SUPPLEMENTARY FILE

Architectural Support for Handling Jitter in
Shared Memory based Parallel Applications

Sandeep Chandran, Prathmesh Kallurkar, Parul Gupta, and Smruti R. Sarangi,

Abstract—With an increasing number of cores per chip, it is becoming harder to guarantee optimal performance for parallel shared
memory applications due to interference caused by kernel threads, interrupts, bus contention, and temperature management schemes
(referred to as jitter). We demonstrate that the performance of parallel programs gets reduced (upto 35.22%) in large CMP based
systems. In this paper, we characterize the jitter for large multi-core processors, and evaluate the loss in performance. We propose a
novel jitter measurement unit that uses a distributed protocol to keep track of the number of wasted cycles. Subsequently, we try to
compensate for jitter by using DVFS across a region of timing critical instructions called a frame. Additionally, we propose an OS cache
that intelligently manages the OS cache lines to reduce memory interference. By performing detailed cycle accurate simulations, we
show that we are able to execute a suite of Splash2 and Parsec benchmarks with a deterministic timing overhead limited to 2% for 14
out of 17 benchmarks with modest DVFS factors. We reduce the overall jitter by an average 13.5% for Splash2 and 6.4% for Parsec.

The area overhead of our scheme is limited to 1%.

Index Terms—CMP, hardware support for OS, DVFS, operating system jitter, HPC application

1 INTRODUCTION

HE number of cores per chip are doubling roughly
T every two years as predicted by Moore’s law. Conse-
quently, traditional HPC(High Performance Computing)
applications are increasingly being ported to CMPs [1],
[2]. As the number of cores on a CMP scales beyond 16
or 32, HPC applications will start becoming extremely
sensitive to the length of sequential portions and crit-
ical sections in the code. This is a direct consequence
of Amdahl’s law. Hence, it will become necessary to
properly tune the CMP systems (both HW and SW) akin
to HPC clusters such that optimal performance can be
guaranteed in the face of jitter inducing events such as
system calls, interrupts, kernel threads, system events,
daemons, and other processes. A small amount of jitter
in a critical section can elongate the critical path and can
lead to a disproportionate amount of slowdown.

Prior work has mostly focused on managing jitter for
large clusters [3], [4], [5], [6]. However, we could not
find any prior studies that studied the effect of jitter on
CMP based shared memory applications. In this paper,
we study the impact of jitter on a 16 core shared memory
CMP using POSIX thread(pthread) based benchmarks.
We observed slowdowns of upto 41% and 27% (see
Figure 10) in the Splash and Parsec benchmark suites
respectively.

Consequently, in this paper we exclusively focus on
reducing jitter for general purpose non-real time HPC appli-

o Sandeep Chandran, Prathmesh Kallurkar and Smruti R. Sarangi are with
the Department of Computer Science & Engineering, Indian Institute of
Technology Delhi, New Delhi — 110016

o Parul Gupta is with IBM Research Labs, India.

cations. We shall focus on parallel real time applications
with possibly inviolable hard deadlines in the future.
The main sources of jitter [3], [7] are OS induced jitter,
multi-threading/tasking, and cpu events. We further
subdivide the OS jitter into two types — active and
passive. Timer interrupts and I/O interrupts that are
delivered by external agents contribute to active OS jitter,
whereas jitter caused by system calls made by target
applications contribute to passive jitter. We demonstrate
in Section 6.1.1 that passive synchronization jitter caused
by pthread based system calls to enter and exit critical
sections/barriers accounts for about 90% of the total
jitter in a properly tuned system (defined in Section 5).
However, pthread based synchronization calls are inte-
gral to a shared memory based HPC system, and to the
best of our knowledge, prior work has not looked at it in
great detail. A properly tuned system adopts solutions
already devised by the HPC community to minimize
jitter such as real time kernels, threads with real time
priority, interrupt isolation, and curtailing all forms of
extraneous activity. For example, it is easy to minimize
jitter due to other processes by running a system in
Linux single user mode and setting thread priorities to
real time. Likewise, cpu based power and thermal events
such as voltage frequency scaling can be switched off for
the duration of execution of an HPC task, or we can use
superior cooling methods.

In this paper, we focus most of our effort in trying to
reduce the jitter due to pthread based synchronization
calls. We propose a novel piece of hardware called the
jitter unit. It runs a distributed protocol to estimate the
number of cycles/seconds lost due to OS jitter and a
host of other events including processor events, and
timer interrupts. The jitter unit consists of a set of intel-
ligent counters to measure jitter related events that take

SUPPLEMENTARY FILE

cues from special instructions inserted into the standard
POSIX thread library and the kernel. We envision this
unit to be a non-intrusive monitoring mechanism, which
does not change or interfere with the normal operation
of the processor in any way.

We start out by dividing the total execution into
discrete quanta of dynamic instructions called frames.
For regular HPC applications, the entire program is a
single frame. However, for parallel real time applications
such as software radio [8], a frame can correspond to
the code that processes a single packet. For example,
in the WiMax [9] protocol, we need to process a given
packet in less than 5 milliseconds. Thus, a frame in a
WiMax application can be defined to be 5 milliseconds
long. We further divide a frame into a set of subframes,
where each subframe is n seconds long. n is typically
between 200us to 1 millisecond. In each subframe, we
estimate the amount of jitter by reading the values saved
in different jitter units, and add it to the accumulated
jitter within the current frame. We try to compensate for
this accumulated jitter over the next few subframes by
modulating their voltage and frequency.

We observe that using DVFS alone with inputs from
the jitter unit is not sufficient to curtail jitter. Hence,
we propose to supplement the scheme with a small OS
cache. This is a 64 KB cache at the L2 level. It is meant
to hold the cache lines that belong to the operating
system. Moreover, the OS cache and the regular L2 cache
can share cache lines between them to reduce conflict
and capacity misses. However, there are some subtle
issues in the design of an OS cache namely shared data
(between user level processes and the kernel), and cache
coherence. We shall delve into these issues in Section 4.2.

We present the background and related work in Sec-
tion 2, characterize synchronization jitter in Section 3,
show the implementation of the jitter unit in Section 4,
present the evaluation setup in Section 5, display the
results in Section 6, and finally conclude in Section 7.

2 BACKGROUND AND RELATED WORK

2.1 Definitions

Time Sensitive Task : A task (serial/parallel), which is
being monitored for jitter by our system.

Definition of Jitter : Let us consider a sequence, S, of
dynamic instructions belonging to a time sensitive task.
Let it take time t to execute on an ideal machine, and
time ¢’ on a non-ideal machine. The jitter J is defined
as t' — t. An ideal machine is defined as a system with
zero interference from any external source.

We note that & may contain interrupts to the kernel,
and may consist of disruptions introduced by multi-
threaded code. Our definition of jitter, which is similar to
that defined in [10], takes into account sources of delay
other than the OS.

2.2 Sources of jitter

According to De et. al. [3], [7] there are four main
sources of jitter in a computer system namely OS activ-
ity, multiple threads (SMT interference), power/thermal
management, and the hypervisor. We do not consider
hypervisors in this work. A detailed description of the
sources of jitter can be found in Appendix A. We shall
provide a brief summary in this section.

Jitter can be primarily divided into two types — active
and passive. Active jitter is defined as jitter caused by
external events such as interrupts. Prior studies [3] have
found the timer interrupt to be the largest contributor of
active jitter (upto 85%). I/O and network activity have
been found to account for the rest. The reader should
note that it is not the case that timer interrupts take a
long time to get processed. The kernel opportunistically
uses the timer interrupts to schedule its own work.

Passive jitter is caused as a side effect of system calls.
In parallel benchmarks, synchronization calls (mutex
lock, unlock, etc.) often lead to system calls. The kernel
uses these opportunities to schedule its own work to run
book keeping tasks, daemons, or bottom-halves of device
drivers. In our studies we have found synchronization
interrupts to be more frequent than timer interrupts.
Hence, most of the jitter is accounted for by synchro-
nization interrupts.

It is possible to reduce jitter by forcing the interrupts to
be handled on a fixed set of cores (cpu isolation) or using
proprietary real time operating systems. The former is
a part of our baseline system, whereas, the latter has
prohibitive performance overheads. Jitter can also be
caused by multiple threads, and power/temperature
management events.

3 CHARACTERIZATION AND DETECTION OF
SYNCHRONIZATION JITTER

3.1 Basics of POSIX Threads

Figure 1 shows the different types of synchronization
operations in the POSIX threads (pthreads) library. Lock-
Unlock start and end a critical section using a memory
address as the lock address. Signal-Wait and Broadcast-
Wait are two paradigms in which one thread waits for
another thread to signal it to resume. The difference
between signal and broadcast is that signal is one-
to-one communication, and broadcast is one-to-many
communication. The latest version of the POSIX thread
library has a barrier primitive. Since it internally uses the
broadcast mechanism, we omit it for the sake of brevity.
There are three more primitives for thread creation and
termination — create, exit, and join. In the join operation,
one thread waits for another thread to finish. We define a
set of events that are fired when we enter a synchroniza-
tion library call, and exit it. They are shown in Table 1.
Let us now look at typical communication scenarios for
measuring signal-wait jitter. Other cases can be handled
similarly.

SUPPLEMENTARY FILE 3
thread 1 thread 2 thread 1 thread 2 thread 1 thread 2 thread 3
event symbol
lock entry Le
wait A wait A wait A lock exit 1_x
unlock entry u_e
i --4 broadcast Al . -
signal A - dcast7) unlock exit u_x
- rs .
[Tesume | [resume] [[resume] signal entry 5_¢
signal exit S_X
broadcast entry | b_e
v broadcast exit b_x
wait entry w_e
.) -Wai wait exit W_X
. Signal-Wait Broadcast-Wait —
Lock-Unlock [e] TABLET:
(@) (b) () List of events
Fig. 1: Synchronization primitives in the pthread library
Core T [Core 1 | [Core2 | [Core3 |
Log in the wait buffer
w_e —we
Broadcast the
Search for a wait in = Search for a wait in signal event
the wait buffer. Mark it Broadcast the signal event ‘ the wait buffer. Mark it
s e / e s.e / se
e [+ e
€ |Kernel Ente
ke k_e jitter core 2
€ |Kernel Enter
X X |Kernel Exit
— w_x
- . Signal EXit a W_X [Wait Exi
core2 [sx -
.
Jitter=s x -s_e
\

Fig. 2: Synchronization involving two cores

3.2 Scenarios for Signal-Wait Synchronization
3.2.1 Case 1

In Figure 2, we look at a typical scenario for a signal-wait
communication pattern. First, a thread on core 1 issues
a wait_entry (w_e) call. We envision a dedicated piece
of hardware called the jitter unit on each core. The jitter
unit on core 1 makes an entry of this by logging it in a
dedicated wait buffer. Subsequently, a thread on core 2
tries to signal the waiting thread. The jitter unit on core
2 catches this event, and broadcasts the s_e event to the
other jitter units. The s_e event contains the lock address,
and the id of the thread that is going to be woken up
(the pthread library can compute the id of the thread
to be woken up very quickly without any system calls).
We don’t expect the overhead to be more than a couple
of cycles. Once core 1 receives the s_e event, it starts
searching for entries in its wait buffer that match the
address and the thread id. If a match is found, then a
thread is going to be woken up in the near future. The
jitter unit timestamps the wait entry.

