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On-chip photonics is a disruptive technology, and such NoCs are superior to traditional electrical NoCs in
terms of latency, power, and bandwidth. Hence, researchers have proposed a wide variety of optical networks
for multicore processors. The high bandwidth and low latency features of photonic NoCs have led to the
overall improvement in the system performance. However, there are very few proposals that discuss the
usage of optical interconnects in Graphics Processor Units (GPUs). GPUs can also substantially gain from
such novel technologies, because they need to provide significant computational throughput without further
stressing their power budgets.

The main shortcoming of optical networks is their high static power usage, because the lasers are turned on
all the time by default, even when there is no traffic inside the chip, and thus sophisticated laser modulation
schemes are required. Such modulation schemes base their decisions on an accurate prediction of network
traffic in the future. In this article, we propose an energy-efficient and scalable optical interconnect for modern
GPUs called GPUOPT that smartly creates an overlay network by dividing the symmetric multiprocessors
(SMs) into clusters. It furthermore has separate sub-networks for coherence and non-coherence traffic. To
further increase the throughput, we connect the off-chip memory with optical links as well.

Subsequently, we show that traditional laser modulation schemes (for reducing static power consumption)
that were designed for multicore processors are not that effective for GPUs. Hence, there was a need to create
a bespoke scheme for predicting the laser power usage in GPUs.

Using this set of techniques, we were able to improve the performance of a modern GPU by 45% as com-
pared to a state-of-the-art electrical NoC. Moreover, as compared to competing optical NoCs for GPUs, our
scheme reduces the laser power consumption by 67%, resulting in a net 65% reduction in ED? for a suite of
Rodinia benchmarks.
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1 INTRODUCTION

GPUs and GPGPUs (General Purpose Graphics Processing Units) are now regarded as first-class
processing devices when we need to run numerical and HPC workloads [54, 56].! Their complexity
has increased over the years, and the latest state-of-the-art GPUs have thousands of cores and a
hierarchy of memory structures within them.

This massive integration of processing elements in GPUs enables such architectures to execute
thousands of threads simultaneously [45, 47]. As a result of the sizeable computational load, the
processing elements generate a huge amount of traffic to communicate with each other, as well
as with the off-chip memory modules [46]. To handle this traffic, researchers initially moved from
on-chip electrical buses to electrical on-chip networks (ENoCs) [16, 64], which resulted in consid-
erable improvements in terms of latency and instruction throughput. However, with an increase
in the number of on-chip elements in modern GPUs the performance of ENoCs is showing signs
of saturation [22, 25, 66]. For further scalability, we need to opt for new network technologies.

Silicon photonics? [5, 7, 30, 52] with 2.5D integration [26, 58] (two layers: logical layer and
photonics layer) is a worthy competitor in this space. Photonics has several advantages: extremely
low latency (2-3 cycles from any point to any other point), transmission power that is independent
of the distance, and high bandwidth.

On-chip photonics is showing signs of maturity. As of now on-chip photonics is mainly being
used to create optical routers in fast communication technologies such as 100 G Ethernet. The
next step is to integrate these photonic components with a logic layer. In this space numerous
working prototypes have been created by researchers in academia and industry [37, 44]. Numerous
fabrication houses [52] have started fabricating small chips that have a photonics layer and logic
layer. In many such chips, the low latency of transmission and the possibility of high-bandwidth
transmission because of wavelength division multiplexing has been demonstrated [13, 51].

1.1 Challenges

Photonic NoCs (PNoCs) proposed for multi-core CPUs cannot be directly used in GPUs. For exam-
ple, in CPUs, coherence messages (multicast and broadcast messages including cache coherence
and barrier messages) form a significant component of on-chip traffic [4, 6], however, in GPUs
coherence traffic contributes to less than 2% of the overall on-chip traffic (see Section 4.3.3). The
design of the PNoC needs to be modified to take this into account. GPUs have far more connected
components, and the access pattern is also more regular, whereas CPUs have a very different on-
chip cache access pattern. All of these reasons make it necessary to create a bespoke PNoC for a
GPU.

The state-of-the-art optical NoC for GPUs uses different types of optical crossbars [65]. Along
with several performance issues the major shortcoming of this work is that it has not addressed
the issue of high static power consumption [4, 5]. In PNoCs, we have to continuously pump in light
into the chip even when there is reduced traffic inside the chip, thus resulting in a huge amount of
static power consumption. The reason stems from the inherent property of light—we cannot store
photons.

The issue of high static power consumption has been extensively addressed in PNoCs for CPUs.
The standard approach is to divide the total execution time into fixed-size epochs. We predict the
laser power usage of the next epoch in advance based on network usage and then modulate the
laser power accordingly [6, 50, 62]. However, for GPUs, no such scheme has been proposed till
now. Thus, it is necessary to develop a GPU-specific scheme.

IThis article is an extension of a two-page paper published in NOCS 2019 [8].
2We shall use the terms optical and photonics interchangeably.
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1.2 Our Solution

We characterize the behavior of modern GPU workloads and based on the characterization results,
we derive some GPU-specific insights. Based on those insights, we propose to combine two emerg-
ing technologies (2.5D integration and photonics) to design a novel GPU-specific scalable PNoC,
GPUOPT. We propose a 2.5D chip in which we have a logical layer (containing processor cores
and cache banks) stacked on top of the photonic layer. The photonic layer includes the photonic
components required for on-chip communication. For an optical network, we intelligently divide
the logical components into different types of clusters to decrease the contention inside the net-
work. Moreover, to further improve the performance, we propose to route unicast and multicast
messages separately via different photonic sub-networks. Additionally, we tried to address the pri-
mary concern of PNoCs—high static power consumption—by proposing a GPU-specific prediction
scheme for modulating the off-chip light source. This reduced the laser power usage significantly
(= 67%).

1.3 Summary of Results

To evaluate the potential benefits of our proposed scheme, we evaluated a GPU with 64 SMs
(streaming multiprocessors). We used workloads from the Rodinia benchmark suite [12] and com-
pared our scheme with a high-performing electrical on-chip network (EMESH) [64] and a state-
of-the-art PNoC (Prior_Opt) [65]. The results show that our scheme performs (reciprocal of simu-
lated execution time) 45% and 17% better than EMESH and Prior_Opt, respectively. Moreover, using
the laser modulation scheme, our design resulted in a 67% decrease in static power consumption,
thereby reducing the ED? (energy delay square) by 65% as compared to Prior_Opt.

1.4 Contributions

The main contributions of this article are:

@ We analyzed the behavior of modern GPU workloads and explored the benefits of using a
high bandwidth and low latency on-chip network in futuristic GPUs.

