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Abstract—Scalable scheduling is being increasingly regarded
as an important requirement in high performance systems.
There is a demand for high throughput schedulers in servers,
data-centers, networking hardware, large storage systems, and
in multi-cores of the future. In this paper, we consider an
important subset of schedulers namely slot schedulers that
discretize time into quanta called slots. Slot schedulers are
commonly used for scheduling jobs in a large number of appli-
cations. Current implementations of slot schedulers are either
sequential, or use locks. Sadly, lock based synchronization
can lead to blocking, and deadlocks, and effectively reduces
concurrency. To mitigate these problems, we propose a set
of parallel lock-free and wait-free slot scheduling algorithms.
Our algorithms are immune to operating system jitter, and
guarantee forward progress. Additionally, all our algorithms
are linearizable and expose the scheduler’s interface as a
shared data structure with standard semantics. We empirically
demonstrate the scalability of our algorithms for a setup with
thousands of requests per second on a 24 thread server. The
wait free algorithms are most of the time as fast as the lock-free
versions (3X-8X slower in the worst case).
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I. INTRODUCTION

We are entering the era of large shared memory multicore

processors with potentially hundreds of cores. Keeping these

trends in mind, software designers have begun the process of

scaling software to hundreds of cores. However, to optimally

utilize such large systems, it is necessary to design scalable

operating systems and middleware that can potentially han-

dle hundreds of thousands of requests per second. Some of

the early work on Linux scalability has shown that current

system software does not scale beyond 128 cores [1], [2].

Shared data structures in the kernel limit its scalability, and

thus it is necessary to parallelize them. To a certain extent

the read-copy update mechanism [3] in the Linux kernel

has ameliorated these problems by implementing wait free

reads. Note that writes are still extremely expensive, and this

approach has been predominantly used in the networking

protocol stack, and memory management unit.

One of the remaining major bottlenecks to scalability

is the scheduler [1], [2]. The quintessential approach to

parallelizing the scheduler is to use a parallel wait free

queue. It is possible to design a multiple enqueuer/dequeuer

wait free queue with moderate overheads (see [4]). Note

that parallel schedulers have limitations in their functionality.

They typically do not consider dependences across tasks, or

assume task deadlines. They try to schedule tasks in FIFO

order.

In this paper, we look at a more flexible approach

proposed in prior work called slot scheduling [5]. A slot

scheduler treats time as a discrete quantity. It divides time

into discrete quanta called slots. The Linux kernel divides

time in a similar manner into jiffies. The beginning of each

jiffy is indicated by a timer interrupt. Now, we can consider

a two dimensional matrix of time and resources known as

the Ousterhout matrix [6] as shown in Figure 1.
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Figure 1. The Ousterhout matrix for scheduling

Here, we represent time in the x-axis, resources in the y-

axis, and each cell(slot) represents a boolean value – empty

or full. Empty indicates that no task has been scheduled

for that slot, and Full indicates the reverse. We can have

several request patterns based on the number of requests

that can be allotted per row and column. In this paper,

we parameterize the problem of slot scheduling with three

parameters – number of resources(capacity), the maximum

number of slots that a request requires (numSlots), and its

progress condition (lock-free (LF ), or wait-free(WF )). We

consider four combinations of the capacity and number of

slots: 1× 1, 1×M , N × 1, and N ×M , where the format

is capacity×numSlots. For example, we can interpret the

N×M – LF problem as follows. The number of rows in the

Ousterhout matrix is equal to N , and each request requires

M slots. These M slots need to be in consecutive columns,

there should be one slot per column, and the algorithm

should be lock-free. The N ×M formulation is the most



generic version of the slot scheduling problem, and can be

easily tailored to fit additional constraints such as having

constraints on the rows.

We propose a novel, parallel, and linearizable data struc-

ture called parSlotMap, which is an online parallel slot

scheduler. In its current version, it supports just one opera-

tion – schedule(request). Each request specifies the earliest

possible starting slot, and the number of slots it requires.

We propose both lock free and wait free algorithms for

different variants of the scheduler. We experimentally show

that the wait free algorithm is 3-8X slower than the lock free

algorithm in the worst case. However, it ensures that the total

work done by an ensemble of threads is more than the lock

free variant, and both our parallel algorithms are orders of

magnitude faster than an algorithm that uses locks.

RELATED WORK

Scheduling is a classic problem. Most variants of schedul-

ing that consider dependences between tasks, and assume

multiple nodes have been proven to be NP hard. In this

paper, we consider a simpler variant of the problem suitable

for parallel schedulers. It admits simple sequential solutions.

To the best of our knowledge, lock free and wait free algo-

rithms for parallel slot scheduling have not been proposed

before. There is some related work in generic scheduling,

and sequential slot scheduling.

