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Abstract—In this paper, we introduce a new Java-based
parallel GPGPU simulator, GpuTejas . GpuTejas is a fast trace
driven simulator, which uses relaxed synchronization, and non-
blocking data structures to derive its speedups. Secondly, it
introduces a novel scheduling and partitioning scheme for
parallelizing a GPU simulator. We evaluate the performance
of our simulator with a set of Rodinia benchmarks. We
demonstrate a mean speedup of 17.33x with 64 threads over
sequential execution, and a speedup of 429X over the widely
used simulator GPGPU-Sim. We validated our timing and
simulation model by comparing our results with a native system
(NVIDIA Tesla M2070). As compared to the sequential version
of GpuTejas , the parallel version has an error limited to
<7.67% for our suite of benchmarks, which is similar to the
numbers reported by competing parallel simulators.

Keywords-GPU; Simulator; Timing model; Cycle-level; Par-
allel Architectural Simulation;Nvidia;Tesla;

I. INTRODUCTION

GPUs are increasingly being regarded as first class citi-
zens in the world of processors. Before NVIDIA released the
CUDA API, GPUs were exclusively being used for computer
graphics based applications. However, off late GPUs have
become general purpose and it is possible to use them
for a variety of numerical and scientific applications, bio-
informatics, and even data-analytics based applications [1].
Consequently, GPUs are nowadays termed as GPGPUs (gen-
eral purpose GPUs). GPUs are not restricted to add-on cards
any more. Intel and AMD [2], [3], [4], [5] have already
integrated them on chip, and now it is possible for general
purpose users to write programs that run on the GPU.

In response to this market trend, both computer archi-
tects as well as processor manufacturers are increasingly
focusing on the hardware and software aspects of designing
GPUs. Till a few years ago, GPUs were being considered
primarily as graphics engines that additionally support nu-
merical computations. However, perceptions are changing,
and nowadays GPUs are being designed exclusively for high
performance computing applications. In fact, 2 out of the top
10 fastest supercomputers (Titan, Piz Daint, Nov’13 list) are
built with GPUs. Consequently, it is necessary for students,
researchers, and professionals to understand the design and
research issues in building fast and power efficient GPUs.

Traditionally, for studying, and designing new architec-
tures, an architecture simulator has been the main workhorse
in the computer architecture community. Hence, for working
with GPUs, the computer architecture community uses sev-
eral popular GPU simulators that perform both functional as
well as timing simulation. Some of the notable simulators
in this space are GPGPU-Sim [6], Ocelot [7], Barra [8],
and Attila [9]. Most of these simulators have been validated
with native systems, and have proved to be very useful
for studying the features of GPU based workloads, and in
proposing both the software and hardware enhancements
to the GPU design and associated software stack. Along
with exclusive GPU simulators, the computer architecture
community has developed simulators that can simulate both
the CPU and GPU [10], [11], [12], [13], [14]. These are
useful for applications that have computations in the GPU,
as well as in the CPU. These simulators are also used to
study the interaction between the CPU, and GPU.

We believe that there is a need for a new and scalable
simulator in this space. This is because modern GPUs
have hundreds to thousands of processing elements. For
example, NVIDIAs Kepler GPU contains more than 2500
processing elements, and it can process thousands of threads
in parallel [4]. AMDs Radeon HD 6000 [5] series of GPUs
contain more than 1000 processing elements on a single
GPU die. Sequential GPGPU architecture simulators suffer
from performance issues while simulating these massively
parallel GPUs. With the exponential rise in the process-
ing elements in a GPU, there is a consensus view that
parallel simulators are required since the slow simulation
speed of sequential simulators [6] proves to be prohibitive
for teaching, and designing GPUs. Additionally, given the
fact that most of the time we run embarrassingly parallel
benchmarks on a GPU, the interaction between threads
in the memory system is not significant. We believe that
this feature of GPU benchmarks should be leveraged to
design, fast parallel GPU simulators. To the best of our
knowledge, the proposal by Ro et. al. [15] is the only work
that focuses on designing parallel GPU timing simulators.
They propose a simulation technique where they minimize
the synchronization overhead by simulating the parallel
components of the GPU architecture independently using
multiple simulation threads. They reported a speedup of



4.15x using an 8-core system.
In this paper, we present the design of a soon to be

released Java-based, open source, GPGPU simulator called
GpuTejas that scales to at least 64 threads. It is a part of
the broad Tejas simulation framework [16] that can simulate
complex multicore CPUs (sequentially and also in parallel).
The salient features of this simulator is that it uses novel
data structures for obtaining speedups. In specific, we use
phasers (advanced barriers with support for phases), and lock
free parallel ports (non-blocking structures for managing
contention), for designing our simulator. We show that by
using these novel concurrent data structures, we can design
a highly parallel simulator that can simulate the timing
aspect of GPUs. It is important to note that we do not
perform functional simulation, i.e., execute the behavior of
the instructions. We use the Ocelot framework [7] to execute
CUDA based programs, and then we simulate the collected
traces to estimate the timing.

