
A Theoretical Framework For Modeling
Cache-based Side-Channel Attacks and

Countermeasures
Nivedita Shrivastava1 and Smruti R. Sarangi2

Electrical Engineering Department
Indian Institute of Technology, Delhi, India

Email: nivedita.shrivastava@ee.iitd.ac.in1, srsarangi@cse.iitd.ac.in2

Abstract—Cache-based side-channel attacks are a critical se-
curity threat – they have two distinct phases: (i) identify the
security-sensitive addresses (eviction sets) and (ii) reconstruct
the cryptographic key by monitoring victim accesses. Although
extensive research has focused on complicating the first phase,
the second phase, namely key reconstruction, has received less
attention. State-of-the-art approaches either take a long time
or address a highly reduced version of this problem. The best
solution for the AES algorithm requires at least 5 billion attempts,
which is impractical. Thus, researchers have focused on simpler
algorithms, such as the ECDSA algorithm.

We introduce a novel theoretical framework, the 4R model,
to classify countermeasures (CMs) based on their impact on
address mappings. We observe that reconstructing the key is quite
difficult, as heuristic- and ML-based methods fail under realistic
address obfuscation scenarios. To address this challenge, we
propose a two-phase attack framework that dynamically adapts
to address remapping and noise injection. It employs real-time
state validation to overcome dynamic obfuscation mechanisms
and retrieve the secret key. Our algorithm is noise-tolerant and
efficiently recovers the AES key in roughly 50k attempts with
the most sophisticated CMs, demonstrating its robustness and
practicality.

Index Terms—Side-channel attacks, AES key recovery, Hard-
ware security, Key reconstruction

I. INTRODUCTION

Cache-based side-channel attacks (CSCA) represent a class
of critical attack vectors in modern computing systems; they
exploit the shared cache memory to infer sensitive information
from victim processes. By analyzing cache access patterns [1],
timing differences [2], [3], and eviction behaviors [4], [5],
attackers can extract private data such as cryptographic keys or
other sensitive information, posing a significant risk to secure
computing.

These attacks comprise two steps: 1 identify the sensitive
target addresses (and their eviction sets) and 2 monitor victim
accesses to these addresses to reconstruct the secret key. In re-
sponse, numerous countermeasures (CMs) [6]–[13] have been
proposed. They focus on complicating step one. Specifically,
they make the discovery of eviction sets challenging, where
an eviction set is defined as the set of addresses that need to
be accessed to evict the target address from the cache. All
addresses in the eviction set map to the same set.

The second step has not received a lot of attention up till
now, where attackers retrieve the key after some computation.
The prevailing opinion among researchers is to focus on
“stopping the enemy at the gates” – assume that the first step
fails and the attacker never moves to the second step. This has
led to an overemphasis on the first step, while neglecting the
challenges posed by the second step.

The barrier created by the first step is not insurmountable.
With some effort, eviction sets can be effectively and reliably
found out [14], [15]. There is thus a need to focus on the
second step and complicate the process of key recovery,
even if the accessed addresses are known either exactly or
probabilistically. Understanding the limitations of the second
step helps us choose the right countermeasure for the first
step given that there is a trade-off between the degree of
obfuscation of the eviction sets and performance overheads.

To the best of our knowledge, Shrivastava et al. [16] and
Zhao et al. [17] are among the few most influential works
that attempt to address step two. The methodology proposed
by Shrivastava et al. [16] faces two major limitations. 1 The
bounds focus solely on address randomization, ignoring the
other three possible obfuscation techniques, which we shall
discuss later. 2 For a T-table based AES implementation [18]
with 1024 target addresses, even with their nO(log(log(n)))

bound, their approach requires billions of encryptions under
ideal noise-free conditions, making the attack impractical
in real-world scenarios where noise is prevalent. Similarly,
Zhao et al.’s work [17] that focuses on the relatively simple
ECDSA cipher [19], relies on frequency-domain analysis,
which assumes periodicity in access patterns. This assumption
fails for AES, where random keys along with sophisticated
obfuscations result in highly irregular T-table access patterns,
rendering such techniques ineffective.