In parallel, the pthread code on core 2 typically does
some pre-processing, and then sends an interrupt to
the kernel (int 0x80 instruction on x86). The kernel
immediately runs the schedule function, in which the
kernel can either send an inter-processor-interrupt to
core 1 to resume the waiting thread, or it can mark the
waiting thread as ready, and just return. Figure 2 shows
the former case. The latter case is treated the same way.

Fig. 3: Synchronization involving three cores

The time between s_e and ipi (inter processor inter-
rupt) on core 2 should be within limits. If it is not the
case, then this means that there is some jitter in the
kernel. After core 1 receives the ipi, it immediately tran-
sitions to kernel mode. Let us assume that the waiting
thread has the highest priority. Then the kernel will exit
(k_x) and wakeup the thread firing the w_x event.

The jitter in core 1 is the time difference between s_e
and w_x in Figure 2. We call it signal-wait jitter. The
justification for this reasoning is as follows. From the
programmer’s point of view, the point of signal entry,
s_e, is when she expects core 1 to start instantaneously.
She further expects the signal call to finish instanta-
neously. We need to take into account a certain base
value for any kind of synchronization operation. We
typically assign Nus for every operation. If the time, 7,
exceeds that, then the jitter is T'— N. Given this reasoning,
if the time between the receipt of the event s_e on core
1 and w_x (wait exit) on core 1 differ significantly, then
we can infer the existence of OS jitter.

Likewise on core 2, after sending the ipi, the kernel
running on core 2 can schedule other tasks like dae-
mons/interrupt handlers. The time difference between
s_e and s_x is accounted for as purely signal jitter on
core 2.

SUPPLEMENTARY FILE

322 Case?

Core 1 might wakeup another thread after receiving the
ipi, and then wake the time sensitive thread (details in
Appendix B).

3.2.3 Case 3

It is possible that the time sensitive thread that was
originally on core 1, wakes up on core 3 as shown in
Figure 3. In this case, core 3, will be aware of the fact
that there has been a migration. It will broadcast the id of
the thread, and get the time at which the corresponding
signal event was issued from core 1 and calculate the
jitter appropriately. (details in Appendix B).

We consider these cases exhaustive since we observe
in our experiments that their coverage is more than
99.999%. Please note that it is possible to trivially extend
our scheme to consider the existence of multiple time
sensitive tasks. In this case, we need to have dedicated
state in the jitter unit, and a wait queue for each task.
Furthermore, each message needs to be stamped with
the thread identifier.

4 |IMPLEMENTATION DETAILS

We propose two schemes to contain jitter. The first
is a method to estimate the total jitter due to kernel
interference. In this scheme, we use a dedicated piece
of hardware called the jitter unit that runs a distributed
protocol to calculate the amount of jitter experienced by
a time sensitive task. Based on the amount of jitter, we
try to compensate for it using voltage-frequency scaling.

The other approach is to use an OS cache at the L2
level to reduce the interference by the OS in the memory
system. To further reduce conflict and capacity misses,
we propose a method to seamlessly share lines between
the OS cache and the regular L2 cache.

4.1 Jitter Unit

Every core has a jitter monitoring subsystem called
the jitter unit as shown in Figure 15. The jitter unit
will be periodically notified about different events by
instructions in our modified pthread library, and events
snooped from the processor and the bus.

4.1.1 Event Monitoring

A time sensitive application thread starts with letting the
jitter unit know about itself by inserting its thread id
in a model specific register, jitter-reg using an assembly
instruction. This register is automatically unset when
the processor switches to kernel mode or executes a
pause, or halt instruction. When a time sensitive thread
is swapped out, its current PC (program counter) along
with the thread id is recorded in the thread-list and
broadcast to the rest of the jitter units in other cores.
They also record the (PC, thread id) in their thread-list.
The jitter units need to snoop the program counter after
a kernel exit event (k_x) and match the PC with values

stored in their thread-list. If there is a match, then the
jitter unit knows that it is a time sensitive thread with a
given thread id, and monitoring jitter can proceed.
CPU Events: CPUs have a lot of power management
events like instruction throttling, reduction of frequency,
powering down units, and so on. For every event, we
calculate the estimated slowdown. We allow users to
set this. For example, if we halve the frequency for 100
cycles, then we have roughly lost 100 cycles as per our
definition of jitter.

Bus Events: The bus arbiter will now monitor the bus to
find out how many messages belonging to time sensitive
tasks are getting delayed. We propose to use the scheme
in [11] to measure the cycles lost.

4.1.2 OS Jitter Events

We instrument the POSIX thread (pthread) library (part
of the standard C library) to track the following methods:
create, exit, join, lock, unlock, signal, broadcast, and wait,
as explained in Section 3 and Table 1. For each event,
the pthread library writes the process id (pid), thread
id(tid), event type (ev_type), and the memory address of
the lock(if any), and time, to separate registers accessible
by the jitter unit. We track two more events called
kernel_entry (k_e) and kernel_exit (k_x). kernel entry
is fired when the kernel starts executing and likewise
kernel_exit is fired when there is a context switch to a
user process. We envision custom logic that can monitor
the supervisor bit in processors to find out when the
kernel is executing, and when it has stopped executing.

4.1.3 Design of the Jitter Unit

The detailed design of the jitter unit is shown in Ap-
pendix C. We summarize the main structures in this
section. The high level design is shown in Figure 4. The
jitter unit is specific to each core and processes events
sent by the core, and some events sent on the inter-
core bus to compute the jitter experienced by the time
sensitive thread.

The design of the jitter unit can broadly be divided
into three parts: (1) information about the jitter expe-
rienced by the current thread (jitter state), (2) program
counters of different threads in the time sensitive pro-
cess, (3) events of interest that are used to compute jitter.

The jitter unit maintains information about the current
thread, and especially the amount of jitter experienced in
the current frame such that it can use this information to
compensate for the resultant slowdown. This is known
as the jitter state of the thread. Additionally, the jitter
unit maintains information about the position of all the
threads in a time sensitive process in terms of their PC
(program counter) values before a context switch, in an
SRAM array called a thread list. The thread list is used to
initialize the jitter state of a core upon a thread migration.

The most complicated part of the jitter unit contains
the storage and logic to compute the jitter experienced by
the time sensitive threads by logging events of interest.
There are two main storage structures — lock buffer and

SUPPLEMENTARY FILE

{Jitter unit

(Iock-/id, timestamp)
Core 2 |

FSM

Jitter Monitoring buffers
wait buffer
lock buffer

Fig. 4: High-level design of the jitter unit (One per core)

wait buffer. The lock buffer is used to save the timestamp
of lock events such that the jitter can be calculated
once the corresponding unlock is issued. Likewise, the
wait buffer is used to log wait events such that we can
calculate the jitter for signal-wait and broadcast-wait
synchronization patterns. Each jitter unit contains a finite
state machine (FSM) to track the relationship between
the different synchronization events and compute the
relevant time intervals. The logic follows the patterns
shown in Figures 2 and 3. If these intervals exceed a
pre-specified threshold, then the extra time is logged as
jitter. Further details can be found in Section C.2.1.

4.1.4 Calculating the Critical Path

Figure 5 shows a typical example of multi-threaded code
where several threads are spawned simultaneously and
join with a barrier. If a frame is wholly contained within
a thread, then we try to reduce the time lost in jitter
by applying DVES across the subframes. The problem
arises when a thread spawns other threads or threads
get coalesced with a join operation.

To solve this, we force a subframe deadline when
a thread is created and joined. For the newly created
thread, we initialize its jitter counter with the jitter of the
parent. When thread A finishes its execution and joins
thread B, we set the jitter of thread B, to the maximum
jitter of both threads. When n threads join the parent
thread, the jitter-count is the maximum of the n threads
and the parent. This procedure ensures that the jitter-
count accurately reflects the critical path in a multi-
threaded program.

A frame can thus span multiple threads. The pro-
grammer should ensure that it corresponds to a piece
of computation that has a real time connotation. In
the absence of programmer annotation, the jitter unit
considers the entire span of program execution as a
single frame. However, a subframe is defined for just
one thread, and it has a specific DVFS setting. In our
scheme, DVES is applied on a per-core basis.

4.1.5 Jitter from Multiple Threads/Tasks

We observe that there is sometimes significant jitter in-
troduced by kernel threads by displacing lines required

Y Type of jitter Abbreviation
- iThread Spawn gigﬁzi-Wait zw
5“”;%"‘/2; _t== _L vy Broadcast-Wait | bw
e o N [4
Y i Unlock u

L

arrier

Fig. 6: Different types of
jitter

1
Frame
End

Fig. 5: Subframes in a
multi-threaded code

by the time sensitive application in the cache. We observe
that the penalty incurred in displacing L1 cache lines is
not as high as the case of L2 lines. This is because of the
high memory access latencies of the L2. Consequently,
we propose to maintain a time sensitive, ¢s, bit for every
L2 line. Whenever the kernel evicts a line with the t¢s
bit on, we increment the evicted_lines count for the
subframe. After the end of the subframe, we multiply the
number of evicted lines by the memory access time and
then divide it by the number of banks to get an estimate
of the jitter due to L2 cache line eviction. We add this
value to the jitter-count for a subframe. We observe that
this rough heuristic gives us acceptable results in our
experiments.

4.1.6 Control

Based on the amount of jitter measured by the jitter unit
residing on the core, a DVFS controller decides the DVFS
multiplier for the next subframe. The decision is based
on a lookup table maintained in software. Since, the
DVFS controller itself is in software, it can be configured
in different ways to mitigate jitter. The multipliers can
be chosen very aggressively in which case, the power
consumed may be too high; else a nominal setting may
be used if the system needs to be optimized for power.

For each subframe, we record its CPI, and the L2 miss
rate. The performance(insts/sec) is given by [12]:

f

P =
CPI omp + mr *mp

)

Here, C'PI.omy is the clock cycles per instruction barring
L2 misses, mr is the L2 miss rate, and mp is the miss
penalty in cycles. The L2 miss rates and the IPC remain
more or less constant across a program phase [13],
which is much longer than a subframe. Based on this
information, we can get an estimate of the time the
next subframe will take. Simultaneously, we maintain a
count of the time lost to jitter using our measurement
mechanisms.

