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ABSTRACT
The Internet of Things (IoT) is poised to be one of the most dis-

ruptive technologies over the next decade. It is speculated, that

we shall have billions of devices with communication capabilities

very soon. Minimizing energy consumption is one of the most im-

portant problems in such IoT networks mainly because IoT nodes

are distributed in the field with limited, unreliable, and intermit-

tent sources of power. Even though the area of reducing power for

stand-alone machines is very rich, there are very few references

in the area of co-operative power minimization in a system with

many IoT nodes. We propose two algorithms in this paper, which

are at the two ends of the spectrum: Local exchanges information

between neighboring nodes, and Global uses a global server that
has recent snapshots of the global state of the network. We show

that both these algorithms reduce energy consumption by roughly

40% for settings that use data from real life IoT deployments (data

from Barcelona city). We further show that if deadlines are tight,

Local is preferable for smaller networks, and Global is preferable
for larger networks. When deadlines are loose, Global is preferable
if we need to follow hard real time semantics, otherwise Local is
preferable.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; Sensor networks; Sensors and actuators; • Net-
works→ Network components;
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1 INTRODUCTION
We are experiencing a new era of transformation from a physical

world to the digitized world of the Internet of Things (IoT). The IoT
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paradigm [20] refers to the interconnection of various day-to-day

physical devices around us through the internet, thus enabling them

to interact with each other and exchange meaningful information.

IoT networks are predicted to exponentially grow in the next few

years in terms of the quantity and complexity of devices. Some

projections indicate that we shall have 50 to 100 billion IoT devices

by the end of this decade.

There are several popular IoT reference architectures produced

by Intel [9] and Microsoft [15]. The common denominator in these

architectures is a 3-layer structure (see Figure 1). The lowest layer

consists of IoT devices, the middle layer consists of gateway nodes

and aggregators, and the highest layer consists of cloud based

data centers. Each of these layers can consist of various sub-layers.

For example, we can have a hierarchy of gateway nodes, where

some nodes act as simple routers, and some other nodes perform

sophisticated analytics. Even the highest layer can have many sub-

layers: client facing servers, cloud nodes, and storage nodes.

Energy consumption in such complex IoT networks is regarded

as a very important problem as noted in prior work( [1, 8]). The

reasons are as follows. Most IoT sensors and actuators are small

and very power constrained. They typically run on batteries or

use intermittent sources of power such as solar energy. Even IoT

hubs and gateways do not have reliable power supplies and are

often placed in the field, where power supply by itself is an issue.

Moreover, given the fact that IoT nodes typically deal with a lot of

data, we require a lot of energy to process all this data, and filter

out the relevant portions for subsequent processing. Given these

requirements, we believe that reducing the energy consumption in

IoT networks is a worthy goal to pursue.

In general, the literature in reducing energy consumption is very

extensive. This area has been an active topic of research for the

last 15 years. However, the area of energy optimization for IoT net-

works where the nodes co-operatively reduce power is very sparse,

and there is very little work in this area to the best of our knowl-

edge. Most of the work in managing power has focused on a single

node that may consist of several multicore processors. The meth-

ods mostly include a combination of dynamic voltage-frequency

scaling(DVFS) [23], throttling techniques [2], and heuristics to tran-

sition to low power states [3]. These solutions are at the level of

a single node. We use such solutions as a baseline. However, we

observe that a far greater potential exists if IoT nodes co-operate

among themselves to reduce power. We develop two protocols in

this paper that decrease power by 40% on an average.

Specifically, we aim at solving the problem of optimizing energy

consumption at IoT nodes, gateways and servers, while processing

streams of soft real-time tasks. We are primarily interested in the

energy consumed by processing devices in this paper. This can be

anywhere from 1-99% of the total energy [11, 13] depending on the

https://doi.org/10.1145/3167132.3167213
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Figure 1: IoT architecture

type of the network. In general, there is a trend towards increasing

compute energies as analytics moves to the edge. Each processing

node regulates its operating voltage and frequency, based on an

estimate of the slack time of the stream that it is processing. The

novelty of our approach lies in themethods to exchange information

between IoT nodes regarding power settings, deadlines, and slack

times. We propose two methods in this paper: i) Local, where the
information about slack times is piggybacked along with the tasks

and is exchanged only within a small neighborhood, ii) Global,
where a dedicated server (connected with high bandwidth links)

maintains the state of all the nodes, and computes the configurations

of each of the IoT nodes. We shall show that both the schemes are

useful albeit in different situations.