® We designed a 2.5D-stacked photonics-enabled GPU chip for 2,048 in-order processor cores
(with 64 SMs).

® We proposed to separate the on-chip communicating components into different types of clus-
ters to enhance the overall performance of the system.

® We proposed to route the coherence traffic through a single-writer-multiple-reader-based
PNoC and used a multiple-reader-single-writer—based PNoC for non-coherence traffic.

® We modulated the off-chip light source by designing a novel prediction scheme based on past
network behavior to reduce static power consumption.

® We evaluated our design by comparing it with an electrical on-chip network and a state-of-
the-art PNoC for a suite of Rodinia benchmarks.

1.5 Organization of the Article

The rest of the article is organized as follows: Section 2 shows the organization of the GPU and its
execution model. Background concepts related to photonics are discussed in Section 3. Section 4
characterizes the behavior of modern GPU workloads and derives various insights, and based on
those insights, we discuss the architecture of our proposed photonic NoC in Section 5. The laser
modulation technique for reducing static power consumption is then discussed in Section 6. The
simulation methodology is described in Section 7. In Section 8, we evaluate our design, discuss
related work in Section 9, and finally conclude in Section 10.
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Fig. 1. (a) High-level architectural diagram of a representative GPU (b) Organization of an SM containing
32 SPs, 16 LSUs, and 8 SFUs. Adapted from Reference [63].

2 GPU ORGANIZATION AND DESIGN

In this section, we shall describe the design of modern GPGPUs [34, 45, 47]. For the sake of sim-
plicity, we shall use the term GPU to refer to the general purpose part of a GPGPU. Furthermore,
we shall broadly follow NVIDIA’s Pascal architecture and associated terminology [15, 55] in the
rest of this article.

2.1 Architecture

In almost all GPUs, three fundamental components shape the overall architecture: thread engine
(command processor), streaming multiprocessor (compute unit), and the memory hierarchy [45,
47]. Let us briefly discuss each component.

Thread Engine: The basic functionality of a GPU is to execute thousands of threads simultane-
ously on different cores. A host program on the CPU offloads thousands of such threads (kernel) to
the GPU. Inside the GPU the thread engine schedules blocks of such threads on different execution
engines known as streaming multiprocessors, or SMs.

Streaming Multiprocessor (SM): An SM is the primary execution engine inside a GPU. A sin-
gle GPU contains tens of SMs with each SM containing multiple streaming processors (SP), load
store units (LSU), and special functional units (SFU). SPs inside an SM work in single-instruction
multiple-data (SIMD) fashion (executing the same instruction on different data) and thus mak-
ing a GPU highly parallel execution framework. The load and store operations inside an SM are
performed using LSUs. SFUs are required to execute transcendental instructions and also offload
some of the numerical computation. Figure 1(a) shows the high-level architectural view of a GPU.
In Figure 1(b), we show the organization of different components inside each SM.

GPU Memory Hierarchy: In almost all NVIDIA GPUs, there are generally six different types
of memories: register memory, constant memory, shared memory, local memory, texture memory,
and global memory. Here, we will briefly discuss the global memory, as it is the only memory
relevant to the understanding of our work. For further details interested readers may refer to
References [15, 55].

All the threads inside a kernel (function to be executed on a GPU) cooperate through global
memory. In almost all modern GPUs, the global memory accesses are cached at various levels
inside the chip. As a result, contemporary GPUs have different levels of caches [15, 55]. Figure 1
shows two levels: L1 and L2 [46]. The L1 cache is located inside each SM and is private to the
SM, whereas the L2 cache is accessible by all the threads inside the kernel. The L2 cache in modern
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NVIDIA GPUs is physically partitioned into several banks and each bank is coupled with a separate
memory controller (MC) [46].

2.2 Execution Model of a GPU

In GPU terminology, a kernel is a function that is to be executed by a GPU. Each kernel is executed
as a grid of thread blocks. The host offloads the grid to the GPU thread engine. The thread engine
schedules the thread blocks on different SMs inside a GPU. Internally, each SM executes threads
in groups called warps. The threads inside a warp execute simultaneously on different SPs. The
warp scheduler inside an SM performs the function of scheduling the warps inside each block.
Each thread inside a block has its own set of registers and local memory. To cooperate with other
threads inside its block, it uses the shared memory region located inside its SM. However, threads
belonging to different thread blocks coordinate only through global memory. In a nutshell, we
have an SP executing a single thread, then an SM executing a block of threads and an entire GPU
device executing a grid of such blocks.

3 BACKGROUND OF PHOTONICS
3.1 An Optical Network

An optical network has four basic components: laser light source (to generate optical power), mod-
ulator (to encode data by modulating the optical signal), waveguide (to carry optical signals), and
a photodetector (to detect the value of the optical signal). Let us briefly describe each component.

Light Source: Lasers are the most commonly used light source in photonic on-chip net-
works [4-7, 60]. In our proposed PNoC, we use an array of 32 directly modulated (DML) off-chip
lasers as the light source. These lasers are commercially available [9, 18-20], can be modulated
at GHz frequency, and are thermally stable. The main aim behind using an array of such lasers is
that we can increase or decrease the optical power by turning some lasers on and off in the array.
On-chip light sources are also available [10, 36]. However, they consume a lot of on-chip power
and area and dissipate the entire heat inside the chip [40]. Hence, we only use off-chip lasers.

Waveguide: Like electrical wires in ENoCs, we have silicon waveguides [11] in photonic on-
chip networks. The light is guided and confined within the waveguide by using a combination of a
low refractive index material as a cladding (outside) and a high refractive index material as the core
of the waveguide (inside). In our design, we assume silicon waveguides with a propagation loss
less than 0.5 dB/cm [11]; they are capable of carrying 64 wavelengths [11] together using DWDM
(dense wavelength division multiplexing).

Modulator: A modulator is an optical device that is used to turn an optical signal on or off. In a
Dense Wavelength Division Multiplexing (DWDM)-based optical network, multiple wavelengths
traverse through the same link. Thus, we require wavelength-selective modulators in such net-
works so each modulator modulates its corresponding wavelength accordingly. Such modulators
have already been proposed in prior work with a modulation rate higher than 10 Gb/s [53] and
we have assumed the same modulators in our design. These are silicon ring resonator-based [53]
modulators. A ring resonator is an optical device, which can be used to inject or filter out a specific
wavelength, called the resonant wavelength, from the optical waveguide.

