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Abstract

Parameter variation in integrated circuits causes sections
of a chip to be slower than others. To prevent any resulting
timing errors, designers have traditionally designed for the
worst case. Unfortunately, this approach has the potential to
nullify much of the upcoming gains of shrinking technologies.

To help understand this problem, we introduce a novel
high-level and easy-to-apply model of how parameter varia-
tion affects timing errors in microprocessors. The model suc-
cessfully predicts the probability of timing errors under differ-
ent process and environmental conditions for both SRAM and
logic units. Circuit designers can apply the model at design
time to improve yield, and computer architects can use it to
design processors that improve performance.

1 Introduction

As integration technology continues to scale relentlessly,
designers of high-performance processors face the major chal-
lenge of parameter variation — the deviation of Process, Volt-
age, and Temperature (PVT) values from nominal specifica-
tions. It has been estimated that over the coming years, pa-
rameter variation may wipe out the performance gains of al-
most one full process generation. Therefore, it is necessary
to design future circuits and computer architectures that can
mitigate and tolerate the deleterious effect of variation.

Two broad classes of schemes to deal with parameter varia-
tion are circuit techniques and architecture techniques. Circuit
techniques consist of schemes like adaptive body bias (ABB)
and adaptive supply voltage (ASV). They mitigate variation
by adjusting the body bias voltage and the supply voltage of
different regions of the chip. Architecture techniques include
a variety of schemes such as remapping slow memory rows to
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improve SRAM access time, and employing checker proces-
sors and related mechanisms [6] to tolerate variation-induced
errors.

In this paper, we are interested in modeling how variation
changes the latency of processor structures and, as a result,
causes timing errors. The insights resulting from the model
can be used to evaluate any of the schemes mentioned. To con-
struct the model, we build on experimental latency measure-
ments from a real processor pipeline [6] and analytical models
of SRAM latency under random process variation [16]. We
then develop a comprehensive model of timing errors due to
variation, called VATS, for both logic and SRAM structures.

The key contributions of this paper are as follows:
Logic: We propose a model for the delay in logic paths that
includes the effect of parameter (PVT) variation. It requires as
input a histogram of nominal path delays, preferably obtained
by a timing analysis tool. We outline a method to obtain the
histogram from empirical measurements conducted by [6].
Memory: We extend the model proposed by [16], which
only considered random process variation forVt and used the
Shockley model for transistor current. Our model adds the
effects of systematic variation inVt, as well as both random
and systematic variation inLeff . Additionally, we use the
alpha-power current model [18], which is more representative
of current and future technologies.

This paper is organized as follows. Section 2 introduces
some background material; Section 3 presents the model of
timing errors for logic and SRAM; Section 4 validates our
model using empirical data obtained by [6, 11] and shows
plots of error rates for different structures; and Section 5
presents related work.

2 Background

The parameters that we are interested in are the threshold
voltageVt and the effective channel lengthLeff . They di-
rectly impact the delay and leakage power of a circuit. The
parameter variation can be broken down into two major com-
ponents: die-to-die (D2D) and within-die (WID). Moreover,
WID variation can be broken up into random and system-



atic components. The former arises because of fluctuation
in dopant density and lithographic phenomena like line edge
roughness. The latter arises due to mask defects, lens aberra-
tions, and sub-wavelength lithography. The variation∆ in any
parameter,P (e.g.,Vt or Leff ) can thus be represented as:

∆P = ∆PD2D + ∆PWID = ∆PD2D + ∆Prand + ∆Psyst

We focus on WID variation, since the D2D component
can be handled as an offset for the whole chip. We model
the systematic component as a multivariate normal distribu-
tion [19] with a correlation matrix that is isotropic, position
independent, and follows the Spherical model [4]. The ran-
dom component is modeled as uncorrelated white Gaussian
noise [19]. In our analysis, we assume thatσ/µ for Vt varia-
tion is 9%. Based on the ITRS report [1],σ/µ for Leff varia-
tion is roughly half of that value, or 4.5%. Moreover, we also
assume thatσsyst/µ andσrand/µ are equal [12, 13]. Finally,
based on [2], we assume that the systematic components ofVt

andLeff variations are perfectly correlated. In other words,
for any given transistor,∆Vt syst ∝ ∆Leff syst.