Classical parallel scheduling involves parallelizing differ-

ent heuristics for sequential scheduling. Some of the most

common heuristics are: longest job first, earliest finish time,

highest priority, and shortest job first. Wu [7] and Dekel

et. al. [8] provide a survey of the algorithms. Most of the

scheduling algorithms are for offline variants of the schedul-

ing problem. In specific, they work on a set of requests that

are known apriori. Subsequently, they use parallel ranking

and sorting algorithms to compute schedules. All of these

algorithms use locks. Some recent work has been done by

Mhamdi et. al. [9] for distributed systems, and by Keller

et. al. [10] for parallel systems. Mhamdi et. al. consider

online variants of the scheduling problem for a message

passing system. Keller et. al. propose an offline version

of the algorithm that has a known task dependence graph.

They propose heuristics to split the graph and distribute it

across different processors. Each processor gets to schedule

the subgraph assigned to it. Communication messages are

infrequent.

Ousterhout [6] proposed the Ousterhout matrix that forms

the basis of slot scheduling. His basic formulation has been

used by the Rialto CPU scheduler [11] and the seminal

work on slot scheduling in Brandon Hall’s thesis [5].

Slot scheduling is now ubiquitous and finds uses in video

streams [12], vehicular networks [13], optical networks [14],

online advertisements [15], and green computing [16]. These

slot schedulers will benefit from high performance parallel

implementations.

II. OVERVIEW OF PARALLEL SCHEDULING

A. Definition of the Problem

The parSlotMap data structure supports just one method

namely – schedule(request). A request, r, has two pa-

rameters – starting index/time(start), and the number of

slots(numSlots). parSlotMap assigns the request to a set

of empty slots, and returns a list of assigned numSlots slots.

Now, at any point of time, let us consider all the requests

that have been assigned slots. We want to characterize

the state of the matrix at that point. One commonly used

correctness condition is – sequential consistency (see Adve

et. al. [17]). This means that it should be possible for some

sequential scheduler to generate exactly the same output as

the parallel scheduler. Let us consider an example (1 ×M
problem(M = 3). Assume there are two requests that start

at index 1, and want to book three slots. A sequential

scheduler will try to book them at the earliest possible slots.

There are two possible solutions : (request 1 (1-3), request

2 (4-6)), or (request 1 (4-6), request 2 (1-3)). The parallel

scheduler should come up with one of these solutions. If the

sequential scheduler produces an efficient schedule, then the

parallel scheduler will also do the same. Let us now try to

characterize what kind of schedules are legal for a single

thread (sequential) scheduler.

B. Legal Sequential Specification

For producing legal schedules, a parallel schedule needs

to obey conditions 1 and 2.

Condition 1

Every request should be scheduled at the earliest possible

time.

Condition 2

Every request should book only numSlots entries in

consecutive columns. One slot per each column.

However, for a parallel scheduler, sequential consistency

and producing legal schedules is not enough. Let us consider

the previous example, and assume that request 2 arrives a

long time after request 1, and these are the only requests in

the system. Then we intuitively expect request 1 should get

slots (1-3), and request 2 should get slots (4-6). However,

sequential consistency would allow the reverse result. Hence,

we need a stronger correctness criteria that keeps the time of

request arrival in mind. This is called linearizability [18], and

is one of the most common correctness criteria for parallel

shared data structures.

C. Linearizability

Let us define a history as a chronological sequence

of events in the entire execution. Formally, history H ∈
(T,E, i, V ∗)∗. Here, T denotes the thread id, E denotes the

event (invocation or response), i denotes a sequence number,



and V denotes the return value/arguments. We define only

two kinds of events in our system namely invocations(inv)

and responses(resp). A matching invocation and response

have the same sequence number, which is unique. We refer

to a invocation-response pair with sequence number i as

request ri. Note that in our system, every invocation has

exactly one matching response, and vice versa, and needless

to say a response needs to come after its corresponding

invocation.

A request ri precedes request rj , if rj’s invocation comes

after ri’s response. We denote this by ri ≺ rj . A history,

H , is sequential if an invocation is immediately followed

by its response. We define the term subhistory (H|T ) as

the subsequence of H containing all the events of thread T .

Two histories, H and H ′, are equivalent if ∀T,H|T = H ′|T .

Furthermore, we define a complete history – complete(H)
– as a history that does not have any pending invocations.

Let the set of all sequential histories that are correct,

constitute the sequential specification of a scheduler. A

history is legal if it is a part of the sequential specification

and it is characterized by conditions 1 and 2. Typically

for concurrent objects, we define their correctness by a

condition called linearizability given by the following

conditions.

Condition 3

A history H is linearizable if complete(H) is equivalent

to a legal sequential history, S.

Condition 4

If ri ≺ rj in complete(H), then ri ≺ rj in S also.

To prove conditions 3 and 4, it is sufficient to show

that there is a unique point between the invocation and

response of every method at which it appears to execute

instantaneously [19]. This point is known as the point of

linearization. This further means that before the point of

linearization, changes made by the method are not visible

to the external world, and after the point, all the changes are

immediately visible. These changes are irrevocable. Let us

call this condition 5.

Condition 5

Every method call appears to execute instantaneously at a

certain point between its invocation and response.