The organization of the rest of the paper is as follows. In Section 2

we discuss background and related work, we then formulate our

problem in Section 3, and present our techniques in Section 4; we

present our evaluation results in Section 5, and finally conclude in

Section 6.

2 BACKGROUND AND RELATEDWORK
2.1 Reference IoT Architecture
The schematic of a reference architecture is shown in Figure 1. The

architecture in consideration is similar to that used in [7, 10, 17].

Specifically, the three-layer IoT architecture considered consists of

the following layers:

(1) Bottom layer: The bottom layer comprises of wireless sen-

sor networks (WSNs) with an assortment of sensor/actuator

nodes that can be deployed in a multitude of entities ranging

from vehicles, smart homes, buildings, street lights, and traf-

fic lights to devices such as wearables, smart phones, shoes,

and smart cards.

(2) Middle layer: Gateway nodes that collect and buffer data read

from sensor nodes, perform various computations (typically

data analytics operations) and forward it across multiple

hops to a data center.

(3) Top layer: This layer consists of servers typically located in

data centers. These servers process the data given to them

by gateways, store data in storage nodes, and direct the

actuators to change the state of their immediate environment.

The messages to the actuators again traverse the gateways

and hubs (take the reverse path).

2.2 Related Work
In the following three sub-sections we focus on three aspects of

power reduction in modern computing systems. We briefly sum-

marize some of the related work in the areas of reducing power

for multicore processors, sensor networks, and data centers. Even

though highly optimized solutions for each of these areas exist,

to the best of our knowledge, we have not seen comprehensive

solutions for a plurality of nodes such as IoT networks.

2.2.1 Reducing energy consumption in multicore processors. Dy-
namic energy is broadly proportional to a square of the operating

voltage, and the operating voltage is approximately proportional to

the operating frequency. The quintessential equations that are used

in this area are: E ∝ V 2,V ∝ f , whereV is the voltage, and f is the

frequency. Hence, most of the techniques try to reduce the voltage

and frequency in unison (known as dynamic voltage-frequency

scaling (DVFS). In addition, leakage power is one more component

of the total power dissipation. It is a super-linear function of the

temperature, which is again mostly proportional to the dynamic

power.

Now, DVFS per se is a very old technique, and hundreds of papers

have been published in this area. The survey by Mokarippor et

al. [16] elaborates on most of the important techniques. Most of the

heuristics are focused on reducing the frequency while executing

non-critical parts of the code, or when we have enough slack. In

addition, we can have other techniques that decrease the activity

factor by throttling the activity (refer to [2]). Higher activity leads

to higher temperature, which leads to higher leakage (the net effect

can be super-linear). We shall mainly use one of the popular DVFS

heuristics as a baseline technique.

2.2.2 Reducing Energy Consumption in Sensor Networks. Reduc-
ing energy consumption in sensor networks is a very rich area

of research (refer to the survey by Anastasi et al. [1]). There are
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three major techniques: duty-cycling, data-driven approaches, and

mobility. Duty-cycling means that the sensor nodes (or just their

transceivers) are intelligently powered down. This ensures that we

do not waste power by keeping the nodes on, when it is not required.

The sensor nodes coordinate their wakeup and sleep times between

themselves, or as per the requirement of the application [5]. Data-

driven approaches aim to reduce the volume of the sampled data,

such that redundant information does not get communicated. The

sensing accuracy is set at an acceptable level in order to reduce

the amount of sampled data. Moreover, nodes can also modulate

their frequency and amplitude while communicating with other

nodes [21]. There is a tradeoff between the communication data rate,

bit error rate, and performance. The mobility approach involves

moving motes that move towards the source of the entity that they

need to sense. If done properly, this can reduce the communication

energy, and reduce the number of hops that a message needs to

traverse.