In this work, we focus on the standard T-table-based AES
implementation. We define a virtual node (VN) as the result of
an XOR operation between a plaintext byte and a correspond-
ing key byte. It corresponds to the row of the T-table that is ac-
cessed. These VNs (T-table accesses) are subsequently mapped
to specific memory addresses, referred to as physical nodes
(PNs). Our approach introduces a novel theoretical framework,

hereby named the 4R-model, which classifies existing CMs
into four distinct categories based on their impact on the VN-
to-PN mapping: redundancy [12], [13], access removal [20],
randomization [9], [11], and periodic remapping [8], [10]. This
classification provides a comprehensive method to evaluate the
effectiveness of CMs.

We assume that the attacker has successfully completed
step one, in the presence of sophisticated CMs, and retrieved
some “noisy” eviction sets. With such noisy eviction sets,
isolating target addresses and completing step two becomes
significantly more challenging due to the lack of information
[9]–[11], [13], [20]. We model the VN-to-PN mapping using
hypercubes, as proposed by Shrivastava et al. [16], and employ
several heuristic-based as well as ML-based algorithms to
reconstruct this mapping. Our findings reveal that these attacks
do not reliably recover the original mapping, highlighting the
robustness of CMs in practical scenarios.

Building on these insights, we propose a two-phase attack
framework capable of bypassing all known categories of CMs.
In the first phase, the adversary iteratively guesses a VN-to-
PN mapping using the first key byte. In the second phase,
she generates a proxy mapping for the unknown key bytes
and creates VNs. By combining multiple VN-to-PN mapping
snippets with proxy mappings, the adversary recovers the
secret key regardless of the countermeasures. The full key is
ultimately validated through a full-scale encryption process.
Until the validation is successful, this process keeps repeating.

For scenarios with dynamic remapping, where the VN-to-
PN mapping evolves over time, the attack adapts through a
real-time verification mechanism. The adversary continuously
validates the extracted data against the current state, ensuring
alignment. Despite the increased effort required, this adaptive
approach successfully overcomes the additional challenges,
demonstrating the resilience and precision of the framework.

The contributions of the paper are as follows. 1 We propose
a theoretical framework (4R model) to model all known
CMs for CSCAs. The paper proposes a general taxonomy for
classifying all such work using 4 axes: Redundancy, access
Removal, Randomness and Remapping (4R). 2 We propose
a sophisticated attack against known CMs in this space,
which is based on a mapping between virtual and physical
nodes (VNs and PNs). We look at problems with increasing
difficulty. The most basic version of the problem that does
not have remapping, redundancy and randomness was solved
in nO(log(log(n))) time by Shrivastava et al. We propose an
algorithm that runs in O(n2) time. 3 Next, we propose a
family of problems that are at different points of the 4R
spectrum. We observed that all of them are in general hard
to solve using conventional hypercube-based approaches and
other heuristic-based approaches. However, using our method,
they can be solved quite easily. The hardest problem in this
space is when all 4 Rs (4R) are enabled, and there is no
sparsity. We show that it too can be solved with regular
verification in roughly 50k attempts.

The paper is organized as follows. §II provides the relevant
background. §III presents the threat model and §IV shows the

classification of the CMs. §V discusses the design details, §VI
shows the results, and we finally conclude in §VII.

II. BACKGROUND AND RELATED WORK

A. Software Implementation of AES

AES is a symmetric-key block cipher operating on a 128-bit
data block, referred to as the state. This state is represented as a
matrix of 16 bytes organized in a 4×4 matrix structure, where
each byte is denoted as s = {s0, . . . , s15}. The AES encryp-
tion process consists of an initial AddRoundKey transformation
followed by a sequence of rounds, each comprising four
main transformations: SubBytes, ShiftRows, MixColumns, and
AddRoundKey. The computation requires nr rounds (depends
on the key length); for AES-128, nr = 10. In the final round,
the MixColumns transformation is omitted. Note that the initial
AddRoundKey transformation is referred to as the 0th round.

To enhance the efficiency of software implementations,
precomputed T-tables are used, which combine the roles of the
SubBytes, ShiftRows and MixColumns transformations. These
T-tables allow the AES round operations to be performed
through simple look-up and XOR operations, thereby bypass-
ing the computational complexity of the transformations them-
selves. AES encryption primarily uses four T-tables T0, T1, T2

and T3, each containing 256 4-byte entries. The size of each
such T-table is 1 KB.