To summarize, we need to prove that the execution history

of a parSlotMap is both legal (conditions 1 and 2), and

linearizable (condition 5).

D. Lock Freedom and Wait Freedom

Furthermore, we want our parallel algorithms to be lock-

free or wait-free. An algorithm is lock-free if any thread

makes progress infinitely often. This means that we do

not have a situation in which threads indefinitely wait for

each other. At least one thread needs to be making forward

progress at any point of time. Lock freedom ensures that

one thread cannot block others. However, it is possible for

a thread to wait indefinitely.

Wait-free algorithms rectify this problem. They guarantee

that every thread successfully completes a method call in a

finite number of steps. This is typically achieved by making

threads that are faster help slower threads.

III. SLOT SCHEDULING ALGORITHM

A. Overview

In the lock-free implementation of our algorithm, multiple

threads atomically access a slot and try to reserve it. In the

N × M variant, a thread needs to book upto M slots in

multiple columns. If two threads contend for a slot, then one

of the threads needs to back out. We give it two options.

It can either cancel itself and start anew, or it can decide

to help the winner thread. We call the latter scheme –

internal helping. We give more priority to the request that

has reserved more slots when two requests contend for a slot.

We cancel the request that has a lower priority. This scheme

reduces the amount of wasted work. Secondly, the cancelled

request can now search for an alternative path. This increases

the parallelism also. However, to keep starvation in control,

we introduce a CANCELTHRESHOLD to limit the number of times

a thread can be cancelled by other threads.

For the wait-free implementations, threads need to help

each other at the top-most level (external helping). Before

booking a slot in the 2-dimensional SLOT array (Ousterhout

matrix), a thread creates a request, places it in a REQUEST

array, and then chooses to help threads with older requests

before proceeding. Once such a thread, tj , is found, ti helps

tj in completing its operation. After helping all candidate

threads, ti proceeds with processing its own request.

The solution to the N × M problem is broadly imple-

mented in four stages. Each stage denotes a particular state

of the request. The operation progresses to the next stage by

atomically updating the state of the request. Concomitantly,

the state of cells in the SLOT array changes from EMPTY to

SOFT and eventually to HARD . This is shown pictorially in

Figure 2.

1) At the outset, the request is in the NEW state. At this

stage, a thread tries to temporarily reserve the first slot.

If it is able to do so, the request moves to the SOFT state.

2) In the SOFT state of the request, a thread continues to

temporarily reserve all the slots that it requires. When

it has finished doing so, it changes the request’s state

to FORCEHARD . This means that it is ready to make its

reservation permanent.

3) In FORCEHARD state, the temporary reservation is made

permanent by converting the reserved slots in the SLOT

array to the HARD state. After this operation is over, the

request transitions to the DONE state.

4) Finally in the DONE state, the thread collates and returns

the list of slots allotted.
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Figure 2. FSM for a cell and a request

B. Data Structures

Globally, numSlots refers to the number of slots a re-

quest wants to book. For ease of explanation, our algorithms

assume that each request needs the same number of slots.

However, it is possible to easily change this assumption.

NUMTHREADS refers to the total number of threads.

The data structures used by our implementation are shown

in Figure 3 and Figure 4. These structures are mainly

required for the N ×M problem. The two-dimensional SLOT

array represents the Ousterhout matrix which is used to keep

track of free and vacant slots. Each entry in the array is 64

bits long. When a slot is free, its state is EMPTY . When

a thread makes a temporary reservation, the slots of the

SLOT array are in the SOFT state containing the state (2 bits),

tid(thread id) (10 bits), slotNum (6 bits), round (5 bits),

requestId (15 bits) and timestamp (21 bits). slotnum
indicates the number of slots reserved by the thread. round
indicates the iteration of a request. It is possible that a thread

is able to reserve some slots, and is not able to proceed

further because all the slots in a column are booked by some

other threads. In this scenario, a thread cancels its request,

clears the slots it has reserved, and starts reserving the slots

again with an incremented round. It might be possible that

other helpers are at different stages. The round helps to

co-ordinate between them. The timestamp field is needed

for correctness, as explained in Section III-E. Secondly, we

derive the sizing of different fields shown in Figure 4 in

Section III-E.

The REQUEST array gets populated when a thread places

a new request to be scheduled. It contains NUMTHREADS

instances of the Request class, as shown in Figure 3. The

iterState field contains the current round of the request,

number of slots reserved, the current index of the SLOT array,

and the state of the request. The PATH array stores the slots

reserved by the thread. Whenever multiple helpers try to

reserve a slot on behalf of thread tj , they first perform a

CAS (Compare-and-set) on a particular slot in the SLOT array

and then save the entry in the PATH array atomically. To avoid

the problem of different helpers booking different slots for

the same request, we introduce the SHADOWPATH array. This

is used by threads to announce their intention to book a slot.

