ISAMod: A Tool for Designing ASIPs by Comparing
Different ISAs

Shubhankar Suman Singh
Computer Science and Engineering, IIT Delhi, India
Email: shubhankar@cse.iitd.ac.in

Abstract—Designing the ISA (instruction set architecture) is a very
critical activity in the entire ASIP (application-specific instruction set
processor) design process. There is a long history of using automated
tools that suggest custom instructions based on an analysis of the data
flow graphs (DFGs) of target programs. Such approaches often create
an ISA that is overspecialized for a small set of applications and they
often suggest a plethora of custom instructions that cannot be practically
implemented. A survey of recent work indicates that adding custom
instructions to freely available ISAs such as RISC-V still relies on bespoke
analyses and institutional memory. In this paper, we focus on such modern
applications, where we only need to add a few instructions to an existing
ISA such as RISC-V. The aim is to either supplant or complement the
extensive manual analysis that goes into such decision making.

We propose an unconventional approach that uses novel visualization
techniques to first understand the impact of different ISA features by
comparing the execution of the same program using different popular
ISAs: both RISC and CISC. Our novel graphical methods provide simple
and intuitive explanations for differences in performance across ISAs for
the same micro-architecture. Moreover, we can use this information to
pick desirable instructions from other ISAs and evaluate their impact
when they are incorporated. We show examples where we are able to
increase the average performance by 16.5% for 6 SPEC-2017 benchmarks
by just adding 2-10 extra instructions in the basic RISC-V ISA. The
performance gain is comparable with state of the art custom instruction
generators. Our tool, ISAMod (ISA Modify), achieves this using a very
simple and intuitive approach. It has the potential to prove itself as a vital
part of the overall design flow and can reduce reliance on institutional
memory to a large extent.

Index Terms—ASIP design, ISA-comparison, x86, ARM, RISC-V

I. INTRODUCTION

Generation' of custom instruction sets for processors that are

tailored for a particular class of applications, is a classical problem
in EDA and embedded systems [1], [2]. This is a rather old problem,
which saw its heyday roughly a decade ago. In those days, the
primary focus was to create a bespoke processor with its own custom
instruction set that is specifically tailored for executing a class of
applications such as media encoders. During this period, hundreds
of ideas were proposed for automatically identifying instructions
from the dataflow graph (DFG) of the programs’ execution [3], [4].
These automated approaches roughly had a similar structure. The
first phase was subgraph enumeration, where all candidate subgraphs
of the DFG were enumerated — the idea is to replace a candidate
subgraph with a single instruction. The next step was subgraph
selection, where a subset of the enumerated subgraphs where selected
and replaced with custom instructions. In many proposals, this step
was followed by assessing the costs of the custom instructions in
terms of the original circuit area, the effects of latency, the potential
performance benefits, and the additional power consumption. This
process finally led to a set of custom ISA extensions. This area

'This paper’s main focus is a new visualization system to detect perfor-
mance issues. Hence, to understand this paper, it is necessary to either read
a color printout or read it using an electronic device

Smruti R. Sarangi

Usha Hasteer Chair Professor, Computer Science, IIT Delhi, India

Email: srsarangi@cse.iitd.ac.in

x86 ARM RISC-V

=
wu

=
o

bt
U

Performacne
(relative to x86)

e
o

1 O 00O 0
LRSS o & er\e(\ e
\\\00\ 6@

SPEC-2017 Benchmarks

Fig. 1: Performance of ARM and RISC-V ISAs (relative to x86)

is still active — the target applications and the techniques have
changed. Researchers nowadays are targeting Al and cryptography-
based applications [1], [5]. Furthermore, graph-based techniques have
given way to Al-based techniques such as genetic algorithms and Ant
colony optimisation [6], [7].