Moreover, our simulator is written in Java. We chose
Java for satisfying the dual objectives of having an efficient
research tool that is easy to design, maintain, and extend,
and also to create an educational tool that does not require
a lot of time to learn. We collected informal feedback from
students in Indian educational institutions. The students in-
dicated that they prefer Java over C/C++ because it is easier
to write and debug programs. We noted some additional
advantages such as the built in support for multiple threads,
availability of lock-free data structures, extensive library
support, and support for garbage collection. Secondly, the
quintessential argument that Java is significantly slower than
C++ is debatable [17], [18], [19]. With modern JIT compiler
based JVMs, the performance difference has narrowed to
less than 20% [18], and sometimes researchers have reported
speedups with heavily object oriented benchmarks [18].

Let us succinctly, list our contributions.
1) We design a GPGPU compute pipeline, and a config-

urable cache/memory model for GPGPUs.
2) We propose a configurable block scheduling algo-

rithm, which evenly schedules the blocks across SMs.
3) We design a fast transfer medium using files to transfer

traces between Ocelot, and our Java based simulator
threads.

4) The pipelines operate in parallel. The rendezvous
points between the threads are in the memory system.
The crux of our technique for implementing a parallel
memory system is to use a novel concurrent data
structure called a parallel port. The parallel port helps
us to model the contention in the memory system
accurately, and avoid costly clock synchronization
operations between the threads.

5) We propose a simulation algorithm that uses
phasers(see Section IV-B) to dynamically reduce the
time that threads spend in synchronization. This en-
sures that the time wasted in waiting for a barrier is

significantly reduced.
6) For improving the performance of Java programs, we

propose a host of Java specific optimizations namely
selection of appropriate data structures, fine grained
locking mechanisms, and pooling techniques.

7) We demonstrate a mean, 17.33X speedup with 64
threads from our sequential simulation.

8) We demonstrate a 429X speedup with respect to the
widely used sequential simulator, GPGPU-Sim [6].

II. RELATED WORK

A. Sequential GPU Simulators

Attila [9] was one of the earliest software based simulators
for graphics programs. It is a detailed execution-driven cycle
accurate GPU simulator. It is highly configurable, which
makes it a generic simulator that is independent of the
GPU manufacturer. It simulates GPU pipelines by collecting
dynamic traces from an OpenGL application. It does not
support CUDA and the GPGPU framework.

The widely used simulator, GPGPU-Sim [6], is a detailed
general-purpose GPU (GPGPU) simulator that supports
functional and cycle-level timing simulation for NVIDIA
GPUs. It models GPGPU compute units (CUs) called
streaming multiprocessors by NVIDIA and the GPU mem-
ory system. It has been extended to include PTX as an
instruction set. It can run applications without source code
modifications, but requires access to the source code.

Gem5-GPU [12] is a heterogeneous full-system CPU-
GPU simulator, tightly integrated with the Gem5 [20] sim-
ulation infrastructure. It can simulate programs meant for
the CPU, and programs meant for the GPU simultaneously.
It can be used to study the behavior of benchmarks that
jointly use the CPU and GPU. The MacSim [11] simulator
provides models of both CPU and GPU cores. MacSim is
a trace driven heterogeneous architecture simulator that can
simulate x86 and PTX traces. It can simulate both the ISAs
simultaneously.

Multi2Sim [10] is a simulation framework for heteroge-
neous computing, and it includes models for superscalar,
multithreaded, multicore, and graphics processors. It pro-
vides cycle-level simulation for the AMD Evergreen family
of GPU architectures. It provides a parallel simulation
framework for CPU architecture simulation; however, its
GPU simulator is sequential. FusionSim [14] is an open-
source modeling framework that is capable of cycle-accurate
simulation of a complete x86-based computer system with
a CPU and a GPU. It models an x86 out-of-order CPU and
a CUDA-capable GPU that operate concurrently.

Ocelot [7] is a dynamic compilation and emulation frame-
work that executes CUDA binaries without modifying the
source code. It provides a binary translator, which is capable
of translating PTX into x86 and other ISAs using the LLVM
compiler. It does not have a timing model. GpuTejas uses
Ocelot for functional simulation and trace generation.