2.2.3 Reducing Energy Consumption in Data Centers. The tradi-
tional energy consumption reduction methods at data centers [8] in-

clude using the right topology, virtualization, energy aware routing,

dynamic voltage and frequency scaling (DVFS), and dynamic power

management (DPM). In addition, in recent proposals researchers are

applying DVFS techniques to network elements, focussing on en-

ergy aware scheduling of network traffic and using energy efficient

cooling strategies.

3 IMPLEMENTATION
3.1 Problem Statement
In this paper, we consider an architecturewhere each sensor/actuator

is connected to a single gateway. The gateways are connected to

each other using a tree based topology as shown in Figure 2. The

gateway that is connected to the servers is designated as the root

gateway(s). Streams of tasks are generated by sensors, and sent

towards the central server (can be a set of cloud based servers or

a data center). The data reaches the central server(s) through a

hierarchy of gateways (or hubs). Each gateway can also do some

processing of its own, and aggregate/filter the data. Finally, the

servers process the tasks and determine the actions that need to be

taken. This information is communicated to the actuators, again,

using the same network of gateways (reverse path). We are assum-

ing that each node (sensor, gateway, server) has processing units

that either just store and forward packets, or intelligently process

them. Our aim is to minimize the total energy without violating

deadlines.

3.2 Task Model
We consider a stream of tasks (t1, t2, t3, . . . ) generated at sensors.

A task ti arriving at a node can be modelled as a 4-tuple (дi ,di ,li ,ci ),
where дi is the task generation time, di is the deadline, li is the
amount of network traffic associated with a task (in bytes), and ci is
the number of execution cycles required to execute the task (worst

case).

SERVERS

SENSORS/ACTUATORS

GATEWAYS

Figure 2: Architecture of an IoT system

3.3 Energy Consumption Model
We consider each processing node in the IoT network to be an

m-core computing system. Each core supports r frequencies (f1,
f2, ... , fr ), where f1 < f2 < . . . < fr . The energy consumption at

a node is determined by the CPU and memory. This is a standard

assumption for such systems [24]. The energy consumed by the

CPU has two components: dynamic energy and static energy, which

is also known as leakage energy [25]. As the dynamic component

is the prime contributor of the energy consumption in our class

of systems and temperature fluctuations are limited, our energy

consumption model focusses mainly on the dynamic energy con-

sumption (similar to [26]). We assume the static energy to be a

constant [26].

Now, let nj be the j
th

node on task ti ’s path in the network. The

energy consumption, ei j , at node nj is given by:

ei j = κj × ni j × f 2j (1)

where κj is a constant of proportionality (remains constant for a

given node), ni j is the number of cycles the task takes to execute at

node j , and fj is the execution frequency. The total energy is given

by:

Etotal =
n∑
i=1

l∑
j=1

ei j

=

n∑
i=1

l∑
j=1

κj × ni j × f 2j

(2)

where n is the total number of tasks that have been generated, and

l is the number of nodes in the execution path of the task.

4 ENERGY EFFICIENT SCHEDULING
ALGORITHMS

In this section, we discuss in detail the two algorithms that we

have proposed for energy efficient scheduling of tasks in an IoT

network, while trying to ensure that we violate as few deadlines as
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possible. In both the algorithms each processing node uses test , the
estimated time that the task will take to reach the actuator once

it leaves the current node, to calculate tr em . This is the maximum

available time the node has to execute the current task, and this

is done by taking the deadline into consideration. Subsequently,

the multicore node performs DVFS based scaling (up-scaling or

down-scaling the frequency of some core).