2.1 Gate delay

The delay of an inverter is given by the alpha-power
model [18]:

Tg ∝
LeffV

µ(T )(V − Vt(T ))α
(1)

where α is typically 1.3 andµ is the mobility of carriers
µ(T ) ∝ T−1.5. As Vt decreases,V − Vt increases and the
gate becomes faster. AsT increases,V − Vt(T ) increases,
but µ(T ) decreases [10]. The second factor dominates and,
with higherT , the gate becomes slower. The Shockley model
occurs as a special case of the alpha-power model withα = 2.

2.2 Transistor equations

The equations for transistor drain currentId using the tra-
ditional Shockley model are as follows:

Id =


0 if Vgs ≤ Vt

β(Vgs − Vt − Vds

2 )Vds if Vds < Vgs − Vt

β
(Vgs−Vt)

2

2 if Vds ≥ Vgs − Vt

(2)

Here,β = µCoxW/Leff , whereµ is the mobility andCox is
the oxide capacitance.

In deep sub-micron technologies, these relationships are
superseded by the alpha power law [18]:

Id =


0 if Vgs ≤ Vt

W
Leff

Pc

Pv
(Vgs − Vt)α/2Vds if Vds < Vd0

W
Leff

Pc(Vgs − Vt)α if Vds ≥ Vd0

(3)

In this equation,Pc andPv are constants, andVd0 is given by:

Vd0 = Pv(Vgs − Vt)α/2

2.3 Mathematical preliminaries

Single variable Taylor expansion
The Taylor expansion of a functionf(x) aboutx0 is:

f(x) =
∞∑

n=0

f (n)(x0)
n!

(x− x0)n (4)

wheref (n)(x0) is thenth derivative off atx0.

µ, σ of a function of Gaussian random variables
Consider a functionY = f(X1, X2, . . . , Xn) of Gaussian
random variablesX1, . . . , Xn with meanµ1, . . . , µn and stan-
dard deviationσ1, . . . , σn. Multivariate Taylor series expan-
sion [17] yields the mean and standard deviation ofY as fol-
lows:

µy = f(µ1 . . . µn) +
n∑

i=1

∂2f(x1 . . . xn)
∂(xi)2

∣∣∣∣∣
µi

× σ2
i

2


σ2

y =
n∑

i=1


∂f(x1 . . . xn)

∂(xi)

∣∣∣∣∣
µi

2

× σ2
i


(5)

Maximum of two independent Gaussian random variables
Let Z = max(X, Y ), where X and Y are independent
Gaussian random variables with distributionsN (µ1, σ1) and
N (µ2, σ2) respectively. Let:

ν =
√

σ2
1 + σ2

2

η = (µ1 − µ2)/ν

ϕ(x) = (2π)−
1
2 e−x2/2

Φ(x) =
∫ x

−∞
ϕ(t)dt

According to results in [3],Z can be approximated as a normal
distribution with parameters:

µz = µ1Φ(η) + µ2Φ(−η) + νϕ(η)
σ2

z = (µ2
2 + σ2

2)Φ(−η)(µ1 + µ2)νϕ(η) (6)

+ (µ2
1 + σ2

1)Φ(η)− µ2
z

Recursive application of Equation 6 yields the maximum of
more than two Gaussian random variables.

3 Modeling timing errors

This section presents VATS, a novel model of variation-
induced timing errors in processor pipelines. In the following,
we first model errors in logic and then in SRAM memory.
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Figure 1. Example path delay distributions
before (a) and after (b) variation, showing
the introduction of timing errors.

3.1 General approach

A pipeline stage typically has a multitude of paths, each one
with a different probability of being exercised on any given
cycle. In our analysis, we make two simplifying assumptions.

Assumption 1: A path causes a timing fault iff it is exercised
and its delay exceeds the clock period.
Assumption 2: The base clock periodt0 is set at the shortest
time that admits error-free operation in the absence of process
variation and at nominal temperature (85oC ).

In the following, path delay is normalized by expressing it
as a fractiontR of t0. Our model begins with the probabil-
ity density function (pdf) of the normalized path delays in the
pipeline stage. Figure 1(a) shows an example pdf before vari-
ation effects. The right tail abuts theX = 1 abscissa and there
are no timing errors.

As the pipeline stage paths suffer parameter variation, the
pdf changes shape: the curve may change its average value
and its spread (e.g., Figure 1(b)). All the paths that have be-
come longer than 1 generate errors. Our model estimates the
probability of error (PE) as the area of the shaded region in
the figure. Moreover, if we clock the processor with period
tR, the probability of error is:

PE(tR) = 1− cdf(tR)

In the event that race-through errors are also a concern,
cdf(th) gives the probability of violating the minimum hold
time th. However, we will not consider hold-time violations
in the rest of the paper.