The reason that we revisit this problem in 2020 is primarily because
the interest in ISA extensions has been rekindled based on some
recent developments. The biggest driver of this new trend is the
advent of freely usable instruction sets such as the RISC-V ISA [8]
that have explicit support for introducing a few custom instructions.
Coupled with the fact that it is getting easier and cheaper for fabless
companies to create their own cores and SoCs based on RISC-V,
this has spawned a flurry of activity in identifying a few custom
instructions for specific classes of applications. To start with, we
conducted a very extensive study where we looked at 50+ papers
that have been published in the last three years. We noticed that the
flavour of current work [1], [2], [5], [9] in this area, is noticeably
different. The two primary differences are as follows. @ Recent
papers do not use automated techniques at all because of their
nonspecificity and also due to the fact that they do not factor in
design constraints; instead, the authors base their choices for custom
instruction selection based on a combination of simple statistical
analyses, intuitive reasoning, domain knowledge, and institutional
memory. ® The second difference is that the aim is to keep at least
90% of the ISA the same, and only add a very few and carefully
selected instructions to the ISA. ® We also observed that researchers
take inspirations from other ISAs to add custom instructions in a new
ISA to improve its performance. For example in references [1] and
[2], researchers introduced custom instructions in the RISC-V ISA
that were already available in the ARM ISA.

We need to understand that this trend is not unjustified. In general,
any SoC vendor would not see a lot of benefit in creating a fully
customised ISA — this will necessitate a new compiler tool chain.
However, they would like to maybe have a very few new instructions
that can lead to a disproportionate benefit in performance without un-
necessarily complicating the design process. The celebrated example

in this space is the multiply-and-accumulate instruction in CNNs [5].
To identify such instructions, manual analysis with simple statistical
reasoning is currently being used. In this paper, our utilitarian aim is
to abet this process.

We propose a tool ISAMod that uses a novel method to visualise
the execution of instructions in the program. Furthermore, it allows
us to compare the executions of the same program when compiled
with different ISAs and understand the differences in performance
that arise from the ISA per se. We show using case studies that it
is possible to identify instructions that can lead to a speed up. For
instance, we show how we can use ISAMod to augment the RISC-V
ISA and add a few custom instructions to disproportionately increase
performance. The selling point of our tool is as follows. Designers
can use it to augment their existing workflow that relies on basically
institutional memory such that they find it much easier to analyse,
understand, and assess the effect of custom instructions in program
executions.

Our approach is inspired from similar tools [10] used in analyzing
DNA fragments. They use visualization based methods to augment
their extensive statistical analysis libraries to intuitively understand
how cancer genomes differ from normal genomes. Figure 1 is a
motivating example, where we compare the performance of different
ISAs for the same architecture using the SPEC-2017 benchmarks.
x86 is the best performer for 5 out of 6 benchmarks.

The contributions of our work are as follows:

©® We compare three popular ISAs, x86, ARM and RISC-V, from
a performance perspective using the SPEC-2017 benchmarks. & We
introduce two novel visualization techniques to quickly detect and
understand the reasons for the differences in performance. ® Finally,
we use the insights from the reasons to introduce custom instructions
to the RISC-V ISA and improve its performance. We show that as
compared to prior work, the benefits are similar; however, we reach
the desired solution using a far easier and far more intuitive series
of steps.

In Section II, we discuss the related work, discuss our simulation
framework and the ISAMod tool in Sections IIl and IV, then proceed
to Section V to discuss the evaluation results, and finally conclude
in Section VI.

II. RELATED WORK

Initial works [11], [12] in this area involved enumerating all
possible subgraphs of a DFG for instruction identification. In the
most general case, each node of the graph can either be included or
excluded from a candidate instruction. Thus, the search space has an
exponential complexity.

Later works [3], [13] provided algorithms for fast identification
of custom instructions for ASIPs. It is done by applying different
optimizations such as branch and bound techniques and imposing
different constraints on the subgraphs (based on the number of inputs
and outputs). Thus, these algorithms were much faster than the
previous papers, but the time complexity was still exponential in the
worst case.

Recent works [6], [7] try to scale the methods by applying
distributed and parallel algorithms. They first partition the DFG into
many smaller components and apply the enumeration algorithms
on each partition in parallel. Hence, the effective run time of the
enumeration algorithm has improved.

These works over-specialize the ASIP to work for only a particular
benchmark. We propose a simple and intuitive tool in this paper that
is not based on complicated DFG analyses; instead, we compliment
the instruction selection process using different visualizations.

