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High static power consumption is widely regarded as one of the largest bottlenecks in creating scalable optical
NoCs. The standard techniques to reduce static power are based on sharing optical channels, and modulating
the laser. We show in this paper that state of the art techniques in these areas are suboptimal, and there is
a significant room for further improvement. We propose two novel techniques — a neural network based
method for laser modulation by predicting optical traffic, and a distributed and altruistic algorithm for channel
sharing — that are significantly closer to a theoretically ideal scheme. In spite of this, a lot of laser power
still gets wasted. We propose to reuse this energy to heat micro-ring resonators (achieve thermal tuning) by
efficiently recirculating it. These three methods help us significantly reduce the energy requirements. Our
design consumes 4.7X lower laser power as compared to other state of the art proposals. In addition, it results
in a 31% improvement in performance and 39% reduction in ED? for a suite of Splash2 and Parsec benchmarks.
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1 INTRODUCTION

The last ten years have seen a lot of research in optical nanophotonic networks [5, 6, 76, 80]. As
of today, most of the basic devices have been fabricated, and their efficacy and superiority over
conventional network elements has been demonstrated [45, 58]. However, to harness the natural
advantages of optical networks — low latency, and high bandwidth - it will take the industry some
more time. The latest road maps from Intel [64], and IBM [63] project that on-chip optical networks
will become feasible by the end of this decade. Test chips with 850 optical components have already
been fabricated by Sun et al. [70]. Recently, a 2-core chip on an 18mm? die with a photonics
based network was successfully demonstrated in UC Berkeley [48]. The on-chip bandwidth is a
commendable 300 Gbps per square millimeter. Furthermore, commercial fabs such as Circuits Multi
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Projects (CMP) [60] have started offering fabrication services for multi-layer silicon photonic ICs.
They can fabricate most common passive and active optical structures using a 300 nm based SOI
process.

HP has recently released the prototype of a supercomputer called "The Machine’ that uses
interconnects based on photonics. It uses optical fibers to communicate between the nodes inside
the system [3]. Similarly, Intel has been working for the last 10 years to develop on-chip photonic
components [69], and in pursuance of this goal it has already released a board level photonics
solution (Optical PCIX [32]); the next step is to integrate such solutions on-chip.

The advantages of optical networks arise from the fundamental nature of photons. They can
travel faster (5X faster than signals in electrical networks), and it is possible to multiplex photons at
different wavelengths on the same optical channel (WDM). The latter allows for significantly more
bandwidth. The other advantages include data rate and energy consumption almost independent of
on-chip distance, low power dissipation, and reduced interference. Insofar as such advantages are
concerned, there is no divergence of opinions about the advantages that will accrue from a practical
realization of on-chip photonics. Numerous authors [53, 73] have compared optical networks with
electrical networks, and have reported on an average 30-50% improvement in performance.

However, optical networks are not a panacea to all our problems. They still have significant
issues with respect to high static power consumption. This again arises because of the basic nature
of photons. Photons cannot be stored easily, and thus need to be transmitted continuously. We
end up losing a lot of power in this process. There are proposals in literature that have used lasers
on the chip and it is possible to switch such lasers on-demand [16, 42]. However, on-chip lasers
have several disadvantages such as low wall plug efficiency, complete heat dissipation inside the
chip and many more [6]. Moreover, when the same fast-switched lasers are used off-chip, there
is an additional latency of 2-4 cycles because we need to compute the power requirement in the
immediate future, and communicate this to the off-chip laser.

The standard approach used in prior work [5-7] while using off-chip lasers is to predict and share.
We predict periods of inactivity within the chip and turn off the lasers, and then optimally share
the light between the optical stations (transmitter + receiver) during periods of activity. Predicting
network activity in the future can be done by looking at network activity in the past [7, 82], PCs
of memory instructions [57], and directory misses [47]. In addition, a novel machine learning
based approach also proves helpful in predicting such activity [76]. Similarly, sharing the generated
optical power efficiently among stations helps us use unused optical power, and also helps us
reduce the number of waveguides (optical channels). By reducing the number of waveguides, we
proportionately reduce the number of associated optical filters (ring resonators), and the micro-
heaters required to maintain them at a fixed temperature. The power to run these micro-heaters
(tuning power [49]) is a major component of the overall static power dissipation.

Reducing static power dissipation in optical networks is a very established area with a rich body
of literature. Our approach in this paper, is to take some of the best performing works in this area,
and create a scheme — PShaRe- that outperforms them by at least 20%. We observed that to create
such a scheme we need to find novel ways for the predict and share part, and also introduce a
new paradigm: recycle (reuse the wasted energy thrown out of the chip). Our approach is thus
fundamentally different — predict-share-recycle.

Let us briefly enumerate our key contributions here.

(1) ANN based Predictor : We introduce a novel mechanism for predicting the network traffic
with the help of an artificial neural network (ANN). We claim that non-linear prediction with
the help of ANNs is better suited for predicting the network traffic in on-chip networks as it

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.



Predict, Share, and Recycle your Way to Low Power Nanophotonic Networks 1:3

produces far more accurate predictions, and is singularly responsible for 2.5X reduction in
laser power (as compared to state of the art proposals).

(2) Distributed Arbitration Scheme : For sharing power, we deviate from the conventional
approach [52] of using token based arbitration, and use a novel, altruistic, and power efficient
distributed arbiter instead.

(3) Power Reuse Scheme : We introduce a new set of waveguides in the chip to recirculate
the wasted laser energy such that it can be used to heat the microring resonators. We use
plasmonics based devices to convert optical energy into heat. This approach helps us reduce
tuning power by nearly 38%.

(4) Evaluate : With our new predict-share-recycle design, we evaluated a 32-core chip. For a
suite of Splash2 and Parsec benchmarks, we were able to improve the performance by 31%
simultaneously reduce ED? by 39% (as compared to the nearest state of the art competitor).

The natural question that arises in any work that uses emerging technologies is feasibility.
In prior work, this concern has been addressed by using components that are either already
commercially available, or whose prototype implementations have reached maturity [7, 36, 59, 65].
We use both these strategies in our paper, and only use components that are widely regarded as
extremely promising, are preferably already commercially available, and also have a history of
being heavily used in the architecture community. We have simulated all our optical components
using industry standard simulators (RSoft [71] and Lumerical [43, 44]), and we have synthesized
all the proposed electronic components in VHDL. Their area, power, and timing results are in the
paper. Our work can be looked at as an addendum to an existing optical NoC, and is thus generic
in nature.

Table 1 gives the treatise of the rest of the paper and summarize our contributions in each section.

Section # | Summary Contributions

2 Nanophotonics and ANN background

3 Characterization and motivation Derived Design Insights
Section 4.2 | ANN based Predictor for predicting on-chip traffic

4 Design and Implementation Section 4.3 | A novel, altruistic and distributed arbitration scheme.
Section 4.4 | Using unused optical power to reduce tuning power

5 Evaluation Evaluate our design decisions for Splash and Parsec suites

6 Conclusion

Table 1. Treatise

2 BACKGROUND

This section provides a brief overview of the important optical components relevant to our archi-
tecture.