Threads first search for a free slot, make an entry for it in

the SHADOWPATH array, and then actually reserve it in the SLOT

array.

class Request{

long requestId,

long iterState,

long[] shadowPath,

long[] path,

int tid,

int slotRequested,

int numSlots

};

Figure 3. The request class
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Figure 4. Data structures in the Request class and SLOT array

C. The schedule Operation

In the lock-free algorithms, each thread tries to atomically

book a slot for itself whereas in the wait-free case, thread ti
first atomically increments a counter to generate the request

id for the operation (Line 5). Then, it creates a new request

with the time slots it is interested in booking, and sets the

corresponding entry in the REQUEST array with a new request

id (Line 7). It first helps any requests that meet the helping

criteria as defined in the functions findMinReq, and help.



We only help requests that have a requestId less than

REQUESTTHRESHOLD . These functions are shared across all

variants of our algorithms (see Algorithm 1). Each algorithm

needs to implement its variant of the process function.

Algorithm 1. Schedule

1: function schedule(request)

2: tid ← request.getTid()

3: start ← request.getSlotRequested()

4: if WAITFREE then

5: reqId ← requestId.getAndIncrement()

6: req← createRequest(reqId, index, tid, numSlots,

NEW )

7: REQUEST .set(tid, req) /* announce the request */

8: help(req) /* help other requests */

9: return process(req)

10: else if LOCKFREE then

11: return process(request)

12: end if

13: end function

14: function help(req)

15: while true do

16: minReq ← findMinReq(req)

17: if (minReq = NULL) || (req.getRequestId() - min-

Req.getRequestId() < REQUESTTHRESHOLD ) then

18: break

19: end if

20: process(minReq)

21: end while

22: end function

end

D. The N ×M Problem

Here, we describe the implementation of the N × M
algorithm. The code for the process method is shown in

Algorithm 2. We assume that the requested starting slot is

col0, and the number of slots it requests is numSlots (M ).

1) process: We show an overall flowchart of the process
function in Figure 5. It extends Figure 2 by listing the

list of actions that need to be taken for each request state.

The reader is requested to use this flowchart as a running

reference when we explain the algorithm line by line.

First, we unpack the iterState of the request in Line 3,

and execute a corresponding switch-case statement for each

request state. In the NEW (starting) state, the bookF irstSlot
method reserves a slot s[row1][col1] in the earliest possible

column, col1, of the SLOT array. We ensure that all the slots

between col0 and col1 are in the HARD state (i.e booked

by some other thread). bookF irstSlot calls the method

bookMinSlotInCol to reserve a slot. Since there can be

multiple helpers, it is possible that some other helper might

have booked the first slot. In this case we would need to

read the state of the request again (Line 11).

If we are able to successfully reserve the first slot, then the

request enters the SOFT state; otherwise, it enters the FAIL state

and the schedule operation terminates for the request. The

SOFT state of a slot corresponds to a temporary reservation.

It can either be undone, or later converted to the permanent

HARD state. The request enters the FAIL state, when we reach

the end of the SLOT array, and there are no more slots

left. In the SOFT state of the request, the rest of the slots

are reserved by calling the bookMinSlotInCol method

iteratively (Line 33). After reserving a slot, we enter it in the

PATH array (Line 16). The state of the request remains SOFT

(Line 49), and then becomes FORCEHARD after reserving the

M th slot (Line 47 and Line 57). If the CAS in Line 57

is successful then it is the point of linearization for the

successful schedule call (see Section IV).

In case a thread is unable to reserve a slot in the SOFT state,

we set the state of the request to CANCEL (Lines 37 to 43).

This happens because the request encountered a column full

of HARD entries (hard wall). It changes its starting position

to the slot after the hard wall.

In the CANCEL state (Lines 67-76), the undoPath method

resets (SOFT→ EMPTY ) the temporarily reserved slots, clears

the PATH and SHADOWPATH arrays. The state of the request

is atomically set to NEW . We set the starting column, and

set round = min(round + 1,CANCELTHRESHOLD). All

this information is packed and atomically assigned to the

iterState field of the request.

Once the request is in the FORCEHARD state, it is guaranteed

that M slots have been reserved for the thread and no other

thread can overwrite these. All the slots reserved are made

HARD and then the request enters the DONE state (Lines 61-63)

Algorithm 2. process N ×M

1: function process (Request req)

2: while TRUE do

3: (state,slotNum,round,row0,col0)←unpack

(req.iterState)

4: /* Process according to the state of the request */

5: switch (state)

6: case NEW :

7: (res, row1, col1) ← bookFirstSlot(req, col0,

round)

8: nstate ← state

9: /* Some other helper has booked the first slot

*/

10: if res = REFRESH then

11: /* read the state again */

12: break

13: else if res = FALSE then

14: nstate ← pack(FAIL , 0, 0, 0, 0)

15: else if res = TRUE then

16: if pathCAS(req, round, slotNum, row1,

col1) then

17: nstate ← pack(SOFT,slotNum+1,round,

row1,col1)
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Figure 5. The process function

18: else

19: /* reset the slot in SLOT and SHADOWPATH

array */

20: undoSlot(req,round,slotNum,row1,col1)

21: undoShadowpath(req,slotNum,row1,col1)