Before the start of each subframe, we have two es-
timates — 7(f) and J. 7(f) is the expected time of
execution for the subframe at a given frequency, and J is
the time that has been currently lost to jitter. It is saved in
the jitter-count register. Let fy be the nominal frequency

SUPPLEMENTARY FILE

of the machine. We set f such that 7(f) = 7(fo) — J. At
the end of the subframe, the instantaneous value of jitter,
J, is equal to the jitter in the subframe plus the error in
estimating f. This error is the time the subframe took to
execute minus 7(f). We can further extend this equation
to distribute the jitter across k frames. The equation will
be 7(f) = 7(fo) — J/k. Henceforth, we refer to k as the
reactivity factor. The final aim is to set the jitter-count to
0 at the end of the frame. It is difficult to compensate
for the jitter in the last few subframes. One solution is
to add a few dummy subframes at the end. Our scheme
can be trivially extended to model this.

4.2 OS cache

Destructive interference between the application and the
OS in the memory system is a major source of OS
jitter. Nellans et. al. [14] have suggested the use of an
additional cache OS cache at the L2 level to segregate
the memory accesses of the application and the OS.
The accesses of the application and the OS are sent
to their respective caches by checking the value of the
supervisor bit. They use an OS cache of the same size as
the application cache.

We build on their work. Firstly, we observed that
the application epoch is generally bigger than the OS
epoch. Hence, we propose the use of a smaller OS cache
(64 KB) at the L2 level. Secondly, we did not obtain
appreciable benefits by using their naive approach. This
was because there were capacity misses for certain OS
epochs, and this nullified the effects of the OS cache.
Hence, we propose an intelligent cache in this work
that can dynamically share lines between the OS and
application caches to effectively mitigate conflict and
capacity misses.

The cache lines that are shared between the application
and the kernel are stored in the application cache and
accesses to such lines are marked using a special shared
bit in the memory request. Moreover, the TLBs and the
page tables are augmented with this extra shared bit
such that the request can be sent to the right L2 level
cache upon a L1 miss. It is possible to annotate these
shared pages by instrumenting the system call handlers
in the kernel.

It is often the case that the OS cache is full but there
may be some free (invalid) cache lines in the normal
L2 cache or vice-versa. We propose a cache line sharing
mechanism wherein the application and OS can use
some of the space available in the other cache seamlessly.
However, in order to restrict the interference due to such
sharing, a cache line is treated with least priority when
stored in the other cache. We augment the cache logic
such that a dedicated bit(overflow bit) in each line of a
set is 1 if there is a possibility that a certain line in the set
might be present in the other cache. Also, the number of
cache lines that can be stored per set in the other cache
is limited to half of the associativity of the other cache.

By design, we never store a cache line in both the ap-
plication and the OS cache. Hence, from the directory’s

perspective, the combination of the application and the
OS caches can be viewed as a single large cache. A
detailed description of the OS cache can be found in
Section C.1.

5 EVALUATION SETUP
5.1

Our architectural simulations use the environment
shown in Table 2. This is similar to the setup used
by [15].

We simulate the Splash2 set of benchmarks [16] using
the default inputs for sixteen cores similar to [15]. We
had issues in running cholesky, fft, volrend and radiosity for
the X86-64 architecture in our simulation infrastructure.
For lu and ocean, we use the contiguous_partitions in-
puts. We simulate the Parsec-2.1 set of benchmarks [17]
using native inputs. We had issues in running canneal,
blackscholes and freqmine in the Parsec benchmarks suite.
This leaves us with 8 Splash benchmarks and 9 Parsec
benchmarks (total 17). In this work, we have chosen
general purpose, shared memory, high performance par-
allel applications, and we have tried to run them in an
environment, where we try to dynamically nullify all the
jitter. Our main aim has been to ensure scalability and
deterministic execution at the level of a frame.

We use an in-house cycle accurate simulator that uses
the popular binary instrumenter PIN [18] to simulate
the Splash?2 [16] and Parsec-2.1 [17] benchmarks. We de-
scribe the method of collecting jitter traces and injecting
them in our simulations in Appendix D. We observe
that operating system jitter is an inherently random
process. Consequently, we repeat the entire process for
each benchmark for 10 times, and report the maximum,
minimum, and mean time of executions.

Since the benchmarks we considered did not have
programmer annotations, we considered the entire pro-
gram execution to be one single frame. Each subframe
is 330us long. A subframe should be much larger than
the PLL lock time (10us) and should be smaller than a
OS scheduling quantum(jiffy) (1 milli-second). The first
90 subframes during the simulation of a benchmark are
used to warm up the caches and no measurements are
taken during this period.

Architectural Simulation

5.1.1 Area and Power Simulation

We calculate the area and power overheads using Cacti
5.1 [19] and Wattch [20].

Our DVFS settings are given in Table 3. We assume
a 10us PLL lock time, and a maximum time of 20 us
to ramp up the voltage (see [21]). We assume that our
baseline system runs at 3 GHz, which is lower than the
rated frequency of 3.6 GHz. All the applications should
run optimally in an ideal system running at 3 GHz. Our
baseline has a lower frequency than the rated frequency,
because we need some additional leeway to increase the
frequency to compensate for jitter.

SUPPLEMENTARY FILE

Simulated System Configuration

System : CMP with 16 cores (32 nm process)
Core : 2-issue, in-order, 3 GHz(baseline freq)
Peak frequency: 3.6 Ghz

L1 : 2-way, 32kB, Private, 32 byte line
Hit delay : 2 cycles round-trip, write-back
L2 : 4-way, 256kB, Private, 64 byte line, MESI
Hit delay : 12 cycles, write-back
Miss latency :
To other L2s : 30 cycles round-trip(avg)
To memory : 300 cycles round-trip
OS L2 : 4-way, 64kB, Private, 64 byte line, MESI
Hit delay : 3 cycles, write-back
Miss latency :
To other L2s : 30 cycles round-trip(avg)
To memory : 300 cycles round-trip
Directory : fully mapped, 32K entries
Memory : DDR3 DRAM, dual channel

Properly Tuned System

Ubuntu 9.10 Server, Linux Kernel 2.6.31 (RT patches)
Single user mode, RT Priority (80), DVFES turned off
SCHED_RR scheduling policy

PCI/APIC/Timer interrupts mapped to first two cores
Each core handles IPI/machine check polls and sys calls

TABLE 2: Simulation Setup

TABLE 4: Proportion of synch. jitter (Splash2)

app o Titier | apP s
barnes 82% fmm 95%

ocean 97% raytrace 97%
water-nsq 91% lu 30%

radix 33% water-sp 95%

Mean (6 out of 8) 93%

6 EVALUATION

6.1 Jitter Characterization

Figures 7 and 8 show the distribution of the jitter per
synchronization operation for the fmm (Splash2) and
bodytrack (Parsec-2.1) benchmarks respectively. Please
note that we only plot those values that are above the
jitter threshold (10 ps in our case). We observe a heavy
tailed distribution similar to the log-normal distribution.
The other benchmarks in the two benchmark suites
follow similar distributions. The average jitter is about
100 ps, and starts tapering off after about 200 ps. In some
runs, we have observed the jitter to be as high as a couple
of milli-seconds.

Figure 9 shows the breakup of the jitter /kernel execu-
tion overhead for the simulated benchmarks in Splash2
and Parsec experienced across all the cores. As men-
tioned above, delays less than the jitter threshold, 10 us,
are not considered as jitter. We show the results for — u
— unlock , b — broadcast, s — signal, bw — broadcast-
wait, lu — lock-unlock and sw — signal-wait jitter (see
Figure 6).

We observe that lock-unlock and just unlock jitter
account for a lion’s share of the total jitter for some
benchmarks. The lock-unlock jitter varies from 2.5 to
81.9%. Since prior work [22], [16] has observed that a ma-

0.02

Jitter Distribution
(Splash2)

0.016

0.012

pdf

0.008

Freq Vaa DVEFS 0.004

(GHz) (V) Factor o

2.4 0.8 0.8 0 150 300 450
2.55 085 0.85 Jrer ()

2.7 0.9 09 Fig. 7: Jitter (Splash2)
2.85 095 0.95

3 1 1

3.15 1.05 1.05

33 11 11 0.032 e Dtn
3.45 115 1.15 0.024

3.6 1.2 1.2

pdf

0.016

TABLE 3: DVFS factors
0.008

0

0 150 300 450
Jitter (us)

Fig. 8: Jitter (Parsec)

TABLE 5: Proportion of synch. jitter (Parsec)

app e | app e
facesim 98% ferret 80%
bodytrack 96% x264 86%
raytrace 83% vips 88%

dedup 97% fluidanimate 96%
streamcluster ~ 99% Mean 91%

jority of the synchronization calls are lock operations, we
can justify this result. Both the benchmark suites hardly
use signal-wait synchronization. The only benchmarks
that use it to an appreciable extent are ferret, dedup and
vips. Especially, in the case of vips, signal-wait jitter is
91.5% of all the jitter.

The most important type of jitter is broadcast-wait.
The broadcast-wait jitter varies from 12.5 to 91.2%. Even
though, broadcast calls are relatively rare, its correspond-
ing wait operations are very jitter prone because the
waiting thread is typically out of action for a long time.
The kernel opportunistically uses this time window to
schedule its own tasks. Consequently, there is a visible
delay in waking up the waiting task. Secondly, the
library and the kernel also need to wake up several
waiting tasks (15 in our case). The last few tasks end
up perceiving some jitter. The other interesting result is
that with the exception of x264, the broadcast jitter is
negligible.

If we compare it with the case of signal, we observe
that its proportion is much lower in benchmarks that
use it. The signal jitter on an average is about 10-
15%, whereas the broadcast jitter is about 2-5%. This is
because, we have a lot of waiting threads in the case of
broadcast. The kernel can use their cpu time to do its
work. Lastly, as compared to Splash, we see much more

SUPPLEMENTARY FILE

1007] n n n o n n
807

607

Breakup of Jitter

407

207

MiufdswEbwEMs@bOu

Splash2

Parsec

Fig. 9: Break-up of the jitter (Splash2 & Parsec)

diversity in the case of Parsec.

6.1.1 Synch. Jitter vs Total Jitter

In this Section, we try to estimate the contribution of
synchronization jitter to the total jitter (as defined in
Section 2.1). First, we use our jitter traces collected from
the actual system by instrumenting the GNU Libc (C
standard libraries) to compute the critical path of the
program, which can potentially flow across multiple
threads. It consists of two parts: (1) pure execution and
(2) jitter. We estimated (1) using Linux utilities, and
since we know the total time, we can compute (2). Now,
the total jitter (2) consists of synchronization jitter, and
non-synchronization jitter. Using our jitter measurement
infrastructure, we were able to compute the synchroniza-
tion jitter. Consequently, we were able to get an estimate
of the non-synchronization jitter also.