Photodetector: At the receiver side, we require an optical filter and a photodetector. A ring
resonator-based filter extracts a specific wavelength from the waveguide and guides this light to
the photodetector. The photodetector extracts the incident optical signal and converts it to an elec-
trical signal. Both these objectives can be achieved using a Germanium-doped ring resonator [41,
60]. We have used one such wavelength selective detector [60] in our design. This detector has a
capacitance less than 1 fF and occupies an area equal to 20um?.
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In addition to these four components, we use two additional components: an optical power split-
ter and a comb splitter. Optical power splitters are required to split the laser-generated monochro-
matic light (at 1,550 nm) between the different power waveguides [23]. The amount of light split
depends on the split ratio of the optical power splitter. The splitter, whose split ratio can be tuned
dynamically, is called a tunable optical power splitter [23]. In our design, we use a tunable power
splitter that can be tuned in a single cycle (see Reference [23] for the specifications).

Subsequently, comb splitters [32] are required to create multiple carrier signals at different
wavelengths. We have such a splitter at each optical station (transmitter + receiver) to convert
the monochromatic light into signals at different equispaced wavelengths. Each such wavelength
can then be separately modulated to carry information (E/O (electrical — optical) conversion).

3.2 A Note about Feasibility

All the components that we have used in our design are either commercially available (such as the
off-chip DML lasers), are being used in other commercial devices such as fast ethernet switches
(tapers, splitters, and ring resonators), or are very mature prototypes that have been created in
academia and industry (such as 2.5D integration).

3.3 Optical Links

An optical link is a group of waveguides used as a communication medium between two different
communicating stations. Based on the number of stations reading and writing data from a link,
optical links are divided into the following three categories:

(1) Single Writer Multiple Reader (SWMR): In an SWMR link [49, 50] (or waveguide),
only one specific station is allowed to write its data, whereas all other stations can read
data from the link. All the receivers attached to a waveguide are by default turned off.
When a station writes its data on the waveguide, it informs the intended receiver to turn
on its detectors for incoming data [49] using a separate reservation waveguide.

(2) Multiple Writer Single Reader (MWSR): In an MWSR link [60] every station is allowed
to write its data on the shared link. However, only one specific station is permitted to read
data from the link. An arbitration scheme is required to provide mutual exclusion at the
senders’ side [59].

(3) Multiple Writer Multiple Reader (MWMR): An MWMR link [4, 48] is a hybrid of
SWMR and MWSR. Multiple stations are allowed to read and write data from the same
link. For such links, we require arbitration at the senders’ side and reservation at the
receivers’ side.

3.4 Crosstalk Noise

In any DWDM-based optical interconnect, different wavelengths are traversing through a same
waveguide. In addition, there are numerous wavelength-selective optical components such a mod-
ulators, filters, and splitters used in such networks. As a result, the different wavelengths interfere
with each other through different optical components, thereby generating crosstalk noise [17, 61].
The generated crosstalk noise not only degrades the system performance but also affects the scal-
ability of the overall system. Our topology is designed in such a way to decrease the generated
crosstalk noise. We propose to use a serpentine-shaped topology where different waveguides run
parallel to each other, thereby eliminating the crosstalk due to waveguide crossings. Moreover,
it reduces the crosstalk because of lesser waveguide bends in such a topology. To calculate the
final crosstalk noise and subsequently the minimum energy per bit required to reach the farthest
station, we use the analytical model proposed by Duong et al. [17].
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4 BENCHMARK CHARACTERIZATION AND MOTIVATION

The aim of this section is to run GPU workloads on a GPU with a state-of-the-art electrical NoC
and then characterize the benchmarks.

4.1 Baseline Architecture

Our baseline GPU architecture is tile-based. There are two different types of tiles in our design:
SM_Tileand LLC_Tile. Each SM_Tileis composed of 8 SMs with each SM containing 32 SPs, 16 LSUs,
and 8 SFUs as shown in Figure 1(b). An LLC_Tile has one L2 bank and one memory controller.
These tiles are placed on the GPU chip in a grid. Intra-tile communication is done using point-
to-point electrical links, whereas, for inter-tile communication, each tile has an on-chip electrical
router [28]. These routers are connected using a NoC. In our configuration, we have assumed a
4 X 4 electrical mesh-based [28, 64] NoC. This simple design performed the best in our simulations
(for detailed architectural parameters, please refer to Table 2).

4.2 GPU Workloads

We used ten CUDA applications from the Rodinia benchmark suite (rest were not compatible
with CUDA version 6.0) [12] and simulated them using the cycle-accurate architectural simula-
tor, GPUTejas (validated with native hardware) [38]. Note that we define performance as the
reciprocal of the simulated execution time.

4.3 Characterization

4.3.1 Scalability. Figure 2 shows the effect of the number of SMs (8, 16, or 32) on the overall
performance of the system. It is clear from the graph that with an increase in the number of SMs in
a GPU, there is a significant change (up to 3.8X) in the performance of the system. In benchmarks
such as HS, HYS, and PF the improved performance (2.9-3.8x) is attributed to a higher degree of
parallelism in such benchmarks. However, in the case of benchmarks such as BFS and SC, the low
performance scalability is due to greater NoC activity (see Section 4.3.2). On an average, there is
a 2.6X improvement in performance when we move from a 8 to 32-SM configuration. Summary:
For many workloads, we can achieve further scalability by increasing the number of SMs; however,
for many others, we need to increase the performance of the NoC such that memory accesses can be
serviced sooner.

4.3.2  Breakup of Memory Accesses. In Figure 3, we have clubbed all the memory accesses that
use the NoC into the same category (such as L2/memory) and then shown the relative fraction of
accesses in each category. We observe from the figure that in benchmarks such as BFS, HS3, NN,
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Fig. 4. Breakup of the communication between the L1 and L2 caches.

and SC, the number of L2/memory accesses is more than 40%. This results in higher NoC activity in
such benchmarks, which in turn leads to the limited performance scalability of such benchmarks
(correlated with Figure 2). This motivates the need for fast and high-bandwidth interconnects such
as optical NoCs (Insight:Optical).

4.3.3  Characterization of the Communication Between Caches. Figure 4 shows the breakup of
communication between the different types of caches (L1 and L2). We observe from the figure that
there is a negligible amount of communication between the L1 caches. L1 to L1 communication
is mainly because of false sharing and the limited amount of coherence traffic—these are either
multicast or broadcast messages. Hence, a single sender multiple receiver-based topology should
be used for such messages (Insight:SWMR). Additionally, the lower L1 to L2 communication is
attributed to different architectural enhancements such as memory coalescing [21]. Most of the
communication (~ 60%) is dominated by L2 — L1 communication, which is mostly reading data
and filling the caches. Thus, the traffic from the L2 units dominate the NoC traffic and hence they
require much more bandwidth as compared to the L1 units. Hence, we arrive at Insight:LLC-
Cluster—each L2 unit should be associated with a dedicated communication interface to provide
better access to the NoC. Also, because of lesser L1 to L2 communication, we can have a single
communication interface for multiple L1 units (SMs)—Insight:SM-Cluster.