Algorithm 1 Algorithm for applying DVFS using test

1: procedure executeTask(task, test )
2: tcurrent ← getCurrentTime();
3: tr em ← (task . f inishTime - tcurrent − test );
4: if tr em ≤ 0 then
5: f requency ← max operating frequency;

6: end if
7: if there is an idle core then
8: run on idle core with frequency

c
tr em ;

9: else
10: run on a core having minimum frequency satisfying

wi +
c
fi
≤ tr em ;

11: if no such core found then
12: increase frequency of core having maximum fre-

quency to max operating frequency;

13: end if
14: end if
15: end procedure

Let us now describe the details (refer to Figure 1). Every node

tracks the average waiting time at its constituent cores and frequen-

cies at which different cores are running. Whenever a task needs

to be scheduled, the availability of an idle core is checked first. If

an idle core is available, then, the task is scheduled on it and the

core’s frequency is set to the minimum available frequency that is

greater than
c

tr em .

However, if no core is idle, an optimal frequency is calculated

to run the task such that the least possible amount of energy is

consumed, while remainingwithin the deadline. Since we consider a

discrete set of frequencies, we consider the smallest such frequency

(f ) that is greater than or equal to the optimal frequency. Then,

we consider the frequencies at which all the cores are running.

We narrow down our search to those cores that have frequencies

greater than or equal to f , and find the core with the least frequency
in this set. We then send the task to the EDF (earliest deadline first,

priority queue) of this core. Then based on its deadline, the task

executes.

Now, if we cannot find such a core, then we consider the core

with the largest frequency fmax (note that fmax < f ). We enter

the task in its EDF queue. Before the task begins to execute we

upscale the frequency of that core to f .
If we naively continue this process, then after some time all the

cores will start executing at the maximum frequency. However,

to stop this, we have two mechanisms. If a core becomes idle we

power it down. After this, its execution frequency is determined by

the task that is assigned to it. For a core that has been in continuous

operation for C cycles, we enter it into set S. We choose a core at

random from S (once every 50µs) and downscale its frequency to

that required by the currently executing task. The assumption is

that it takes 20µs [6] to change to a new DVFS setting. We choose

C as 10 times the worst case execution cycles of the task. In our

method, the most important parameter for performing DVFS is

the information about the estimated time, test . We propose two

methods by which this information can be made available to a node.

4.1 Global Algorithm
In the Global algorithm (see Algorithms 2 and 3), we maintain

a central high bandwidth server, CS , that is accessible to all the

nodes, such that all the nodes can communicate with the CS and

vice-versa. This algorithm is more useful in a system having a lot

of gateways, which have some form of direct internet connectivity.

We assume that all the communication to the CS has the highest

priority. Similar settings have been used in [14].

Each node locally calculates tavд , the average execution time

taken by a task to execute on that node by computing the sum of

(td − ta ), where ta is the arrival time of the task at the node and td
is the departure time of the task from the node, over all tasks on the

node and dividing it by the number of tasks. This average execution

time includes the time the task waits in the input queues of the

node and the time the task takes to execute at some core of the

node. This information about the average execution time is sent to

the CS periodically by each node (once every 100 micro-seconds).

The CS stores this information for each (parent,child) pair in

a table. This table basically stores how long a task will take to

execute at the parent node, if it comes from a given child node. This

is because different children might be sending different types of

tasks to the parent. This is the value of tavд that the CS will use

to calculate test for any node. Since we consider steady streams of

tasks, we expect test to be a stable value across small durations of

time.

Note that alternative renditions of this idea are possible. Each

node can also send a mean and variance (assuming a normal distri-

bution). In this case, the CS needs to store the mean and variance

of tavд . Since the sum of normally distributed random variables

is also a normally distributed random variable, test will also be

normally distributed. We can then provide a value that is three

standard deviations above the mean to the node.

In another rendition of this idea, it is possible that the same

group of sensors might generate different types of tasks. Here, we

can label each type with a number. CS will now maintain the tavд
information for the 3-tuple (parent,child,task_type).