22: end if

23: end if

24: /* Point of linearization: If nstate is FAIL and the

CAS is successful */

25: req.iterState.CAS(state, nstate)

26: break

27: case SOFT :

28: (round1, row1, col1) ← unpack(req.PATH.

get(slotNum-1))

29: if round 6= round1 then

30: /* read the state again */

31: break

32: end if

33: (res,row2) ← bookMinSlotInCol(req, col1+1,

slotNum, round)

34: if res = REFRESH then

35: /* read the state again */

36: break

37: else if res = FALSE then

38: col2 = col1 +1 /* changes its starting posi-

tion */

39: /* request enters in cancel state */

40: nstate ← pack(CANCEL ,0,round,0,col2)

41: if req.iterState.CAS(state,nstate) then

42: cancelCount.getAndIncrement(req.getTid())

43: end if

44: else if res = TRUE then

45: if pathCAS(req,round,slotNum,row2,col1+1)

then

46: if slotNum = numSlots then

47: nstate ← pack(FORCEHARD , numSlots,

round, row0, col0)

48: else

49: nstate ← pack(SOFT , slotNum+1,

round, row2, col1+1)

50: end if

51: else

52: undoSlot(req,round,slotNum,row2,col1+1)

53: undoShadowpath(req,slotNum,row2,col1+1)

54: end if

55: end if

56: /* Point of linearization: If nstate is FORCEHARD

and the CAS is successful */

57: req.iterState.CAS(state, nstate)

58: break

59: case FORCEHARD :

60: /* state of cells in SLOT array changes to HARD

*/

61: forcehardAll(req)

62: nstate ← pack(DONE , numSlots, round, row0,

col0)

63: req.iterState.CAS(state, nstate)

64: case DONE :

65: /* return slots saved in the PATH */

66: return req.PATH

67: case CANCEL :

68: /* slots reserved in SLOT array for req are reset,

PATH array and SHADOWPATH array get clear */

69: undoPath (req, round)

70: if cancelCount.get(req.getTid()) < CANCEL

THRESHOLD then

71: nround ← round +1

72: else

73: nround ← CANCELTHRESHOLD

74: end if



75: nstate ← pack(NEW , 0, nround, row0, col0)

76: req.iterState.CAS(state, nstate)

77: case FAIL :

78: return -1

79: end switch

80: end while

81: end function

2) getSlotStatus: The bookMinSlotInCol method

used in Line 33 calls the getSlotStatus method to rank

each slot in a column, and chooses a slot with the

minimum rank.

The getSlotStatus() method accepts four parameters –

req of the thread tj for which the slot is to be reserved,

current round of tj , the number of the slot(slotNum ∈
[1 . . .M ]) that we are trying to book, and the value
stored at slot s[row][col]. This method returns the rank of

s[row][col]. Note that all the helpers of a thread have the

same tid value. They do not use their original tids while

helping other threads.

The state of s[row][col] can be either HARD , SOFT or

EMPTY . If tj owns the slot s[row][col], then there are two

possibilities. First, if s[row][col] is already in the HARD state

then it means that some other helper has already set it to

HARD . The current thread is thus lagging behind; hence,

we set the rank to BEHIND . If this is not the case, then the

slot has converted to HARD for some other request, and we

set the rank as HARD . No other thread can take this slot.

If the slot is in the SOFT state and belongs to a different

request, then we check if we can cancel the thread that

owns the slot. We give a preference to requests that

have already reserved more slots. If we decide to cancel

the thread, then we return CANCONVERT , else we return

CANNOTCONVERT . Note that if a thread has already been

cancelled CANCELTHRESHOLD times, then we decide not to

cancel it and return CANNOTCONVERT .

If the slot belongs to the same request, then the rank can

be either AHEAD or BEHIND . The slot has rank AHEAD if it

has been reserved by a previous cancelled run of the same

request, or by another helper. Likewise, BEHIND means that

the current run has been cancelled and another helper has

booked the slot in a higher round.

The order of the ranks is as follows: BEHIND < AHEAD <
EMPTY < CANCONVERT < CANNOTCONVERT < HARD .

3) bookMinSlotInCol: This method reserves a slot in

the SLOT array based on its rank. It accepts four pa-

rameters – request(req) of a thread tj , column(col) to

reserve a slot in, current round(round) of tj , and the

slot number(slotNum). First, we use the findMinInCol
method that uses the getSlotStatus method to find

the slot with the minimum rank in the column, col,
(Line 87) with the corresponding timestamp, tstamp.

The timestamp is needed for correctness as explained in

Section III-E.

Subsequently, all the helpers try to update the SHADOWPATH

array at index slotNum with the value – (row, col,
tstamp) (Line 88), and only one of them succeeds. We

read the value (row1, col1, tstamp1) of the entry that is

finally stored in the SHADOWPATH array (Line 91-93). We

compute its rank in Line 93.