Table 4 plots the ratio of synchronization jitter to
total jitter for the Splash benchmarks averaged across all
threads. We observe that for 6 out of the 8 benchmarks,
the ratio is fairly high. It is between 82 to 97%. In fact
other than barnes, the rest of the Splash benchmarks
have figures larger than 95%. Without including Iu and
radix, the mean is 93%. Lu and radix are kernels. They
have very infrequent synchronization operations. Con-
sequently, other sources contribute to most of the jitter.

Table 5 shows the same data for the Parsec bench-
marks. Here also the mean value is fairly large, i.e., 91%.
For benchmarks such as dedup, facesim, bodytrack, and
streamcluster, the values are larger than 95%.

6.2 Time Overhead

In this section, we evaluate the time overhead of jitter,
and also the efficacy of our proposed scheme. In this
section, we discuss the results of two configurations
Unified Cache, and OS Cache. Unified Cache models a real
system where the application and the kernel share the
L2 cache. OS Cache is our proposed intelligent OS cache
where the application and OS selectively share cache
lines to balance interference and performance.

Figure 10 shows the effects of OS jitter for both the
configurations — Unified Cache and OS-Cache. We run each
experiment 10 times (error bars in the figure).

We observe that on an average, 14.5% and 6.4% slow-
down is experienced by Splash2 and Parsec respectively
due to jitter which is significant for high-performance
parallel applications.

We observe that using DVFS with inputs from the jitter
units on the unified cache, the mean jitter is just 1% for
Parsec. We also notice that for 6 out of the 9 benchmarks,
it is negligible and for the remaining 3, facesim, dedup
and fluidanimate, it is limited to just 2.5%. For Splash, the
average jitter is limited to 2.5% for 5 of the 8 benchmarks.
In case of water_nsquared, water_spatial, and ocean, the
jitter could not be mitigated primarily because of power
constraints (there is a limit on the amount by which
voltage and frequency can be scaled). However, for even
these benchmarks, the total jitter falls from the 30-35%
range to the 10-20% range. We also observe that for 13
out of the 17 benchmarks, the variance in the execution
times is less than 1%.

On the other hand, we notice that, on an average,
the OS-Cache performs better than the unified cache
(without DVEFS). This is expected since the amount of
interference is reduced due to the partitioning the ap-
plication and the kernel accesses. We see significant a
benefit by using a separate OS cache in the case of ferret
and ocean where merely using an OS cache mitigates the
jitter completely. We attribute this is to: (i) the reduction
in interference between application and OS (as noticed
in ocean), and (ii) the reduction in the number of capacity
misses enabled by flexible sharing of cache lines (as
noticed in ferret).

Only in 4 out of the 17 benchmarks (streamcluster,
facesim, raytrace) and water_spatial, the OS cache performs
worse than the unified cache. This is because there were
too many capacity misses that the OS cache could not ac-
commodate. Even in these benchmarks, the performance
of OS cache is close to that (< 2%) of the unified cache
configuration.

However, the most pernicious aspect of jitter is the
non-determinism in execution times for the same bench-
mark across multiple runs. Let us consider some exam-
ples. In the Splash benchmark suite, the total execution
time of water_nsquared and water_spatial vary upto 11%
and 17% respectively. We observe that not only OS jitter

SUPPLEMENTARY FILE

M unified cache (w/o DVFS) Eunified cache (with DVFS)
0 OS cache 64K (w/o DVFS) B OS cache 64K (with DVFS)

vl
I3,

I
S

=
w

I
i

Normalized Execution time of a frame
i
—

o =
e 9
——
==

o
o

Benchmark

Fig. 10: Time overhead (Splash2 & Parsec)

leads to a net slowdown, it also introduces a substantial
variance in the execution time. This makes it difficult to
design high performance parallel applications.

We observe that a combination of intelligent DVFS
and having the OS cache completely mitigates jitter. For
Parsec, DVFS combined with OS cache gives a speedup
of 1.5% whereas for Splash, the overall mean jitter is
just 1%. The observed speedups are due to the controller
over-compensating for the observed jitter in some cases.
We also observe that in only 3 out of 17 benchmarks,
jitter has not been fully mitigated. As previously men-
tioned, this is due to the limit on the amount of voltage-
frequency scaling that is possible on a given system.

6.3 Power Overhead

In this section, we evaluate the power overhead of our
scheme. First, we observe that since the jitter unit is only
used when we have a synchronization event (typically
once every 50us), or at the beginning of a subframe, the
power overhead of the jitter unit per se is negligible.

Figures 11 and 12 shows the normalized frequency
settings for a typical frame across 30 subframes for
water_spatial and facesim respectively. We observe the re-
sponsiveness of our frequency scaling algorithm. When
the jitter has been overcompensated in one subframe, we
notice that the voltage-frequency scaling algorithm tries
to minimize the power overhead by dropping the supply
voltage to a value lower than the base voltage (seen in
the dip of frequency to 0.95). We further observe that in
the case of water_spatial, the amount of jitter is high, and
consequently the controller tries its best to control it by
setting the highest possible DVFS factor, 1.2. However,
when the value of the jitter drops, the controller realizes
that it has over compensated, and then tries to save
power.

Figure 13 shows the normalized power overhead. The
power overhead varies from less than 1% to 41%. For the
Splash benchmarks, the average power overhead is 14%

and 13.6% for Unified and OS-Cache configurations re-
spectively. Whereas, for Parsec, the corresponding num-
bers are 16.3% and 16.5% respectively. For 11 out of 17
benchmarks, the average overhead is limited to 20% in
both the configurations.

As expected the values of power consumption are
roughly correlated with the values of measured jitter
shown in Figure 10. For example, benchmarks such as
lu, ferret, and x264, have low values of jitter and power.
Ocean, facesim, fluidanimate, and fmm have high values of
jitter, and high power consumption also.

However, there are some exceptions such as bodytrack.
They have low values of jitter, and still have high power
consumption. Likewise, we have benchmarks such as
water_nsquared, and water_spatial, which show the re-
verse trend. After studying these benchmarks, we could
explain this phenomenon on the basis of the nature
of the critical path. In some benchmarks all the jitter
happens on the critical path. Consequently, the power
overhead is relatively low. As compared to this, in some
other benchmarks there is a lot of jitter that happens
in executions that are off the critical path. Since, the
controller does not have instantaneous knowledge of
the critical path, it needs to nullify jitter locally and
synchronize later (see Section 4.1.4). This leads to higher
power consumption.

6.4 Area Overhead

We synthesized the jitter unit described in Section 4
using the UMC 90nm technology standard cell library.
The implementation of the jitter unit uses a wait buffer
and lock buffer of 8 entries each. We do not observe
any space overflows in our simulations. The synthesized
jitter unit occupies 46166 pm? and has a delay of 850 ps.

Using standard technology scaling rules [23], we
project the size of the jitter unit to be 8550 um? per
core for a 32 nm process. On a chip with 16-cores, the
total area occupied by jitter units is 0.136 mm?. The size
of the (64 kB) OS cache obtained from Cacti 5.1 [19] is

SUPPLEMENTARY FILE

1.3

Water-Spatial
(Core 4)

1.2

[W unified cache 0 OS cache 64K |

1.1

1

Normalized frequency

0.9

0 10 20
Subframe

Fig. 11: Frequency across
subframes (water_spatial)

Normalized Power of a frame

1.3

Facesim
(Core 7)

1.2

1.1

1

Normalized frequency

0.9

0 10 20
Subframe

Fig. 12: Frequency across
subframes (facesim)

0.975 mm?, and for all the 16 cores, it occupies a total
area of 3.9 mm?. Assuming a 400 mm? die, the total
area overhead is: 0.034%(jitter units) + 0.97% (OS cache).
Therefore, our proposed method with the OS cache and
jitter units has an area overhead of approximately 1%,
which is small.

7 CONCLUSION

In this paper, we proposed a scheme to measure, char-
acterize, and mitigate the effects of operating system
jitter on CMP based parallel programs. We proposed to
have intelligent performance counters called jitter units
on every core. These jitter units record thread synchro-
nization events, which are generated by an instrumented
version of the C library along with bus events, context
switches, and power management events. Secondly, we
proposed an adaptive algorithm which distributes the
compensation of jitter over next few subframes based on
the interference due to OS at the L2 cache. This scheme
was not sufficient to completely nullify jitter. Hence,
we augmented the design with an OS cache that saves
the cache lines belonging to the kernel, modules, and
drivers. It can intelligently trade lines between the itself
and the regular application cache.

We showed in Section 6.1.1 that the main contrib-
utor to OS jitter in CMP based parallel programs is
thread synchronization events. Subsequently, we char-
acterized the sources of synchronization jitter and found
broadcast-wait methods to be the largest contributor. We
showed in Section 6 that we are able to decrease the
total amount of jitter from 14.5% to 1% for the Splash2
benchmark suite and from 6.4% to 0% for the Parsec
Benchmark Suite. We can almost completely nullify jitter
for 12 of the 17 benchmarks. Our scheme has a mean
power overhead of approximately 15% for all the sim-
ulated benchmarks. Lastly, we evaluated the area over-
heads of our scheme, and found it to be approximately
1%.

Benchmark

Fig. 13: Power overhead (Splash2 & Parsec)

REFERENCES

(1]

(2]

(3]
(4]

(5]

6]

(71

(8]

(9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

M. Lee, Y. Ryu, S. Hong, and C. Lee, “Performance impact of
resource conflicts on chip multi-processor servers,” in Proceedings
of the 8th international conference on Applied parallel computing: state
of the art in scientific computing, ser. PARA’06, 2007, pp. 1168-1177.
R. Gioiosa, S. McKee, and M. Valero, “Designing os for hpc
applications: Scheduling,” in Cluster Computing (CLUSTER), 2010
IEEE International Conference on, sept. 2010, pp. 78 -87.

P. De, V. Mann, and U. Mittal, “Handling os jitter on multicore
multithreaded systems,” in IPDPS, 2009.

F. Petrini, D. J. Kerbyson, and S. Pakin, “The case of the missing
supercomputer performance: Achieving optimal performance on
the 8,192 processors of asci q,” in SC, 2003.

T. Jones, S. Dawson, R. Neely, W. Tuel, L. Brenner,]J. Fier,
R. Blackmore, P. Caffrey, B. Maskell, P. Tomlinson, and
M. Roberts, “Improving the scalability of parallel jobs by adding
parallel awareness to the operating system,” in Proceedings of
the 2003 ACM/IEEE conference on Supercomputing, ser. SC '03.
New York, NY, USA: ACM, 2003, pp. 10-. [Online]. Available:
http://doi.acm.org/10.1145/1048935.1050161

P. Terry, A. Shan, and P. Huttunen, “Improving application per-
formance on hpc systems with process synchronization,” Linux
Journal, vol. 2004, no. 127, 2004.

P. De, R. Kothari, and V. Mann, “Identifying sources of operating
system jitter through fine-grained kernel instrumentation,” in
Cluster, 2007.