Notations- In the notation used, the superscript indicates the
round number, whereas the subscript denotes the byte position
within the state, key or plaintext.

Let the initial round key be denoted by k0 and the plaintext
input be p (both 16 bytes). k0 comprises 16 individual bytes:
k = {k00, k01, . . . , k015}. The plaintext can be represented as
p = {p0, p1, . . . , p15}.

The initial state byte s0i represents each ith byte of the state
matrix s0 after the XOR operation between the corresponding
plaintext byte and the initial round key byte. This operation is
defined as: s0i = pi ⊕ k0i where ⊕ denotes the bitwise XOR
(exclusive OR) operation.

This initial transformation produces the input for subsequent
rounds. At each step, the T-tables are accessed based on these
intermediate state bytes. The state bytes after the final round
represent the ciphertext. The AES transformation for the state
values across r rounds is represented as follows.

(sr+1
0 , sr+1

1 , sr+1
2 , sr+1

3) = T0[s
r
0]⊕ T1[s

r
5]⊕ T2[s

r
10]⊕

T3[s
r
15]⊕ {kr+1

0 , kr+1
1 , kr+1

2 , kr+1
3 },

(sr+1
4 , sr+1

5 , sr+1
6 , sr+1

7) = T0[s
r
4]⊕ T1[s

r
9]⊕ T2[s

r
14]⊕

T3[s
r
3]⊕ {kr+1

4 , kr+1
5 , kr+1

6 , kr+1
7 },

(sr+1
8 , sr+1

9 , sr+1
10 , sr+1

11) = T0[s
r
8]⊕ T1[s

r
13]⊕ T2[s

r
2]⊕

T3[s
r
7]⊕ {kr+1

8 , kr+1
9 , kr+1

10 , kr+1
11 },

(sr+1
12 , sr+1

13 , sr+1
14 , sr+1

15) = T0[s
r
12]⊕ T1[s

r
1]⊕ T2[s

r
6]⊕

T3[s
r
11]⊕ {kr+1

12 , kr+1
13 , kr+1

14 , kr+1
15 }.

We can see that the T-table accesses are inherently depen-
dent on both the secret key and the plaintext. Cache-based

side-channel attacks exploit this key-dependent behavior of T-
table accesses to infer the secret key.

For the purpose of analysis, we refer to the entries of the
T-table as virtual nodes (VNs), which are mapped to specific
cache lines. The memory addresses of these cache lines are
referred to as physical nodes (PNs).

B. Related Work

Shrivastava et al. [16] highlight the vulnerability of address-
based CMs, and prove that the search space for reconstructing
address mappings can be reduced from n! to nO(log(log(n))).
This reduction leverages the fact that a 1-bit Hamming distance
in plaintext bytes (for the same position) results in a 1-bit
Hamming distance of the corresponding state bytes after a
round of encryption. We shall improve this result to O(n2).
using a much simpler EDCSA cipher. They highlight the chal-
lenges posed by noise and dynamic remapping. To enhance the
attack, they propose techniques like parallel probing for victim
access monitoring and frequency-domain analysis using power
spectral density to identify target cache sets efficiently. AES
accesses lack repetitive patterns, hence, frequency-domain
analysis is not very useful here.

III. THREAT MODEL

We consider a cross-core side-channel attack in a multi-
tenant, shared computing environment. In accordance with
standard threat models [7], [16], [17], the attacker and the
victim are assumed to run concurrently on separate physical
cores of the same processor, but they share the Last-Level
Cache (LLC). The victim performs AES encryption using
T-tables. The attacker’s objective is to recover the victim’s
secret key by exploiting the side-channel information leaked
via shared cache accesses while accessing the T-tables.
Attacker’s Capability- The attacker can influence the victim’s
T-table accesses by sending carefully crafted plaintexts to the
victim. In a realistic scenario, the victim might be running
a cryptographic service that the attacker can interact with.
The LLC is shared between the cores, meaning that cache
lines accessed by the victim during AES encryption will also
be visible to the attacker (albeit indirectly). The attacker can
monitor the victim’s cache access patterns. We assume that the
attacker is aware of all the noisy eviction sets (not precise),
even in the presence of sophisticated cache access obfuscation
techniques.