If the rank is BEHIND , then it means that the thread

should return to the process method, read the current

state of the request, and proceed accordingly. If the rank

is AHEAD or EMPTY , we try to reserve the slot s[row][col]

(Line 109). Subsequent helpers also observe the entry in

the SHADOWPATH array and try to reserve the slot.

Whenever we are not able to book the intended slot, the

SHADOWPATH entry at index slotNum is reset. If the rank
is CANNOTCONVERT , then it means that we have encountered

a column that is full of temporary reservations of other

threads, and we cannot cancel them. Hence, we start help-

ing the request, which is the current owner of s[row][col]

(Line 126). If the rank is HARD , then it means that all the

slots in that column are in the HARD state (already booked).

We call such kind of a column a hard wall. In this case,

we need to cancel the request. This involves converting

all of its SOFT slots to EMPTY , and resetting the PATH and

SHADOWPATH arrays. Then the request needs to start anew

from the column after the hard wall.

82: function bookMinSlotInCol (req, col, slotNum,

round)

83: while TRUE do

84: /* Set the SHADOWPATH entry */

85: tid ← req.getTid()

86: reqid ← req.getReqId()

87: (row, rank1, tstamp ) ← findMinInCol(req, col,

slotNum, round)

88: shadowPathCAS(req,row,col,tstamp,slotNum)

89:

90: /* read the values stored in SHADOWPATH array */

91: (row1,col1,tstamp1) ← req.shadowPath.get(slot

Num)

92: slotVal ← SLOT [row1][col1].get()

93: rank ← getSlotStatus(req, slotVal, round, slot-

Num)

94:

95: /* oldval is the value now saved in SHADOWPATH

array and def is the default value */

96: oldval ← pack(row1, col1, tstamp1, VALID)

97: def ← pack(0, 0, 0, INVALID)

98: (reqid1, tid1, round1, slotNum1, stat1) ← un-

pack (SLOT [row1][col1])

99: expSval← pack(reqid1, tid1, round1, slotNum1,

tstamp1, stat1)

100: newSval ← pack(reqid, tid, round, slotNum,

tstamp1, SOFT )

101:

102: switch (rank)
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Figure 6. getSlotStatus

103: case BEHIND :

104: /* undo SHADOWPATH array */

105: req.SHADOWPATH.CAS(slotNum, oldval, def)

106: return (REFRESH, NULL)

107: case AHEAD || EMPTY :

108: /* reserve temporary slot */

109: if (SLOT [row1][col1].CAS(expSval, newSval)

= FALSE) ∧ (SLOT [row1][col1].get() 6= newS-

val) then

110: req.SHADOWPATH.CAS(slotNum, oldval, def)

111: continue

112: end if

113: return (TRUE, row1)

114: case CANCONVERT :

115: /* try to change other request’s state to CANCEL

*/

116: if otherCancel(tid1, round1) = FALSE then

117: continue

118: end if

119: if (SLOT [row1][col1].CAS(expSval, newSval)

= FALSE) ∧ (SLOT [row1][col1].get() 6= newS-

val) then

120: req.SHADOWPATH.CAS(slotNum, oldval, def)

121: continue

122: end if

123: return (TRUE, row1)

124: case CANNOTCONVERT :

125: req.SHADOWPATH.CAS(slotNum, oldval, def)

126: process(request.get(tid1))

127: break

128: /* All the slots in the column are HARD */

129: case HARD :

130: req.SHADOWPATH.CAS(slotNum,oldval, def)

131: return (FALSE, NEXT)

132: end switch

133: end while

134: end function

end

4) otherCancel: Here, we explain the idea of overwrit-

ing someone else’s temporary slot. If the rank of the slot

is CANCONVERT , it means that the request, r, which owns

this slot has reserved less number of slots than the current

request. Intuitively, we would want to give more priority to

a request that has already done more work (does not affect

correctness). In this case, we will try to set the state of

request r to CANCEL . One thread can change the state of

another thread’s request to CANCEL only if the current request

state of that thread is either NEW or SOFT . It might be possible

that the same request keeps on getting cancelled by other

threads. To avoid this a CANCELTHRESHOLD is set, which means

that a request can get cancelled at the most CANCELTHRESHOLD

times by other threads. After this it cannot be cancelled

anymore by other threads. If it cannot complete a request,

it helps requests that are blocking its way, or changes its

starting position upon encountering a hard wall.

E. ABA Issues, Sizing of Fields, Recycling

The ABA problem represents a situation where a thread,

ti, may incorrectly succeed in a CAS operation, even though

the content of the memory location has changed between the

instant it read the old value and actually performed the CAS.

This can happen, when we are trying to reserve a slot. It is

possible that the earliest thread might see an empty slot,

enter it in the SHADOWPATH array, and then find the slot to be

in the SOFT state. However, another helper might also read the

same SHADOWPATH entry, and find the slot to be in the EMPTY

state because the request holding the slot might have gotten

cancelled. To avoid this problem, we associate a timestamp

with every slot. This is incremented, when a thread resets a

slot after a cancellation.