We did further experiments to assess the sensitivity of the GPU performance with respect to
the L1 — L2 and L2 — L1 delay. Our results indicate that the GPU performance is insensitive
to the L1 — L2 communication delay (less than 0.23% decrease in performance for a 20-cycle
increase in delay). In comparison, the L2 — L1 delay is slightly more sensitive (3.32% decrease in
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performance). This is because the former type of traffic consists mostly of writes, and the latter
consists mostly of reads that are often on the critical path.

Nevertheless, the overarching conclusion is that in both the cases GPU benchmarks’ sensitivity
to the NoC latency is low. This should not lead to the false conclusion that latency is unimportant.
It manifests itself via the well-known law in queuing theory called Little’s law [35] that states
that in simplistic settings the size of the NoC’s buffers is roughly proportional to the bandwidth
multiplied with the latency. If we set the buffer size as a constraint, then to sustain high bandwidth,
we need alow latency. In this case latency seems to be relatively unimportant because of our choice
of buffer sizes.

4.3.4  Effect of the NoC Bandwidth. To compare the effect of the bandwidth on the overall per-
formance of the GPU, we compared the performance of a GPU by varying the bandwidth of the
underlying NoC. This was done by increasing the number of electrical links connecting the on-chip
routers (hypothetically), thus transferring higher number of bytes per unit time. The comparison
results are shown in Figure 5. We observe that for memory-intensive benchmarks such as BFS,
NN, and SC, the higher-bandwidth configuration shows a greater improvement in performance as
compared to the lower-bandwidth configuration by up to 70%. For most benchmarks the additional
speedup is in the range of 30%-50%, which is significant. We thus arrive at Insight:Optical—use
a high bandwidth interconnect.

4.3.5 Static Optical Power Consumption. One main disadvantage of PNoCs is the high laser
power consumption. To understand the levels of power consumption, we compared the laser power
consumption of an ideal scheme with a scheme that does not use any laser modulation technique.
For the ideal scheme, we assume one laser per optical station. The laser is by default turned off. It
is turned on instantaneously only when an on-chip optical station wants to send a message, and
for a scheme that does not use any laser modulation, we use the GPU PNoC proposed by Ziabari
et al. [65] (Prior_Opt). It uses an SWMR bus for L2 to L1 communication and an MWSR bus for L1
to L2 communication. Figure 6 shows the comparison.

We observe that the Prior_Opt consumes 8.8X more laser power as compared to an ideal scheme.
Thus, to reduce the static power consumption, it is necessary to modulate the off-chip laser based
on predicting network activity (Insight:Predict). Additionally, the GPU performance is very in-
sensitive to the latency of the L1 to L2 link, so we can delay the messages originating from L1
units (SMs) (Insight:Rigid). However, the messages generated by L2 units should be sent as soon
as possible (Insight:Flexible).
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5 GPUOPT TOPOLOGY
In this section, we propose a design of a PNoC, GPUOPT, based on the insights derived in Section 4.

5.1 Overview

Our topology aims at @ increasing the overall performance of the system by (a) decreasing con-
tention in the network and (b) providing a high bandwidth and low latency communication frame-
work and @ reducing the high static power consumption by (a) allowing stations to share the
available on-chip power and (b) tuning the off-chip laser power based on a predictive approach.
To achieve these goals, we propose an efficient optical NoC called GPUOPT. Moreover, to reduce
static power consumption, we introduce a hybrid laser modulation technique (described in Sec-
tion 6). Finally, we incorporate our laser modulation technique in GPUOPT and develop an efficient
optical NoC for GPUs. The NoC with the laser modulation scheme is referred to as PS_ GPUOPT.

This section describes the topology of our proposed PNoC; in Section 6, we shall discuss our
proposed GPU-specific laser modulation technique.

5.2 Design

Figure 7 illustrates our proposed optical NoC (uses 2.5D integration with two stacked layers—
optical and silicon). The figure shows the optical NoC, optically connected global memory modules,
and other optical components. The chip has two separate layers: logical layer,- containing SMs, L2
banks (last level cache), and memory controllers (MC); and the photonic layer, containing optical
components. The logical layer is divided into 16 clusters: 8 SM_Clusters and 8 LLC_Clusters.> Each
SM_Cluster has 8 SMs where each SM contains a private L1 instruction and data cache.

Each LLC Cluster has an L2 bank along with a memory controller. The intra-cluster commu-
nication is done electrically, whereas, for inter-cluster communication, we incorporate a separate
silicon photonics layer underneath the logical layer. The optical layer has optical stations—one for
each cluster—and these stations are connected using an optical crossbar (see Section 5.3). The clus-
ters are connected to their respective optical stations using through-silicon vias (TSVs). Note that
the optical stations attached to SM_ clusters are called SM_ stations, whereas the stations connected
to LLC_clusters are called LLC_stations.

Figure 8 shows the cross-sectional view of our chip containing different layers. Most of the
activity and heat generation happens in the silicon die, and thus it is placed directly beneath the

3LLC — Last Level Cache.
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Fig. 8. Cross-sectional view of the layout.

heat sink. The main reason behind choosing 2.5D integration is the better area utilization and easy
integration of different technology layers.

5.3 Optical Crossbar

5.3.1 Data Network. In a Photonic Network-on-Chip (PNoC), a data network is required to
route the data-carrying optical signals from a source to a destination. In our topology, we use
two different optical data networks—the C_network and NC_network. C_network is used to carry
coherence messages (multicast or broadcast messages such as barrier messages or cache coherence
messages (mainly due to false sharing)) between the SMs (L1-to-L1), whereas the NC_network is
used to carry the non-coherence messages (L1-to-L2 and L2-to-L1).

C_network: Insight:SWMR says that the coherence messages are broadcast/multicast mes-
sages and hence SWMR links are the best suited for such messages. Consequently, we have used
an SWMR-based crossbar to connect the SM_stations with each other. This network contains 8
SWMR links with each link composed of 1 waveguide carrying 64 wavelengths. All the coherence
traffic is routed through this network.

NC_network: For the NC_network, we propose to use MWSR optical links. The reason is the
requirement of high bandwidth for carrying the non-coherence traffic. These optical links pass
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through all the optical stations and thus provide an all-to-all communication framework. Each link
in the NC_network is assumed to be carrying 128 wavelengths: it is 2 waveguides wide. Moreover,
we consider a double data rate scheme in which optical stations are allowed to transmit signals
at both edges of the clock. Thus, a single cache line (64 bytes) can be sent in 2 clock cycles. With
a 5 GHz clock, each wavelength is capable of providing 10 Gb/s bandwidth, yielding 3.2 TB/s
bandwidth for the NC_network.