IV. CLASSIFICATION OF COUNTERMEASURES (CMS)

We classify various CMs based on their impact on the VN-
to-PN mapping, as summarized in Table I. These CMs are
classified as follows:

A. Redundancy-Based Techniques

Li et al. [12] propose Prefender, a prefetching-based defense
that introduces extraneous cache activity to mislead attackers.
It comprises the Data Scale Tracker (DST) and the Access
Pattern Tracker (APT). DST prefetches cache lines expected
to be accessed by the victim, mimicking secret-dependent

behavior, while APT prefetches cache lines the attacker is
likely to access (probe), creating misleading cache hits.

Similarly, Mosquera et al. [13] propose to introduce false
cache hits using a novel cache structure – Guard cache. During
execution, when data is evicted from the primary cache, it is
redirected to the Guard cache. Since the access time of the
Guard cache is comparable to that of the primary cache, any
missing data retrieved from it gives the impression that it was
originally present in the primary cache. They also propose to
introduce false cache misses by randomly evicting cache lines
from the primary cache. The likelihood of utilizing the Guard
cache, along with the rate at which data is evicted from the
primary cache (resulting in false misses) can be adjusted.

Li et al. proposed [20] to introduce a dedicated, small
eviction-hiding buffer – Treasure cache. This buffer temporar-
ily holds evicted LLC entries, which can be reloaded directly
back into the LLC upon an LLC miss that matches an entry
in the buffer.
▶ Implications: A cache-side channel attack typically unfolds
in three steps as follows. 1 the attacker evicts a set of sus-
pected target addresses from the cache; 2 the attacker allows
the victim to execute and access memory; 3 the attacker
measures which addresses were accessed by measuring cache
access times (and inferring hits).

When CMs such as Prefender or Guard cache are active,
the attack process is disrupted, since the attacker no longer
observes a single cache hit corresponding to the victim’s
secret-dependent access, but instead observes multiple cache
hits at different target addresses. For example, in Prefender,
the APT predicts the target address the attacker will measure
next (in the third step) and prefetches it in advance, making it
appear as if the victim accessed it. Simultaneously, the DST
anticipates the cache lines the victim will access in the next
encryption and prefetches them. This causes multiple cache
lines from different encryptions (different plaintexts) to be
mapped to the same plaintext or VN, injecting redundancy into
the attacker’s observations. This results in a one-to-many VN-
to-PN mapping as shown in Figure 1(b). Figure 1(a) illustrates
the actual VN-to-PN mapping, where multiple VNs can be
mapped to the same PN since multiple entries in the T-table
can reside within a single cache line.

V1

V2

V3

V4

P1
V1

V2

V3

V4

(a)

V3

V2

V1

V4

V2

V3

V4

(b) (c) (d)

P1P1 P1

P2 P2P2
P2

V1

Fig. 1: Classification of Different Countermeasures. (a) Ac-
tual VN-to-PN mapping (b) Mapping after redundancies (c)
Mapping after removal (d) Mapping after randomization

B. Access- Removal-Based Techniques

Thoma et al. [11] propose ClepsydraCache to mitigate the
effect of state-of-the-art cache attacks using a combination of

Work Venue Insight Impact
Prefender [12] TC’24 Prefetches the victim’s and adversary’s data to introduce fake cache hits Redundancy
Guard Cache [13] CAL’23 Introduces false misses by randomly evicting data. Introduces false cache

hits by storing evicted data in the Guard cache.
Access removal + Redundancy

Treasure Cache [20] TDSC’24 Stores the evicted cache lines, introduces false cache hits. Redundancy
Clepsydra Cache [11] USENIX’23 Random address to index mapping. Random cache evictions. Randomized mapping + Access re-

moval
Scarf [9] USENIX’23 Random address to cache index mapping. Randomized mapping
CEASER [8] ISCA’19 Periodically remaps the address mapping Remapping
SCATTERCACHE [10] USENIX’19 Periodically remaps the address mapping Remapping

TABLE I: Summary of the Countermeasures

cache decay and index randomization. Each cache entry is
linked with a Time- To-Live (TTL) value. The TTL is steadily
reduced and, when it expires, the entry is evicted from the
cache (known as cache decay). The authors also randomize
the process of mapping block addresses to cache lines.