3.2 Timing errors in logic

We start by considering a pipeline stage of only logic. We
represent the logic path delay in the absence of variation as a
random variableDlogic, which is distributed in a way similar
to Figure 1(a). Such delay is composed of both wire and gate
delay. For simplicity, we assume that wire accounts for a fixed
fraction kw of total delay. This assumption has been made
elsewhere [9]. Consequently, we can write:

Dlogic = Dwire + Dgates

Dwire = kw Dlogic

Dgates = (1− kw) Dlogic

(7)

We now consider the effects of variation. Since variation
typically has a very small effect on wires, we only consider
the variation ofDgates, which has a random and a systematic
component. For each path, we divide the systematic varia-
tion component (∆Dgates sys) into two terms: (i) the aver-
age value of it for all the pathsin the stage(∆Dgates sys) —
which we call intra-stage systematic mean — and (ii) the rest
(∆Dgates sys −∆Dgates sys) — which we call intra-stage
systematic variation.

Given the high degree of spatial correlation in parameter
variation and the small size of a pipeline stage, the intra-stage
systematic variation is small. For example, the distance at
which the correlation between theVt of two transistors be-
comes zero (i.e., the correlation rangeφ) has been measured
to be 50% of the die width [7]. On the other hand, the length
of a pipeline stage in a high-performance microprocessor is
less than 10% of the width of a multicore die. Given that the
stage dimensions are significantly smaller thanφ, the transis-
tors in a pipeline stage have highly-correlatedVt (andLeff ).
Using Monte Carlo simulations with the parameters of Sec-
tion 2, we find that the intra-stage systematic variation of
Dgates has aσintrasys ≈ 0.004 × µ, while the variation of
∆Dgates sys across the pipeline stages of the processor has a
σintersys ≈ 0.05 × µ. Similarly, T varies much more across
stages than within them.

The random component ofDgates’s variation is estimated
from the fact that we model a path asn FO4 gates connected
with short wires. Each gate’s random component is indepen-
dent. Consequently, for the whole n-gate path,Dgates’s σrand

is
√

n×σrand DF04 , whereDFO4 is the delay of one FO4 gate.
If we taken = 12 as representative of high-end processors,
the overall variation is small. It can be shown thatDgates’s
σrand ≈ 0.01× µ. Finally,T has no random component.

We can now generate the distribution ofDlogic with varia-
tion (which we callDvarlogic and show in Figure 1(b)) as fol-
lows. We model the contribution of∆Dgates sys in the stage
as a factorη that multipliesDgates. This factor is the average
increase in gate delay across all the paths in the stage due to
systematic variation. Without variation,η = 1.



We model the contribution of the intra-stage system-
atic and of the random variations asDextra, a small ad-
ditive normal delay perturbation. SinceDextra combines
Dgates’s intra-stage systematic and random effects,σextra =√

σ2
intrasys + σ2

rand. For our parameters,σextra ≈ 0.011×µ.

Like η, Dextra should multiplyDgates as shown in Equation
8. However, to simplify the computation and becauseDlogic

is clustered at values close to one, we prefer to approximate
Dextra as an additive term as in Equation 9:

Dvarlogic = (η + Dextra) Dgates + Dwire (8)

≈ (1− kw) (η Dlogic + Dextra) (9)

+ kw Dlogic

After we compute theDvarlogic distribution (shown in Fig-
ure 1(b)) we numerically integrate it to obtaincdfDvarlogic

.
Then, the estimated error ratePE of the stage cycling with
a relative clock periodtR is:

PE(tR) = 1− cdfDvarlogic
(tR) (10)

3.2.1 How to use the model

To apply Equation 9, we must calculatekw, η, Dextra, and
Dlogic for the prevailing variation conditions. To do this, we
produce a gridded spatial map of process variation using the
model in Section 2 and superimpose it on a high-performance
processor floorplan. For each pipeline stage, we computeη
from the pipeline stage’sT and the systematicLeff andVt

maps (we neglectV variation). Moreover, by subtracting the
resulting mean delay of the stage from the individual delays
in the grid points inside the stage, we produce the intra-stage
systematic variation. We combine this distribution with the
effect of the random process variation to obtain theDextra

distribution.Dextra is assumed normal.
Ideally, we would obtain a per-stagekw andDlogic through

timing analysis of each stage. For our general evaluation, we
assume that the LF adder in [8] is representative of processor
logic stages, and setkw = 0.35 [9]. Additionally, we derive
pdfDlogic

using experimental data from Ernstet al. [6]. They
measure the error ratePE of a multiplier unit as they reduce its
supply voltageV . By reducingV , they lengthen path delays.
Those paths with delays longer than the cycle time cause an
error. Our aim is to find thepdfDlogic

curve from their plot of
PE(V ) (a curve similar to that shown in Figure 2(a)).