Emulator

Simulator

Customizable
RISC Core

—

ISA specific
features

Fig. 2: Simulation framework

III. SIMULATION FRAMEWORK

We want to find the effects of the ISA on performance for a given
application. But the performance of a particular ISA is tightly coupled
with its underlying micro-architecture if we use a real system. Other
works have normalized the performance values based on the core
frequency. But, there are many architectural parameters apart from
the ISA on which the performance depends. Hence, to ensure a fair
comparison, we use a simulation framework (see Figure 2) where we
use the same RISC micro-architecture for conducting experiments for
all the three ISAs. This method is commonly used in the research
community to do such a comparative study [14], [15]. Since CISC
ISAs such as x86 are internally converted to RISC ISAs [16], this
method works well for both RISC and CISC ISAs and as a result
it is the most popular approach in the architecture community for
performing such kind of studies. However, to simulate some ISA
specific artifacts such as shifted operands in ARM, it is necessary
to introduce some special features in the simulator to support such
special instructions. This has been done in our case in consultation
with the processors’ data sheets.

We compile all the code using the same version of gcc (8.2)
with the same optimization flags and run them on the same version
of the operating system (Linux 4.15) that was built with the same
parameters.

We use the Tejas simulator [17] to do all our experiments. Tejas
is a cycle-accurate architectural simulator and has been thoroughly
validated against real hardware [17]. Our simulation framework is
as follows. We simulate the different ISAs using a customizable
RISC out-of-order pipeline core that simulates a Virtual Instruction
Set Architecture (VISA), which is a RISC ISA. The instructions of
the different ISAs are translated to VISA by a validated translation
engine (for x86 we use PTLsim [16]). We simulate an out-of-order
Intel-Haswell core (3.4 GHz core frequency), 32 KB L1-Data and
Instruction cache, 256 KB L2 cache, and an 8 MB L3 cache.

We use QemuTrace, an extension of QEMU [18] to generate
x86 and ARM instruction traces, and use Spike [19] to generate
RISC-V instruction traces. Apart from instructions, we add branch
taken/not-taken, and memory load/store address values in the trace.
The Tejas simulator simulates these traces to compute cycles, energy,
branch prediction rates, cache hit rates, and many more architectural
statistics.

IV. THE ISAMod TooL

The goal of this tool is to find the reasons for the differences in
performance while running the same application on different ISAs in
the same environment. The tool follows the steps shown in Figure 3.
1) Generate instruction traces for the same application for different
ISAs.

2) Mark equivalent phases across the different traces by marking
the start and end of a particular function call (the program
counter of a function is obtained using objdump).

Trace anerator ASIP

Design

Statistics
Analyzer

Compare
Images

Simulation

Fig. 3: The ISAMod tool

3) Simulate these traces using the Tejas simulator and compare the
statistics across equivalent phases (each phase across different
ISAs does exactly the same work).

4) Construct a pixelated image by mapping each instruction to a
specific color.

5) Search for specific patterns in those images to understand the
reasons for the differences in performance.

6) Use the patterns to improve the overall performance by creating
an application-specific instruction set processor.

A. Statistics Analyzer

The input at this step is all the statistics generated using the
Tejas simulator. We collect the executed instruction sequences, and
performance figures for each phase across different ISAs. Along with
this, we also collect the architectural parameters such as the number
of LSQ forwarding events, branch prediction rates, and cache hit
rates. The tool analyzes the most frequently executed functions and
checks for performance differences across the different ISAs. Finally,
it prints the sequences of instructions executed in these functions,
which are sent to the image generator.

B. Image Generator

We create images for the most frequently executed functions using
instruction traces for all the three ISAs. We start by mapping each
micro-operation to a particular color and then create a 2D raster
diagram representing the sequence of instructions horizontally from
left to right (see Figure 4). We then define the following patterns for
these images to help find the reasons for differences in performance.

Order of filling

Horizontal stride = 3

. : .
E . Vertical stride = 3

Slope = 135°

Fig. 4: Raster diagram from an instruction sequence

1) Horizontal stride: The horizontal stride represents the loop
size. A smaller value is better.

2) Vertical stride: The vertical stride represents the loop count
(number of iterations). It is relevant when we consider nested
loops.

3) Slope: The slope of a particular color pattern can also be used
to compute the loop size. See Figure 4 for the definition of the
slope. In general, larger slopes correspond to a larger loop size.