M. Chetlur, U. Devi, P. Dutta, P. Gupta, L. Chen, Z. B. Zhu,
S. Kalyanaraman, and Y. Lin, “A software wimax medium access
control layer using massively multithreaded processors,” IBM
Journal of Research and Development, vol. 54, no. 1, 2010.

L. Nuaymi, WiMAX: Technology for Broadband Wireless Access.
Wiley Publishing, 2007.

L. Abeni, A. Goel, C. Krasic, J. Snow, and]. Walpole, “A
measurement-based analysis of the real-time performance of
linux,” in RTAS, 2002.

M. Paolieri, n. E. Qui E J. Cazorla, G. Bernat, and M. Valero,
“Hardware support for wcet analysis of hard real-time multicore
systems,” in ISCA, 2009.

S. R. Sarangi, B. Greskamp, A. Tiwari, and J. Torrellas, “Eval:
Utilizing processors with variation-induced timing errors,” in
MICRO, 2008.

T. Sherwood, S. Sair, and B. Calder, “Phase tracking and predic-
tion,” in ISCA, 2003.

D. Nellans, R. Balasubramonian, and E. Brunvand, “Interference
aware cache designs for operating system execution,” University
of Utah, Tech. Rep. UUCS-09-002, February 2009.

R. Agarwal and]. Torrellas, “Flexbulk: Intelligently forming
atomic blocks in blocked-execution multiprocessors to minimize
squashes,” in ISCA, 2011.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
splash-2 programs: characterization and methodological consid-

SUPPLEMENTARY FILE

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

(32]

(33]

[34]

(35]

erations,” SIGARCH Comput. Archit. News, vol. 23, pp. 24-36, May
1995.

C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. disser-
tation, Princeton University, January 2011.

V. R. A. Settle, D. Connors, and R. Cohn, “Pin: A binary instru-
mentation tool for computer architecture research and education,”
in WCAE, 2004.

S. Thoziyoor, N. Muralimanohar, J. Ahn, and N. P. Jouppi, “Cacti
5.1,” Tech. Rep. HPL-2008-20, 2008.

D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” SIGARCH
Comput. Archit. News, vol. 28, no. 2, pp. 83-94, May 2000.

J. Suh and M. Dubois, “Dynamic mips rate stabilization in out-
of-order processors,” in ISCA, 2009.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: characterization and architectural implications,” in Proceed-
ings of the 17th international conference on Parallel architectures and
compilation techniques, ser. PACT '08. New York, NY, USA: ACM,
2008, pp. 72-81.

W. Huang, K. Rajamani, M. Stan, and K. Skadron, “Scaling with
design constraints: Predicting the future of big chips,” Micro,
IEEE, vol. 31, no. 4, pp. 16 -29, july-aug. 2011.

D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick, “System
noise, os clock ticks, and fine-grained parallel applications,” in
ICS, 2005.

A. Goel, L. Abeni, C. Krasic, J. Snow, and J. Walpole, “Supporting
time-sensitive applications on a commodity os,” SIGOPS Oper.
Syst. Rev., vol. 36, no. SI, pp. 165-180, 2002.

K. B. Ferreira, P. Bridges, and R. Brightwell, “Characterizing
application sensitivity to os interference using kernel-level noise
injection,” in SC, 2008.

D. Tsafrir, “The context-switch overhead inflicted by hardware
interrupts (and the enigma of do-nothing loops),” in Experimental
Computer Science, 2007.

R. Love, Linux Kernel Development. ~Addison-Wesley, 2010.

F. Hubertus and R. Rusty, “Fuss, futexes and furwocks: Fast
userlevel locking in linux,” in Ottawa Linux Symposium, 2002.
“Linux kernel archives,” git://git.kernel.org/pub/scm/linux/
kernel/git/maxk/cpuisol-2.6.git.

S. Baskiyar and N. Meghanathan, “A survey of contemporary
real-time operating systems,” Informatica (Slovenia), vol. 29, no. 2,
pp- 233-240, 2005.

E. Bellard, “Qemu, a fast and portable dynamic translator,” in
Proceedings of the annual conference on USENIX Annual Technical
Conference, 2005.

P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner,
“Simics: A full system simulation platform,” Computer, vol. 35,
no. 2, pp. 50-58, 2002.

P. De and V. Mann, “jitsim: A simulator for predicting scalability
of parallel applications in presence os jitter,” in Europar, 2010.

D. Freedman, R. Pisani, and R. Purves, Statistics. W. W. Norton
and Company, 2007.

Sandeep Chandran is a research scholar at
the Department of Computer Science & Engg,
Indian Institute of Technology, Delhi. He has a
Bachelors’ degree from Visveswaraya Techno-
logical University in Computer Science & Engg.
Prior to joining the Ph.D program, he has worked
in the industry for 2 years. His research inter-
ests include post-silicon validation methodolo-
gies, architectural design-space exploration and
fault-tolerant systems.

-~ =

s
ham

and ACM.

Prathmesh Kallurkar is a research scholar at
the Department of Computer Science & Engg,
Indian Institute of Technology, Delhi. He com-
pleted his Master’s degree in Computer Science
from Department of Computer Science & Engg,
Indian Institute of Technology, Delhi. He has a
Bachelors’ degree in Computer Science & Engg
from Birla Vishvakarma Mahavidyalaya, Sardar
Patel university. His research interests include
architectural support for operating Systems, and
fault-tolerant systems.

Parul Gupta has a B.Tech.in electrical engi-
neering from the Indian Institute of Technology,
Bombay, and M.S. in electrical engineering from
University of California, Los Angeles. She is
currently a Technical Staff Member with IBM
Research - India. Her research interests span
algorithms for wireless communication systems,
cloud computing, green technologies and an-
alytics. She is a senior member of IEEE and
ACM, and has co-authored 12 publications and
6 patents.

Smruti R. Sarangi is an Assistant Professor
in the Department of Computer Science and
Engineering, IIT Delhi, India. He has spent four
years in industry working in IBM India Research
Labs, and Synopsys. He graduated with a M.S
and Ph.D in computer architecture from the
University of lllinois at Urbana-Champaign in
2007, and a B.Tech in computer science from IIT
Kharagpur, India, in 2002. He works in the areas
of computer architecture, parallel and distributed
systems. Prof. Sarangi is a member of the IEEE

SUPPLEMENTARY FILE

APPENDIX A
SOURCES OF JITTER

A.1 OS Jitter
A.1.1 Causes

OS jitter has been studied heavily in [3], [7], [4], [5], [6],
[24], [25], [26], [27]. When a single application is running,
which is typically the case for parallel applications, the
main source of jitter is kernel activity in the form of
daemons, periodic tasks, and interrupt handlers. At any
point of time, the kernel has a work queue of pending
work items. Based on relative priorities, the kernel de-
cides to schedule either threads of the user application
or threads to do its own work.

There are two types here — active and passive. In the
active case, the kernel programs the timer chip to deliver
periodic timer interrupts (typically once every 10ms). Af-
ter receiving a timer interrupt, the kernel schedules some
of its own threads, and then the user process resumes.
In the passive case, the user process invokes the kernel
through system calls (I/O, network, synchronization).
The kernel steals such opportunities to do some of its
own work. Consequently, system calls appear to take
longer than usual.

Active According to several studies [3], [7], [24] (con-
ducted for large MPI programs), the timer interrupt
is the single largest cause of OS jitter. It accounts for
around 85% of the OS jitter [3]. According to these
studies, timer interrupt processing can take upto 3-4
ms. The high contribution of timer interrupts to jitter
is not because processing timer interrupts takes a long
time and their servicing overhead has higher algorith-
mic complexity [3]. It is because the timer interrupt
is typically the most frequent interrupt, and hence the
kernel opportunistically uses it to schedule its own tasks.
Other interrupts that are I/O and network related have
typically much higher processing overheads. However,
in modern processors and operating systems a lot of
those latencies are hidden by using DMA, user space
I/0, and double buffering [28]. Moreover, the Linux
kernel very quickly services an interrupt handler(top
half) and returns. Most of the real interrupt processing
work is spawned off as a separate thread called the
bottom half [3], [7], which is scheduled later. As observed
by Mann et. al. [3], [7], the bottom halves are typically
scheduled when a timer interrupt is processed.

Passive We observe that the main sources of jitter
in parallel POSIX thread based applications are syn-
chronization calls (see Table 4 and 5), and not timer
interrupts. Table 4 and 5 further show that the jitter due
to synchronization operations is 93% and 91% of the total
jitter for the Splash2 and Parsec benchmarks respectively.
The reason for this is that the number of interrupts
to the kernel (sleep/wakeup threads) caused by lock,
signal and barrier pthread operations greatly outnumber
the number of timer and I/O interrupts. Please note
that in the latest implementation of pthreads [29], a
synchronization call such as a lock or barrier operation

is divided into two stages. In the first stage, the library
enters a spin lock to test if the operation can proceed.
After a couple of micro-seconds, if the thread hasn’t
been successful, then it makes a system call, and gets
swapped out. We observe that such system calls are
fairly frequent, at least as compared to other sources of
interrupts. Such calls give the kernel more opportunities
to schedule its work items when it is invoked because
of these interrupts.

A.1.2 Solutions

Here is a list of solutions proposed in prior work.

CPU Isolation: The kernel schedules all of its work
on a single set of cpus. There is an experimental patch
to the Linux kernel that implements it and can be
obtained from [30]. This scheme [3], [24], [4] is typically
very effective in reducing active jitter for MPI based
programs. A variant of this approach is a part of our
baseline system.

Real Time Operating Systems: Real time operating
systems like RT Linux, QNX, and VXworks, make
all parts of the kernel including interrupt handlers
pre-emptible. They are able to make timing guarantees
for soft real time systems because user processes have
kernel level priorities. The issues with such platforms
are that they are typically proprietary, or like real
time Linux are tied to specific hardware [31]. This
precludes us from running a host of commercial and
open source applications [31]. According to Abeni et.
al. [10] variants of real time Linux are not suitable for
running high performance applications in user space
primarily because such kernels have poor performance,
and very poor interrupt response characteristics. They
observe that the resultant slowdown can be upto 20%.

Jitter Synchronization: For tree based communication
patterns like barriers, it is possible for jitter across the
nodes to add up. This can have very serious conse-
quences. Hence, there are techniques [5], [6] to stop this
from happening by co-ordinating the jitter introducing
threads across nodes. However, this scheme has limited
efficacy, and does not bode well with POSIX thread
based parallelism.

A.2 Jitter due to Multiple Threads

When we have multiple threads, they compete for
shared resources like cache lines, memory frames,
and bus bandwidth. These factors can introduce non-
determinism into program execution. As per [11], [3],
[21] the jitter induced by other hardware threads can be
significant, and can make a program miss its deadlines.
In the simple case, when two threads are executing
alternately, one thread will displace lines in the caches
belonging to the other line. This happens in our experi-
ments.