2.1 Light Source

A laser is the most commonly used light source in on-chip photonic networks. The laser can be
either off-chip [57] or integrated inside the chip [18]. The light produced by an off-chip laser is
coupled into the chip using special tapered couplers [31] in order to decrease the coupling loss.
PShaRe uses off-chip lasers as the main light source. Specifically, we use an array of 32 directly
modulated lasers(DML) [22] as an off-chip laser source. DML lasers can be modulated at GHz
frequencies, and are very robust. These lasers are also thermally very stable [21, 22], and as of now
are also commercially available. We use 32 such lasers so that we can create a virtual 32 step power
source (by individually turning on/off lasers). In addition, PShaRe also uses a few on-chip lasers
for arbitration. We can use any WDM compatible on-chip laser with fast switching time. InP and
Ge based on-chip lasers are the best choices, as they have been fabricated already [13, 19] and can
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be easily integrated on the chip. However, in our design we have used Ge based on-chip lasers as
these lasers can easily operate at room temperature and are DWDM compatible [13, 42].

2.2 Tunable Power Splitters

Power splitters are required to divert optical power from the power waveguides. Each power splitter
is associated with a power loss, which is a function of its split ratio. Cascading a large number of
such splitters will result in an exponential increase in the optical power loss. Hence, to decrease
the power loss, the optimal split ratio of the power splitters needs to be calculated. One such linear
time approach was proposed by Peter et al. [56]. We use their method. To realize this we need a
tunable splitter, whose split ratio can be changed dynamically (based on the power sourced by
different components on the power waveguide). One such splitter based on a simple ring resonator
has been proposed by Rajib et al. [23]. We use the same splitter (wide range version) in our design.
These ring resonator based splitters require less than 400ps to retune.

2.3 Transmitter

The laser light is routed to the optical stations using a dedicated waveguide (optical channel) called
a power waveguide. This light signal is monochromatic (at 1550nm). Individual stations source
optical power from the power waveguide, whenever they need to transmit a message. Each station
uses a ring resonator based comb splitter [39] to split the monochromatic light into 64 equispaced
wavelengths. Subsequently, we modulate each signal with a ring resonator to encode information.
This is a standard design, and has been used in many proposals [57, 73]. For modulating the optical
signals, we use a microring resonator based modulator [78], which has low area and can modulate
data at a rate of up to 10 GHz.

2.4 Receiver

At the receiving side, ring resonators filter out the modulated wavelengths from the data waveguide
and guide them to an array of photodetectors. The photodetector converts this modulated light
into a set of electrical signals using trans-impedance amplifiers. The area of the photodetector is
20pm? and its capacitance is 1fF [73].

2.5 Optical Crossbar Based Topologies

Optical crossbar based topologies are preferred choices because they do not require complicated
routing and path setup mechanisms. These are broadly classified into the following three categories
in an N-station optical network: SWMR, MWSR, and MWMR.

In SWMR (single writer multiple reader) a station writes to only one waveguide, which is
connected to the rest of the N — 1 stations. A subset of these stations can read the data by sourcing
a part of the incoming optical signal using beam splitters. Every station thus has to monitor N — 1
other waveguides (one per sending station) for incoming messages. Firefly [53] optimizes this
process by sending a reservation flit before the actual data transmission (R-SWMR) such that
the desired receiver can be turned on. Receivers are off by default to save power. In the MWSR
topology (multiple writer single reader), a station has a dedicated waveguide on which it receives
data. The rest of the N — 1 stations can write on that waveguide. Simultaneous writes are not
allowed, and thus an arbitration mechanism is necessary. The MWMR topology combines SWMR
and MWSR. This means that multiple stations can read or write on the same waveguide. The authors
of Flexishare [52] have slightly constrained this paradigm by limiting access to a waveguide to only
a subset of stations. This reduces the need for arbitration, and the number of ring resonators.
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2.6 Artificial Neural Networks

To predict laser power in our optical NoC, we shall use an artificial neural network (ANN) that
consists of interconnected processing elements that try to mimic the human brain [25]. Each such
processing element is called a neuron and these neurons are connected together by weighted links.
These neurons work together to provide a solution for a specific problem. ANNs are most commonly
used in situations where we need to detect trends in the input data. They are highly beneficial in
detecting non-linear patterns in the data, which are otherwise too complex to detect.

The ANNSs comprise three different types of layers: input layer, one or more hidden layers and the
output layer. The number of hidden layers and the number of neurons in each layer are determined
experimentally. An ANN works in two different modes: 1) prediction mode and 2) training mode.
In prediction mode each neuron takes an input and generates an output, which is fed to the next
layer of neurons, whereas in training mode an ANN is provided with sample input/output values
and then we adjust the weights of the links dynamically in order to achieve the desired output.
The most commonly used algorithm in the training phase for adjusting the weights is the back
propagation algorithm [28], which propagates the error backwards mostly based on the gradient
descent method.

2.7 Photonic Heaters

For the energy recycling part, we shall use photonic heaters, which typically use metamaterials [4,
27]. There are free electrons in such materials, which absorb the injected light. The absorbed light
increases the vibrations in the free charge carriers, resulting in increased collisions. The photons
injected are thus eventually converted into heat. The heat generated diffuses and increases the
surrounding temperature [24]. These photonic heaters should be ideally characterized by a very
high photon absorption rate. The most common approach for creating such heaters is by using
plasmonic nanoparticles typically made out of gold [74], silver [27], or Graphene [41]. We use the
solution proposed by Lie et al. [27], who use silver nanoparticles. This has a photon absorption
rate of more than 90%, and has an area of 768um?. Such nanomaterials are already being used

for treating tumors by the medical research community, and are commercially available. A lot of
research [50, 81] has been done on embedding nanoparticles on a silicon surface. This is basically a
two step process: charge the surface of the stamp that has protrusions laced with nanoparticles,
and create an oxide layer on the silicon. Some nanoparticles will stick to the oxide layer after the
stamp is removed.

3 MOTIVATION

In order to understand the behavior of various multi core benchmarks, we ran workloads from the
Splash2 [77] and Parsec [12] benchmark suites on a chip with 32 4-issue out-of-order cores. We
used the same set of workloads as [38, 57, 82]. The chip consists of 16 MB of last level cache (L2)
in the form of 32 cache banks. The architectural parameters of the chip are given in Table 4. We
assume a hypothetical point-to-point topology connecting the cores and cache banks. In addition,
we compared the power consumed by two state of the art proposals in this domain: ColdBus and
Probe.

Probe [82]: Probe uses a prediction mechanism based on link and buffer utilization to modulate
the laser.

ColdBus [57]: ColdBus is a SWMR crossbar based on-chip photonic network for 32 cores and 32
cache banks. It uses a prediction mechanism based on the PC of memory instructions, along with
the past history of hits and misses.