5.3.2  Arbitration. In the NC_network, multiple stations are allowed to write on a single link.
Thus, to provide mutual exclusion, we require arbitration at the sender side. We propose to use
the distributed token-based arbitration scheme [59]. In this scheme, we assume a dedicated waveg-
uide going through all the optical stations, called arbitration waveguide (or token waveguide). This
waveguide runs parallel to the data waveguides of NC_network in serpentine layout. We propose
to inject x (equal to number of data links in the NC_network) optical tokens into the token waveg-
uide. Each token in a token waveguide is a single optical pulse at a different wavelength. Token i
represents the status of optical link i. The availability of a token (wavelength) in the token waveg-
uide guarantees the availability of that particular optical link. For clarity, we call these tokens as
data_tokens.

Each optical station is equipped with an array of modulators and detectors attached to the token
waveguide (equal to number of tokens), and thus it is capable of diverting any data_token from the
token waveguide (diverting that wavelength). Whenever a station wants to send data to station
m, it first turns on its detector for the data_token m. The presence of data_token m conveys the
information that no other station is using that specific data link. The station grabs this token and
then sends the message through the respective optical link. When a station finishes sending its
data, it reinjects that specific data_token back into the token waveguide (stops diverting the signal
with the corresponding wavelength). This arbitration scheme is fair and allocates the tokens in
a round-robin fashion. Moreover, if a station wants to send data to multiple receivers, it has the
liberty to grab as many data_tokens as possible, allowing a station to use multiple tokens in the
context of a GPU as our novel contribution. Figure 9 summarizes the arbitration scheme for data
links of NC_network.

5.3.3 Power Delivery Network. The off-chip laser source generates monochromatic optical
power (at 1,550 nm). To decrease insertion loss, we use special tapered waveguides [27] to couple
light into the chip. Inside the chip, the incoming power is divided into 64 equally spaced wave-
lengths (between 1,450 nm to 1,650 nm) at each station to enable DWDM-based communication
using a comb splitter (see Section 3.1). The power is routed to all the optical stations inside the
chip using serpentine-shaped power waveguides running parallel to the data waveguides of the
NC_network, as shown in Figure 7.

In our design, we propose to use 16 power waveguides. Additionally, we allow the optical sta-
tions to share the available optical power. Thus, the optical station has full freedom to divert power
from any power waveguide contingent on the fact that it is not being used. Note that, since mul-
tiple stations might express interest for the same power waveguide, arbitration is necessary; we
propose to use the same token-based mechanism. We inject additional power_tokens (one token
per waveguide) in the token waveguide. Note that this is in addition to the tokens inserted into
the NC_network to keep track of the data waveguides. Using separate power and data tokens is a
novel contribution, and given the bandwidth requirements of GPUs it is necessary.

5.3.4  Power Sharing and Data Transmission. We need to deliver power via power waveguides to
three kinds of waveguides: regular data waveguides, the token waveguide (for arbitration tokens),
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and the prediction waveguide (to be discussed in Section 6). The role of the prediction waveguide
is to collate network activity predictions across all the stations.

Inside the chip, we divide the optical power into (n + 2) units. n units are sent through n power
waveguides (for data transmission), 1 unit goes to the token waveguide, and 1 unit goes to the pre-
diction waveguide. This 1 unit of power is transmitted on the prediction waveguide after splitting
it into 16 equispaced wavelengths using a comb splitter.

The power diverted to the token waveguide is split into 32 equally spaced wavelengths. We can
thus send 32 tokens (1 per wavelength). We send 16 data tokens and 16 power tokens. Figure 10
summarizes this discussion and shows the infrastructure for distributing power across the
waveguides.
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To send data, an optical station has to grab at least one power_token from the token waveguide.
After getting power_token i, the station is allowed to divert power from the ith power waveguide.
If it is a coherence message, then the optical station needs to use the C_network, else it needs to
use the NC_network. Subsequently, the optical station needs to obtain a data_token for the data
waveguide corresponding to the receiver and then send the data. If any of the tokens (power or
data) are not available, then the station waits and tries again by following an exponential back-off
scheme. Figure 11 shows the complete flow of operations. Note that a station is allowed to grab
multiple power and data tokens such that it can send multiple messages in parallel.

5.4 Optically Connected Memory (OCM)

As is the standard practice, we propose to use optical links to connect on-chip memory controllers
with the off-chip DRAM memory modules. Each memory controller is connected to its off-chip
memory module by a high-speed optical link that is composed of 4 waveguides (2 in each direction).
Each waveguide carries 64 wavelengths using WDM. We assume to send data on both edges of the
clock. Considering 5 Gb/s wavelength signalling, each waveguide yields 80 GBps bandwidth and
one such off-chip interconnect link (4 waveguides) is capable of providing 320 GBps bandwidth.

6 LASER POWER MANAGEMENT: PS_GPUOPT
6.1 Overview

The standard approach used to decrease the laser power consumption in PNoCs is: @ divide the
total execution time into fixed-size durations called epochs, @ predict the laser power requirement
of the next epoch (prediction phase), and then ® modulate the off-chip laser (reconfiguration
phase). Our solution, PS_GPUOPT, works on similar lines. However, it is a bespoke scheme for
GPUs.

An entire epoch is divided into three separate phases: transmission phase, prediction phase, and
reconfiguration phase. In the transmission phase, the optical stations are allowed to send messages
to each other by diverting available power from the power waveguides. In the prediction phase,
the optical stations send their statistics to the laser controller through a prediction waveguide. The
laser controller collates the statistics from all the optical stations and then predicts the amount of
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traffic required in the next epoch. In the reconfiguration phase, the laser controller dynamically
tunes the off-chip laser array. It also reconfigures the split-ratio of on-chip tunable optical power
splitters.

6.2 Prediction Mechanism

As described in Section 5.2, there are two types of optical stations: SM_stations and LLC_stations.
We propose to use separate prediction mechanisms for SM_stations and LLC_stations. The main
reason stems from Insight:Flexible and Insight:Rigid. We choose to use a more restricted predic-
tor (called Restr_Pred) for SM_stations and a flexible predictor (called Flex_Pred) for LLC_stations.

6.2.1 Restr_Pred. Every SM_station uses the Restr_Pred module to predict the laser power re-
quirement in the next epoch. Restr_Pred uses a multivariable function (¥) to make its prediction.
This function takes three inputs: messages received in the current epoch (Mg), messages sent in
the current epoch (Mg), and the waiting time of a station (‘W), and produces a 1-bit output to
be sent to a Laser Controller (L_Cntrlr) at the end of every epoch. The output indicates if power is
required or not in the next epoch. ¥ is defined as follows:

1 (Mg =2Rr AMg <a*Rr)V (W > Wr),
[ —

F F

Y (Mg, Ms, W) = V(Mg < Rt AMs < ax* Mg), (1)

F3

0 otherwise.