Paolieri et. al.[11] focus on the important problem of
bus bandwidth sharing, and proposes schemes for near

SUPPLEMENTARY FILE

optimal sharing. They propose a WCET execution mode
that delays bus accesses by a worst case duration but
provides guarantees on the worst case time bound. In
this case, the average memory access latency increases,
but is predictable. They show that with a time penalty
ranging from 2 to 20%, it is possible to make guarantees
on the worst case execution.

Suh et. al. [21] provide an algorithm that uses a
PID controller to stabilize the MIPS rate of a large set
of embedded benchmarks. They use a PID controller
that adjusts the voltage and frequency of a program to
ensure a certain target MIPS rate. They observe that their
controller is able to achieve the target rate, with close
to optimal power consumption. This case requires the
user to know the target MIPS rate before hand, and it
also assumes that large parts of the program have the
same MIPS rate. It is consequently oblivious of program
phases, and thus has limited applicability.

A.3 Power Management Jitter

There are two major power management schemes -
dynamic voltage frequency scaling, and processor throt-
tling. In the former approach, the frequency is decreased
to save power. In the latter approach, the IPC is reduced
by decreasing fetch and issue widths. They introduce
jitter by slowing down computations in the code signif-
icantly.

One solution is to turn these schemes off while run-
ning time sensitive applications. However, this might
adversely affect the health of the system. Hence, a better
solution is to synchronize them with the program execu-
tion and apply DVEFS or throttling at the correct points.
We were not able to find any related work in this area.

APPENDIX B
OTHER SCENARIOS OF SIGNAL-WAIT JITTER
B.1 Case?2

Core 1 might wakeup another process after receiving the
ipi, and subsequently wakeup the time sensitive thread.
In this case, there will be multiple calls to the kernel(k_e
and k_x events). This case can be detected by counting
the number of k_e and k_x pairs. It will be greater than
1. Here also the jitter is the time difference between w_x
and s_e and is accounted for as signal-wait jitter on core
1. If we decide to report the cause of jitter at a much finer
granularity, then the jitter unit can record the number of
(k_ek_x) pairs. This will indicate the number of other
processes that were run before our time sensitive task
got swapped in. It can give the user a feel for the load
on the system.

B.2 Case3

It is possible that the waiting thread might fire w_e on
core 1, and then wake up on core 3 as shown in Figure 3.
This can happen because, the kernel might be running
another thread on core 1. If core 3 is free at that specific

13

3 request X Supervisor

Cé) é bit
© — © —
sl 2 g sl 3| ¢
ol < g al < g

O o

Y T A4 —a___cnable

A FETY] ¥ "

[i forwarding

- g

o hit/miss

:::. OS cache tag array /

0

:.:- Ly enable A 4

T ¥

e _ forwarding Cache select

= Logic

i

T hit/miss

e

Application cache
tag array

Fig. 14: Design of the OS cache

point of time, then the waiting thread might be sent to
core 3. However, in this case, the jitter unit on core 3
knows that the process is waking up on another core
since it will not find a corresponding entry in its wait
buffer. Hence, it needs to broadcast the id of the thread,
and get its details. Core 1, will send the entry (see Case
1) for the thread from its wait buffer. Please note that
this entry will contain the time of the corresponding
s_e event (see case 1). Using this information core 3
can compute the jitter. The opposite case, in which the
signaling thread gets scheduled on another core is very
rare. This is because of the overheads associated with
process migration. However, if the waiting thread has
been waiting for long enough, this overhead might not
be significant.

APPENDIX C
IMPLEMENTATION DETAILS

C.1 OS Cache

There are two pernicious effects of jitter — loss of compu-
tation time, and destructive interference in the memory
system. The operating system (OS) cache tries to mitigate
the latter effect. We propose to add a 64 KB cache at the
L2 level dedicated for saving the cache lines that belong
to the operating system. This cache can effectively reduce
the interference between the application’s lines and the
OS lines.

We show a broad structure of the design in Fig-
ure 14. We do not add any extra structures at the L1
level because our simulations indicate that the gains are
limited. However, at the L2 level, the gains are more
promising. The first task is to identify the lines that
belong the application and the operating system. We use
the supervisor bit for this purpose. This bit is set to 1,
when the operating system is executing. Any cache line
(instruction/data) that is accessed at this time is directed
to the OS cache. Likewise, when the supervisor bit is 0,
we exclusively use the application cache.

However, this simple approach fails for shared pages
between the application and the kernel. There are a

SUPPLEMENTARY FILE

variety of situations in which the application and ker-
nel need to communicate especially during read/write
system calls, or when the kernel is initializing a part of
user space memory. We propose to have all shared data
in separate shared pages. For example, when a user level
program is communicating with a block device, it can
write its data to a shared page, which is also mapped into
the kernel’s address space. The kernel can then read the
data from the shared page. All such shared pages, will
have an additional shared bit set in both the page table
and the TLB. Moreover, we propose to add an additional
shared bit in every memory request. It is set to 1 if the
cache line can possibly be shared between a user space
process and the kernel, and it is set to O, if there is
no such possibility. For all shared pages, we arbitrarily
choose to save them in the application cache. For all
other lines, we choose the right cache based on the state
of the supervisor bit at the time of the original memory
access. Note that because of large latencies in an out of
order pipeline, it is possible that by the time a request
reaches the L2 cache, the supervisor bit has changed.
Hence, we need to stamp every memory request with
the state of the supervisor bit at the time it leaves the
load-store queue.

We now optimize the combined cache for additional
performance. We observe that if the footprint of a kernel
invocation is large, then there can be a lot of capacity
misses in the OS cache. Hence, we propose a scheme
where the footprint of the OS can overflow into the
application cache. Likewise, if a line is evicted from the
application cache, it can overflow into the OS cache. We
mark each line of a set with an overflow bit (marked
in Figure 14). If the overflow bit is set to 1, and there
is a miss, then the cache line might be presented in the
other cache. The cache controller in this case sends a
message to the other cache, and it checks for the line.
If it is present, then it sends the line to the processor.
Whenever a line is evicted from one cache, it is sent to
the other cache. If the cache line is dirty, a copy of it is
sent to the main memory too. This is done so that the
other cache can evict it without writing it back to the
main memory. The other cache will accommodate the
overflowed line if the number of previously overflowed
lines that have been accommodated in the set is less
than half of its associativity. This condition restricts the
amount of interference between the two caches, yet it
wisely utilizes the available L2 space. A cache controller
will evict the alien lines first to make space for its own
incoming lines. This way, the alien line will always have
the least priority.

The other subtle issue that we need to consider is
the interaction of the combined L2 cache (application
cache + OS cache) with the cache coherence protocol.
It is important to note that, by design, a line is stored
in at most one cache (L2 or OS). It is never stored in
both the caches at the same time. Consequently, from
the point of view of the directory protocol, the combined
cache looks like one cache, and no additional coherence

related actions need to be taken.

Gradually, all the overflow bits will start becoming
1, and we will always need to access the other cache.
Hence, we propose to periodically flush the OS cache,
and clear all the overflow bits in the application cache
using a gang clear mechanism. We can do so at the
beginning of an application context switch such that the
process of writing back modified data to memory is most
likely done by the time the OS begins to execute.

C.2 Jitter Unit
C.2.1 Hardware Design

Figure 15 shows the block diagram of the jitter unit. The
jitter unit maintains two buffers (i) wait buffer and (ii)
lock buffer. A lock buffer controller and wait buffer controller
is responsible for managing the accesses to the lock
buffer and the wait buffer respectively. Each element of
these buffers stores the following fields: lock-id(64 bits),
timestamp(32 bits), valid bit(1 bit).

Both the wait buffer and lock buffer are CAM (content
addressable memory) arrays. However, to save power
we have a serial lookup. They are addressed by the lock-
id. There are three basic operations: lookup, write, and
modify timestamp.

When a lookup for a particular lock-id is issued, the
controller starts searching the corresponding buffer from
the first location. On finding a matching entry in the
buffer, the stored data is returned and the buffer location
where the match occurred is cleared. We clear the buffer
element on a successful match because there is never
a case where the same lock-id is looked up more than
once for the computation of the jitter. This observation
simplifies the logic of the controller greatly. If this was
not the case, we would have to store a list of free
locations or manage the buffer as a circular queue. This
would increase the complexity and the area of the jitter
unit.

When a write is issued to the buffer, the controller
again starts searching for free space from the first lo-
cation and writes it in the first free location found in the
buffer.

Lastly, the modify timestamp operation updates the
current time in a buffer entry that contains the requested
lock-id. This is handled in the same manner as a lookup
but instead of returning the entry, the entry is updated
with the new timestamp.

If the current operation completes successfully, the
success line is set to high, otherwise it is set to low. A busy
line is also used to indicate the status of the controller.
When the controller is already servicing a request, the
busy line is set to high. The busy line will be low when
the controller is in the idle state.

The jitter unit is designed as a synchronous block
in hardware in order to minimize area. Therefore, the
jitter unit handles only one transaction at a time. A
transaction is defined as a sequence of events which
takes the jitter unit from the idle state through a set of

SUPPLEMENTARY FILE

Flowchart for the

Jitter-count i i Thread-list ‘} Signaling Core
Jitter-reg Jitter Unit Flowchart for the Woken-up Core
E\Clg:fts fimereg | Controller se s
> finsts i broadcast s_e -
Log signal event Log Time
of 2l M AA o2l AA ggk T
S| Sl 9|8 sl = of 3 e
E 2| 3|8 & |& é 2| 88| (== + - same
g, Bl ala| [o e g, B ol | 1Z|® core has
ol I Tt el B - Y I B S I - S y ready/ipi Yes fired w_e No
) o @ < A
— 0 = o
@ 2
YYVYY YYVYY m ¢S_X oSk e msg received | Broadcast msg. for
Lock Buffer Wait Buffer log jitter if seeking s_e time
Controller Controller v jitter = s x - s e jitter > threshold
Y buf(addr) Y buf(addr) log jitter if
[LockBuffer . ¢ | [WaitBuffer. | | Sygses” jitter > threshold Fig. 17: Woken-up core

Fig. 15: Design of the jitter unit (One per core)

intermediate states and brings it back to the idle state.
An asynchronous design of the jitter unit would lead to
an increased area as in-flight transactions would have to
be aborted and the jitter unit would be forced back to the
idle state. Again, since the jitter unit would be sparingly
occupied in a subframe, a synchronous design suits the
requirement.

Since each jitter unit implements a distributed pro-
tocol, the controller does not distinguish between core
and bus events. This is important since the jitter units
exchange messages among themselves over the bus.
Hence, the controller should respond to the events on
the bus as well as events coming from the core like
signal enter, wait exit and so on. The messages coming
over the bus are latched when the jitter unit controller
is processing a transaction.