B. Parallel GPU Simulators

Barra-Sim [8] is a parallel functional GPGPU emulator
for the NVIDIA Tesla architecture. It emulates the CUDA
driver and maps all the function calls destined for the GPU
to itself. It decodes the ISA and emulates the instructions.
It does not have a timing model.

Ro et. al. [15] parallelized GPGPU-Sim. They divide the
functional units into shared and parallel components. They
propose two synchronization algorithms. The first method,
performs a cycle by cycle synchronization across the threads,
which makes it very slow. In the second algorithm, the
threads synchronize after the end of a work-group and the
parallel components are simulated without any synchroniza-
tion overhead. They demonstrate a speedup of 4.15x over
the sequential GPGPU-Sim on a 8-core system. On the
other hand, GpuTejas is 429.89x faster than GPGPU-Sim
on an average(see Section V-G). Additionally, GpuTejas has
a different model of parallelization. We parallelize at the
level of blocks. To the best of our knowledge, [15] is the
only work in the area of parallel GPU timing simulators.

III. SYSTEM ARCHITECTURE

A. Overview
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Figure 1. System Overview of GpuTejas

In this paper, we show how GpuTejas can simulate the
NVIDIA Tesla [2] architecture. Note that GpuTejas is a
highly configurable simulator and it can seamlessly simulate
advanced GPU architectures such as Tesla, Fermi, and
Kepler. The overview of the design of GpuTejas is shown
in Figure 1. A CUDA executable is given as an input to the
simulator. We first use an instrumented version of Ocelot [7]
to run the executable, and then generate a set of trace files.
These trace files primarily contain information regarding
the instructions being executed, including the instruction
type, instruction pointer (IP), and the corresponding PTX
instruction. Note that (PTX) (Parallel Thread Execution) is
an intermediate device language, which has to be converted

into device specific binary code for native execution. The
trace additionally contains the list of memory addresses (if
it is a load/store instruction) accessed by an instruction. We
also embed some metadata along with every trace file. The
metadata lists the number of kernels, the grid sizes in each
kernel, and the number of blocks present in each kernel.

These traces undergo another pass to reduce the size of the
files. It was observed that all the blocks of a kernel contain
the same set of instructions. Thus, redundant information
was getting saved in the trace files for every block. We stored
the information regarding these instructions separately in a
hashfile. Our post-processing scripts subsequently generate
new trace files that only contain the instruction pointers of
instructions. These instruction pointers map to the actual
instructions in the hashfile. Note that, these instructions are
translated to specific instruction classes before storing them
into the hashfiles. This further reduces the space occupied
by the traces being generated. The trace files generated in
the second pass are read by the waiting Java simulation
threads. The Java based simulator threads model the GPU,
and the memory system. They are responsible for generating
the timing information, and detailed execution statistics for
each unit in the GPU, and the memory system.

The NVIDIA Tesla GPU contains a set of TPCs (Texture
Processing Clusters), where each TPC contains a texture
cache, and two SMs (Streaming Multiprocessors). Each SM
contains 8 cores (Stream Processors (SPs)), instruction and
constant caches, shared memory and two special function
units (can perform integer, FP, and transcendental oper-
ations). A typical CUDA computation is divided into a
set of kernels (function calls to the GPU). Each kernel
conceptually consists of a large set of computations. The
computations are arranged as a grid of blocks, where each
block contains a set of threads. The NVIDIA GPU defines
the notion of a warp, which is a set of threads (typically
in the same block) that are supposed to execute in a SIMD
fashion. We simulate warps, blocks, grids, and kernels in
GpuTejas .

We parallelize the simulation by allocating a set of SMs
to each thread. In our simulation, each SM has its own local
clock for maintaining the timing of instructions. Memory
instructions are passed to the memory system, which sup-
ports private SM caches, instruction caches, constant caches,
shared memory, local memory and global memory. The
important point to note here is that different Java threads do
not operate in lock step. This can potentially create issues in
the memory system, where we need to model both causality
(load-store) order and contention. We shall present novel
solutions to model both of these issues in Section IV-A.

B. Trace Generation using Ocelot

Ocelot [7] is a dynamic compilation framework that
replaces the CUDA runtime API library, which links with
CUDA applications. Ocelot traps the CUDA library calls,
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and simulates their execution. Note that it simply em-
ulates the functionality of the GPU. It does not model
the timing and architectural aspects of the GPU, or its
components. We instrumented Ocelot to catch various events
and trigger custom functions, and then generate packets
of information. Each packet contains the instruction type,
instruction pointer, and the corresponding PTX instruction.
Additionally, a memory-based instruction contains a memory
addresses vector. Other events considered for handshaking
purposes include the kernelstart, and kernelend events.
These packets are used to simulate the sequential ordering
of kernels among Java simulator threads.

