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Abstract—In this paper, we consider the design space of parallel non-
blocking slot scheduling algorithms. Slot schedulers divide time into
discrete quanta called slots, and schedule resources at the granularity
of slots. They are typically used in high throughput I/O systems, data
centers, video servers, and network drivers. We propose a family of
parallel slot scheduling problems of increasing complexity, and then
propose parallel lock-free and wait-free algorithms to solve them. In
specific, we propose problems that can reserve, as well as free a set
of contiguous slots in a non-blocking manner. We show that in a system
with 64 threads, it is possible to get speedups of 10X by using lock-free
algorithms as compared to a baseline implementation that uses locks.
We additionally propose wait-free algorithms, whose mean performance
is roughly the same as the version with locks. However, they suffer from
significantly lower jitter and ensure a high degree of fairness among
threads.

1 INTRODUCTION

Large 1 shared memory multicore processors are be-
coming commonplace. Given the increased amount of
parallel resources available to software developers, they
are finding novel ways to utilize this parallelism. As
a result, software designers have begun the process
of scaling software to hundreds of cores. However, to
optimally utilize such large systems, it is necessary
to design scalable operating systems and middle-ware
that can potentially handle hundreds of thousands of
requests per second. Some of the early work on Linux
scalability has shown that current system software does
not scale beyond 128 cores [2, 3]. Shared data structures
in the Linux kernel limit its scalability, and thus it is
necessary to parallelize them. To a certain extent, the
read-copy update mechanism [4] in the Linux kernel has
ameliorated these problems by implementing wait-free
reads. Note that writes are still extremely expensive, and
thus the applicability of this mechanism is limited.

The problem of designing generic data structures that
can be used in a wide variety of system software such
as operating systems, virtual machines, and run-times is
a topic of active research. In this paper, we focus on the

1. This is an extension of the conference paper by Aggarwal and
Sarangi published in IPDPS 2013 [1]

aspect of scheduling in system intensive software. The
traditional approach is to use a scheduler with locks,
or design a parallel scheduler that allows concurrent
operations such as the designs that use wait-free queues
(see [5]). However, such approaches do not consider the
temporal nature of tasks. For example, it is not possible
to efficiently block an interval between t + 5 and t + 7
ms (where t is the current time) using a wait-free queue.
Not only the arrival time, but the duration of the task
should also be captured by the model.

Hence, in this paper, we look at a more flexible ap-
proach proposed in prior work called slot scheduling [6].
A slot scheduler treats time as a discrete quantity. It
divides time into discrete quanta called slots. The Linux
kernel divides time in a similar manner into jiffies. This
model can support a diverse mix of scheduling needs of
various applications. The key element of this model is
an Ousterhout matrix [7] (see Figure 1).
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Fig. 1: The Ousterhout matrix for scheduling

Here, we represent time in the x-axis, resources in the
y-axis, and each slot(cell) represents a Boolean value —
free or busy. free indicates that no task has been sched-
uled for that slot, and busy indicates the reverse. We can
have several request patterns based on the number of
requests that can be allotted per row and column. In this
paper, we parameterize the problem of slot scheduling
with three parameters — number of resources(capacity),
the maximum number of slots that a request requires
(numSlots), and its progress condition (lock-free (LF ),
or wait-free(WF )). We consider four combinations of the
capacity and number of slots: 1 × 1, 1 ×M , N × 1, and
N ×M , where the format is capacity × numSlots. For
example, we can interpret the N ×M – LF problem as



2

follows. The number of rows in the Ousterhout matrix is
equal to N , and a request requires up to M slots. These
M slots need to be in contiguous columns. The 1×1 and
N × 1 problems are trivial. Our contribution is the non-
blocking (lock-free and wait-free) implementation of the
1×M and N ×M problems. The N ×M formulation is
the most generic version of the slot scheduling problem,
and can be easily tailored to fit additional constraints
such as having constraints on the rows.