4) Color composition: We have mapped darker colors to high
latency operations such as loads, stores and floating point op-
erations, whereas, we have mapped the low latency operations
to lighter colors. Hence, it is very easy to visually identify
which image is associated with a better performance.

For the current work, we do a manual analysis of the generated

images. Using automated image processing and machine learning
tools to automatically identify different features is part of future work.

C. Views

The ISAMod tool displays the comparison results in two views. In
View I, we show the performance and architectural parameters using
Circos plots, and the show the instruction sequences using a raster
diagram in View II (refer Section V-B for a complete example). We
used the Python imaging Library (PIL) to generate the raster diagrams
and used the circlize [20] package in R to generate the View I plots.

V. RESULTS

We compare the three ISAs using the SPEC-2017 benchmark suite.
We do not use x264 and perlbench since they have x86 ISA-specific
code. RISC-V does not support cross-compilers for the Fortran
programming language. Hence, we excluded those benchmarks. In
Figure 5, we show the visualization of the most critical function
(most frequently executed function) in all the three ISAs for a set of 6
benchmarks. Each image has 20 x 20 pixels: it displays a sequence of
400 instructions in a phase. Lastly note that we define performance
as the reciprocal of the simulated execution time.

A. Results-1

We primarily observe two different kinds of patterns. In Fig-
ures S5a, 5c and Se, we observe a repeating pattern of colors
representing a loop of instructions. In these benchmarks, the loop
size varies from 5-30 instructions only. On the other hand, in
Figures 5b, 5d and 5f, we do not find any simple repeating patterns.
In these cases, we rely mostly on the color composition to understand
the differences in the ISAs. Let us now discuss each benchmark in
detail.

libquantum: It is a library for simulating a quantum computer and
hence it is a computationally intensive benchmark. The most frequent
function is quantum_sigma_x. We observed that x86 performs 14%
better than the RISC ISAs. From Figure 5a, we observe that the
horizontal strides of the three ISAs are 11, 12 and 13 respectively.
A larger number of instructions are executed in a loop for the RISC
ISAs as compared to x86 leading to poorer performance. The vertical
stride is the same for all the ISAs, which means that the loop count is
the same and we do not have nested loops. We also observed that the
slope of the blue colored lines is the highest for the x86 architecture,
hence pointing to a smaller loop size and better performance. Note
that the x86 instructions are not complex instructions that require
more cycles to execute. The composition of darker shades blue, pink,
and red is the same for all the three ISAs. This correlates with a
similar number of branch and cache accesses across all the three
ISAs.

From further code analysis, we found that x86 performs better
because it allows indirect memory accesses in arithmetic operations
(see Figure 6). Hence, it reduces the total number of ALU operations
(by 14%), leading to better performance.

xz: It is a compression library. We tested it using the combined
input file. The lzma_code function is the most frequent function in
this benchmark. The horizontal stride and the vertical stride are also
the same across all the ISAs. The slope of the blue (branch) lines is
also the same across all the ISAs (90°). We also observed a similar
color composition across all the ISAs (see Figure 5c).

From further code analysis, we observed that all the three ISAs
run a similar set of five instructions (mov, Ild, st, alu and branch)
repeatedly. The only difference is that the order of loads and stores is
interchanged in x86 as compared to RISC ISAs, which is insignificant
in an OOO pipeline. Thus, we did not find any performance difference
across ISAs for this benchmark.

(c) xz - IPC: x86=1, ARM=1, RISC-V=1

(e) mcf - IPC: x86=0.67, ARM=1, RISC-V=0.93

lintegerALU fintegerMul [Tl floatMul floatDiv

(f) namd - IPC: x86=1, ARM=0.7, RISC-V=0.85
store MG mov [nop |

Fig. 5: Images for View II: x86 vs ARM vs RISC-V

mcf: It solves the vehicle scheduling problem in a public mass
transportation system and is mostly comprises of integer arithmetic.
The most frequently executed function is primal_bea_mpp. The
function updates the costs of the individual objects using a for loop.
The horizontal stride for the x86, ARM and RISC-V ISAs is similar
(25, 23 and 28 respectively). From Figure Se, we observe evenly
spaced pink (loads) color lines in RISC-V, whereas they are closely
packed in x86 code. The color composition of other colors is similar
across the ISAs.