The following workload characteristics led to the design of PShaRe.
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3.1 High Laser Power Consumption — Predict
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Figure 1 shows a comparison of the laser power consumption of two state of the art schemes
(Probe [82] and ColdBus [57]), and an ideal scheme where we have one laser per optical transmitter
— the laser is by default turned off. However, when the transmitter requires power, the laser is
turned on instantaneously. We observe that Probe and ColdBus respectively consume 8.7X and
3.1X more laser power than the ideal scheme (See Figure 1). Thus, there is room for a more power
efficient laser modulation scheme.

For better laser modulation, we need to accurately predict network activity. Prior work has
assumed a linear dependence between network traffic in the future (number of messages) and two
kinds of parameters: network parameters such as traffic in the last few epochs, and architectural
parameters such as PC addresses, memory addresses, and queue occupancy. Our observations
are to the contrary, and we saw a clear non-linear relationship between network/architectural
parameters and network traffic. These observations are in line with those made by Khonsari et
al. [35] and Bezzera et al. [10]. They have observed self-similar and highly super-linear patterns

respectively. To capture such non-linear relationships we need to design efficient non-linear
predictors (Insight:Predict).

3.2 Unbalanced Traffic — Share
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Fig. 2. Traffic injected across stations

Figure 2 shows the relative traffic injected by various optical stations in a network. Each color
in the figure represents the percentage of traffic injected by an optical station. In almost every
benchmark there are some stations which are highly active (at some point of time) and others
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inject very little traffic in the network. In addition, we observed that the stations inject traffic in a
burst mode — whenever a station starts injecting some traffic, it remains active for some time. As a
result some stations require much more bandwidth and power at some points in their execution as
compared to others. Thus, it will be highly beneficial if the data and power networks are shared.
However, using a shared topology has its own disadvantages. One disadvantage is that there is a
need for an arbitration scheme at the sender’s side. Almost all the arbitration schemes proposed so
far are based on optical tokens [52, 57]. However, such schemes are not power efficient because we
need to continuously pump tokens into the network, resulting in high optical power consumption.
The other disadvantage is that we have to broadcast a reservation flit before sending any message, in
order to inform the interested stations to turn on their receivers [7, 52]. This too results in increased
power consumption. Thus, there is a need for a power efficient arbitration scheme, which removes
the need for continuously circulating tokens and broadcasting reservation flits (Insight:Share).

3.3 Energy Wasted — Recycle

Figure 1 shows that for two state of the art proposals, ColdBus [57] and Probe [82], nearly 67%
and 88% of optical power supplied to the chip remains unused. Since it is practically impossible to
design a predictor with 100% accuracy [57], there will always be some amount of unused power
inside the chip. Let us thus use this energy for productive purposes notwithstanding losses in
transporting it (waveguide losses) (Insight:Recycle).

4 DESIGN AND IMPLEMENTATION
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Fig. 3. Layout of the chip
4.1 Overview

In this paper, we consider a chip with 32 4-issue out-of-order cores and 32 cache banks. It uses a
tiled architecture in which each tile consists of an optical station, two cores and two cache banks.
Figure 3(a) shows the layout of the chip, comprising of waveguides and optical stations that form
the optical network. The bundle of waveguides includes both the data and power waveguides,
running parallel to each other. The light from the off-chip laser is divided into various parts using a
cascading set of 16 tunable splitters [23], and routed to each station. There are a total of 16 power
and 16 data channels and each channel is composed of 4 waveguides. Each data channel can carry
64 wavelengths using dense wavelength division multiplexing(DWDM) technology. Note that the
ideas and insights behind the design of PShaRe are generic, and are not specific to this particular
design.

Let us now proceed to describe the three novel mechanisms that are proposed in this paper:
predict, share, and recycle.
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The network traffic injected by the station in the last
5 epochs. This information is stored in a 5-entry shift
register. Each such input is denoted as T; (5 bits), where i
is the index of the shift register. For example, T; denotes
the network traffic in the most recent epoch.

The number of pending events(P) at the optical station
(4 bits).

The number of private data cache evictions(E) in the
current epoch (6 bits).

Table 2. Final set of parameters

4.2 Prediction Mechanism

We use an artificial neural network based predictor, which is one of the most commonly used
non-linear predictors.

4.2.1 Design. The neural network used in our scheme is composed of three different layers: input
layer, hidden layer and an output layer. The input features to the neural network include both the
architectural and network related parameters. We start by using 14 different parameters as input to
the ANN (please see online Appendix at [8]). Having higher number of features affect the overall
prediction accuracy. However, at the cost of power, area and performance. Thus, there is a trade-off
between the prediction accuracy and the area/power overheads. During our training and validation
phase (please see [8]), we tried to eliminate the features that barely affect the overall prediction
accuracy. Finally, we choose the most effective set of parameters as input to the predictor as given
in Table 2.

We choose one hidden layer because every hidden layer increases the complexity and increases
the prediction and training time. The number of neurons in the hidden layer is determined experi-
mentally during the cross validation phase. We performed experiments with different numbers
of neurons and found 6 to be the optimal value. Each neuron in the hidden layer implements the
Sigmoid function in order to capture the non-linear trends in the network traffic. In the output layer,
we have a single neuron implementing the threshold function. Thus, our neural network provides
a Boolean output. Please refer to our online Appendix [8] for the feature selection, training, and
cross validation of our predictor.

4.2.2  Prediction. PShaRe divides time into fixed size durations called epochs and predicts the laser
power in advance for the next epoch. For each station, the prediction is binary. A value of ‘1’
indicates that it is expected to transmit a message in the next epoch, and a value of ‘0’ indicates
complete inactivity during the next epoch. False positives are wasteful in terms of power, because
the laser remains on when no messages are actually sent. Likewise, false negatives are hurtful in
terms of performance because of the unavailability of laser power.

Each optical station is associated with a separate neural network based predictor as described
in Section 4.2.1. Each neural network is trained at the beginning of an epoch only if there is a
misprediction, and the prediction is performed at the end of every epoch. During the training phase,
the optical station provides all the inputs that were used for predicting laser power in the previous
epoch and the desired output. The ANN is trained iteratively till the weights are adjusted in such a
way that the desired output is generated. For the prediction, the ANN is run at the end of every
epoch. The optical station provides the required inputs and the ANN provides a Boolean output. If
the output is ‘0’, we predict that the station does not require power in the next epoch, whereas a
value of ‘1’ indicates that the station will generate network traffic and hence requires optical power.
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4.2.3 Reconfiguring the Network. After the predictions are made by the optical stations, each
station sends this information to the laser controller at the end of an epoch through a separate
waveguide called the prediction waveguide. Each station uses a specific wavelength in the prediction
waveguide to indicate its requirement (active low signalling). The predictions are sent to the laser
controller, which collates the predictions and retunes the network at the beginning of the next
epoch. The optical stations also sends this information to their respective representative servers,
which we shall discuss next.