In this function, Ry and Wr are threshold values, o and  are constants (all empirically deter-
mined). For our prediction scheme, we incorporate three hardware counters [14] (Mg, Mg, and
‘W) inside each optical station to collect these metrics. Along with good empirical results, the
intuitions for this formula are as follows:

F; means that if a station has received a lot of messages, and sent a few, it is most likely to
transmit in the next epoch, because it needs to send responses. F, suggests that if a lot of messages
have been waiting, then they will be sent in the next epoch, and finally, F; means that if a station
has been very quiescent in the current epoch it has a higher likelihood of being active in the next
epoch. Note that these are GPU-specific observations and do not hold for other platforms.

6.2.2 Flex_Pred. Akin to SM_stations LLC_stations also send a 1-bit prediction to the laser con-
troller based on the following rules:
1 (Mg 2 a=*Rr) V(W 2axWr),

G G,

(Mg, Ps, W) = V(P = fx Mg), (2
~—— ————

Gs
0 otherwise.

Here, Pg is the number of pending events at the LLC_station in the current epoch. The intuition
for G is similar to F; (see Equation (1)), and that for G, is similar to that of F,. G3 considers the
ratio Pg/ Mg and predicts a “1” if it is more than a threshold, . This means that there are more
events at the station other than the expected number of responses to reads, and these events need
to be sent in the next epoch.

6.2.3 Laser Controller (L_Cntrlr). Atthe end of every epoch, SM_stationsand LLC_stations send
their 1-bit recommendations to the L_Cntrlr through a separate waveguide called the prediction
waveguide. This process is initiated 8 cycles before the end of the epoch.
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In the reconfiguration phase, the first job of L_Cntrlr is to collect 16 1-bit predictions sent by
the 16 optical stations. The L_Cntrlr adds the 8 1-bit predictions received from the 8 SM_stations
to calculate the amount of power required by the SM_stations in the next epoch. Let this sum be
equal to v; if the sum was 8, we set v to 7 such that it remains within 3 bits. We subsequently use
the 8 1-bit predictions received from the 8 LLC_stations to index a 256-entry table called the Power
Table (PT). Each entry of the PT stores the predicted number of power units that will be used by
the LLC_stations in the next epoch. Let the value read from the table be w (3 bits). We shall explain
the reason for different prediction schemes for SMs and LLC banks after explaining how the PT
table is updated.

We update the PT at the end of every epoch. Let PT_index_prev denote the 8-bit number created
using the 8 1-bit predictions received by the L_Cntrlr in the previous epoch. Let P be the optical
power used in the current epoch and S be the optical power units required in the next epoch (sum
of 1-bit predictions), then the PT table is updated as follows:

P+1 S>P,
PT[PT_index_prev] = P P/2<S<P, (3)
P—-1 default.

For the SMs (P = S), which means that the system reacts immediately and modulates the power
requirements. L1 miss rates are more frequent, and thus faster reactivity is beneficial. Additionally,
if we underestimate the power, the additional latency will not affect us much (see Section 4.3.3).
However, in the case of LLC banks, we make the system far less reactive particularly for reducing
the number of tokens. We always prefer to have the same number of tokens (or more) even if the
expected number reduces by up to 50%, because we wish to prioritize this traffic from the point of
view of bandwidth and latency.

Reconfiguration: Finally, the L_Cntrlr adds the two 3-bit numbers (v and w) to determine the
number of lasers to be turned on in the off-chip laser array. This 4-bit sum is sent to the off-chip
laser array for turning on the required number of lasers in the next epoch (see Section 3.1). We
assume that the off-chip laser is connected using a fast optical link and it is located at a distance
of 2cm from the chip. Thus, it takes less than a cycle to reach the off-chip light source.

In addition to tuning the off-chip laser source, the on-chip optical power splitters also need
to be tuned. Each splitter needs to be tuned to a new split ratio. We use 16 cascaded tunable
optical power splitters. Thus, depending upon the amount of predicted power, the splitters are
tuned accordingly. In our configuration, the off-chip laser provides 16 different power values, and
for each value, the splitter is to be tuned to a different split ratio (6-bit). For efficient tuning, we
maintain a 16-entry tuning table (TT) at the L_Cntrir. The TT is indexed by the 4-bit sum calculated
by the L_Cntrlr. Each entry stores the 16 split ratios for the 16 splitters in the network. We require
(16 X 16 X 6)/8 = 192 Bytes to store this table.

Table 1 summarizes the entire scheme with the number of cycles required for different opera-
tions in the prediction and reconfiguration phases. In an entire 1,000-cycle epoch, less than 10 cy-
cles are required for the prediction and reconfiguration phases, and out of these the network is
made to halt for less than 4 cycles. Thus, the overhead is less than 0.4% for a 1,000 cycle-epoch.

7 EXPERIMENTAL METHODOLOGY

Simulated System: Table 2 lists the architectural parameters of the GPU used in our design. The
system has 64 SMs where each SM has 32 SPs and 8 SFUs. Additionally, each SM includes an
instruction cache, private L1 cache, constant cache, and shared memory. Moreover, the GPU has a
shared L2 cache divided into 8 banks, with each bank containing a separate memory controller.
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Table 1. Algorithm for Laser Power Scaling

| Operation | Cycles |
A. Prediction Phase (End of the epoch)
Calculate the ¥ and { functions.
Send recommendations (1-bit) to the L_Cntrlr*.
L _Cntrlr collates the recommendations.
L_Cntrlr calculates the tuning power.
Access the tuning table and calculate the split ratios of all the splitters.
B. Reconfiguration Phase (Start of the epoch)

Reconfigure the off-chip laser and on-chip splitters (parallel activity).
Tune the laser array and optical splitters (parallel activity)*

Total Cycles 9

* Network inactive

e e e

DN =

Table 2. Architectural Parameters

| Parameter | Value | Parameter | Value |
| GPU configuration |
Technology 16 nm FinFET Die Size 600mm?*
Clock Frequency 1,400 MHz # SMs 64
| Per SM configuration |
# SPs 32 # LSUs 16
# SFUs 8 # Registers 32,678 (32 bits)
L1 Cache 32 KB 4-way I Cache 8 KB 2-way
Constant Cache 16 KB 2-way
| LLC configuration |
# L2 Banks 8 Size Per Bank 512 KB
Associativity 8 Line Size 128 Byte
| Global Memory |
| # Memory Controllers | 8 | Interface | HBM2DRAM |
| Optical NoC |
| Station Queue size [ 16 |
| Electrical NoC |
Topology Mesh Routing Algo. X-Y
Link Traversal 1 cycle Router Delay 2 cycles
Flit-size 256-bit Link data rate 10 Gb/s

Table 3 lists the optical parameters of different optical components used in our design. These are
standard parameters that have been taken from published prototypes, and they are also mutually
compatible.