In Guard Cache [13], cache lines are randomly evicted from
the primary cache, introducing artificial cache misses. These
unpredictable evictions disrupt the attacker’s ability to track
the victim’s memory accesses accurately.
▶ Implications: Such CMs that introduce false cache misses
disrupt the attacker’s measurement process. After the attacker
evicts the target addresses and the victim reloads the secret-
dependent address, these CMs may randomly evict the secret-
dependent address again, converting a potential cache hit into
a cache miss. Consequently, the adversary may not observe
a cache hit (PN) associated with the VN, as illustrated in
Figure 1(c). This behavior results in missed VN-to-PN con-
nections.

C. Randomization-Based Techniques

Canale et al. [9] propose SCARF, which is a crypto-
graphically sound, tailor-made cache cipher, that randomizes
the address-to-cache-index mapping and makes it difficult to
construct the eviction sets. Basically, it is a tweakable block
cipher with a 48-bit tweak and 10-bit block size. SCARF
uses a 240-bit secret key. Similarly, ClepsydraCache [11] also
randomizes the mapping of the address to the cache index.
▶ Implications: In a conventional system, the mapping of a
memory address to a cache line (cache index) is typically
fixed and deterministic. Randomization techniques alter the de-
terministic address-to-cache mapping, disrupting an attacker’s
ability to infer memory access patterns. As a result, the VN
no longer corresponds to a single PN (the cache line). This
technique randomizes the mapping between VNs and PNs, as
shown in Figure 1 (d).

D. Remapping-Based Techniques

Qureshi et al. [21] proposed CEASER, which employs
periodic remapping of cache sets to disrupt eviction sets
and counter side-channel attacks. By dynamically changing
the mappings at regular intervals, it ensures that attackers
cannot rely on static mappings to exploit cache behavior.
Similarly, Werner et al. propose ScatterCache [10], which uses
fine-grained randomization and dynamic remapping of cache
lines to decouple addresses from cache indices. Its remap-
ping occurs at runtime, preventing attackers from establishing

predictable eviction sets, while maintaining low performance
overheads.

(a) (b)

V1

V2

V3

V4

P1

P2

V3

V2

V1

V4

P1

P2

V3

V2

V1

V4

P1

P2

V1

V2

V3

V4

P1

P2

Fig. 2: Remapping (a) Without redundancies (b) With ran-
domization and redundancies

▶ Implications: The mapping between VNs and PNs expe-
riences periodic randomization over the course of time, as
illustrated in Figure 2(a). Figure 2(b) depicts the scenario
when redundancies and randomization are incorporated into
the system.

V. ATTACK METHODOLOGY

We propose a two-phase attack strategy to infer secret key
bytes, wherein the attacker iterates through all 256 possible
values of the first key byte and estimates the remaining
unknown key bytes until the complete key is recovered.

In the first phase, the attacker finds the mapping between
the VNs and the PNs by using the first key byte. This mapping
serves as the foundation for the second phase, where the
attacker uses the derived mapping to infer the remaining
unknown key bytes, as shown in Algorithm 1. Once the
complete key is derived, the attacker verifies it by encrypting
a plaintext and comparing the (estimated) ciphertext with the
expected ciphertext. If the key is incorrect, the process repeats
with a different first key byte until the correct key is found.

1) Phase-1: Deriving the VN-to-PN Mapping with the First
Key Byte: The attacker begins by selecting a candidate for the
first key byte and infers the VN-to-PN mapping as shown in
Algorithm 2. She iterates over all possible values of plaintext
bytes (0, 1 . . . 255). For each plaintext byte, the corresponding
VN is computed as the XOR between the plaintext byte and the
first key byte. The attacker then determines the corresponding
PN associated with the VN.

In a real-world system, this process involves probing the
cache to identify the PNs that consistently result in cache hits
when a specific VN is accessed. This step is represented by the
function FINDPHYSICALNODE in Algorithm 2. The observed
PNs are then mapped to the corresponding VN. Note that in
a noisy system it will be a one-to-many mapping.