C. Transfer Mechanism

Packets generated by the trace generator (see Sec-
tion III-B) need to be subsequently transferred to the Java
simulation threads. We conducted an experiment to evaluate
different transfer mechanisms. We evaluated various mecha-
nisms such as UNIX sockets, shared memory, and files. We
measured the time taken by each mechanism to transfer 5
GB of data from Ocelot to Java threads on an Intel Core
i7 desktop(3.1 GHz processor, 4 GB RAM, Ubuntu Linux
12.04).

1) Sockets: In the case of sockets, we use a dedicated
TCP socket between the two processes. We transfer
a stream of packets, each of size 1.5KB (Ethernet
MTU). We observed that the communication with
sockets is the slowest of all the mechanisms.(See
Figure 4).

2) Shared Memory: We implemented a shared memory
model similar to that used by ParTejas [16]. We
used a single shared memory segment divided into n
contiguous regions for n blocks. Each region contains
a header, and a circular queue. Packets in a block are
written to its corresponding slot, and read by the Java
threads simultaneously (see Figure 2). For multi-kernel
applications, the memory segment is flushed whenever
a new kernel arrives, and after all the packets of the
previous kernel have been read. Note that this is an
online mechanism where packets need to be consumed
by simulator threads in an in-vivo manner.
We observed several limitations of this mechanism.
Firstly, Ocelot being sequential in nature generates
the dynamic instruction trace block-by-block for each
kernel. This makes the producer process very slow,
and makes it a sequential bottleneck. Having a slow
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feeder limits the total simulation speed and scalability
as well. Figure 3 shows the execution speed of various
CUDA executables running with the base version of
Ocelot, and with the instrumented version of Ocelot.
The results are normalized to the CUDA emulation ex-
ecution time (on a native system) for each executable.
We observe a mean slowdown of 9.5X, and 286.56X
for the base and instrumented versions respectively.

3) Compressed Trace Files: Instead of online mech-
anisms, we tried an offline mechanism that decou-
ples emulation and simulation. The basic approach
is to write the traces to a set of files, post-process
them, and use the files for detailed timing simu-
lation. We experimented with various java.io pack-
ages. We conducted experiments with the classes:
RandomAccessFile, BufferedReader, and DataInput-
Stream. RandomAccessFile uses a minimal amount of
in-memory caching; hence, it proved to be a very
slow method. Subsequently, we experimented with the
BufferedReader class. The only drawback with the
BufferedReader class is that it does not provide any
provision to read objects directly. We found DataIn-
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putStream to be the fastest and most versatile. We
additionally used Java’s built in features to couple it
with a buffering mechanism. We read data in chunks
of 64KB, which reduced the IO overhead considerably.
The results are shown in Figure 4.

D. Post Processing the Traces

Generating the traces is a two pass process. In the first
pass, we create a set of trace files. If we decide to have nsim

simulator threads, then we create nsim trace files, one for
each thread. Packets from the trace generator are written to
these trace files. Blocks of a kernel are distributed uniformly
across the files. If we have nb blocks in a kernel, then
nb/nsim blocks are simulated by each Java thread. Packets
of blocki of a kernel are written in the trace filei%nsim

.
This method of partitioning is shown in Figure 5.

In the second pass, these files are further compressed to
reduce the space before being fed to the simulation engine.
We assign a RISC Instruction class (similar to GPU device
specific RISC instructions) to each instruction that is read
from the trace file. The assignment is done on the basis of
the opcode of the PTX instruction. This mapping is similar
to that used by MacSim [11]. An important point to note here
is that all the blocks in the kernel are executing the same set
of instructions and consequently, we do not need to repeat
the same translation procedure for all the blocks of a kernel.
We define a mapping of instruction pointer → instruction
class, and store it in a Hashfile, hashfile kernelnum.
Next, we create a new set of binary trace files containing
only instruction pointers and memory addresses (in case of
memory instructions) using the DataOutputStream (writer
counterpart of DataInputStream). These files are then passed
to the simulation threads. The total size of these traces ranges
from 250KB for a small benchmark such as nn to 2.2GB
for a large benchmark such as heartwall. On an average,
the size is around 550MB for the entire benchmark.