4.3 Arbitration Mechanism for Sharing Power

We have 20 stations (16 + additional stations for the directory and memory controllers), 16 power
channels, and 16 data channels. Each power and data channel is assumed to be composed of 4
silicon waveguides. All the power and data channels are shared between the optical stations. An
optical station can source power from any power channel. If it sources power from the i* power
channel, it can then use it to send a message on the i’ h data channel: both are interlinked in this
fashion. This process of sharing requires an arbitration process. For a group of 5 optical stations,
we create a Representative Server (RS) physically located at the center of the chip, which brokers
access to the shared waveguides on behalf of its constituent stations. Each RS is equivalent to a
2-port router with some extra memory. The RSs are connected to each other through an electrical
ring based topology.

This cluster containing only the representative servers has a separate optical station, called
the Server Station. The optical stations communicate with their respective representative servers
through the reservation waveguides (all the waveguides run in parallel using a serpentine shaped
layout). Each optical station and its respective representative server is allotted some specific
wavelengths in the reservation waveguide in order to communicate with each other. This set of
wavelengths allotted to this pair is called its reservation channel. Each such pair in the network is
allotted a separate reservation channel, thus, resulting in a logical point-to-point links between the
optical stations and their respective representative servers. Whenever an optical station is required
to communicate with its representative server, it writes its data on the respective reservation
channel. The Server Station reads the data from the channel and accordingly forwards the data to
the respective representative server.

It should be noted that we can also use electrical point-to-point links. However, we require 20
such 7-bit wide electrical links, and this has the potential to create issues in routing. However, by
using optical links, the same objective can be achieved using only three optical links (64 wavelengths
in a single waveguide). Thus, keeping in view the uniformity, the power and area overheads, the
ease of routing (with a serpentine structure), we choose optical links. Each station and each RS
have a set of in-situ on-chip Ge based lasers [13, 42] (modulation time: 1 cycle). These lasers are
used to generate optical power whenever a station and an RS want to communicate with each other.
The RSs are connected with each other through an electrical network (because of close proximity
and lower overheads). The additional overhead of having such on-chip lasers is small (0.3% in terms
of area, and 3.3% in terms of total optical power).

4.3.1 |Initialization. At the beginning of an epoch, the laser controller knows the number of
channels, n,,, that should be carrying power (1...16 based on prediction in the previous epoch). It
powers n,, channels using a network of cascaded tunable splitters [23]. Note that if the number
of stations that wish to transmit in the current epoch is n;, then n,, = min(n;, 16), because we
have a maximum of 16 channels. Additionally, the RSs know their respective requirement (total
requirement of their stations), and thus proceed with the allocation as follows. If n; > n,,, then
we allocate 4 channels to each RS. Otherwise, we allocate channels in this fashion: 1...r; to RS1,
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r1+1...(ry + r2) to RS2 and so on. Here ry is the total requirement of the stations belonging to
RS1, r; is the total requirement of RS2 and so on.

The channels allotted to an RS are called its local channels. Some times an RS might choose to
lend a channel to another RS. For the other RS this channel will be a foreign channel. With each RS
we have a 16-entry waveguide reservation table, WRT. Entry i of the table contains the following 5
bits: local/foreign (1 bit), free or busy (1 bit), and a timer (3 bits). When we allocate a channel, we
set the timer. Once it reaches 0, the channel is deemed to be free.

4.3.2 Operation. Whenever a station wants to send data, it first sends a message to its RS. This
message includes the receiver id (5 bits), and the number of flits in the message (2 bits). The RS
accesses its WRT and tries to find if any of the available local waveguides are carrying optical
power. If a local waveguide is available, then it is allotted to the optical station and the value of the
timer is updated with the number of cycles for which the station needs the waveguide. In addition,
the free/busy bit is set to 1. The timer is decremented every cycle, and when the value of the timer
reaches 0, the waveguide becomes available again (free/busy bit = 0).

However, if no waveguide is available, the RS needs to take the help of other RSs. The algorithm
for doing this is as follows. We maintain a lower triangular matrix with N row and N columns,
where N stands for the number of RSs. Every time that RS i needs a waveguide it checks the status
of the rest of RSs. If RS j has a free waveguide we increment A[min(i, j), max(i, j)]. After x epochs
we form pairs of RSs as follows. We first choose the largest value in the matrix, A[i’, j’] and form a
pair (i, ). Then we set the i’th and j** row and column to be 0. Then out of the remaining entries
we find the largest value and so on. This ensures that we always pair RSs that are nearly 180° out
of phase with each other (existence follows from Insight:Share). Every time that an RS needs a
channel it asks its paired RS. If after A cycles it does not get a channel, it sends a request to another
randomly chosen pair (waits for A cycles again). If there are an odd number of RSs, we will have
a singleton. This RS needs to randomly ask other RSs for borrowing a channel if there is a need.
Finally, note that the life of a set of pairs is limited to x epochs, after which we create another set of
pairs based on the values in the matrix A. Each RS stores the information regarding waiting optical
stations (in its cluster) in a separate 5-entry table called the Pending Request Table (PRT). The RS
allows other RSs (not a part of its pair) to use its allotted power channels only when their is no
pending request in its PRT. However, for the RS that it is paired with, it gives it preferential status
by serving at least one of its requests for every p of its own requests. Please note that x = 2, A = 4,
and u = 4 are the threshold values which have been selected based on the simulation results.

After allocating channel i to a station, the RS sends a reservation message to the receiver through
its respective RS, indicating the data channel from which it needs to read data and the number of
flits in the message. This eliminates the overhead of reservation messages [53]. The complete flow
of operations for using the power channel is shown in Figure 4. There are no issues with scalability
in this protocol. As we increase the number of RSs we create more and more pairs.

The simulation results show that the RSs send 13.1% of total power requests to the other RS in
their respective pair, and our of these 63% of the requests are satisfied. This reduces the number of
inter-RS messages to 37%.

4.4 Recycling Power

4.4.1  Tuning Network. In PShaRe, we divide the ring resonators into two groups: one group
includes the ring resonators attached to the data waveguides (roughly 85%) and the remaining
ring resonators belong to the other group (power waveguides and arbitration logic). In PShaRe,
we tune the resonators in these groups separately. Recall that tuning is required to bring all the
resonators to the same temperature because the resonant wavelength is a function of temperature.
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Our idea is to use the unused optical power to partially tune the ring resonators attached with the
data waveguides. Note that all the ring resonators will still need to be connected to conventional
microheaters [51]. The objective is to decrease the power supplied to the microheaters by reusing
wasted optical power. Since heat is the lowest form of energy conversion of optical power to heat
is easy and has a very high efficiency.