2) Phase-2: Inferring Unknown Key Bytes: In the second
phase, the attacker targets a secret key byte. While the attacker
can control the plaintext bytes, she lacks prior knowledge of
the secret key bytes and, consequently, the corresponding VNs.
1 The first step is to collect the plaintext-to-PN mapping for
the unknown secret key byte. This process follows the same
approach as Phase 1. Since the attacker lacks knowledge of
VNs, she uses plaintext bytes instead (see the GENERATEMAP-
PING function in Algorithm 2). Internally, the system computes
the VN as the XOR of the plaintext and the unknown key byte,
but this VN is not known to the attacker.
2 Next, the attacker identifies the candidate key bytes (a
superset) by leveraging the VN-PN and plaintext-to-PN map-
pings as shown in Algorithm 1. Initially, the attacker identifies
the plaintext byte values and VNs that map to the same PN in
their respective mappings. For each physical node, the attacker
computes the XOR between all pairs of mapped plaintext
bytes and virtual nodes using the ALLPAIRXOR function.
This results in a set of candidate key bytes at a specific position
(no duplicates). As the attack progresses across multiple PNs
(corresponding to the same byte position), the set of candidate
key bytes keeps reducing and ultimately becomes 1 if the
initial guess for K[0] is correct. The attack proceeds to find
all key bytes at non-zero positions using this approach.

A. In the Presence of Remapping
If the victim dynamically remaps the VN-to-PN mapping

after the completion of Phases 1 and 2, the attacker must adopt
an adaptive verification-based strategy to ensure accurate key
recovery.

In this scenario, after completing Phase 2, the attacker re-
executes Phase 1 to verify whether the VN-to-PN mapping
has changed. If the mapping remains consistent, the attacker
retains the previously derived key byte and proceeds to target
the next byte. However, if the mapping has changed, the
attacker must remount the attack by re-executing both Phase
1 and Phase 2 to recompute the key byte.

This iterative process continues until the key byte is suc-
cessfully recovered or the maximum iteration limit is reached.
This approach ensures convergence in practice because no
practical system remaps memory very quickly. It is thus quite
unlikely that a remapping will always happen between Phases
1 and 2. This systematic cross-verification of the consistency
of the mapping ensures robustness against dynamic remapping,
making the attack methodology resilient.

VI. RESULTS

We use a machine with the following system configuration:
Intel i7-8550U CPU (1.8 GHz) with 64 cores, 16 GB DRAM,
and a three-level cache hierarchy (L1: 32 KB, L2: 256 KB, L3:
8 MB). The software environment includes Ubuntu 18.04 with
the Linux kernel 5.4, and GCC 7.5. We developed a simulator
in C++ to model both attack strategies and CMs, enabling
a detailed analysis of their implications. The simulator is
designed to incorporate all relevant parameters, including VN-
to-PN mapping dynamics, remapping probabilities, and real-
world noise injection levels as shown in Table II. These

Algorithm 1 Two-Phase Key Inference Attack Algorithm
1: Input: Plaintext PT, Known ciphertext CT, N is the key length
2: Output: Key K = {K[0],K[1] . . .K[N − 1]} or ⟨failed-attack⟩

3: ▷ Iterate over all the possible values of the first key byte
4: for all b ∈ {0, . . . , 255} do ▷ Guess for K[0]
5: ▷ Phase 1: Establish the VN-to-PN Mapping
6: MVN 7→PN ← GENERATEMAPPING(1, b, 0) ▷ isV N = 1

7: ▷ Phase 2: Infer Remaining Key Bytes
8: for all pos ∈ {1, . . . , N − 1} do
9: MPT 7→PN ← GENERATEMAPPING(0,−, pos) ▷ isV N = 0

10: Kcandidates ← { }
11: firstIter← true
12: P ←

⋃
0≤i≤255 MPT 7→PN [i] ▷ all mapped PNs

13: for all pn ∈ P do ▷ iterate over the PNs
14: ▷ Find all plaintext bytes and VNs that map to pn
15: Sb ← M−1