Focusing on Equation 9, Ernst’s experiment corresponds to
an environment with no parameter variation, soDextra = 0.
EachV corresponds to a new averageη(V ) and, therefore, a
newDvarlogic(V ) distribution. We compute eachη(V ) using
the alpha-power model (Equation 1) as the ratio of gate delay
at V and gate delay at the minimum voltage in [6] for which
no errors were detected.

At a voltageV , the probability of error is equal to the prob-
ability of exercising a path with a delay longer than 1 clock
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Figure 2. Error rate versus voltage curve
from [6] (a) and corresponding pdfDlogic (b).

cycle. Hence,PE(V ) = P (Dvarlogic(V ) > 1). If we use
Equation 9 and defineg(V ) = 1/(kw +η(V )× (1−kw)), we
haveDvarlogic(V ) = Dlogic/g(V ). Therefore:

PE(V ) = P (Dvarlogic(V ) > 1)
= P (Dlogic/g(V ) > 1)
= P (Dlogic > g(V ))
= 1− cdfDlogic

(g(V ))

(11)

Letting y = g(V ), we havecdfDlogic
(y) = 1 − PE(V ).

Therefore, we can generatecdfDlogic
numerically by taking

successive values ofVi, measuringPE(Vi) from Figure 2(a),
computingyi = g(Vi), and plotting (yi,1-PE(Vi)) — which
is (yi,cdfDlogic

(yi)). After that, we smooth and numerically
differentiate the resulting curve to find the sought function
pdfDlogic

. Finally, we approximate thepdfDlogic
curve with

a normal distribution, which we find hasµ = 0.849 and
σ = 0.019 (a curve similar to that shown in Figure 2(b)).

Strictly speaking, thispdfDlogic
curve only applies to the

circuit and conditions measured in [6]. To generatepdfDlogic

for a different stage with a different technology and workload
characteristics, one would need to use timing analysis tools on
that particular stage. In practice, Section 4.1 shows empirical
evidence that this method producespdfDlogic

curves that are
usable under a range of conditions, not just those under which
they were measured.

Finally, sinceDlogic andDextra are normally distributed,
Dvarlogic in Equation 9 is also normally distributed.

3.3 Timing errors in SRAM memory

To model variation-induced timing errors in SRAM mem-
ory, we build on the work of Mukhopadhyayet al. [16]. They
considerrandomVt variation only and describe four failures in
the SRAM cell of Figure 3: Read failure, where the contents of
a cell are destroyed when the cell is read; Write failure, where
a write is unable to flip the cell; Hold failure, where a cell loses
its state; and Access failure, where the time needed to access
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Figure 3. A read from a 6T SRAM cell, pulling
the right bitline low.

the cell is too long, leading to failure. The authors provide an-
alytical equations for these failure rates, which show that for
the standard deviations ofVt considered here, Access failures
dominate and the rest are negligible.

Because Access failures are the dominant errors and have
no clear remedy, they are our focus. In our analysis, we con-
sider the effects of both systematic and random variation in
bothVt andLeff . Moreover, we use the alpha-power current
model.

According to [16], the cell access time under variation on a
read is:

Tvaracc ∝
1

IdsatAXR

= h(VtAXR, VtNR, LAXR, LNR)
(12)

whereVtAXR andLAXR are theVt andLeff of the AXR ac-
cess transistor in Figure 3, andVtNR andLNR are the same
parameters for the NR pull-down transistor in Figure 3. We
now discuss the form of this functionh. We first briefly dis-
cuss the model of [16]. We then introduce our extension that
uses the alpha-power model.

3.3.1 IdsatAXR using the Shockley model

The model in [16] uses the traditional Shockley long chan-
nel transistor equations. Consider the case illustrated in Fig-
ure 3: a read operation where the bitline BR is being driven
low. Transistor AXR is in saturation and transistor NR is in
the linear range. Equating the currents using Kirchoff’s cur-
rent law:

IdsatAXR =
K1

LAXR
(VDD − VR − VtAXR)2

=
K2

LNR
(VDD − VtNR − 0.5VR)VR

(13)

●

●

● ● ● ● ● ● ● ●

2 4 6 8 10

0.
00

0
0.