4.2 Local Algorithm
In the Local algorithm (Algorithm 4), each node updates its test
value using the information piggybacked with the task that it re-

ceives from its adjacent nodes. Each node calculates the average

time, tavд , that a task spends at the node by averaging the time

interval (td - ta ), where ta is the arrival time of the task at the node

and td is the departure time of the task from the node, for all the

tasks getting executed at the node. This time interval includes the

waiting time of the task at the input queue of the node and the

EDF queue of the core it gets assigned to, as well as the execution

time of the task at the assigned core. Further, each node maintains

information about estimated time (test ) for each of its neighboring
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Algorithm 2 test calculations at a node with the Global Algorithm

1: procedure GlobalAlgoAtNode
2: receive(request );
3: task, source ← request .task, source
4: Update tavд corresponding to tasks received from source

node

5: tcurrent ← getCurrentTime();
6: if tcurrent %update_test _interval = 0 then
7: req.reqCode = дet_test _value;
8: req.requestinдNode ← sel f ;
9: send(req,CS);
10: Wait for a response from CS ;
11: receive(response);
12: test ← response .messaдe;
13: end if
14: if tcurrent % send_tavд_interval = 0 then
15: req.reqCode = send_tavд_value;
16: req.messaдe ← tavд for all child nodes

17: send(req, CS)
18: end if
19: if execute_task () then
20: executeTask(task,test );
21: end if
22: end procedure

Algorithm 3 test calculations at the Central Server with the Global
Algorithm

1: procedure GlobalAlgoAtCS
2: receive(request );
3: n ← request .requestinдNode;
4: tavд ← request .messaдe;
5: if request .reqCode = дet_test _value then
6: curnode,prevnode ← n
7: while actuator node is not reached do
8: curnode ← n.nextNode
9: add tavд for tuple (curnode,prevnode ) to tsend
10: add propagation delay for link between curnode and

prevnode
11: prevnode ← curnode
12: end while
13: res .messaдe = tsend ;
14: send(res , n);
15: end if
16: if request .reqCode = send_tavд_value then
17: Update the tavд for all the child nodes of node n
18: end if
19: end procedure

nodes. The estimated time for a node N signifies the amount of

time a task will take, once it leaves the current node, to reach the

actuator if the next node where the task is headed is N. When a task

is to be scheduled to a core, the test information that is used will

be that corresponding to the next node where the task is headed.

Before leaving a node, a message is piggybacked with the task. The

message comprises of the value tavд + test where test is the value

of estimated time corresponding to the node from where the task

came.

Algorithm 4 test calculations in the Local Algorithm

1: procedure Local
2: receive(request );
3: task ← request .task ;
4: (in f or ecv , source ) ← (request .messaдe , request .source);
5: test for source← (test for source + in f or ecv ) / 2;

6: in f osend ← tavд + test for source;
7: test for self← test for next node
8: executeTask(task , test );
9: (req.task , req.messaдe) = (task, in f osend );
10: send(req, sel f .nextNode);
11: end procedure

5 EVALUATION
In this section, we first describe our simulation setup, and then

proceed to describe our results in detail.

5.1 Simulation Setup
We developed an IoT simulator in Java to evaluate the potential

energy savings in a real-time IoT network. The sensor network

part of the simulator has been validated against the popular net-

work simulator, NS3 [19] (error limited to 0.1%). The data center

part of this simulator has been validated against the popular cloud

simulator, CloudSim [4] (error limited to 2%). To the best of our

knowledge there is no publicly available full scale IoT simulator

that we could use to validate our entire simulation setup; hence,

we had to validate it in parts.

We assume that sensors generate data, the data flows up to the

servers via a tree of gateways, the servers compute an appropriate

response and this flows back to actuators via the gateways. A task
comprises of all the actions that are taken by different nodes in

the network to process a set of messages generated by a sensor (or

a group of co-located sensors). Our IoT network processes many

such streams of tasks simultaneously.

The simulator takes as input a task set, specified with the dead-

lines and computation requirements for each task. Other parameters

provided to the simulator include the number of sensors/actuators,

number of servers, frequency of sensing, a list of available oper-

ating frequencies, and the number of cores for each type of node.