PT 7→PN (pn) ▷ preimage of pn (text bytes)
16: Sv ← M−1

VN 7→PN (pn) ▷ preimage of pn (VNs)

17: if firstIter then
18: firstIter← false
19: Kcandidates ← ALLPAIRXOR(Sb,Sv) ▷ compute superset
20: else
21: ▷ Prune the set of candidate key bytes
22: Kcandidates ← Kcandidates ∩ ALLPAIRXOR(Sb,Sv)
23: end if

24: if |Kcandidates| = 1 then ▷ Convergence reached
25: K[pos]← Kcandidates[0]
26: break
27: end if
28: end for
29: end for

30: ▷ Verify derived key candidate
31: if ENCRYPT(PT,K) = CT then
32: return K
33: end if
34: end for
35: return ⟨failed-attack⟩

Algorithm 2 Generalized Mapping Extraction Algorithm
1: function GENERATEMAPPING(isV N , b, pos)
2: Input: Boolean isV N , key byte b (guess), key byte pos. pos
3: Output: Mapping MX 7→PN , X is either PT or VN (see isV N)
4: MX 7→PN ← { } ; P ← {}
5: ▷ Iterate over all the possible plaintext bytes
6: for all ptbyte ∈ {0, 1 . . . 255} do
7: if isV N then
8: x← ptbyte ⊕ b ▷ For VN-PN mapping (Phase 1)
9: else

10: x← ptbyte ▷ For PT-PN mapping (Phase 2)
11: end if
12: P ← FINDPHYSICALNODES(ptbyte, pos) ▷ Set of PNs
13: MX 7→PN [x]←MX 7→PN [x] ∪ P
14: end for
15: return MX 7→PN ▷ Maps a VN/PT to a set of PNs
16: end function

parameters are carefully chosen on the basis of extensive
real-world analysis of the CMs, ensuring that the simulation
accurately reflects the practical system behavior even in the
presence of noise.

In the presence of randomness-based CMs, we mounted
the attack while increasing the number of VNs per PN.

Parameter Significance CM
VN/PN # of VNs mapped to the same PN Randomness
Remap Prob. Probability of change in the mapping Remapping
Removal Prob. Prob. of missing PN-VN connection Removal
PN/VN Maximum # of PNs mapped to a VN Redundancy

TABLE II: Simulation Parameters

The results indicate that as the VN/PN ratio increases, the
number of iterations required to retrieve the key also increases.
Specifically, for VN/PN ratios of 2, 4, 6, and 8, the number of
tries required were 1920, 1920, 7680, and 11520, respectively.
We then introduced redundancy-based CMs into the system
also by increasing the number of PNs assigned to each VN.
We present the results in Figure 3a.

(a) Redundancy

F

F

(b) Removal

Fig. 3: Number of tries required in the presence of different
CMs. F → not enough samples to mount the attack.

Subsequently, we evaluated the attack under removal-based
countermeasures, where noise was introduced by randomly
removing physical nodes according to the removal probability.
As shown in Figure 3b, the key byte could still be estimated
within a finite number of iterations. However, the attack failed
(key candidates do not converge) when the noise became
excessive, i.e., when the sample size was too small (probability
≥ 0.6).

Figures 4a and Figure 4b show the number of attempts
and the attack time, respectively, required to retrieve the key
in the presence of a remapping-based countermeasure with a
probability of remap of 0.2, along with redundancy, removal
(removal prob. 0.2) and randomness. We observe that both the
number of attempts and the attack time are significantly higher
compared to other CMs.

VII. CONCLUSION

Side-channel attacks pose a serious threat to secure systems
as they exploit shared caches to extract sensitive data. While
research has focused on disrupting target eviction set identi-
fication, the equally critical phase of key reconstruction has
been largely neglected. Existing solutions are either computa-
tionally impractical or limited to simple scenarios, leaving the
broader challenge unaddressed. In this work, we introduced
a comprehensive theoretical framework, the 4R model, to
classify CMs into four key categories: redundancy, removal,
randomization and remapping. We observed that the presence
of all 4Rs significantly complicates key reconstruction, ren-
dering conventional approaches ineffective. To address this

(a) (b)

Fig. 4: Results in the presence of remapping, randomness,
removal and redundancy. (a) Number of tries (b) Attack time
(in seconds)

challenge, we proposed a dual-phase attack framework that
adapts dynamically to sophisticated CMs to recover the key.
We require just about 50k attempts to retrieve the key, far
surpassing prior state-of-the-art methods that require billions
of operations.