The maximum number of rounds for a request is equal

to the CANCELTHRESHOLD . We set it to 32 (5 bits). We limit

the number of slots (M ) to 64 (6 bits). We can support



upto 1024 threads (10 bits). We note that the total number

of timestamps required is equal to the number of times a

given slot can be part of a cancelled request. This is equal to

CANCELTHRESHOLD× NUMTHREADS×M . The required number

of bits is 5+10+6 = 21. Here, we assume a request pattern

that requests slots in monotonically increasing order.

In our algorithm, we assume that the SLOT array has a

finite size, and a request fails if it tries to get a slot outside it.

However, for realistic scenarios, we can extend our algorithm

to provide the illusion of a semi-infinite size SLOT array, if

we can place a bound on the skew between requests’ starting

slots across threads. If this skew is W , then we can set the

size of the SLOT array to S > 2W , and assume the SLOT array

to be circular.

IV. PROOFS

We outline a short proof in this section. Due to reasons

of brevity, we omit a detailed formal proof.

Theorem 1. The N ×M – LF and WF algorithms are

linearizable.

Proof: We need to prove that there exists a point of

linearization at which the schedule function appears to

execute instantaneously (see Section II-C). Let us try to

prove that the point of linearization of a thread, t, is Line 57

when the state of the request is successfully changed to

FORCEHARD , or it is Line 25 when the request fails because

of lack of space. Note that before the linearization point,

it is possible for other threads to cancel thread t using

the otherCancel function. However, after the status of the

request has been set to FORCEHARD , it is not possible to

overwrite the entries reserved by the request. To do so, it

is necessary to cancel the request. A request can only be

cancelled in the NEW and SOFT state (see Section III-D4).

Hence, the point of linearization (Line 57) ensures that after

its execution, changes made by the request are visible as well

as irrevocable. If a request is failing, then this outcome is

independent of other threads, since the request has reached

the end of the matrix.

Likewise, we need to prove that before the point of lin-

earization, no events visible to other threads causes them to

make permanent changes. Note that before this point, other

threads can view temporarily reserved entries. They can

perform two actions in response to a temporary reservation

– decide to help the thread that has reserved the slot, or

cancel themselves. In either case, the thread does not change

its starting position.

A thread will change its starting position in Line 38, only

if it is not able to complete its request at the current starting

position because of a hard wall. Recall that a hard wall

is defined as a column consisting of only HARD entries. We

show an example in Figure 7. In this figure there are three

requests – 1, 2, and 3, and each of them needs 2 slots.

Assume that request 1 and 3 are able to complete and convert

the state of their slots to HARD . Then request 2 will find

column 3 to be a hard wall. Since column 4 is also a hard

wall it will restart from column 5.

Note, that a hard wall is created by threads that have

already passed their point of linearization. Since the current

thread will be linearized after them in the sequential history,

it can shift its starting position to the next column after

the hard wall without sacrificing linearizability. We can

thus conclude that before a thread is linearized, it cannot

force other threads to alter its behavior. Thus, we have a

linearizable implementation.

Lemma 1. The N ×M – LF and WF algorithms obey

condition 1.

Proof: Since our algorithms are linearizable (Theo-

rem 1), the parallel execution history is equivalent to a

sequential history. We need to prove that in this sequential

history, a request is scheduled at the earliest possible slot,

or alternatively, the starting slot has the least possible

permissible value. If a request is scheduled at its starting

slot, then this lemma is trivially satisfied. If it is not the

case, then we note that the starting slot changes in Line 38

only if the request encounters a hard wall. This means that

it is not possible to schedule at the given slot. The earliest

possible starting slot, is a slot in a column immediately after

the hard wall. If the request can be satisfied with this new

starting slot, then the lemma is satisfied. Using mathematical

induction, we can continue this argument, and prove that the

slot at which a request is finally scheduled is the earliest

possible slot.

Lemma 2. The N ×M – LF and WF algorithms obey

condition 2.

Proof: We need to prove that for a request, r, exactly

numSlots entries are allocated in consecutive columns with

one entry per column. Line 33 ensures that the columns

are consecutive because we always increment them by 1.

To ensure that exactly one request is booked per column

by a thread and all of its helpers, we use the path and

shadowPath arrays. Different threads first indicate their in-

tent to book a certain slot by entering it in the shadowPath
array (Line 88). One of the threads will succeed. All the

other helpers will see this entry, and try to book the slot

specified in the shadowPath entry. Note that there can be

a subtle ABA issue (see Section III-E) here. It is possible

that the thread, which set the shadowPath entry might find

the slot to be occupied, whereas other helpers might find

it to be empty because of a cancellation. This is readily

solved by associating a timestamp with every slot in the SLOT

array. Since we are not booking an extra slot in the column

for the current round, we can conclude that a column will

not have two slots booked for the same request and round.

It is possible that some slots might have been booked in

previous cancelled rounds, and would not have been cleaned

up. However, the thread that was cancelled will ultimately

clean it up. This does not deter other requests, because they
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Figure 7. An example containing three requests

will see that the zombie slots belong to an older round of

a request, and they can be recycled. Thus, our algorithms

obey condition 2.