The number of execution cycles for a task at a node is a fraction of

its worst case execution cycles [18]. This fraction is a uniformly-

distributed random number. The output of this simulator contains

detailed statistics about the execution of the tasks such as the time

it took to execute them on each node, the energy consumed, and

the number of deadlines missed.

In the simulations, the frequency of sensing, rate of task gen-

eration, and the sizes of the tasks (network usage, and duration)

are as per the real time data collected by Sinaeepourfard et al. [22]

for the Barcelona city. As per this data, task deadlines are 10-100%

more than the maximum execution time of the task (through the

entire network), which is calculated by considering the minimum
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(a) Energy consumption minimization (baseline:
No-DVFS)
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(b) Energy consumption minimization (baseline:
DeadLine-Share)
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Figure 3: Performance with tight deadlines

operating frequency of the cores, the worst case execution sched-

ules at all the nodes, and the worst case propagation time over the

network. This methodology is also in line with that described by

Kim et al. [12].

On the line of the references, we set the deadlines of our tasks

as follows (refer to Table 1). For different settings with different

numbers of sensors, we consider two configurations: tasks with

tight deadlines and loose deadlines. Table 1 shows the difference

between the deadline and the worst case execution time of the

task as a fraction of the worst case execution time (values in %).

For example, for a system with 256 sensors, we have a minimum

slack of 22-26% for systems with tight deadlines, and a minimum

slack of 69-76% for systems with loose deadlines. Values are chosen

uniformly within the ranges.

Table 1: Deadlines in our System

Number of Sensors Tight Deadlines Loose Deadlines

16 3-4% 9-12%

32 4-6% 14-18%

64 7-10% 23-28%

128 13-15% 40-45%

256 22-26% 69-76%

512 40-44% 80-90%

1024 72-78% 95-100%

Propagation delays across the network are generated randomly

in the range of 1-10 milliseconds. For gateways, the range of oper-

ating frequencies is 0.5 GHz-1 GHz whereas, for servers, the range

of operating frequencies is 1.5 GHz-2 GHz with a DVFS step size of

100 MHz (for both). The results reported are for simulations carried

out for a duration of 12 hours.

Since till date, there is no state of the art method that caters

to our said problem, we have compared our algorithms with the

following two methods to demonstrate the effectiveness of our al-

gorithms in minimizing energy consumption: i) No-DVFS: Each

node runs without using DVFS by simply running the task using

the average operating frequency of its available frequency set. ii)

DeadLineShare-DVFS: The deadline of the task is divided equally

among all the processing nodes and each node then scales the fre-

quency by applying DVFS according to the allotted time to execute

the task. In both the methods, the nodes are oblivious to the state

of the IoT network.

All our experiments were performed on a 64-bit Ubuntu Linux

system (Version 14.04), with an Intel Core i7-3770s CPU running at

3.10 GHz with 4 GB RAM.

5.2 Results
5.2.1 Comparison of Proposed Algorithms with Tight Deadlines.

Figure 3a shows the results for experiments with tight deadlines,

as compared to No-DVFS. The y-axis shows the mean energy min-

imized. It is between 40-45% vis-a-vis No-DVFS. This is because

No-DVFS runs tasks at a much higher frequency than what is

required. Now, for smaller networks, the energy consumption re-

duction by Local is more than Global because maintaining the CS

and sending messages to it are additional overheads. Whereas, for

larger networks, Global works better because of the global view
that it creates.

Now, let us take a look at the percentage of tasks dropped (dead-

lines violated) in Figure 3c. It is negligible in the case of No-DVFS

because it runs tasks at a higher frequency than what is required.

The task drop rate is greater in the case of Local for larger networks
as compared to Global. This is because Local gets its test informa-

tion from its immediate neighborhood. If their is any congestion

downstream, the algorithm is not very responsive. Whereas, for

Global, having a global view helps us eliminate deadline violations

almost completely.