REFERENCES

[1] D. A. Osvik et al., “Cache attacks and countermeasures: the case of
aes,” in Cryptographers’ track at the RSA conf., 2006, pp. 1–20.

[2] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low noise,
l3 cache side-channel attack,” in USENIX, 2014.

[3] D. Gruss et al., “Flush+ flush: a fast and stealthy cache attack,” in
DIMVA, 2016.

[4] F. Liu et al., “Last-level cache side-channel attacks are practical,” in
S&P, 2015.

[5] W. Song and P. Liu, “Dynamically finding minimal eviction sets can be
quicker than you think for side-channel attacks against the {LLC},” in
RAID, 2019.

[6] A. Bhatla et al., “The maya cache: A storage-efficient and secure fully-
associative last-level cache,” in ISCA. IEEE, 2024, pp. 32–44.

[7] G. Saileshwar and M. Qureshi, “{MIRAGE}: Mitigating {Conflict-
Based} cache attacks with a practical {Fully-Associative} design,” in
USENIX, 2021, pp. 1379–1396.

[8] M. K. Qureshi, “Ceaser: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in MICRO, 2018.

[9] F. Canale et al., “{SCARF}–a {Low-Latency} block cipher for secure
{Cache-Randomization},” in USENIX Security, 2023, pp. 1937–1954.

[10] M. Werner et al., “Scattercache: Thwarting cache attacks via cache set
randomization,” in USENIX, 2019.

[11] J. P. Thoma et al., “{ClepsydraCache}–preventing cache attacks with
{Time-Based} evictions,” in USENIX Security, 2023, pp. 1991–2008.

[12] L. Li et al., “Prefender: A prefetching defender against cache side
channel attacks as a pretender,” IEEE Transactions on Computers, 2024.

[13] F. Mosquera et al., “Guard cache: Creating noisy side-channels,” IEEE
CAL, vol. 22, no. 2, pp. 97–100, 2023.

[14] W. Song et al., “Randomized last-level caches are still vulnerable to
cache side-channel attacks! but we can fix it,” in S&P, 2021.

[15] T. Kessous and N. Gilboa, “Prune+ plumtree-finding eviction sets at
scale,” in SP. IEEE Computer Society, 2024, pp. 173–173.

[16] N. Shrivastava and S. R. Sarangi, “Toward an optimal countermeasure
for cache side-channel attacks,” ESL, vol. 15, no. 3, pp. 141–144, 2022.

[17] Z. N. Zhao et al., “Last-level cache side-channel attacks are feasible in
the modern public cloud,” in ASPLOS, Volume 2, 2024, pp. 582–600.

[18] V. Rijmen et al., “Optimised ANSI C code for the Rijndael cipher
(now AES),” 2000. [Online]. Available: https://www.esat.kuleuven.be/
cosic/pulications/article-154.pdf

[19] S. Vanstone, “Elliptic curve digital signature algorithm,” Submission to
NIST, 1992.

[20] M. Li et al., “Treasurecache: Hiding cache evictions against side-channel
attacks,” IEEE TDSC, 2024.

[21] M. K. Qureshi, “New attacks and defense for encrypted-address cache,”
in ISCA, 2019, pp. 360–371.

https://www.esat.kuleuven.be/cosic/pulications/article-154.pdf
https://www.esat.kuleuven.be/cosic/pulications/article-154.pdf

	Introduction
	Background and Related Work
	Software Implementation of AES
	Related Work

	Threat Model
	Classification of Countermeasures (CMs)
	Redundancy-Based Techniques
	Access- Removal-Based Techniques
	Randomization-Based Techniques
	Remapping-Based Techniques

	Attack Methodology
	Phase-1: Deriving the VN-to-PN Mapping with the First Key Byte
	Phase-2: Inferring Unknown Key Bytes

	In the Presence of Remapping

	Results
	Conclusion
	References