00
4

0.
00

8
0.

01
2

Degree

E
rr

or

Figure 4. Error versus degree of expansion of z.

In the Shockley model (Equation 2) we have replacedβ with
K/Leff , whereK is a constant andLeff is the effective
length of the respective transistor. Equation 13 is a quadratic
equation inVR. We can thus findIdsat and subsequently the
functionh.

3.3.2 IdsatAXR using the alpha-power model

We now use the more accurate alpha power law [18] to find
IdsatAXR. By equating currents as in Equation 13, we have:

IdsatAXR =
K1

LAXR
(VDD − VR − VtAXR)α

=
K2

LNR
(VDD − VtNR)α/2VR

(14)

As in Equation 13, constants have been folded intoK1 and
K2. To solve forVR, perform the following transformation:

(VDD − VR − VtAXR)α = (VDD − VtAXR)α×(
1− VR

VDD − VtAXR

)α (15)

Let z = VR

VDD−VtAXR
and expand(1 − z)α using the Taylor

series (Equation 4). Typical values ofz are near 0.25, so we
compute the expansion about that point. Figure 4 plots the
error versus the degree of the expansion. Depending on the
accuracy desired, we can choose the appropriate number of
terms, but for most practical purposes, a degree of 2 is suffi-
cient, making Equation 14 a quadratic equation inVR:

(1− z)α ≈ 1− αz + α(α− 1)
z2

2

Now, we can easily solve forVR and find a closed form ana-
lytic expression forIdsatAXR.



3.3.3 Error rate under process variation

We now have an analytic expression for the access time
Tvaracc using Equation 12. It is a function of four variables:
VtAXR, VtNR, LAXR, andLNR. A six transistor memory
cell is very small compared to the correlation rangeφ of Vt

(Section 3.2). Therefore, we assume that the systematic com-
ponent of variation is the same for all the transistors and even
for the whole memory line. Now, using multivariate Taylor
expansion (Equation 5), the meanµTvaracc and standard de-
viation σTvaracc of Tvaracc can be expressed as a function of
theµ andσ of each of these four variables.

In reality, an SRAM array access does not read only one
cell at a time but a line — e.g., 8-1024 cells. Consequently, we
need to compute the distribution of the maximum access time
of all the cells in a line. There is no exact analytical solution
for the distribution of the maximum ofn normally distributed
variables, but we can use a normal approximation as shown in
Equation 6. The resulting distribution has meanµvararray and
standard deviationσvararray.

Finally, the access to the memory array itself takes only a
fractionk of the whole pipeline cycle — the rest is taken by
logic structures such as sense amplifiers, decoders, and com-
parators. Such logic delays are modeled according to Sec-
tion 3.2. Consequently, the total path delay with variation
Dvarmem is the sum of the normal distributions of the delays
in the line access and in the logic. It is distributed normally
with:

µvarmem = k µvararray + (1− k) µvarlogic

σvarmem =
√

k2 σ2
vararray + (1− k)2 σ2

varlogic

Then, the estimated error rate of a memory stage cycling
with a relative clock periodtR is:

PE(tR) = 1− cdfDvarmem(tR) (16)

3.3.4 Comparing the Shockley and alpha-power models

In Figure 5, we plot the mean access time (µTvaracc) for the
Shockley model (dotted line) and for the alpha-power model
(solid line). Access times are normalized to the one given by
the Shockley model at 85oC. From the figure, we see that the
mean access time differs significantly for the two values of
α. More importantly, it can be shown thatσTvaracc is around
3.5% of the mean for the Shockley model and around 2% of
the mean for the alpha-power model. Consequently, with de-
creasingα, the mean and standard deviation of the access time
decrease.
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Figure 5. Relative mean access time ( µTvaracc)
for α equal to 1.3 and 2.0. The latter corre-
sponds to the Shockley model.

4 Evaluation

4.1 Empirical validation

To partially validate the VATS model, we use it to explain
some error rate data obtained empirically elsewhere. We val-
idate both the logic and the memory model components. For
the former, we use the curves obtained by Daset al. [5], who
reduce the supply voltageV of the logic units in an Alpha-like
pipeline and measure the error rate in errors per cycle. They
report curves for three differentT : 45oC, 65oC, and 95oC.
Their curves are shown in solid pattern in Figure 6.
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Figure 6. Validating the logic model by compar-
ing the measured and predicted number of er-
rors per cycle.