Theorem 2. The N ×M–LF algorithm is legal, lineariz-

able, and lock-free.

Proof: Theorem 1, Lemma 1, and Lemma 2 establish

the fact that N ×M–LF is legal and linearizable. We need

to prove lock freedom. Since we use only non-blocking

primitives, it is possible to have a live-lock, where a group

of threads do not make forward progress by successfully

scheduling requests. Let us assume that thread, ti, is a part

of a live-lock. For the first CANCELTHRESHOLD times, ti will

get cancelled. Subsequently, it will start helping some other

request, r. ti can either successfully schedule r, or transition

to helping another request. Note that in every step, the

number of active requests in the system is decreasing by

one. Ultimately, thread ti will be helping some request that

gets scheduled successfully because it will be the only active

request in the system. This leads to a contradiction, and thus

we prove that N ×M–LF is lock-free.

Theorem 3. The N ×M–WF algorithm is legal, lineariz-

able, and wait-free.

Proof: By Theorem 2, we have established that the

N ×M–LF algorithm is lock-free. To make this algorithm

wait-free, we use a standard technique based on the universal

construction (see [19]). We need to note that in a lock-free

algorithm a thread is unsuccessful, if some other thread is

successful. This means that if a thread, ti, cannot book a

slot, then some thread is making progress. Ultimately, the

difference in the requestIds will exceed the REQUESTTHRESH-

OLD , and other threads will help ti to make it successful.

V. EVALUATION

A. Setup

We perform all our experiments on a hyper-threaded dual

socket, 64 bit, Dell PowerEdge R810 server. It has two

six core 2.66 Ghz Intel Xeon GHz cpus, with 12 MB L2

cache, and 64 GB main memory. It runs Ubuntu Linux

12.10 using the generic 3.20.25 kernel. All our algorithms

are written in Java 6 using Sun OpenJDK 1.6.0 24. We

use the java.util.concurrent, and java.util.concurrent.atomic

packages for synchronization primitives.

We evaluated the performance of our scheduling algo-

rithms by assuming that the inter-request distances are

truncated normal distributions (see Selke et. al. [20]). We

generated normal variates using the Box-Muller transform

(mean = 5, variance = 3* tid). We run the system till the

fastest thread completes κ requests. We define two quantities

– mean time per request (treq) and total work done (wk).

The work done is defined as the total number of requests

completed by all the threads divided by the theoretical

maximum. wk = tot requests/(κ ×NUMTHREADS). wk
measures the degree of imbalance across different threads.

It varies from 0 to 1(max).

We set a default REQUESTTHRESHOLD value of 50, and κ
to 10,000. We varied the number of threads from 1 to 24

and measured treq and wk for the N ×M variants of the

problem. We perform each experiment 10 times, and report

mean values. We consider three flavors of our algorithms –

lock-free (LF ), wait-free (WF ), and a version with locks

(LCK).

B. Performance of the N ×M Algorithm

Figure 8 and 9 present the results for N ×M (M = 3).

We observe that LCK is three orders of magnitude slower

than LF and WF . The performance of LF and WF is

roughly equal, whereas, the work done is 1-10% more for

WF for systems with more than 20 threads.

1) Sensitivity : Varying Capacity (N ): Figures 10 and 11

show the time per request for different capacities for LF and

WF respectively. We observe that the performance across

different capacities is roughly similar till 15 threads. After

that, there is some limited variation for the WF algorithm.

However, for large capacities(N = 22), the LF algorithm’s

delay increases significantly.
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2) Sensitivity: Varying numSlots(M ): Next, we evalu-

ated the performance of lock-free and wait-free by varying

the number of slots per request (M ) in Figures 12 and 13

respectively. We observe that with an increasing number

of slots, the performance of LF varies from 1-20 µs,

whereas the performance of WF varies from 1-160 µs.

For high values of the number of threads and numSlots,

WF is around 5-8X slower. We observe that the total work

done(wk) is roughly similar for both LF and WF across

different slots. Due to lack of space, we do not show the

results for wk.

3) Sensitivity: Varying REQUESTTHRESHOLD : We show the

performance of WF across two values of the REQUESTTHRESH-

OLD (10 and 50) in Figure 14. For a REQUESTTHRESHOLD of

10, treq shoots up after we have more than 13 threads

in our system. This configuration is 2.5X slower than the

configuration that uses a value of 50. We observe that the

work done is also higher for a REQUESTTHRESHOLD of 10.

VI. CONCLUSION

In this paper, we presented a lock-free and wait-free

algorithm for four variants of the generic slot scheduling

problem. The single slot algorithms are simple, whereas, the

complicated multiple slot algorithms use recursive helping

and cancellation. We prove the linearizability correctness
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condition for all of our algorithms, and lastly experimentally

evaluate their performance. The wait-free version is slower

than the lock-free version by 3-8X in the worst case.

However, it manages to do more work per unit time. Both

the lock-free and wait-free versions are several orders of

magnitude faster than algorithms that use locks.
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