In GpuTejas , each Java thread independently reads all the
blocks assigned to it for simulation from its corresponding
compressed binary trace files. All the Java threads are
physically mapped to separate cores on the host machine.
Threads use the hashfile of the currently executing kernel to
get the instruction class from the instruction pointer. After
that, the instruction objects are instantiated and a stream
of instructions is formed and fed to the GPGPU pipeline.
These instructions get executed after getting scheduled over
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Figure 6. Block scheduling on SMs (conceptual view)

the SMs. Section III-E discusses the scheduling of the blocks
over the SMs of the simulated GPU architecture.

E. Block Allocation Mechanism

We propose a two layer scheduling algorithm for the
execution of the blocks over the simulated SMs. In the first
layer, we statically assign an SM to a block. This static
binding is performed before the simulation begins (simulates
the GigaThread engine in NVIDIA GPUs). In effect, each
simulation thread gets a set of SMs for the execution of the
blocks assigned to it. Figure 6 illustrates the static allocation
of SMs. Here, each color in the ring denotes a part of an
SM (split equally between Java threads), and the number
of slots of each color denotes the number of warps that
can be scheduled by the SM in each cycle (because Tesla
can schedule at most two warps on an SM). Since we map
blocks to threads, each SM may get requests from multiple
simulation threads. We shall resolve such conflicts in the
second layer of the scheduling algorithm. The algorithm
discussed up till now is shown in Algorithm 1.

In the second layer, we dynamically assign a set of
processing elements from the assigned SM to an active
warp of every executing block. Algorithm 2 illustrates the
dynamic assignment of processing elements (SPs, SFUs,
load/store units, and double precision units). Note that in
our scheme it is possible to have an SM shared between two
Java threads. In this case, it is necessary to synchronize their
accesses. We use a simple CAS (compare-and-set) based
mechanism to partition the issue slots between the threads.
This models the dynamic contention that happens in SMs
when we have multiple warps competing for issue slots.

Initially, all the warps to be scheduled are placed in-
side a ready queue of each simulation thread. During the
simulation, warps are dequeued from the ready queue. The
dequeued warp tries to get a set of functional units from
the assigned SM of that block, using an atomic requestFU()
operation. If the resources are available, then the operation
returns true and the warp gets enqueued to the execute
queue. Subsequently, the oneCycleOperation() method is
invoked for all the warps present inside the execute queue.



In the method, oneCycleOperation(), the instruction is sent
to the pipelines of the functional units for execution. We can
assume that different units in an SM might have a different
number of stages. The memory requests are handled using
events in GpuTejas . GpuTejas supports a flexible cache
model, and incorporates the constant, instruction, and shared
caches in an SM. If an access misses in the caches, then it
is sent to the DRAM based global memory.

After the execution, each warp can be in an active,
inactive, or executed state. Each active warp is enqueued
back to the ready queue, while inactive warps (wrong path
of a branch) are enqueued to the inactive queue. Inactive
warps get enqueued back to the ready queue, when they get
into the active state again. The process goes on till all the
queues get empty. As we observe in Algorithm 2, for each
call to oneCycleOperation, FUs are assigned to the active
warps of blocks in a round-robin fashion. These FUs are
released after the cycle gets completed so that the waiting
active warps can get scheduled in the next cycle. Being
a multi-threaded environment, the request, and the release
procedures are atomic (implemented using compare-and-set
instructions).

Algorithm 1: Static Allocation of SMs to the Applica-
tion Blocks

1 partition (activeThreads , blocksPerThread,
noOfSms,noOfBlocksPerSM )

2 totalBlocks ← activeThreads * blocksPerThread
3 Declare an array assignedSM [totalBlocks] to hold the allocated

SM number
4 currResource ← 0
5 for i ← 0;i < totalBlocks;i ← i+1 do
6 assignedSM [i] ← currResource / noOfBlocksPerSM
7 currResource ← ( currResource + 1 ) % (noOfSms *

noOfBlocksPerSM )
8 end

IV. PARALLEL SIMULATION

A. Parallel Memory System and Parallel Ports

This section focuses on the methods employed to model
contention in GpuTejas . Cache and memory structures are
shared across threads. In GpuTejas , we use a parallel port
for every cache. A parallel port was originally used in
the ParTejas parallel architectural simulator [16], which
was based on non-blocking slot schedulers proposed by
Aggarwal and Sarangi [21].