Evaluation Methodology: To evaluate our design, we use a cycle-accurate GPU simulator
GPUTejas (validated with native hardware [38]). It includes configurable electrical NoC models.
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Table 3. Optical Parameters [5-7, 50, 60]

| Parameter | Value || Parameter | Value |

| Component configuration |

Wavelength 1,550 nm Waveguide Width 0.5um
Waveguide Thickness 0.2um Photodetector power 36puW
Propagation speed in fibers 5 ps/mm Propagation speed in waveguides | 11 ps/mm
| Optical Loss |
Coupling Loss 50% Waveguide Loss —0.274 dB/cm
Bending Loss —0.005dB/90° Splitter Loss —0.36 dB
Photodetector Loss —-0.1dB Crossing Loss —-0.05 dB
OFF-state ring loss —0.005 dB ON-state ring loss —-0.6 dB

m EMESH = GPUOPT

Relative speedup

=] o ] Ned Ny < O <
S S < 3 QV*

NS
>

Fig. 12. Electrical vs. optical networks.

We extended the simulator and included models for photonic buses and then implemented our
final optical topology.

The applications evaluated in this work were taken from the popular GPU benchmark suite
Rodinia [12]. The selected subset of applications represents diverse workloads featuring both
memory-intensive and compute-intensive benchmarks. We were not able to simulate a few bench-
marks, because they did not compile with CUDA 6.0.

The simulator uses the Orion 2 [29] and McPAT [33] tool to compute the power consumed by
an electrical NoC. For an optical NoC, the power consumed is calculated analytically based on the
standard model proposed by Joshi et al. [28]. In addition, we use Cacti 6.5 [57] to calculate the
power and area associated with the additional memory blocks used in our design.

Baseline electrical and optical topology:

Table 2 lists the parameters considered for the electrical NoC, EMESH. For a baseline optical
topology, we choose the state-of-the-art scheme proposed by Ziabari et al. [65]. We call this scheme
Prior_Opt. It uses SWMR and MWSR optical networks for L2-to-L1 and L1-to-L2 communication,
respectively. It does not use any laser modulation technique.

8 EXPERIMENTAL RESULTS
8.1 Electrical vs. Optical

In Figure 12, we compare the relative performance of EMESH with GPUOPT. We observe from
the plot that GPUOPT on an average performs 1.8X better than the EMESH. In the case of
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Fig. 13. Relative performance comparison across different electrical NoCs.

memory-intensive benchmarks such as BFS, HS3, NN, and SC, GPUOPT performs 2.4X better
than the electrical counterpart. The reason stems from the high bandwidth and low latency
characteristics of the PNoC. In the case of benchmarks with very little NoC activity such as GS,
HS, and HYS, the ENoC performs at par with the PNoC.

Additionally, we have also compared the relative performance of our optical scheme with the
adaptive routing [42], bufferless routing [43], and priority-aware [39] electrical NoCs. The results
are given in Figure 13. It is clear from the graph that due to the high bandwidth provided by
GPUORPT (due to optical links), it resulted in a 1.95X%, 2.05%, and 1.8X improvement in performance
as compared to the bufferless, adaptive, and priority-aware NoC schemes, respectively.

Summary: We can conclude that the PNoC performs much better than the ENoC in the case of
benchmarks with sufficient NoC activity.

8.2 Analysis

Table 4 analyzes the effect of the laser modulation technique (PS_GPUOPT) on the overall perfor-
mance and power consumption of the system. We observe that by incorporating the laser modula-
tion scheme in GPUOPT, there is a 49% increase in the average wait time (sometimes power is not
available). However, it also significantly reduces the number of tokens used per epoch, effectively
reducing the power usage.

Subsequently, we simulated the system by varying the constants, threshold values, and epoch
size in our scheme and chose the optimal values in the final evaluation results. In Table 4, we
compared the effect of the constants, « and f (closest competitors), on the average wait time and
the number of tokens sent into the system. We observe that the configuration with a = 0.5, and
B = 0.25 is the most optimal configuration. Also, our simulation results depict that the 1,000-cycle
epoch, Ry = 128, and Wr = 1,000 is the best configuration in terms of system performance and
power consumption. Thus, we have assumed the same values in our final evaluation.

8.3 Comparison with Prior Work on PNoCs

8.3.1 Performance Comparison. Figure 14 compares the performance of the three different op-
tical NoC configurations for 10 workloads from the Rodinia benchmark suite. From the plot, we
conclude that GPUOPT is the best configuration, performing 1.2X better than the Prior_Opt. This is
because GPUOPT allows all the optical stations to share the available optical power. Besides, sepa-
rating the coherence and non-coherence messages further adds to the performance of the overall
system. Moreover, the reduction in the overall performance of the system for the PS_ GPUOPT con-
figuration is because of the laser modulation scheme. In GPUOPT the optical power is available all
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Table 4. Analysis of the Wait Time and the Number of Tokens
(A = GPUOPT, B = PS_GPUOPT)

Average wait time Average # of tokens
per request (cycles) per epoch
Benchmarks a=05|a=10|| a=05 | a=1.0
B=025]f=05]| B=0.25| =05
A B B B B

BP 12.20 16.30 16.92 6.20 5.83

BFS 18.15 23.27 23.81 8.13 7.39

GS 2.20 3.31 4.37 1.83 1.64

HS 1.60 2.79 3.61 1.42 1.22

HS3 13.30 17.10 18.33 8.41 7.20

HYS 1.18 1.86 2.47 1.17 1.07

NN 13.40 18.52 20.15 8.27 7.31

PF 2.52 4.31 5.72 2.47 1.87

SRAD 6.47 9.20 10.83 6.74 5.17

SC 19.20 26.71 28.06 7.38 6.68

|  Mean | 9.02 | 1234 | 1343 || 5.20 4.54

m Prior_Opt m GPUOPT  PS_GPUOPT

Relative speedup

Fig. 14. Performance comparison.

the time, since it does not use any laser modulation technique and hence performs better than
PS_GPUOPT.

Additionally, we find that in the case of benchmarks with a higher number of memory trans-
actions (L2 and main memory), GPUOPT shows a greater improvement in performance. However,
for compute-intensive benchmarks, GPUOPT performs roughly the same as Prior_Opt. Overall,
GPUOFPT is the best configuration in terms of performance, performing 17% and 11% better than
Prior_Opt and PS_GPUOPT, respectively.