Resonators attached to the data waveguides are co-located, and thus they have a similar thermal
profile [49]. This property allows us to place heaters at the center of such clusters (size:64 resonators),
and target all of them at once. A separate set of waveguides called the tuning waveguides (TW)
are used to carry the unused optical power. At the end of the power waveguides, the unused
power is coupled into these waveguides. A cascaded set of Y-junctions [65] is used to combine the
unused power into tuning waveguides (lengths adjusted appropriately for nullifying phase delay).
As light travels through the TWs, the splitters attached split some portion of the light and send
it towards each optical station. Within each station, the optical power is guided through a very
small waveguide called the intra-heating waveguide (IHW) that distributes it to all the photonic
heaters (see Section 2.7). We use near field transducers(NFT) [1] (See Figure 3(b)) to focus the light
on the plasmonic material in the heater for maximum efficiency. The amount of optical power (P)
required to heat a volume V of a material with volumetric heat capacity C by temperature T in
time ¢ is given by [11]:

T«CxV
b=

(1)

4.4.2 Control System For Thermal Tuning. One important insight from [49] and our thermal
simulations is that the thermal drift in co-located ring resonators is almost the same. It is well
known that silicon is a thermal low pass filter [30], and thus we don’t see appreciable temperature
differences at the sub-micron scale. As a result, the ring resonators require the same amount of
heat to bring them back to the ideal operating temperature. Keeping this in mind, we use a single

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:12 Janibul Bashir and Smruti Ranjan Sarangi

photonic heater for a group of 64 co-located ring resonators (Insight from [49]). Our photonic
heater is a linear structure(see Section 2.7) placed beneath the group of ring resonators, whose job
is to bring the temperature up to a given value, 7.

We use a diode based temperature sensor [17] for each cluster of 64 resonators with a proportional-
integral-derivative (PID) based tuning controller (details in [8]). We implemented it using VHDL
and synthesized it using the Cadence RTL compiler for 14 nm technology node. At the end of every
epoch, optical stations send an average temperature deviation of its sensors from the nominal value
(5-bit) to the tuning controller (TC) through a tuning information waveguide (TIW). We require
512 temperature sensors and photonic heaters to thermally tune the 32K ring resonators that we
are considering. The area overhead is less than 0.5%.

The unused power in the TWs is distributed among the optical stations. Within each station,
the incoming power is distributed equally among the photonic heaters. The station monitors the
temperature of each group. At any point of time if the temperature of any constituent group rises
above the threshold value, T,,4x (80 °C), the Station Controller (SC) changes the split ratio of
the splitter attached with the TWs in order to stop the incoming flow of optical power. It is a
feedback control system in which the split ratio of the splitter is continuously changed based on
the temperature of the ring resonators. The threshold value, T;, 4y, is chosen to be a value that is
less than the temperature 7 (target ring resonator temperature, 85°C). This helps us to make our
control algorithm simple. The rest of the heating is done with the help of traditional micro-ring
heaters [51].

There are two different methods of distributing the unused power among the optical stations.
One method is to distribute the unused power equally among all the stations and then convert it
into heat. This is very inefficient owing to large losses in splitters, crossings, and the waveguide
itself. Our proposal is to dump the entire unused power equally at the stations closer to the start of
the TWs. The number of such stations is equal to 5 X #total optical stations/Avg. deviation. The
average deviation is calculated at the end of every epoch and the reconfiguration is done at the
beginning of an epoch.

Note that a region of silicon has a thermal resistance and capacitance (conceptually similar to their
electrical analogs). Pumping heat is similar to pumping charge into a capacitor. The heat translates
to increased temperature and the elevated temperature is maintained for a sizable duration of time
(order of the thermal time constant, several ms). During this time we can reduce the electrical
tuning power commensurately. Thus infrequently pumping in bursts of heat can effectively reduce
tuning power for large durations of time because of the inherent thermal capacitance.

4.5 Laser Controller

The algorithm used by the laser controller is adapted from [57] with suitable modifications. The
laser controller computes the following using a host of lookup tables: split ratio (4-bits) of each
splitter in the network, and laser power (5 bits). It sends the output laser power (number of DML
lasers to be turned on) to the laser array using a fast optical link. Table 3 (also see [57]) summarizes
this discussion and shows the various actions that are required for reconfiguring the network and
the time that they take. In an epoch, 12 cycles are required for the prediction and reconfiguration
stage and out of these, the stations are inactive for only 1-3 cycles.

5 EVALUATION
5.1 Experimental Setup

For all our simulations we use the cycle accurate architectural simulator, Tejas [66], which has
been rigorously validated with native hardware. It has extensive support for simulating optical
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Actions ‘ Cycles
Prediction Phase
Neural Network Prediction 3
Send prediction to the laser controller 1 . .
Collat}l recommendations and predictions | 2 RSs waveguide allocation | 3
Calculate power requirements 2
Send msg. to the off-chip laser (E/O+tran.+O/E) 2
Reconfiguration Phase (Inactive Phase)
Compute laser array config. 1 | Table lookup 1
Laser retuning 1 | Reconfigure splitters 1
Total 12

Table 3. Prediction and reconfiguration

Parameter Value Parameter Value
Cores 32 Technology 14nm
Frequency 2.5 GHz
Processor Core
‘ pipeline ‘ Four-issue out-of-order H IW size ‘ 54
‘ iTLB ‘ 128 entry H dTLB ‘ 128 entry ‘
Private L1 i-cache, d-cache
Write-mode Write-back Block size 64 bytes
Associativity 4 Size 64 kB
Latency 2 cycles MSHRs 32
Shared L2
Write-mode Write-back Block size 64 bytes
Associativity 4 # banks 32
Latency (per bank) 8 cycles Bank size 512 KB
Main Memory
‘ Latency ‘ 150 cycles H Mem. controllers ‘ 4 ‘
Queue Sizes
‘ Optical Station Queue ‘ 16 H ‘ ‘
Electrical NoC
Topology Flattened Butterfly Routing Alg. XY
Flit size 16 bytes Hop-latency 1 cycle
Routing delay 2/3 cycles # Virt. channels | 4
(w/wo bypassing) Buffers/port 8
Aucxiliary structures (size in number of entries)
RCB 128 VB 20
o f | i

Table 4. Simulation parameters (also see [38])

interconnects (calibrated with Synopsys RSoft [71]). To simulate power and energy consumption,
it is bundled with the Orion 2 [34] and McPAT [40] tools. All the optical components such as
Y-junctions, waveguide bends, ring resonators, and splitters were simulated using the Synopsis
RSoft [71] and Lumerical simulators [43, 44]. We validated the optical parameters and the losses
associated with all the devices. Moreover, the electrical components such as the RS, ANN predictor
and tuning controller were synthesized in VHDL using the Cadence RTL compiler (at UMC 14 nm
technology). Unlike other proposals [53, 73] that use a mean (aggregated) value for the resonator
tuning power, we performed detailed thermal simulations of our design, using HotSpot [79]. It was
used to estimate the temperature of the die and then calculate the tuning power accordingly. All
these tools have been thoroughly verified against real hardware and have been used for evaluating
many proposals in this area [7, 54, 57]. We use workloads from the Splash2 [77] and Parsec [12]
benchmark suites. Finally, note that we define performance as the reciprocal of the simulated
execution time.