To validate our model, we use the 65oC curve to predict
the other two curves. We first determineDlogic from the 65oC



curve through the procedure of Section 3.2.1. Recall that we
generate thepdfDlogic

numerically and then fit a normal dis-
tribution. We then useDlogic to predict the 95oC and 45oC
curves as follows. We generate a large number ofVi values.
For eachVi, we computeη(Vi) as discussed in Section 3.2.1.
Since there is no process variation,Dextra is zero. Knowing
the Dlogic distribution, we use Equation 9 for eachη(Vi) to
compute theDvarlogic(Vi) distribution. Finally, we plot the
(Vi, PE(Vi)) pairs from the model as dashed lines in Figure 6
along with the measured values (solid lines).

From the figure, we see that the predicted curves track
the experimental data closely. The disagreement between the
two comes largely from the normal approximation ofDlogic,
which is assumed for simplicity.

To validate the memory model, we use experimental data
from Karl et al. [11]. They examine a 64KB SRAM with
32-bit lines comprising four different-latency banks, and mea-
sure the error rate as the supply voltageV changes. Since the
SRAM is physically small, we assume that each cell in the ar-
ray has the same value of the systematic process variation. Us-
ing the measuredPE(V ) for each bank, we findDvarmem(tR)
using the method of Section 3.3 and fit a normal approxima-
tion. The original data is shown in solid pattern in Figure 7,
and the prediction is displayed as a dashed line. From the
figure, we see that the predicted and measured error rate are
close.
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Figure 7. Validating the memory model by com-
paring the measured and predicted fraction of
accesses that fail.

4.2 Example error curves

As one example of the uses of our model, we apply it to es-
timate the error rate of the logic and memory units of an AMD
Opteron processor as we increase the frequency. After gener-
ating aVt andLeff variation map according to our variation
model, we apply the timing error model to compute the error

rate versus frequency for each pipeline stage. Figure 8 shows
the results, where the frequency is normalized to the one that
the processor without process variation can deliver.
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Figure 8. Estimated error rates of memory and
logic pipeline stages in the AMD Opteron.

In the figure, each line corresponds to one pipeline stage.
We see that memory stages have steeper error curves than the
logic ones. This is because the paths in a memory stage are
more homogeneous. We envision a situation where architects
and circuit designers will use such error curves to design high
performance or low power processors that can tolerate timing
errors.

4.3 Tradeoffs in the model

Perhaps the main shortcoming of VATS is the loss of preci-
sion due to two main simplifying assumptions: (1) the use of
normal approximations and (2) the assumption that wire delay
is not affected by variation and accounts for a fixed fractionkw

of logic delay. The preceding section has argued that the loss
of accuracy is small in practice. For logic circuits, better ac-
curacy is possible by not using assumption (2). However, the
approximations in VATS make it easy to apply it in the early
stages of design, when architects must estimate variation ef-
fects at a high level.

5 Related work

Mukhopadhyayet al.[16] propose models for timing errors
in SRAM memory due to randomVt variation. They consider
several failure modes. As part of the VATS model, we extend
their model of Access time errors by (i) also including system-
atic variation effects, (ii) also considering variation inLeff ,
(iii) modeling the maximum access time of aline of SRAM
rather than a single cell, and (iv) using the alpha-power model
that uses anα equal to 1.3.



Memik et al. [14, 15] model errors in SRAM memory due
to cross-talk noise as they overclock circuits. They use high
degrees of overclocking — twice the nominal frequency and
more. In the less than 30% overclocking regime that we con-
sider, such cross-talk errors are negligible. For very small
feature-size technologies, however, the situation may change.

Ernst et al. [6] and Karl et al. [11] measure the error rate
of a multiplier and an SRAM circuit respectively by reduc-
ing the voltage beyond safe limits to save power. They plot
curves for error rate versus voltage. In this paper, we out-
lined a procedure to extract the distribution of path delays from
these curves, and validated parts of our model by comparing it
against their curves.

6 Conclusions

We have presented a comprehensive timing-error model for
both logic and memory in chips with parameter variation. For
the logic, we provide formulas that incorporate results from
timing analysis tools; for the memory, we extend models from
other work. We validate our results with empirical data and
find close agreement. We intend for the model to be used in
evaluating high performance or low power processors that tol-
erate timing errors.
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