Since the loads are closely packed in the x86 ISA, this leads to a
higher degree of memory and MSHR pressure translating to poorer
performance. This explains the poor L1 and L2 cache hit rates in
the case of the x86 ISA (25% and 43% respectively) as compared to
RISC-V (43% and 56% respectively).

leela: It is an Al library for the Go playing engine that uses
Monte Carlo simulation. The most frequently executed function is
FastBoard. 1t consists of a series of if-else statements, hence we see a
lot of conditional instructions (blue color in Figure 5b). The loop size
is very large in this benchmark, thus we do not find repeating patterns
in a window of 400 instructions. Hence, horizontal and vertical strides
are not defined. But, we observe some features related to the color
composition. We observe that many mov operations (cyan) in x86 are
replaced with ALU operations (yellow) in ARM leading to a poorer
performance in ARM (more structural hazards). A higher density of
memory operations (pink, red) [20%] in the RISC ISAs as compared
to x86 can also be attributed to the poorer performance: arises out
of spilling because mov in x86 uses one less register.

deepsjeng: It is also an Al application for playing chess. The
most important functions in this benchmark are std_eval, gsearch
and setup_attackers. They call many smaller functions to define the
moves of the individual chess pieces. Hence, this benchmark tests

the function call-return efficiency of the different ISAs; this creates
a lot of pressure on registers. Whenever, we have frequent functions
calls, we need to add a lot of code to spill and load registers.
Similar to leela, we do not observe highly repeating structures in
this benchmark. But we observe differences in the color composition
(see Figure 5d). The concentration of pink and red (load and store)
colors is higher for ARM and RISC-V (16%) compared to x86. In
such cases, an architecture that uses the stack might perform better
because there will be more of load-store forwarding in the LSQ.
Thus, x86 (uses the stack to store function arguments) has better
performance as compared to ARM and RISC-V. The RISC-V ISA
has a poor performance because it runs a larger number of micro-
instructions (22% more compared to x86) for doing exactly the same
work.

namd: It is a program for the simulation of large biomolecular
systems. It is a computationally intensive application and consists
of floating point operations. The key function in this benchmark
is calc_self_energy. The calc_self _energy function consists of a
sequence of load, sum-and-compare, and store operations. x86 has
around 30% better performance compared to the the ARM ISA.

In Figure 5f, we observe a smaller number of branch operations
(blue) in x86 compared to ARM and RISC-V, resulting in better
performance. The composition of the memory operations (pink and
red) is 20% lower in the case of x86. This is because x86 benefits
from its complex conditional instructions , and its complex addressing
modes.

B. Results-11: libquantum

In this section, we show the detailed output of the ISAMod
tool for the libquantum benchmark. In Figure 6, we first show the
performance and architectural parameters in View I using a Circos
plot. For each concentric circular ring, the range of the radial axis

! i} —
V' I I 1 100K \ L1 hit-rate
ew Lo, . "I\
%- Branc
' hit-rate
View JlL;Er- - e .
- -
H om =l | HE =
1: mov rax,rdx 1:1dr rl,[r2, #16] 1:1d all6(a2)
2:add rdx,0x1 2:add rl,rl, r4, Isl #4 2:slli a5,a4,0x4
3:shl rax,0x4 3:add r4, r4, #0x1 3: addi a4,a4,1
4:add rax, [rbx+0x10] 4:add al,al,a5
COde 4:1dr 15, [rl, #8] 5:1d a5,8(al)
5:xor [rax+0x8]rcx «=———Jp 5:eor 15,15,r3 <> 6: xor a5,a5,a3
6:str 5, [rl, #8] 7:sd a5,8(al)
6: cmp [rbx+0x4],edx 7:1dr rl, [r2, #4] 8:lw al,4(a2)
8:cmp rl, rd4
7:jg 1 9:bgt 1 9:blt al,a4l

Fig. 6: libquantum: detailed analysis

is from O to 1. A point on a concentric ring of each plot shows
the corresponding value for a set of 250 consecutive instructions.
The complete circle corresponds to a total of 200K instructions (to
be viewed in clockwise order starting from the top). We selected
an instruction window of 200K instructions for the key function
quantum_sigma_x. We observe higher IPC values in x86 as compared
to the RISC ISAs. Similarly, the L1 and L2 hit-rates are higher in
x86. The branch prediction hit-rate is almost equal to 100% for all
the three ISAs.