We compare PShaRe with three other state of the art architectures in this field: ColdBus [57],
Probe [82], and ATAC [38]. We use the laser modulation and prediction mechanism of Probe for a
32-core system and then simulate the system. It predicts optical network usage based on buffer and
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Optical parameters
Wavelength (1) 1.55um
Width of waveguide (W) 3um
Slab height 1um
Rib height 3um
Refractive Index of SiO;(n,) 1.46
Refractive Index of Si (n.) 3.45
Input Driver Power 76 pW
Insertion Coupling Loss 50%
Photodetector quantum efficiency 0.8 A/W
Photodetector minimum power 36 uW
Combined transmitter and receiver delay | 180-270 ps
Optical propagation delay 7 ps/mm
Electrical propagation delay 35 ps/mm
Bending Loss 1dB
Waveguide Loss 1dB
Coupler Loss 1dB
Photodetector 0.1dB
Off-chip laser Wall Plug Efficiency 30 %
On-chip laser Wall Plug Efficiency 12%
Splitter Loss 0.36 dB
Comb Splitter Loss 0.5 dB
Off Ring Loss 0.001 dB
Ring Modulation 1uw/°C
Input Photonic heater power 1mw/°C
Input Electrical heater power 34.2uW/°C

Table 5. Optical parameters [15, 20, 47, 52, 53, 55, 57, 62, 73, 76]

link utilization. ColdBus [57] is a SWMR crossbar based on-chip photonic network for 32 cores and
32 cache banks. It uses a prediction mechanism based on the PC of memory instructions, along with
the past history of hits and misses. To handle mispredictions, it uses a set of extra waveguides that
are shared by all the on-chip optical stations. ATAC [38] is a kilocore architecture, which uses an
unmodulated laser. Based on ATAC, we developed a 32 core chip. The chip uses the power delivery
network of ATAC. It does not use any laser modulation and hence the laser provides a constant
amount of power irrespective of the network traffic.

In addition to the above proposals, we also compare the prediction mechanism of PShaRe with a
linear regression based approach proposed by Winkle et al. [76]. We replaced the ANN predictor
in PShaRe with their predictor (Section 5.5). A direct comparison of energy and performance is
not possible because significant changes need to be made to the DVFS based CPU-GPU design
proposed by Winkle et al. [76].

5.1.1 Target System. Let us illustrate a reference design with the ARM Cortex A15 processor. We
assume similar cores in our design with some minor differences. Each core has a 4-issue OOO
pipeline operating at 2.5GHz. The system has 32 cores and 32 512KB L2 cache banks. Each core has
64KB private data and instruction caches. Using the scaling factors provided by Stan et al. [68], we
compute the size of the core to be less than 4mm? at 14nm technology. With such a small core, it
is possible to have 32 cores occupying 128mm?. We can also integrate 32 cache banks of capacity
16MB on an area less than 60mm? (calculated using Cacti 6.0 and scaled using [68]). Note that our
approach is not specific to the reference design.

The architectural parameters of the evaluated system are given in Table 4 and the optical
parameters of our network are given in Table 5.

5.1.2  Area Evaluation. In terms of hardware cost, PShaRe requires some additional optical com-
ponents to completely realize its objectives. It requires additional hardware for implementing the
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Total Area

Structures Size per structure Overhead

Extra Structures for Prediction

Gates for multiplications
and additions
Lookup table for the
Sigmoid function

146pm? per neuron [2, 72] ~ 0.06%

780nm? per neuron [46] < 107%%

I Extra Structures for Sharing ]

Ring resonators 113um? per resonator 0.2%
Wave’%:ll)(li: (I\{;sg;‘)latlon 8 Bytes 10-7%
On-chip lasers 7.68 X 103 mm? [76]
(I Extra Structures for Power Reuse ]
Optical heaters (OH) ~ 768um?® [27] ~0.1%
Near field transducers (NFT) ~ 10000nm* [14]

Table 6. Area overheads of different structures

power reuse scheme, arbitration scheme and the artificial neural network based predictor. Table 6
shows the individual area of each component. We use an optimized neural network as proposed
in [2, 72] that relies on AND, XNOR, and OR gates to perform the additions and multiplications
that are required to use a neural network. In addition, it uses a fast look-up table based scheme to
implement the non-linear Sigmoid function [46]. For thermal tuning, we designed a standard PID
based tuning controller and its area is ~ 4000um?, and its latency is 740 ps. For a detailed discussion
on area evaluation, please refer to online Appendix [8]. The additional area required is less than
1.5% of the die size (260mm?).

5.2 Power Models

For the electrical network used for comparison (see Section 5.3), we have assumed state of the art
electrical links, requiring 13p]J [9, 33, 53] of energy to send a flit across a link. We require 16pJ for a
16-byte flit to traverse the crossbar of a 5 x 5 electric switch [33, 53]. Thus, a 128-bit flit requires
29pJ/hop/ flit. In PShaRe the power consumed by the drivers, ANN predictor, and receivers are
the major components of electric power consumption. The ANN performs 48 multiplications and
48 additions, consuming 21pJ [29] of energy. Thus, in an epoch of 100 cycles we require at most
150uW of power (including both the training and the prediction phases). For all optical power
calculations, we have used a standard method (please see [8]). We calculated the energy required for
each message by incorporating all the losses that occur during the transmission of the message
through all the optical components. Using the values from Table 5, we calculated that PShaRe
requires roughly 1p] of optical energy to send a single bit.

5.3 Optical Vs Electrical Networks

The notion of replacing an electrical network with an optical network is still a debatable issue. To
answer this question we quantify the improvements in performance and energy. Electrical networks
are challenged in terms of scalability and bandwidth as observed by [67]. We use a state of the art
electrical network proposed by Kim et.al. [37] (please see Table 4 for the parameters of the electrical
NoC) and compared it with the proposed optical network. The results of the simulation show that
the optical network performs 2.2X better than the electrical network in terms of simulation time
(see Figure 5). Others have also reported similar results [53, 73]. As a result, we do not consider
electrical networks henceforth. We also reduced the ED? by 73%.
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Fig. 5. Optical vs electrical network (performance comparison)

LASER Prediction . .
Fraction of Fraction of
Benchmarks Accuracy (%)(A) requests due requests due
ColdBus ML ANN to :i.ason 1(B) | to iason 2(C)
Predictor || Predictor || Predictor
barnes 75.4 84.3 97.4 0.072 0.9
blackscholes 91.4 90.6 87.8 0.2 0.78
bodytrack 73.5 75.5 91.8 0.14 0.8
canneal 81.43 85.4 97.56 0.1 0.86
cholesky 85.65 90.3 95.45 0.12 0.831
dedup 77.3 88.2 97.76 0.07 0.91
ferret 80.4 86.5 98.34 0.065 0.93
fit 75.6 87.54 95.7 0.13 0.853
fluidanimate 76.5 84.3 97.6 0.1 0.87
fmm 82.27 90.8 96.38 0.11 0.87
ocean_ncp 72.6 81.4 96.3 0.1 0.875
radiosity 93.33 95.7 90.34 0.18 0.81
streamcluster 72.4 78.9 95.71 0.112 0.86
Mean 79.82 86.2 95.24 0.115 0.858