The basic idea of a parallel port is as follows. Let us
consider a reservation matrix of slots as shown in Figure 7.
The number of rows is equal to the number of ports in the
structure, and the columns correspond to cycles. Initially,
the status of all the slots is free. Let us now assume that a
request arrives at slot number 10, and it requires 5 cycles.
If the slots are free, then we can schedule the request
from cycles 11-15 on any port. Gradually, it will become
difficult to schedule requests because slots will become

Algorithm 2: Dynamic Allocation of FUs to the active
warps

1 allocate (warpSize , blocksPerThread, noOfSms,
noOfBlocksPerSM , threadsPerBlock,
warp[blocksPerThread][threadsPerBlock/warpSize])

2 for i ← 1;i ≤ blocksPerThread; i ← i + 1 do
3 for j ← 1;j ≤ threadsPerBlock/warpSize; j ← j + 1 do
4 ReadyQ.enqueue(warp[i][j])
5 end
6 end
7 while true do
8 while ReadyQ.notEmpty() do
9 warpSelected ← ReadyQ.dequeue()

10 if warpSelected.requestFU() then
11 ExecuteQ.enqueue(warpSelected)
12 end
13 end
14 while ExecuteQ.notEmpty() do
15 warpSelected ← ExecuteQ.dequeue()
16 oneCycleOperation(warpSelected)
17 warpSelected.releaseFU()
18 if warpSelected.active then
19 ReadyQ.enqueue(warpSelected)
20 end
21 else if warpSelected.inActive then
22 InActiveQ.enqueue(warpSelected)
23 end
24 end
25 while InActiveQ.notEmpty() do
26 warpSelected ← InActiveQ.dequeue()
27 if warpSelected.active then
28 ReadyQ.enqueue(warpSelected)
29 end
30 else
31 InActiveQ.enqueue(warpSelected)
32 end
33 end
34 if ReadyQ.empty() and InActiveQ.empty() and

ExecuteQ.empty() then
35 BREAK
36 end
37 end

busy. The non-blocking slot scheduler ensures that we get
a set of contiguous slots within a bounded number of time
steps. Furthermore, this data structure guarantees sequential
semantics and is linearizable (the request appears to have
been performed instantaneously). The overheads of having
this structure are minimal, and it has been used successfully
in a parallel multicore simulator [16]. This structure allows
each thread to use its local clock while accessing elements
in the memory system. Each element in the memory system
maintains a reservation matrix and assigns a set of slots to
every request. This structure allows us to effectively model
contention because while scheduling requests we can never
have more requests per cycle than the number of rows
(ports).

B. Barriers and Phasers for Synchronization

The kernels are scheduled one after the other sequentially
in the case of the NVIDIA Tesla GPU [2]. In GpuTejas ,
all the nsim simulator threads simulate the same kernel
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at a time. The threads synchronize at the end of a kernel
with a barrier. Next, we require synchronization during
the simulation of a kernel to ensure that threads do not
indefinitely deviate from each other. We maintain a local
clock for each SM. Threads synchronize at the end of
every epoch (1000 cycles). Sadly, when there are a lot of
threads, there can be a substantial amount of imbalance
between them. Barriers will introduce a lot of idleness in
this case. Hence, we propose to replace barriers with phasers
that allow fast threads to move ahead and do work that is
unrelated to the barrier.

A phaser has two distinct points. After a thread reaches the
first point, it informs the rest of the threads. No thread can
cross the second point, unless all the threads have reached
the first point. We use phasers to consider two epochs at
a time. This allows us to finish some work of the second
epoch before all the threads have finished the first epoch.
We initialize the number of columns of each parallel port to
1000 (epoch size), and consider two ports at a time (when
the implementation uses phasers). We conducted a small
experiment to quantify the performance gain using phasers
over barriers. Figure 8 shows the results for a representative
Rodinia benchmark (pathfinder). We observe slowdowns
of more than 100% for 64 threads.

C. Java Specific Optimizations

1) Memory Specific Optimizations: We tried to reduce
false sharing, used ThreadLocal variables (to reduce the
number of global variables), and read the trace files in
chunks of 64 KB (take advantage of block transfer and
DMA mechanisms in the system). We subsequently observed

that frequent calls to the garbage collector degraded the
overall performance. The garbage collector should be used
only for those data structures that are not initialized very
frequently. In our case, classes such as the Instruction class
get instantiated billions of times in a single simulation.
We thus wrote a custom pooling mechanism that maintains
a pool of Instruction instances. Moreover, we limit the
overall heap size of GpuTejas to avoid any memory leaks
using the -Xmx JVM parameter. Lastly, we try to reuse the
same object as much as possible. For example, instead of
declaring multiple instances of the Event class, we reuse
the same object for different types of events for a complex
operation such as a request to global memory.

2) Concurrency Specific Optimizations: Read-only struc-
tures shared across threads were declared as static and final
(only one read-only copy). The Hashfile that stores the
instruction information (see Section III-D) is implemented
using HashMaps rather than HashTables, because HashMaps
are lock free structures, whereas HashTables use locks.