In View II, we zoom into a 250-instruction phase and display the
sequence of instructions executed in it. We observe higher horizontal
stride values in the case of ARM and RISC-V as compared to x86.
Next, in View 3, we zoom further and display the sequence of
instructions corresponding to a single loop iteration. Along with the
color map, we also display the sequence of assembly instructions of
all the three ISAs.

In View III, we observe a larger number of ALU operations
(yellow) in ARM and RISC-V as compared to x86. This can be
verified from the code as we see a complex xor operation in x86
(line 5), which does a load as well as a store. The destination address
(rax+0x8) is computed only once, and then the load, xor and store are
performed. Whereas, in the case of RISC-V, this complex operation
is split into three operations (Lines 5, 6 and 7). Here, the destination
address (a/ + 8) is computed twice, once in Line 5 and again in Line
7. Rest of the instructions remain the same across the ISAs. The x86
ISA is benefiting from having a complex representation of the xor
operation by minimizing the total number of address computations.
This optimization is not applicable in the case of the RISC ISAs. In
the case of RISC, we can save the extra ALU operation by using

G o3

80 ldr

Fig. 7: Output of the FAGECI algorithm for deepsjeng

an extra temporary register but it will be adding to the register
pressure. Thus, x86 has a 14% higher performance because of this
optimization.

The ISAMod tool can in this way be used to analyze performance
issues. The Circos plots help to find the relation between the
performance and different architectural parameters. The visualization
of the instructions helps us to easily identify the reasons for the
differences in the performance. Finally, these reasons can be used to
design an application specific instruction set processor (ASIP) as we
show next.

C. Results-111: ASIP Design

In this section, we compare our results with the state of the art
work in custom instruction generation, FAGECI [6]. We applied their
algorithm of custom instruction enumeration and selection on the

TABLE I: Number of new custom instructions

Benchmark FAGECI - FAGECI - ISAMod
Enumeration Selection

Xz 275 44 1

namd 301 53 3

libquantum 254 38 1

deepsjeng 215 31 8

leela 283 47 10

SPEC-2017 suite compiled for the RISC-V ISA. We set the number of
inputs to 2 and the number of outputs to 1 for the custom instructions
for their algorithm. First, we show a part of the DFG generated
by their algorithm in Figure 7. The custom instruction subgraph is
highlighted in green. This is the only visualization available in their
work, whereas we provide three different views that are far more
intuitive to select and analyze the custom instructions. Figure 7 is
rather complex in nature and it is almost incomprehensible.

Now, we show the number of potential new instructions found us-
ing FAGECI in Table I. FAGECI enumerates 215 to 301 instructions
and finally selects 31 to 53 new instructions. In comparison, ISAMod
provides only 1 to 10 instructions, the output is thus much easier to
analyze and understand.

B FAGECI ® ISAMod

Performance gain (%)

leela

namd

libquantum deepsjeng Average

SPEC-2017 Benchmarks

Fig. 8: Performance gain for RISC-V: FAGECI vs ISAMod

Ini_tial Final - ASIP

Fig. 9: libquantum - IPC: RISC-V=1 to RISC-V-ASIP=1.16

We show the improvements in the RISC-V core upon introduction
of application specific instructions. For, the example of libquantum,
we added a complex xor operation and did a simulation to get the
new performance numbers. In Figure 8, we see that the performance
in the case of libquantum increased by 16%. Figure 9 shows the raster
diagram in the case of RISC-V before and after the addition of the xor
instruction. We observe a reduction in the number of ALU operations
graphically (reduced incidence of the yellow color). Similarly, in
leela and namd, we observe a performance gain of 10% and 28%
respectively after adding just 2-10 new instructions. The average
performance gain by incorporating the new instructions identified
by ISAMod is 16.5%. We also incorporated the new instructions
provided by the FAGECI algorithm, and the average performance gain

is 17.75% for the SPEC benchmarks. The results are comparable. Our
algorithm’s benefit is that we provide fewer new instructions and a
visualization engine to analyze the new instructions and explain the
performance differences.