C.2.2 Jitter Unit Operation

The exact functioning of the jitter unit is now described
for the signal-wait case. When a jitter unit sees a wait-
enter event, the lock-id of the corresponding event is
written into the wait buffer and the jitter unit on this
particular core returns to the idle state. When a jitter unit
on a remote core sees a signal-enter event, it broadcasts
the event to all the other jitter units. On receiving this
broadcast message, the jitter units on all the cores search
their corresponding wait buffers. If a match for the
corresponding lock-id (mentioned in the message) is
found, the timestamp is stored against the lock-id in the
wait buffer. If a match is not found, the jitter unit on the
core ignores the message and returns to the idle state.
The flowchart is shown in Figure 16.

As a result of this, the signal-enter(s_e) time for the
given lock-id is stored with the jitter unit of the core on
which the process went into the wait-state. Subsequently,
the waiting thread will wake up and the jitter unit on
the corresponding core will fire a wait-exit event (see
Figure 17). There are 2 possible cases: (i) either the lock-
id is found in the wait buffer or (ii) the lock-id is not
found.

The first case implies that the process entered the
wait-state on the same core. Therefore, the jitter unit
has the timestamp of the associated signal-enter event.

Fig. 16: Signaling core

The second case implies that the process is waking up
on a different core. The jitter unit now broadcasts the
lock-id requesting the s_e time of this particular lock-
id. Simultaneously, the jitter unit logs the s_e time in
a temporary register — time — reg. All the jitter units
lookup their wait buffer and the jitter unit that finds a
match responds with the s_e time.

On obtaining the response from the remote core, the
core on which the process will wake-up learns the
necessary details to estimate jitter. The jitter unit on
the remote core deletes the lock entry from its wait
buffer. As shown in Figures 2 and 3, the jitter is the
difference between the time of the wait-exit event and
the s_e time stored against the corresponding lock-id.
On encountering the signal-exit event, the jitter unit
calculates the difference between the signal-exit and the
previously seen signal-enter event. If the calculated jitter
is above a certain threshold, it is added towards the
overall jitter encountered in the current subframe by that
core.

Additionally, the jitter unit maintains the thread-id
of the current thread executing on the core in a spe-
cial register, jitter-reg, time lost due to jitter since the
beginning of a frame in a register, jitter-count, and the
last used PCs of different time sensitive threads before
a context switch, in a CAM array, thread-list. Along with
these entries, we keep track of the number of instructions
within a subframe in a separate register, finsts. All of
these registers along with the buffers are collectively
referred as the jitter state of the thread.

Since threads can potentially migrate across cores, we
need to migrate a thread’s jitter state across cores. Jitter
state is created for a thread as soon as it is created. The
core on which a thread is created writes an entry into
its thread-list with its id. Before a kernel_entry event, the
last used PC of a thread is written into its thread-list.
Just after a kernel_exit, the jitter unit finds if the thread
has migrated from another core. If this is the case, then
the jitter unit broadcasts the thread id, and receives the
jitter state on the bus. The jitter state is cleaned up after
a thread exit. If the jitter state hasn’t arrived by the time
a w_x event arrives, then we need to solicit the value of
s_e from another core (Figure 17) to compute jitter.

SUPPLEMENTARY FILE

C.2.3 Operations for Other Types of Jitter

Uptil now, we have covered signal-wait(sw) and sig-
nal(s) jitter. Let us consider the jitter associated with
broadcast. In this case, there is one distinguished thread,
which needs to broadcast a message to the rest of the
threads. The case of pure broadcast jitter, is the same as
pure signal jitter. We need to monitor the time between
the b_e and b_x events.

For the broadcast-wait case, whenever a thread begins
to wait, we need to create an entry in the wait buffer
of the corresponding jitter unit. Akin to the signal-wait
case, we need to timestamp the entry with the time of
request of the b_e (broadcast-entry) event. Since there
might potentially be multiple threads waiting, the b_e
event has to be sent to all the jitter units, and all of
them need to timestamp any relevant entries in their
wait buffers. The rest of the protocol is the same as the
signal-wait case.

For the case of lock-unlock jitter, we define two kinds
of jitter events: (1) Lock-Unlock (lu) jitter, and pure
Unlock (u) jitter. Unlike signal wait, it is possible for a
lock to not be associated with a corresponding unlock.
This is because the lock might not be contended, i.e.,
the lock might be free. In this case the lock entry event
1 e need not be added to the lock buffer. The pthread
library knows the status of the lock because every lock is
associated with a memory address. If it contains a 1, then
there is another thread that owns the lock, and if it is O,
then the lock is free. The futex based implementation of
the thread library first uses atomic exchange primitives
to obtain the lock. If it is not possible, then it issues a
system call to put the current thread to sleep. At this
point, we instrument the library to instruct the jitter to
add a lock-enter(l_e) event in the lock buffer.

In this case, there has to be a corresponding unlock.
Akin to the signal-wait case, we wait for the unlock enter
(u_e) event that is sent to all the cores. If a core finds a
lock entry in its lock buffer, then it time stamps it upon
receiving the u_e event. The rest of the processing is the
same as the signal wait case. The case for pure unlock
jitter is the same as that of signal jitter.

Please note that for both signal-wait and lock-unlock
jitter it is possible that there might be multiple pairs of
processes that are executing signal-wait or lock-unlock
operations simultaneously. If they are two different ad-
dresses, then our protocol does not have any problem.
It always stamps every message with the lock address
and matches it with the corresponding entries in either
the lock buffer or wait buffer. However, if they are to
the same address then also we can handle the situation,
because every message contains the id of the thread that
it is meant for. This is uncommon.

C.2.4 Jitter due to Non-synchronization Events

We can use the same mechanism to account for jitter
due to other sources such as the timer, I/O interrupts,
or system calls. We need to track kernel entry and kernel

exit events. Whenever a task enters the kernel due to a
non-synchronization event, we log the event in the wait
buffer. If the task wakes up on the same core, then we
calculate the time elapsed after it was swapped out. If
the triggering event was a system call, then we account
for jitter only if the duration of inactivity of the time
sensitive thread is more than some threshold, which can
be defined by the user. Otherwise, we can account for
the entire time as jitter. If the task wakes up on a separate
core, then the jitter unit needs to broadcast the thread id,
and handle the situation as in case 3 (see Section B.2).

APPENDIX D
COLLECTING JITTER TRACES

To the best of our knowledge, our paper is one of the
first papers to exclusively look at OS jitter for multi-
core processors. Hence, we were not able to find any
standardized methodology for simulating systems with
jitter. The conventional approach for simulating systems
with an underlying operating system is to use a full
system simulator such as Qemu [32] or Simics [33]. These
simulators can provide detailed traces at the instruction
level for both application as well as OS activity. They
use a simplistic set of models for basic hardware devices
such as the hard disk, memory controller, network, and
chipset. We do not consider this approach as the best
method to simulate a system with OS jitter because it
does not capture a vital aspect of real systems that we
are interested in namely variability across runs. There is
a sizeable variability across different runs of the same
benchmark because of jitter inducing events. The main
reason that full system simulators are not able to capture
this is because they use a simplistic model of the entire
system, and this model is not representative of complex
server class machines.

However, we found some references from the tradi-
tional HPC community such as the proposal by De et.
al. [34] for simulating OS jitter in MPI benchmarks. In
this paper, we propose a model of simulating OS jitter
inspired by [34]. Before outlining our approach, let us
look at three aspects of simulating jitter:

1) We need to figure out the points within an ap-
plication where it can be interrupted and other
programs including the kernel can be run.

2) The second aspect is to ascertain the duration of a
jitter event.

3) The last aspect is to collect a detailed trace (list
of instructions and memory addresses) of the jitter
inducing event, such that we can feed it to a
conventional architectural simulator.

The first aspect, i.e.,, the points within an applica-
tion that need to be interrupted can be found out by
considering the most frequent types of jitter inducing
events(> 97%) — synchronization events, and timer inter-
rupts. We capture synchronization events and simulate a
timer chip in our architectural simulator. Consequently,

SUPPLEMENTARY FILE

we are able to correctly identify most of the points at
which jitter needs to be introduced.

The next problem is to calculate the duration of the
jitter. This is where we discourage using a full system
simulator because most of the variability of application
execution comes from the distribution of jitter duration
in parallel multicore workloads. Alternatively, we collect
jitter traces for each benchmark by instrumenting the 64
bit X86 GNU Libc new POSIX Thread (nptl) v2.10 library.
For each synchronization event defined in Table 1, we
add a function to record the time, event type, lock
address, and thread id. We save the jitter records in
a dedicated buffer in memory. These jitter traces are
periodically dumped to a file. While dumping the results
to the file, we turn off jitter monitoring. As previously
mentioned, jitter can vary from system to system based
on the actual settings. We collected our jitter traces on
a 4 socket Intel Xeon server having four hyper-threaded
cores (1.6 GHz, 2 MB L2 cache, 64 GB Main Memory)
per socket running Linux kernel version 2.6.31. Before
running a benchmark we ensure that our system is
properly tuned (see Table 2 and [3]) such that the baseline
OS jitter is minimized. In our experiments, we run each
benchmark 10 times, and we observe a good degree
of variability using the jitter traces collected using this
procedure.

The next problem is to find out the nature of activity
during the jitter inducing event. Since, we want to
conduct a detailed architectural simulation, we need a
detailed instruction level trace that has the following
information per instruction executed — program counter,
type of instruction, list of operands, and values of
memory addresses (for load/store instructions). This
instruction trace can be fed to an architectural simulation
such that it can calculate the IPC and cache access
statistics in great detail. It is not possible to collect
this information in the previous step (collection of jitter
durations), because a real machine does not provide this
information. However, we shall use a couple of insights
to make reasonable approximations.

We observe that any trace of instructions in a jitter
inducing events starts with an interrupt, then the kernel
loads the interrupt table and does some basic processing
(top half). Subsequently, the kernel invokes the scheduler
and tries to drain its work queue. If the time sensitive
thread is at the head of the work queue, then it gets
scheduled on the core. Here again, the kernel follows
the same set of steps. It invokes a region of code that
reinstates the TLB and the process control block. The
main variability arises if other kernel tasks or user level
tasks are at the head of the work queue. This is when the
kernel opportunistically steals this opportunity to sched-
ule other work. We observe that these tasks are relatively
orthogonal to the nature of the overwhelming majority
of interrupts (synchronization/timer). Consequently, we
believe that it is sufficient to use the instruction trace of
a jitter inducing event that has approximately the same
duration as that of the jitter inducing event.