V. RESULTS

A. Experimental Setup

We evaluated GpuTejas on a four socket, 64 bit, Dell
PowerEdge R820 server. It had four 8 core 2.20GHz Intel(R)
Xeon(R) cpus (with hyper-threading enabled), 16 MB L2
cache, and 64 GB of main memory. We thus had a maximum
of 64 threads visible to software. This server runs Ubuntu
Linux 12.10 using the generic 3.5.0-17 kernel. All our code
is written in Java 6 using Sun OpenJDK 1.6.0 27 with the
latest patches. We use CUDA toolkit v4.0.17, Ocelot v2.1,
Flex v2.5.35, Bison v2.4.1, LLVM v3.1, and Boost v1.4.6.
All the native executions, were performed on a system with
an NVIDIA Tesla M2070 card. We used the nvprof (CUDA
5.5) profiler to get the timing statistics of only the GPU part
of the computation.

Table I shows the details of the simulated GPU architec-
ture. For all our experiments, we use a 64-thread simulation
system, unless otherwise stated. We simulate 7 benchmarks
from the Rodinia benchmark suite v2.1 [22] (hotspot, bfs,
lud, nn, nw, pathfinder, and heartwall). We use an epoch
size of 1000 cycles for all our simulations.

B. Performance Results

Our performance results are shown in Figure 12. For all
our experiments, we perform simulations with 1, 8, 16, 32
and 64 threads respectively. When we show results with n
cores, we instantiate n Java threads.

We observe a mean speedup of 17.33x with 64 threads
over sequential simulation. heartwall, pathfinder, nw,
bfs, and hotspot show a speedup of 6-7x for 8 threads,
10-14x for 16 threads, 13-21x for 32 threads, and 16-26x
for 64 threads. An exceptional behavior is observed with
lud. It scales well till 32 threads and gives a speedup of
12x. For the case of 64 threads, the speedup tapers off. The
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Figure 9. Instruction classification
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Figure 11. Warp occupancy

Simulation Parameters
Number of Simulator Threads 1/8/16/32/64
Block Scheduling Policy Static
Warp Scheduling Policy Round Robin

System Parameters
Number of TPCs 8
Number of SMs per TPC 2
Number of SPs per SM 8
Number of Blocks per SM 4
Warp Size 32
Number of Warp Schedulers
per SM

2

Shared Memory Size per SM 16 KB
Constant Cache Size per SM 8KB (2 way set associative, 64

Byte line)
Instruction Cache per SM 4 KB (4 way set associative,

32 Byte line)
Latency Parameters

Main memory 100 cycles
iCache /Constant Cache 1/1 cycle
Integer ALU / MUL / DIV
operations

1/2/4 cycles

Float ALU / MUL / DIV op-
erations

1/4/8 cycles

BRANCH / CALL / RETURN
/ EXIT operations

1/1/1/1 cycle

Table I
PARAMETERS OF THE SIMULATED ARCHITECTURE

kernels in lud have 30 blocks on an average. When lud is
simulated using 64 simulation threads, half of the threads
remain idle. Hence, we do not observe a speedup after 32
threads. nn does not scale with multiple threads. Though,
there are 2673 blocks in its kernel, but there are only a few
instructions in each block. The simulation threads do not do
much work while simulating the blocks. Most of the time
gets spent on setting up the computation.

C. Analysis of the Speedups

Table II shows the break up of the total time in terms
of the average (across all threads) time taken to wait for
the barriers and phasers, the time taken to access memory
structures (caches, DRAM), the time taken in scheduling and
the time the pipeline takes to execute. We instrumented the
code with calls to read the current time for measuring these
parameters.
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Figure 12. Simulation speed

We observed that on an average 14.55% of time is spent in
scheduling the warps over FUs, 12.31% of the time is spent
in simulating the pipelines, 23.72% of the time is spent in
the memory system, 28.6% of the time is spent waiting for
barriers at the end of a kernel, and 20.8% of the time is
spent at phasers used for periodic synchronization.

D. Application Characterization using GpuTejas
Figure 9 classifies the dynamic instruction mix of ap-

plications. As we can see from the dynamic instruction
mix of the simulated applications, on an average there
are 69.84% of integer instructions, 7.89% of floating-point
instructions, 7.81% of control instructions, and 14.46% of
memory instructions. We can observe that a majority of in-
structions are integer or floating-point operations. heartwall
has 85.66% of integer/floating-point operations. Similarly,
Figure 10 gives a breakdown of all the memory operations
in the benchmarks. On an average, there are 36.19% global
memory operations, 0% local memory operations, 49.57%
shared memory operations, and 14.24% constant memory
operations. Global and local memory requests go to the main
memory for data. On the other hand, shared and constant
memory requests go to their respective caches first.