VI. CONCLUSION

Instead of relying on costly graph analyses, in this paper we
relied on a novel method that uses graphical techniques. Our set
of increasingly complex diagrams filter out all unnecessary details
and show us all the information that is required to identify the
key reasons behind the performance differences between frequently
executed functions of the same benchmark compiled with three
different popular ISAs. The Circlos plots capture micro-architectural
details and the raster diagrams capture code patterns. We show that
we can find the reasons by correlating these diagrams with small
assembly code snippets that are executed repeatedly. We made use
of this information to increase the performance by 10-28% of basic
RISC ISAs such as RISC-V by adding 2-10 new instructions. The
performance gain is comparable with the state of the art in custom
instruction generation; we at the same time reduce the number of
infructuous and trivial suggestions made by custom ISA generators
by 5-40 times.

REFERENCES

[1] M. Theiley, V. Hoang, and Y. Yarom, “Risc-v isa custom extensions for
use in cryptography,” in ICR, 2019, p. 58.

[2] S. Payvar, M. Khan, R. Stahl, D. Mueller-Gritschneder, and J. Boutellier,
“Neural network-based vehicle image classification for iot devices,” in
SiPS. IEEE, 2019, pp. 148-153.

[3] P. Yu and T. Mitra, “Scalable custom instructions identification for
instruction-set extensible processors,” in CASES, 2004, pp. 69-78.

[4] P. Bonzini and L. Pozzi, “A retargetable framework for automated

discovery of custom instructions,” in /EEE ASAP, 2007, pp. 334-341.

R. Porter, S. Morgan, and M. Biglari-Abhari, “Extending a soft-core

risc-v processor to accelerate cnn inference,” in CSCI, 2019, p. 694.

H. Chen and S. Chen, “Fast automatic generation of efficient custom

instructions for application-aware computing,” in /CACI. IEEE, 2018,

pp- 283-288.

[7]1 S. Wang, C. Xiao, W. Liu, and E. Casseau, “A comparison of heuris-
tic algorithms for custom instruction selection,” Microprocessors and
Microsystems, vol. 45, pp. 176-186, 2016.

[8] K. Asanovi¢ and D. A. Patterson, “Instruction sets should be free: The
case for risc-v,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2014-146, 2014.

[91 M. S. Louis et al., “Towards deep learning using tensorflow lite on risc-
v,” in CARRV, 2019.

[10] L. Choy et al., “Constitutive notch3 signaling promotes the growth of
basal breast cancers,” Cancer research, vol. 77, no. 6, p. 1439, 2017.

[11] P. Faraboschi et al., “Lx: a technology platform for customizable vliw
embedded processing,” in ISCA, 2000, pp. 203-213.

[12] M. Arnold and H. Corporaal, “Designing domain-specific processors,”
in CODES, 2001, pp. 61-66.

[13] N.T. Clark, H. Zhong, and S. A. Mahlke, “Automated custom instruction
generation for domain-specific processor acceleration,” IEEE Transac-
tions on Computers, vol. 54, no. 10, pp. 1258-1270, 2005.

[14] A. Venkat and D. M. Tullsen, “Harnessing isa diversity: Design of a
heterogeneous-isa chip multiprocessor,” in ISCA. IEEE, 2014, pp. 121—
132.

[15] M. DeVuyst, A. Venkat, and D. M. Tullsen, “Execution migration in a
heterogeneous-isa chip multiprocessor,” in ASPLOS, 2012, pp. 261-272.

[16] M. T. Yourst, “Ptlsim: A cycle accurate full system x86-64 microarchi-
tectural simulator,” in ISPASS. IEEE, 2007, pp. 23-34.

[17] S.R. Sarangi, R. Kalayappan, P. Kallurkar, S. Goel, and E. Peter, “Tejas:
A java based versatile micro-architectural simulator,” in PATMOS, 2015.

[18] F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX
Annual Technical Conference, FREENIX Track, vol. 41, 2005, p. 46.

[19] “Spike: Risc-v isa simulator,” https://github.com/riscv/riscv-isa-sim, ac-
cessed: 2020-09-01.

[20] Z. Gu et al., “circlize implements and enhances circular visualization in
1r,” Bioinformatics, vol. 30, no. 19, pp. 2811-2812, 2014.

[5

=

[6

=

