depth of
the queried
field

CPB

business id 13 1 0.0625
attributes.ambience.touristy 3 3 0.0625
hours.Sunday 6 2 0.0625

2) Comparison with the State-of-the-art: Next, we compare
HAJPAQUE with other state-of-the-art JSON parsers.

TABLE VI
COMPARISON OF SUPPORTED FEATURES AMONG SEVERAL PARSERS

Feature RapidJSON Mison SimdJSON HAJPAQUE
Stream Parsing 3 3 3 3
Online Querying 3 3 3 3
DOM parsing 3 7 3 3
Offline Querying 3 7 3 3
UTF8 validation 3 7 3 3
Schema Validation 3 7 7 3

Let us now compare the throughput of different types of
parsing in Table VII and compare the results with two of the
fastest software parsers: SimdJSON [9] and RapidJSON [15].

TABLE VII
THROUGHPUTS FOR PERFORMANCE BENCHMARKING (DATASET

twitter.json AND THE QUERY “USER.ID”)

Parser Parse
(create
DOM only)

Parse+Scan
DOM

Stream-Parse +
Process query
online

RapidJSON [15] 1.7 Gbps 0.8 Gbps 1.6 Gbps
SimdJSON [9] 5.0 Gbps 2.6 Gbps 4.8 Gbps
HAJPAQUE 98.4 Gbps 60 Gbps 106.6 Gbps

The absolute throughput of HAJPAQUE reduces from 98.4
Gbps to 60 Gbps since the time taken in scanning the parse
tree is dependent on the number of memory accesses, which
is proportional to the number of nodes in the tree-based
representation of the JSON document. In SimdJSON, the time
spent in the UTF-8 validation stage depends on the fraction of
non-ASCII characters in the input data, and the time spent in
locating key/value pairs depends on their frequency. However,
in the case of HAJPAQUE, the UTF-8 validation stage and
the key/value location stage take the same number of cycles,
irrespective of the nature of the input data. If we do not

consider DOM-tree construction, then the rest of our online
pipeline does not have any stalls.

V. RELATED WORK

Traditional JSON parsers such as GSON [13], JACKSON
[14] and RapidJSON [15] use state-machine based algorithms,
which execute a series of instructions on input data, byte by
byte. Recent research has focused on the use of modern pro-
cessors to leverage SIMD-level parallelism to quickly locate
queried fields without having to perform expensive lexical
analysis such as Mison [10] and SimdJSON [9]. They can
sustain a peak throughput in the range of 16-24 Gbps.

HPXA [1] proposes a parallel approach for XML parsing
that ingests data 16 bytes at a time, and demonstrates a parsing
throughput of roughly 100 Gbps on a 28 nm technology
node (for ASICs). However, its role is just limited to DOM
parsing without state-of-the-art stream parsing and online post
processing; it does not have the elaborate structures that we
have such as the sliding windows, lookup tables, and deep-
parallel searches for parsing, querying and schema validation.
An FPGA-based implementation of a streaming JSON parser
has been proposed in 2017 [16], which makes use of a
deterministic automaton for parsing and another automaton
for evaluating a set of JSONPath predicates. The message
throughput of the proposed system along with the JSON parser
has been shown to be to about 4 Gbps.

VI. CONCLUSION

We were able to create a fully-featured JSON parser by us-
ing three hardware-based innovations: parallel sliding window-
based field relationship builder, parallel query processing en-
gine that uses depth information, and a method for finding
the beginning and end of records by processing the CCM
in parallel. They ensure that we do not have to introduce
any stalls; hence, we can achieve the maximum theoretical
throughput for sufficiently large datasets (> 10 KB). The
methods introduced in this paper have a generic scope and
can be directly used to accelerate XML/HTML (and similar
semi-structured data) parsing, schema validation and query
processing.

REFERENCES

[1] I. Ahmad, S. Patil, and S. R. Sarangi, “Hpxa: a highly parallel xml
parser,” in DATE, 2018.

[2] AWS. (2013) Amazon kinesis. https://aws.amazon.com/kinesis/.
[3] P. Bourhis, J. L. Reutter, F. Suárez, and D. Vrgoč, “Json: data model,

query languages and schema specification,” in Proceedings of the 36th
ACM SIGMOD-SIGACT-SIGAI symposium on principles of database
systems, 2017, pp. 123–135.

[4] Y. Fang, C. Zou, A. J. Elmore, and A. A. Chien, “Udp: a programmable
accelerator for extract-transform-load workloads and more,” in 2017
50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2017, pp. 55–68.

[5] A. S. Foundation. Apache storm. http://storm.apache.org/.
[6] A. S. Foundation. Spark streaming. https://spark.apache.org/streaming/.
[7] A. S. Foundation. (2017) Apache kafka. https://kafka.apache.org/.
[8] V. Gogte, A. Kolli, M. J. Cafarella, L. D’Antoni, and T. F. Wenisch,

“Hare: Hardware accelerator for regular expressions,” in 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). IEEE, 2016, pp. 1–12.

[9] G. Langdale and D. Lemire, “Parsing gigabytes of json per second,” The
VLDB Journal, vol. 28, no. 6, pp. 941–960, 2019.

[10] Y. Li, N. R. Katsipoulakis, B. Chandramouli, J. Goldstein, and D. Koss-
mann, “Mison: a fast json parser for data analytics,” Proceedings of the
VLDB Endowment, vol. 10, no. 10, pp. 1118–1129, 2017.

[11] Microsoft. Azure documentation. https://docs.microsoft.com/en-us/
azure/data-factory/copy-activity-performance.

[12] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč, “Foundations
of json schema,” in WWW, 2016.

[13] G. repository. Google gson. https://github.com/google/gson.
[14] G. repository. Jackson. https://github.com/FasterXML/jackson.
[15] G. repository. rapidjson. https://github.com/miloyip/nativejson-

benchmark.
[16] D. Ritter, J. Dann, N. May, and S. Rinderle-Ma, “Hardware accelerated

application integration processing: Industry paper,” in ICDEBS, 2017.
[17] P. Stuedi, A. Trivedi, J. Pfefferle, R. Stoica, B. Metzler, N. Ioannou, and

I. Koltsidas, “Crail: A high-performance i/o architecture for distributed
data processing.” IEEE Data Eng. Bull., vol. 40, no. 1, pp. 38–49, 2017.

[18] P. Tandon, F. M. Sleiman, M. J. Cafarella, and T. F. Wenisch, “Hawk:
Hardware support for unstructured log processing,” in 2016 IEEE 32nd
International Conference on Data Engineering (ICDE). IEEE, 2016,
pp. 469–480.

[19] WSO2. Wso2 stream processor. https://wso2.com/integration/streaming-
integrator/.

[20] S. Zunke and V. D’Souza, “Json vs xml: A comparative performance
analysis of data exchange formats,” IJCSN International Journal of
Computer Science and Networks, vol. 3, no. 4, pp. 257–261, 2014.