Figure 11 shows the warp occupancies over the entire
runtime of the benchmarks. Warp occupancy is defined as the



Application KIPS #Instructions Sched. Pipe- Mem. Phaser Barrier
16 64 Overhead (%) line (%) Sys (%) wait(%) Wait (%)

hotspot 495.70 716.34 601,355 25.28 23.44 43.06 0.40 7.82
bfs 724.34 1593.54 4,181,380 27.43 8.24 0 37.56 26.77
lud 360.43 437.24 635,968 1.35 3.50 16.17 16.13 62.85
nn 159.80 134.16 72,172 32.48 13.96 0 3.30 50.26
nw 1218.88 2166.29 20,422,464 3.70 12.12 27.94 17.94 38.30
pathfinder 609.57 1022.46 2,934,570 9.08 23.92 46.29 15.56 5.15
heartwall 374.14 804.04 121,606,107 2.56 0.99 32.61 54.75 9.09
mean 563.26 982.01 21,493,430.86 14.55 12.32 23.73 20.80 28.60

Table II
SIMULATOR SPEED, AND BREAK-UP OF THE TIME TAKEN FOR 64 THREADS

number of active threads in an issued instruction. This metric
can be seen as a measure of how much GPU throughput is
wasted due to unfilled warps. It is often believed that an
intensive control flow results into high branch divergence.
However, it depends more on whether or not all threads
in a warp branch in the same direction. heartwall has the
largest number of control instructions, but it has full warp
occupancy 57.17% of time.

E. Framework Validation

In this section, we discuss the validation of GpuTejas with
a native machine(see Section V-A). First, we recorded the
total kernel execution time for each benchmark using the
NVIDIA CUDA profiler, nvprof [23]. This ignores the time
to transfer data from the CPU to the GPU and vice versa,
and the computation on the CPU.

Figure 13 shows the comparison between simulated ex-
ecution time with GpuTejas , and the total kernel execution
time in the native system’s GPU. The simulation error is
shown in the yellow boxes. We believe that the error is due
to the lack of knowledge about the latency of instructions,
associativity of the memory structures, and the type of the
interconnection network used in the native system. These
parameters have been obtained from other open source
simulators [11], and they might vary from the exact values.

Note that the relative performance of the benchmarks
in GpuTejas and the native system follow the same trend.
Table II shows the total number of instructions in each
benchmark. Recall that the percentage of memory instruc-
tions was shown in Figure 9. We can conclude that an
increase in total instructions, as well as an increase in the
number of memory instructions has similar effects for native
and simulated execution. The authors of Multi2sim [10] also
validated their simulation on the basis of observed trends.
Their mean simulation error was 20%, whereas GpuTejas
has a mean simulation error of 15%.

F. Simulation Errors and Deviation

Figure 14 presents the average deviation as compared to
the sequential execution. We observe that the deviation in
mean IPC varies from 3.4 to 7.67% and the mean cache
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Figure 14. Average deviation from sequential execution

miss rate (all kinds of caches) varies from 2.1 to 5.2%. There
is some variance (< 0.95%) for different runs of the same
benchmark (shown in error bars).

G. Comparison of Execution times

Table III presents a comparison of execution time of
GpuTejas with a native system, and GPGPU-Sim. As we



can observe, GpuTejas is 1132.99x slower than native exe-
cution, while GPGPU-Sim is 487056.65x slower than native
execution. In effect, GPGPU-Sim is 429.89x slower than
GpuTejas . We can thus conclude that our benefits from
parallelizing our simulator are substantial.

Benchmark Execution Time
Native Execution(ms) GPGPUsim(s) GpuTejas (s)

hotspot 0.85 200 4.54
bfs 29.48 4517 5.36
lud 2.22 168 16.31
nn 0.12 3 0.86
nw 6.21 1673 27.76
pathfinder 1.02 280 23.51
heartwall 162.77 91861 151.24
mean 28.95 ms 14100.29 s 32.80 s

Table III
COMPARISON OF EXECUTION TIME

VI. CONCLUSION

We presented the design of a parallel Java-based GPGPU
simulator, GpuTejas . We demonstrate a mean speedup of
17.33x over sequential execution for 64 simulation threads.
We rely on relaxed synchronization using phasers, non-
blocking structures and lock free implementations to derive
our speedups. We have validated our timing model against an
NVIDIA Tesla M2070 GPU. Our current approach is trace
driven, and relies on a sequential GPU emulator to produce
traces. Parallelizing the emulator and integrating it into our
system is a part of future work.
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