8.3.2  Laser Power Consumption. To show how our laser modulation scheme affects the overall
laser power consumption, we used the analytical model proposed by Joshi et al. [28] to calculate
the total laser power consumption. The various optical losses that occur during the message trans-
mission are modeled according to the values given in Table 3. Based on these values, we layout our
waveguides and found out the amount of power required per wavelength to activate the farthest
detector.
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Figure 15 compares the laser power consumption across different configurations. The plot shows
that Prior_Opt consumes the maximum amount of power, followed by GPUOPT. PS_GPUOPT con-
sumes the least power, as it modulates the off-chip laser based on our proposed prediction scheme.
The maximum improvement is shown in the case of workloads such as HS, HYS, and PF. It is be-
cause in these programs the entire application fits inside the L1 cache and hence there is very low
NoC activity. Because of lower NoC activity, our prediction scheme keeps most of the lasers in the
off-chip laser array switched off. This decreases the laser power consumption significantly.

To summarize, incorporating our prediction scheme in the proposed PNoC decreases the laser
power consumption by nearly 59%. As compared to Prior_Opt, PS_GPUOPT results in a 67% reduc-
tion in laser power consumption. The lower laser power consumption in GPUOPT as compared to
Prior_Opt is attributed to its ability to allow on-chip optical stations to share the available optical
power.

8.3.3 ED? Comparison. In Figure 16, we compared the energy-delay-square (ED?) product of
the three optical configurations. Here, energy is the overall energy of the system and delay is the
total execution time. The ED? product is the standard metric used to compare systems that have
different delays and power consumption values; the lower the ED?, the more power-efficient is the
system. We again observe that PS_ GPUOPT is the best configuration. As compared to Prior_Opt
and GPUOPT, it results in a 65% and 29% reduction in ED?, respectively. The lower ED? in the case
of GPUOPT as compared to Prior_Opt is attributed to its higher performance, whereas in the case
of PS_GPUORPT the decrease is due to a greater reduction in the laser power consumption.
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8.4 Analysis of the Prediction Scheme

In any network where the optical stations are allowed to share the optical power, it is not possible
to directly determine the prediction accuracy. However, in such scenarios, we indirectly try to
ascertain the prediction accuracy. In our scheme, we attempt to indirectly determine the false
positives and false negatives of our prediction scheme. Having a higher number of false negatives
will decrease the performance of the system, whereas a higher number of false positives shall
increase the laser power consumption.

From Figure 14, we observe that by using our prediction scheme, it results in only a 11% reduc-
tion in performance as compared to a scheme that does not use any laser modulation technique
(GPUOPI). Thus, it implies that the effect of false negatives is modest. Second, Figure 15 shows
that our prediction scheme results in a 59% reduction in the laser power consumption, indicating
that our prediction scheme is associated with very few false positives. Based on such indirectly
observed metrics, we may conclude that our predictor has an acceptable accuracy.

To show the effect of using different predictors for SM_stations and LLC_stations, we derived
two new configurations from GPUOPT. In one configuration, we used only Flex_Pred in GPUOPT,
and in the other configuration, we used only Restr_Pred. Both these configurations are compared
with PS_GPUOPT. The results are shown in Figures 17 and 18. We observe from the plots that
by using only the FLex_Pred scheme, there is a 6% improvement in performance as compared to
PS_GPUOPT. However, the same scheme increases the laser power consumption by 34% as com-
pared to PS_GPUOPT. The ED? is 20.6% more. Likewise, using only Restr_Pred results in a 4% de-
crease in performance and a 19% decrease in laser power consumption as compared to PS_GPUOPT.
The ED? also increases by 18.1%. Thus, we can conclude from these results that by using only one
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kind of predictor, only one parameter improves at the significant expense of the other. There is a
net increase in the ED?, and thus, we need to have both the types of predictors.

9 RELATED WORK

Alarge amount of work has been done in the field of designing efficient photonic on-chip networks
for multicore systems. These topologies include mesh-, torus-, butterfly-, multilayer-, and crossbar-
based topologies. However, the area of NoCs for GPUs (both electrical and optical) is very sparse.

9.1 Electrical NoCs for GPUs

Bakhoda et al. [1, 3] have evaluated how the performance of a GPU varies across different micro-
architectures and electrical NoC designs for different benchmarks. They also analyzed how router
latencies affect the GPU performance. Similarly, the authors of Reference [64] analyzed the per-
formance and power consumption of GPUs across different symmetric and asymmetric electrical
NoCs.

The authors of Reference [2] leveraged the many-to-few traffic patterns in GPUs and proposed
the scheme of alternating the full routers with half routers in congested area to reduce the NoC
area.

9.2 Optical NoCs for GPUs

Lee et al. [31] provided a thorough survey regarding the effect of different network parameters on
the performance of a CPU-GPU system similar to our analysis. However, our analysis focuses more
on the relative insensitivity of the latency to performance, in stark comparison to the throughput.
We additionally focus on assessing scalability and classifying the nature of the on-chip traffic on
a GPU.

Goswami et al. [24] proposed a 3D optical topology that uses an MWMR-based crossbar to con-
nect the shader cores with the memory controllers. On similar lines, Ziabari et al. [65] proposed
an SWMR- and MWSR-based hybrid crossbar to connect the shader cores with the last level cache
banks. The main difference between our work and these previous proposals is that they have not
taken into account the benchmark-specific characteristics for designing the topologies resulting in
increased contention. Additionally, they have not considered the issue of static power consump-
tion, which is one of the major bottlenecks in the deployment of on-chip photonic networks.

10  CONCLUSION

Modern GPU workloads are very sensitive to the bandwidth of the on-chip network and relatively
insensitive to its latency as long as buffer space is not an issue. They thus stand to significantly
gain if we use photonic networks given their high bandwidth, ultra-low latency, and low buffer
space requirements. However, in such networks ensuring high performance and minimizing the
laser power loss is a challenging problem.

In this article, we propose a novel photonic network called GPUOPT that divides SMs and LLC
banks into separate clusters and has two distinct sub-networks: one for coherence messages, and
the other for the rest of the messages. They are architected differently. Furthermore, to decrease
the high static power consumption in PNoCs, we propose a GPU-specific prediction mechanism
for modulating the off-chip light source. By using these techniques, we were able to improve the
performance of a 64-SM GPU by 45% as compared to a state-of-the-art electrical network. More-
over, as compared to a state-of-the-art photonic network, our design resulted in a 67% decrease in
laser power consumption, thereby reducing ED? by 65% for workloads from the Rodinia bench-
mark suite.
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