Table 7. Analysis of prediction accuracy and contention at the stations

5.4 Activity Prediction and Power Consumption

5.4.1 Comparison between Predictors. In this section, the artificial neural network (ANN) based
predictor of PShaRe is compared with the address based predictor proposed by Peter et al. [57] and
the regression based machine learning (ML) approach proposed by Winkle et al. [76]. Column A of
Table 7 compares the prediction accuracies of the three different predictors. We want to mention
here that in a shared network it is not possibly to ascertain the accurate prediction accuracy. In
our results we say that the scheme has correctly predicted if optical power is available to a station
if it needs to send a message, and vice versa. Wrong predictions are hurtful both in terms of
performance and power consumption. However, our scheme tries to handle both false positives
and false negatives by allowing the stations to share the optical power. From Table 7, we observe
that the neural network based predictor has 16.2% and 9% more accuracy than the address based
and regression based predictors respectively. The higher prediction accuracy of our predictor is
responsible for decreasing the static power consumption (See Section 5.4.2) without affecting the
performance of the system.

5.4.2  Laser Power Consumption. The total laser power consumed includes the power consumed
by off-chip and on-chip lasers. In our scheme, the power generated by on-chip lasers is used by
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Fig. 6. Laser power comparison

optical stations to communicate with the representative servers, whereas the power generated by
off-chip lasers is used by on-chip optical stations to send the data and control messages.

The on-chip lasers generate power on-demand and are used to send a small amount of data.
Thus, consuming the least power. However, the power consumed by off-chip lasers depends upon
the duration for which the laser is turned on, which in turn directly depends upon the accuracy
of the prediction mechanism used to modulate the laser. In Figure 6 (a), we have shown the laser
power consumed by on-chip and off-chip lasers. It is clear from the plot that the on-chip lasers
consume very small amount of optical power (less than 3.3%), whereas the power consumed by
off-chip lasers is the major contributor to the overall power consumption.

In Figure 6 (b), we plot the laser power consumed by different configurations. ATAC does not
use any laser modulation technique and hence it is the most power consuming configuration. It
consumes 3X more power than Probe. PShaRe consumes the least power because it has a higher
prediction accuracy (see Section 5.4.1). Moreover, it allows stations to share the available power,
which results in an increase in effective utilization of laser power. It consumes 4X less power
as compared to Probe. ColdBus is the second best configuration, consuming 2.7X less power as
compared to Probe.

In the case of blackscholes and radiosity, PShaRe consumes more power as compared to ColdBus.
It is because in these benchmarks, the address based predictor has an 6% higher prediction accuracy.
However, in all other benchmarks, the neural network based predictor performs better than the
address based predictor.

5.5 Comparison with ML Based Predictor

In this section, the ANN based predictor of PShaRe is compared with the linear regression based
predictor proposed by Winkle et al. [76]. We replaced the ANN based predictor in PShaRe with the
ML based predictor in order to compare the two predictors.

Figure 7(a) shows the relative laser power consumed by PShaRe with these two different predictors.
It is clear from the figure that the ANN based configuration consumes 13% less power as compared
to the design with the ML based predictor. The reason is the higher prediction accuracy of the
ANN based predictor. However, in the case of blackscholes, and radiosity, the ANN based predictor
consumes more power because of its lesser prediction accuracy in these two benchmarks. In these
two benchmarks, there are more false positives, which resulted in increased power consumption.

Figure 7(b) and Figure 7(c) compare the performance and energy_delay? product of the ANN
and ML based predictors respectively. The performance of the system directly depends upon the
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Fig. 7. (a) Relative laser power consumption. (b) Relative speedup. (c) ED? comparison

accuracy of predicting the laser power requirement. Since the ANN based predictor has 9% more
accuracy in predicting the laser power requirement, we see a 12% increase in performance as
compared to the ML based predictor. However, in the blackscholes and radiosity benchmarks, the
ML based predictor performs better because of its higher accuracy in these two benchmarks (along
with more false negatives). In the remaining 11 benchmarks, the ANN based predictor has a higher
accuracy. In terms of ED? values, the ANN based predictor results in a 18% reduction as compared
to the ML based predictor.

From these results, it is clear that by using a non-linear predictor, we will be able to predict the
laser power requirement better.

5.6 Performance Analysis

[ W Probe ColdBus M ATAC M PShaRe]
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Fig. 8. Relative wait time at a station queue

5.6.1 Contention. Every optical station in any kind of photonic on-chip network has a message
queue, which stores message requests from its constituent cores/cache banks. In PShaRe, we have
assumed a message queue of size 16. The messages sent by a core or a cache bank are stored in the
message queue of the respective optical station, and wait for transmission. The message waits in the
queue because of three reasons: 1) The laser power is not available (laser off due to mispredictions).
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2) Due to high traffic, the station is not able to get access to the power waveguide. 3) The station is
busy in sending some other message (only in the case of a single writer based topology).

In PShaRe, a message mainly waits because of reason 2 (see Column (B) of Table 7). Very few
(roughly 12%) messages wait because of reason 1. Most of the messages (~ 88%) wait because of high
traffic, and high contention in the power waveguide. However, in the case of other configurations
(ColdBus and Probe), all three reasons are seen (more than 11%).

In Figure 8, we plot the relative wait time of a message in a queue for different configurations.
PShaRe decreases the wait time of messages by nearly 68% as compared to Probe, and this is the main
reason for improvement in the performance of PShaRe. In the case of fmm, ferret and ocean_ncp,
PShaRe decreases the wait time by 87%, 82%, and 86% respectively, and thus this leads to greater
performance improvements in these three workloads (see Section 5.6.2). The main reasons for the
reduction in wait time are: PShaRe allows stations to send multiple messages at a time; and PShaRe
is more accurate while predicting the laser power requirement (see Section 5.4.1)

5.6.2  Performance Comparison. Figure 9 shows the relative performance of different configurations.
The results are normalized to the Probe configuration. In almost all the benchmarks, PShaRe performs
better than all the other configurations. The main reasons for performance improvement is the
decrease in wait time of messages in the message queue (see Section 5.6.1). The better performance
of ATAC as compared to Probe and ColdBus is credited to the availability of laser power all the time.

