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Abstract—In this paper, we present the design of a novel
multicore simulator called ParTejas . It is a fast shared
memory based parallel simulator written in Java. Unlike
recently released parallel simulators that mainly rely on
sampling, high level models, and highly relaxed synchroniza-
tion, we primarily rely on novel concurrent data structures.
In specific, we use a lock free parallel slot scheduler for
synchronizing the accesses of multiple threads at a shared
resource, and we use flexible barriers known as phasers to
relax synchronization within bounds. We leverage additional
language specific features of Java, and demonstrate a mean
speedup of 11.8X (simulation speed of 4-8 MIPS) with 64
threads for a suite of Splash2 and Parsec benchmarks.

I. INTRODUCTION

An architectural simulator is a very important tool in
computer architecture education, design, and research to
evaluate different architectural designs, and research ideas.
Due to continued Moore’s law based scaling, the number of
cores per chip is doubling roughly every two years. Hence,
there is an exponential rise in the number of cores that need
to be simulated, and thus it is getting increasingly difficult
to use traditional single threaded sequential simulators [1],
[2]. Therefore, we need parallel simulators.

In this paper, we present the design of a Java based
architectural simulator called ParTejas . In terms of per-
formance, Java is regarded to be generally slower. However,
with advances in just-in-time (JIT) compiler technology,
the performance of Java programs is becoming competitive
with heavily optimized C++ programs. For heavily object
oriented code, researchers have reported speedups [3] with
Java. We use Java because of its built in multi-threading
capabilities, concurrent data structures, library support,
debugging features, platform independence, garbage collec-
tion routines, and ease of programming. ParTejas relies
on novel concurrent non-blocking data structures like lock
free slot scheduling technology [4], and phasers to derive
speedups and simulate tightly coupled multiprocessors.

II. SYSTEM ARCHITECTURE

Figure 1 shows an overview of ParTejas . We use In-
tel’s binary Instrumentation Engine, PIN [5], to instrument
regular x86 or x86-64 binaries to provide us with execution
traces consisting of a stream of packets containing the
details of an executed instruction. This stream of packets
is passed to waiting Java simulator threads via a fast
shared memory based transfer medium. All the application
threads run in parallel, and generate gigabytes of data per
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Fig. 1. Overview of ParTejas

second. Since the number of segments are limited, we use
a single shared memory segment separated into n separate
contiguous regions for n application threads. Each region
contains a header, and a circular queue. We use a Peterson
lock optimized for the Intel x86 TSO (total store order)
memory model with a single fence.

If we decide to have napp application threads, and nsim

Java threads, then each Java thread needs to simulate
napp/nsim parallel pipelines (see Figure 1). In ParTejas,
each Java thread independently reads the circular queues of
all the application threads that it simulates. Subsequently,
we translate each CISC instruction into a set of RISC
instructions as follows.

First, we read the contents of the binary by parsing
the output of the GNU objdump command and create
a static table called the instruction table that saves the
contents of each instruction. We then form the dynamic
instruction stream using the instruction table and the exe-
cution traces obtained from PIN. Subsequently, we pass the
instructions to the pipeline. We model both in-order and
out-of-order pipelines. Like other simulators [6], [2], we
use both functional simulation, and an event queue for non-
deterministic events. Each pipeline simulates the timing of
the instruction, and the memory instructions are passed to
the memory system, which can model multilevel shared,
and coherent caches. We incorporated several optimizations
to further speed-up our simulation. Some of them are
mentioned here:



1) We designed a fast shared memory based transfer
mechanism between the application threads running
natively on PIN, and our Java simulator threads.

2) We implemented a parallel port using slot sched-
ulers for shared structures by using lock-free slot
scheduling algorithms proposed by Aggarwal and
Sarangi [4]. The parallel port is a matrix of slots,
where the number of rows is equal to the number of
simultaneous requests that can be processed in the
same cycle (capacity), and the columns represent the
cycle number in the current epoch.

0 2 4 6 7 8 9 11 12 13 141 3 5

Slot Available

Slot Busy

10

Request : (5, 2)

0 2 4 6 7 8 9 11 12 13 141 3 5 10

Request 

Fig. 2. Operation of a parallel port

Figure 2 shows an example of a parallel port that
can process only one request in a given cycle. The
first argument of a request is the requested starting
slot(cycle) number, and the second argument is the
number of consecutive slots that are required. The
parallel port schedules the request in slots 6 and 7.

3) The threads periodically synchronize at every epoch
boundary. An imbalance between the fastest thread,
and the slowest thread introduces a lot of idling in
the system. Since programs have very long phases in
which the amount of interaction between threads is
low, we propose an optimization that replaces barriers
with phasers. We use phasers to consider two epochs
at a time. A thread signals other threads after finishing
the first epoch. Instead of stopping it continues till it
reaches the boundary of the second epoch. At that
point, if there is any thread that has not reached the
end of the first epoch, it stops.

4) To reduce the cache misses due to swapping of
an application thread with a simulator thread, we
statically partition the set of cores such that the
operating system knows that there are two classes of
threads using the sched affinity() call in Linux.

5) Lastly, we propose a host of Java specific optimiza-
tions namely selection of appropriate data structures,
fine grained locking, and selective use of pooling.

III. CONCLUSION AND RESULTS

We evaluated the performance of ParTejas on a four
socket, 64 bit, Dell PowerEdge R820 server with a suite of
Splash and Parsec benchmarks. It had four 8 core 2.20GHz
Intel Xeon cpus (with hyper-threading enabled), 16 MB
L2 cache, and 64 GB of main memory. This server runs
Ubuntu Linux 12.10. All our code is written in Java 6
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Fig. 3. Performance results (speedups with respect to 1 core)

using Sun OpenJDK 1.6.0 27 with the latest patches. We
use Intel PIN (rev:49306) [5], with gcc 4.7.2. We show
our results with a multi-issue in-order pipeline. For all our
experiments, we simulate a 64 core system. We use an
epoch size of 1000 cycles for all our simulations.

Our performance results are shown in Figure 3. We
partition the set of hardware threads between PIN and
ParTejas. PIN runs 64 application threads, and we
instantiate n (8,16,32, and 64) Java threads, where each
Java thread simulates (64/n) parallel pipelines. For each
benchmark, we show the normalized speedup with respect
to the sequential execution time on 1 core. The bar chart
shows the results with phasers and diamond shaped dots
show the results with simple barriers. ParTejas provides
a mean speedup of 11.8X with phasers, as compared to
sequential execution. The speedups are 42.6% lower if we
use regular barriers. We observe a slowdown with 32 and 64
threads for streamcluster because of increased contention
among threads in the parallel port.
ParTejas primarily relies on novel concurrent data

structures such as the parallel port, and phasers, along
with Java specific features, and intelligent core partitioning.
Given, the fact that 70-80% of the time is spent in the
phasers, and the parallel ports, we postulate that there
might be a significant room for improvement with more
sophisticated data structures, and simulation techniques.
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