TABLE 8: Correlation of slowdown with jitter characteristics

Splash (without [u and radix) Parsec
col. 1 | col. 2 col. 3 col. 1 | col.2 | col.3
-0.61 | 0.37 -0.41 0.06 | 0.04 | -0.04

Consequently, we collect detailed instruction traces of
kernel and daemon activity by running our setup on
the Qemu [32](version 0.14) full system emulator. The
processes on the kernel that occur most frequently are:
init, kthreadd, kswapd, ksoftirqd/0... 16, kacpid, and
kwatchdog. We collected 50 million entries. Along with
the traces of kernel daemons, we also collect interrupt
top/bottom half traces for I/O devices.

Lastly, we use an in-house architectural simulator to
simulate the effects of OS jitter. The details of the simu-
lator are given in Section 5.1. For any synchronization or
timer interrupt we read the duration of jitter from one of
our jitter duration traces, and find the nearest match (in
terms of duration) from our kernel activity traces. The
architectural simulator simulates the kernel trace and at
the end restarts the time sensitive thread.

APPENDIX E
ADDITIONAL EXPERIMENTAL RESULTS
E.1 Relationship with Jitter Characteristics

In Table 6 and Table 7, we show some more statistics
about the jitter experienced in the Splash and Parsec
suite of benchmarks respectively. In column 1, we show
number of jitter events per millisecond. In column 2,
we show the mean (arithmetic) duration of the jitter
event. Column 3 is just column 1 multiplied by column
2. Finally, in the last column, we show the slowdown
experienced by the application (also see Figure 10).
Note that these numbers are for a specific run of the
application, and they vary across different runs.

We observe that the number of jitter events per mil-
lisecond varies from 0.6 to 80 for Splash, and 0.14 to
34.47 for Parsec. We observe that roughly, once every
10 to 100 ps, there is a jitter event for some thread in
the 16 thread application. Secondly, the average duration
of the jitter event varies from 20 to 200 ps for both
the benchmarks. This means that the maximum load
on the on-chip network is 1-5 messages (depending on
the protocol state) per 10us. This represents an extra
overhead of 0.02% in terms of network traffic, which is
negligible.

In Table 8, we try to correlate the values in column 1,
2, and 3 with the slowdown experienced. We compute
Pearson’s correlation coefficient [35]. A value of 0 means,
that the values are uncorrelated. 1 means that the values
are perfectly positively correlated (e.g., (1,2) and (3,6)),
and -1 means that are perfectly negatively correlated
(e.g., (1,2) and (2,1)).

We observe that [u and radix are outliers since they are
kernel applications. They have very few synchronization

SUPPLEMENTARY FILE

app) @ [O=0'0] @
jitter Avg slow-
events jitter down
per ms | in us %
lu 0.69 239.92 165.03 0.25
barnes 79.96 19.64 1570.63 5.5
raytrace 35.69 130.21 4647.5 3.69
Sfmm 4.07 43.38 176.73 13.37
ocean 12.51 139.11 1740.26 35.61
water-nsq 21.83 67.35 1470.48 30.15
water-sp 12.99 93.88 12194 33.2
radix 0.6 256.76 153.2 0.62

TABLE 6: Jitter statistics for Splash2

calls. Consequently, we eliminate them from this study.
We observe that for Splash, the number of jitter events
is negatively correlated with the slowdown.

We believe that this is because as the number of jitter
events increase, the jitter gets distributed, and the slow-
down is not so pronounced. There is a weak correlation
between the average duration of jitter, and the total jitter
experienced by all threads with the net slowdown in the
case of Splash. However, we did not observe any such
correlation relationships in Parsec. Since the slowdown
is a very complicated function of the inherent nature
of operating system jitter, structure of the critical path,
and delays introduced by the underlying architecture,
we found it very hard to make stronger predictions.

E.2 Reactivity of the controller

We also plot the results for three values of reactivity: 1, 2
and 4 (see Section 4.1.6). The reactivity is the number of
succeeding subframes across which the controller tries
to eliminate the amount of accumulated jitter. Figure 18
shows the time overhead incurred in Splash2 and Parsec
benchmarks with the effects of OS jitter and L2 evictions
for various reactivities. We observe that jitter is compen-
sated best for a reactivity of 1 and the time overhead
gradually increases as the reactivity increases to 2, and
then to 4.

Other than water_spatial, setting the reactivity to 1
is the best option. In the case of water_spatial, 2 is a
marginally (by about 0.4%) better option. Secondly, for
other than water_nsquared, 2 is a better option in terms of
time than 4. A lower value of reactivity is a better option
because it is possible that subsequent subframes might
have some jitter of their own. When this is added to the
jitter accumulated from previous subframes because of
jitter spreading(see Section 4.1.6), the controller might
not be able to totally nullify the jitter. There are two
reasons for this. The first is that the controller might hit
the limit in terms of the DVFS factor. Secondly, it might
not have enough time to mitigate the jitter for the last
few subframes.

E.3 Jitter Unit Synthesis Results

We designed the jitter unit using the 90nm UMC stan-
dard cell library. The proposed jitter unit consumes 46166

18

app ©) @ |@=-0@ | @

jitter Avg slow-

events jitter down

per ms | in us %
facesim 1.56 198.93 310.3 10.01
ferret 0.45 29.3 13.24 1.65
bodytrack 1.2 48.77 58.56 1.62
x264 0.52 119.04 61.51 2.45
Raytrace 0.14 138.88 20.13 7.89
vips 0.65 15.43 10.03 0.9
dedup 297 282.34 837.74 7.03
fluidanimate 7.15 19.9 142.27 22.83
streamcluster 34.47 72.46 2497.71 4.53

TABLE 7: Jitter Statistics for Parsec

pum? per core, of which, 65% (by area) is occupied by
sequential logic (various buffers and status registers) and
31% by combinational logic (jitter-unit controller and
buffer-controller). The remaining 4% is accounted for by
inverter gates.

We scale the area of the jitter-unit from 90nm to
32nm technology using the scaling techniques men-
tioned in [23]. 32 nm is 3 generations ahead of 90 nm
technology and with each generation, we make a conser-
vative assumption that gate area reduces by 43%. Thus,
in 32 nm technology, the jitter-unit will require 8550 pm?.
Similarly, from one generation to another generation, we
assume that the gate delay decreases by 10%. Thus, the
maximum delay of the jitter-unit will go down from
850 ps in 90 nm to 620 ps in 32 nm technology. A die
implemented in 32nm technology usually contains upto
16 cores. Thus, the overall area required by all the jitter-
units is 136800 um?. As previously mentioned, the jitter-
units use the existing on-chip interconnect to communi-
cate between themselves and hence no additional area
is required for the inter-connect between the jitter-units.

APPENDIX F
OTHER SCHEMES TO MITIGATE JITTER

F.1 Prefetching

We propose a novel scheme based on prefetching to
reduce the destructive interference in the memory sys-
tem experienced after a context switch. We tried to
modify standard prefeteching algorithms to come up
with a variant that works the best for a scenario with
OS interference. Our proposed algorithm is as follows.
We propose two additional structures — a prefetch
buffer and a jitter duration predictor. The prefetch buffer
maintains a list of cache lines belonging to either the
application or the OS. The duration predictor predicts
the time of the next context switch using a method based
on moving averages. It maintains the average duration
of an OS execution epoch, and an application execution
epoch. An epoch is a continuous run of the application
or the OS without an intervening context switch. It uses
the mean value as the best estimate of the current epoch
(OS/application). T cycles before the end of the epoch, it

SUPPLEMENTARY FILE

M reactivity 1 [J reactivity 2 [reactivity 4

Normalized Execution time of a frame

0.9 T T T T T T T

Benchmark

Fig. 18: Time overhead for different reactivities (Splash2 and Parsec)

M unified cache [Selective pinning
[0 OS cache 64K B Smart Pre-fetching

o

ES

©

-

Normalized Execution time of a frame
=
|

°
bt

0.8 T

Benchmark

Fig. 19: Time overhead for other proposals (Splash2 and Parsec)

prefetches the lines present in the prefetch buffer to the
L2 cache.

Let us now explain the operation of the prefetching
logic. First, we define the notion of an active cache line.
We denote a cache line as active if it has been accessed
in the last AV cycles in the L2 cache. We arrived at the
number, N, through extensive simulations. To maintain
this information, we need to add a timestamp to every
cache line in the tag array. When the operating system
evicts an active application line from the cache, the
prefetching logic inserts the line into the prefetch buffer.
If the line is modified, then it writes it back to memory. 7
seconds before a context switch, it brings the lines in the
prefetch buffer back to the main cache. We use the same
approach for the scenario in which the application code
evicts OS lines. The prefetch buffer is a linear SRAM
array.

While bringing back a line from the prefetch buffer to
the L2 cache, we must make sure that the alien line is
not evicting an active line belonging to the currently exe-
cuting code. If we do not find any appropriate candidate
lines that can be evicted, then we do not prefetch the line.
We choose 7 to be equal to 10% of the expected epoch
duration, and N to be 256 times the average duration
between L2 cache accesses.

F.2 Selective Pinning

Most modern processors use a version of LRU (Least
Recently Used) as a cache eviction policy. This scheme
works well since most applications display temporal
locality. However, this scheme does not work well be-
tween the application and operating system. When the
execution of the operating system starts, the timestamps
of all the cache lines belonging to the application are
“recent”, whereas the OS lines are marked as “old”. This
is unfair since the OS needs to favor its own cache lines.
We propose to rectify this using a variation of pinning.
Note that we arrived at this heuristic after trying out
many standard methods such as pinning all the OS cache
lines, most recent OS lines, and most recent application
lines.

We devised a novel scheme called Selective Pinning,
which decreases the priority of a cache line based on
the amount of time left in the current epoch. During
the initial 95% of the execution, the priority of a cache
line belonging to the current privilege level is higher
compared to other lines. Towards the end of the epoch,
the priority of other cache lines is more than the lines
belonging to current privilege level. For example, to-
wards the end of an OS epoch, application lines begin
to have a greater priority, and vice versa. To implement

SUPPLEMENTARY FILE

this scheme, we tag each cache line with a bit indicating
the privilege level (1 for application, and 0 for the OS).
Instead of a discrete version as proposed, we tried with
other continuous versions of this scheme that gradually
modify the priority. However, the simulation results
favored this scheme.

F.3 Evaluation

Figure 19 shows the experimental results of the propos-
als mentioned in Section F.1 and F.2.

We observe that selective pinning performs worse than
the unified cache configuration in all of the 17 bench-
marks. The results are very adverse in the case of wa-
ter_spatial where the difference is over 10%. The main
reason for this is that pinning is not able to correctly
capture the temporal locality of accesses. If we pin a line,
we are betting on the fact that the line will be accessed
in the near future, and the line that was evicted will not
be required in the near future. However, our scheme is
not able to adjudge these probabilities very efficiently.

Pre-fetching does not offer significant advantages over
the unified cache either. However, we do not observe
any significant slowdowns due to this method. Refining
these methods to yield appreciable speedups is a part of
future work.

20