Mispredictions in the case of Probe force the stations to wait for the next epoch, whereas in ColdBus
it is handled by allowing a station to use the extra waveguides that carry contingency power. That
is why ColdBus performs 9% better than Probe. In the case of ferret, fmm, and ocean_ncp the greater
improvement in performance is clearly attributed to the much higher reduction in contention at the
message queues in these three benchmarks. The reason for a slight dip in performance of PShaRe
in the case of blackscholes and radiosity is attributed to its lower prediction accuracy in these two
cases, which also led to a higher wait time in these two benchmarks. To summarize, it is clear from
Figure 9 that PShaRe is the best configuration with 31%, 22%, and 15% better mean performance as
compared to Probe, ColdBus, and ATAC respectively.
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Fig. 9. Performance comparison

5.6.3 ED? Comparison. The Energy_Delay?(ED?) product is the standard metric used to compare
full systems. Note that here the energy represents the full system’s energy including the cores,
caches and NoC. Figure 10 shows the ED? comparison between different configurations. From the
figure, it is clear that PShaRe is the best configuration with a 39% reduction in ED? as compared to
Probe. ATAC has the highest ED?, which is 47% more than PShaRe. The reason is its unmodulated
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laser that supplies a constant amount of power irrespective of network requirements. As compared
to ColdBus, PShaRe results in a 33% reduction in ED?.

5.7 Power breakdown
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Fig. 11. Network power consumption breakdown

In this section, we present the overall power consumption breakdown in various on-chip networks
(see Figure 11). An electrical network (ENOC) consumes only electrical power and this is much
more than any of the photonic on-chip networks. The reason is that in an electrical network
the message has to pass through electrical links and electrical routers which result in elevated
power consumption. In photonic NoCs (PNOCs), the proportion of electrical energy is far lower
(15%). However, from Figure 11 we observe that among different PNOCs, ATAC has the highest
electrical power consumption followed by PShaRe. The reason is that ATAC uses a separate electrical
control network for sending control messages. In the case of PShaRe the higher electrical power
consumption is attributed to its prediction and arbitration schemes. The tuning power is nearly the
same in all the PNOCs other than PShaRe since they use almost an equal number of ring resonators.
However, due to our power reuse scheme, PShaRe reduces the tuning power by roughly 38%.

5.8 Comparison between the Arbitration Schemes

In this section, we compare the laser energy consumed by our novel arbitration scheme with the
conventional token based arbitration scheme used in [57]. In the token based arbitration scheme, the
tokens (optical pulses) continuously circulate inside the token waveguide, irrespective of their usage.
The number of tokens inside the token waveguide directly depends upon the number of stations

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.



Predict, Share, and Recycle your Way to Low Power Nanophotonic Networks 1:21

i

ba“\e \\o\e t\\l“a “‘\e’é\

[ mToken Based O Proposed Scheme|

Relative laser
power consumption

oo @ @@ R

o A\ o et
xo® R\ = PN N\

<
e S
" 1 0

Fig. 12. Relative laser power consumed by different arbitration schemes

predicted to transmit in the current epoch. Moreover, in [57], we also broadcast a reservation flit,
informing the receivers that they need to start receiving data. However, in the case of our arbitration
scheme, a short pulse is directly sent from a station to its representative server and in response it
gets a short message containing its access rights. There is thus no need to broadcast a reservation
flit. Instead a direct message is sent to the receivers by their respective RSs informing them about
the arrival of data. The optical power required for the purpose of arbitration and reservation in
PShaRe is generated by small on-chip lasers. Figure 12 shows the relative laser power consumed by
the two schemes. We observe that our scheme consumes 42% less power as compared to the token
based scheme.

5.9 Effect of Different Epoch Sizes
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Fig. 13. Performance comparison using different epoch sizes

The choice of the epoch size affects the performance and the laser power consumed by the
system. In every epoch, we have some cycles in which the network is inactive(1-3 cycles). A small
epoch size results in a relative increase in the total number of inactive cycles. However, using
a large epoch size implies that we are sending a constant amount of light for a large amount of
time, and thus the system is unresponsive. Additionally, a large epoch size results in the fetch and
execution of memory instructions in the same cycle, which makes the prediction mechanism fairly
ineffective. As a result, we should have a moderate epoch size such that the network inactivity time
is negligible as compared to the epoch size. Also, the epoch size should be such that most of the
memory instructions are fetched and executed in different epochs. We choose three epoch sizes
that satisfy these criteria — 50,100, and 200 — and compared the performance of PShaRe for these
three epoch sizes. Figure 13 shows the relative performance of PShaRe for these three epoch sizes.
From the graph it is clear that PShaRe performs 12% better for an epoch of size 100 as compared to
its nearest competitor (50-cycle epoch). As a result, we use a 100-cycle epoch in our simulations.
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5.10 Reuse of Wasted Power

Temperature Unused Reduct'lon m
Benchmark o tuning
range(°C) power (W)
power (%)
barnes 45-71 3.6 43
blackscholes 45-65 2.6 34
bodytrack 45-63 2.7 37
canneal 45-61 3.1 38
cholesky 45-73 3.9 49
dedup 45-56 23 33
ferret 45-60 2.45 34
fft 45-76 3.7 44
fluidanimate 45-70 2.6 38
fmm 45-72 3.8 45
ocean_ncp 45-75 3.3 41
radiosity 45-70 23 29
streamcluster 45-60 2.34 32
Mean 45-68 2.9 38.2

Table 8. Thermal simulations and unused power

In addition to using HotSpot at the chip level, we use a finite element CFD tool, COMSOL (for
simulating the response of the controller at the micron scale). We created a layout of the chip that
includes both the electrical and optical components. The layout along with the periodic power
profile (including both electrical and optical power) obtained for a benchmark was supplied to
HotSpot. HotSpot gave us the temperature profile of the chip. This procedure was conducted for
every benchmark and the thermal variations were calculated accordingly (see Table 8).

As we can see from Table 8, the maximum temperature that the chip reaches is 76°C. We tune
the microring resonators to this maximum temperature, plus a small margin (to 85°C). The ring
resonators are designed to work at this maximum temperature. The amount of heat required to
tune the ring resonators is calculated based on this maximum temperature. We have roughly 50,000
ring resonators and we need 1uW/°C [26, 52, 53, 75] to tune each resonator. Some portion of this
heat is generated using the unused optical power (as mentioned in Section 4.4.2) and the remaining
heat is generated using traditional electrical micro heaters. On an average, nearly 38% of tuning
(see Table 8) is done using the unused optical power and the remaining heat is generated using the
traditional micro heaters. Our PID controller ensures that the temperature remains within 0.1°C of
the target (acceptable as per [61]).

6 CONCLUSION

Prohibitive static power consumption is a major issue in on-chip optical networks. To predict the
network traffic in optical networks and subsequently reduce the unused laser power, we observe
that a non-linear predictor such as a neural network is required. It is 9-10% more accurate than
state of the art predictors that use regression based machine learning. Moreover, it is necessary to
share the available photonic channels in order to reduce their number and increase their utilization.
This is done intelligently using a combination of on-chip and off-chip lasers to further reduce static
power consumption in an altruistic fashion. Finally, instead of wasting optical power and dissipating
it as heat, we propose to use it for productive purposes such as tuning the ring resonators, within
limits placed by thermodynamics. By using these techniques, we reduce the laser power by 4.7X as
compared to the nearest state of the art proposal. Moreover, we perform 31% better in terms of
execution time and decrease the ED? by 39% as compared to other state of the art proposals.
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