Let us now compare with DeadLine-Share in Figure 3b. For

smaller networks, Local and Global have low task drop rates (0-1)%

and their energy consumption is minimized by 20-60% vis-a-vis

Deadline-Share. For larger networks (> 256 sensors), DeadLine-

Share is more power efficient (20-100%). However, the concomitant
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(a) Energy consumption minimization (baseline:
No-DVFS)
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(b) Energy consumption minimization (baseline:
DeadLine-Share)
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(c) Task drop rates

Figure 4: Performance with loose deadlines

task drop rate is more than 20%. This is prohibitive. For such net-

works, Global is the best choice. The reason for the high task drop

rate for larger networks is because Deadline-Share is trying to run

the tasks at a lower frequency than what is required. Since the

deadline is distributed amongst all the nodes equally, the nodes

remain unaware of any bottlenecks in the network and continue

running the tasks at their predicted frequencies unbeknownst to

any congestion ahead.

5.2.2 Comparison of Proposed Algorithms with Loose Deadlines.
In the case of loose deadlines, the energy consumption by the

proposed algorithms is around 40% lower than the corresponding

values for No-DVFS (for both small and large networks). The results

are shown in Figure 4a. However, the trade-off, in the case of Local
is that a small percentage (3-5%) of tasks get dropped (deadlines

violated) in larger networks, as can be seen in Figure 4c. Global
however has negligible task drop rates for even larger networks. The

energy consumption by both Local and Global is almost the same.

If we compare the energy consumption of the proposed algorithms

against DeadLine-Share (see Figure 4b), we observe that for smaller

networks, the energy consumed by both of them is far lower (30-

60%). The task drop rate is in the range of 0-4% for Local (same

reasoning as that for tight deadlines).

5.3 Sensitivity
In this section, we vary the sensors’ frequency of sensing in order

to evaluate the performance of the proposed algorithms in the case

of medium and heavy traffic (loose deadlines). Figure 5 shows the

task drop rate for a mean sensing duration of 1 sec, and 10-60 sec in

increments of 10 seconds. From the figure, we can infer that Global
always performs better (in line with Figures 3c and 4c). Local is
relatively better when the frequency of sensing is high. This is

because nodes get updated very frequently about the state of the

network. In terms of energy consumption Local is marginally better

(by 3-4%). Further, the energy consumption minimization done by
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Figure 5: Task drop rate v/s frequency of sensing

both Local and Global against No-DVFS, for a mean sensing dura-

tion of 1 sec, and 10-60 sec in increments of 10 seconds, is shown in

Figure 6. It is observed that both the proposed algorithms perform

significant energy consumption minimization even in scenarios

of heavy traffic. The performance of the algorithms in terms of

energy consumption reduction is almost constant with respect to

the frequency of sensing.

6 CONCLUSION
In this paper, we proposed two methods: global and local, for net-

work aware energy efficient scheduling of tasks with deadline con-

straints in an IoT network. Both methods involve exchanging of

information between nodes in order to give an estimate of the



SAC 2018, April 9–13, 2018, Pau, France Smruti R. Sarangi, Sakshi Goel, and Bhumika Singh

Frequency of Sensing

0 10 20 30 40 50 60

P
e
rc

e
n
ta

g
e
 E

n
e
rg

y
 R

e
d
u
c
ti
o
n

0

10

20

30

40

50

60

Local Global

Figure 6: Energy consumption minimization (baseline: No-
DVFS) v/s frequency of sensing

remaining time required for task execution and to perform voltage-

frequency scaling. The global method uses a dedicated central server

that computes the best configuration for the entire network. The lo-

cal method gets this information from piggybacked data that comes

along with regular messages from its neighbors. Simulation results

show that both the proposed schemes achieve a significant energy

consumption reduction (around 40%) with respect to simple DVFS

based techniques, with little or no degradation in performance, or

in terms of deadlines missed. For tasks with tight deadlines, the

local algorithm works better in the case of small networks as it

avoids the overhead of sending messages to a separate server, while

the global algorithm works better in the case of large networks.

For tasks with loose deadlines, the local algorithm can be preferred

over global if the penalty in terms of 3-4% task drops is acceptable,

otherwise the global algorithm can be used if task drops need to be

avoided completely.
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