We propose a novel, parallel, and linearizable (all
operations appear to execute instantaneously [8]) data
structure called parSlotMap, which is an online paral-
lel slot scheduler. It is is well-suited for meeting the
needs of both real-time and gang-scheduled applications.
It supports two operations — schedule(request) and
free(request). Each request specifies the starting slot,
and the number of slots it requires in the case of the
schedule operation, whereas in the free operation, each
request specifies the list of contiguous slots it wishes to
free. Let us briefly motivate the need for such operations.
Let us consider a scheduler for storage devices such as a
set of hard drives or Flash drives [9]. Let us assume a set
of requesting processes that need to access the storage
devices. Since each device has a given number of ports
(or channels), we can only service a small number of
requests concurrently. Hence, a process that needs to
access a storage device needs to schedule a set of slots
in advance. Now, it is possible that, we might decide to
cancel the request that was placed, or cancel the request
of another process. This can happen for a variety of
reasons such as termination of the process that needed
to perform an I/O, a change in priorities, or because the
driver got the value from a software cache (refer to [10]
for more examples). We thus need a method to free slots.
Thus, we provide two methods: schedule, and free.

To summarize, our contributions in this paper are as
follows. We propose both lock-free and wait-free algo-
rithms for different variants of the free and schedule op-
erations. To the best of our knowledge, this has not been
done before. Additionally, we prove that our algorithms
are correct and linearizable. We implement them in Java,
and for a 64-thread machine we find our non-blocking
algorithms to be 1-2 orders of magnitude faster than
algorithms that use locks. The wait-free algorithms are
3-8X slower than their lock-free counterparts. However,
they have much better fairness guarantees, and for less
than 16 threads have comparable system throughputs.

The paper is organized as follows. We give a brief
overview of lock-free and wait-free algorithms in Sec-
tion 2, discuss related work in Section 3, provide an
overview of parallel slot scheduling in Section 4, show
our algorithms in Section 5, sketch a proof in Section 6,
present the evaluation results in Section 7, and finally
conclude in Section 8.

2 BACKGROUND
We assume a shared memory system where multiple
independent threads see the same view of memory and

share their address space. For a thread to successfully
complete an operation on a concurrent data structure it
needs to modify the state of some shared memory loca-
tions. To avoid correctness issues arising from simultane-
ous accesses to shared memory locations, the traditional
approach is to encapsulate the critical region of code
that accesses shared variables with locks. However, such
approaches are slow primarily because they do not allow
simultaneous access to disjoint memory regions and the
thread holding the lock might get delayed indefinitely.
A different paradigm is to allow the threads to go
ahead, make their modifications to shared memory, and
update crucial memory locations with read-modify-write
operations such as compareAndSet. The most common
correctness guarantee for such non-blocking algorithms
is linearizability(see Appendix A.2), which says that an
operation is linearizable if it appears to take effect instan-
taneously at a point between its invocation and response.
This point is called the point of linearizability.

Note that such non-blocking operations are not guar-
anteed to terminate in a finite number of steps. An
algorithm is defined to be lock-free if at any point of
time at least one thread is making forward progress and
completing its operation. In a lock-free data structure, the
system (all the threads) as a whole makes progress even
though individual threads might suffer from starvation.
In comparison, a wait-free algorithm guarantees that
every operation will complete in a finite amount of time.
This is typically achieved by faster threads helping the
operations of slower threads.

3 RELATED WORK

Scheduling is a classical problem. There has been a
plethora of research in this area over the last few
decades. Most of the work in classical parallel scheduling
involves parallelizing different heuristics that are used
in sequential scheduling (see the surveys by Wu [11]
and Dekel et. al. [12]). In this paper, we consider a
popular paradigm of scheduling called slot scheduling,
which provides a simple but powerful framework for
building a wide range of schedulers that are especially
useful in computer systems.

3.1 Slot Scheduling
In slot scheduling we divide time into discrete units
called slots, and schedule tasks at the granularity of slots.
Ousterhout [7] originally proposed a matrix represen-
tation of slots where time-slices(slots) are columns and
processors are rows. This basic formulation has been
used in later works for designing efficient multipro-
cessor schedulers(see[13] and Brandon Hall’s thesis[6]).
The main advantage of slot scheduling is that it makes
scheduling simple, flexible, and easy to parallelize. For
example, it is very easy to capture the following notion
using slot schedulers: reserve m out of n subsequent slots
for a job. We can additionally specify that m′ out of m
slots need to use resource 1, and the remaining can either



3

use resources 1 or 2. Such mechanisms are very useful
in storage systems [14, 15, 16]. In specific, Argon [14],
uses slot schedulers to schedule disk I/O requests for
a set of tasks running on a shared server using round
robin scheduling. Anderson et al. [15] propose a more
generic scheme that also takes task priority into account.
Stan et al. [16] propose a slot scheduler especially for
flash drives that take preferential reads, and fairness
into account. In addition slot schedulers have also been
reported to be used in vehicular networks [17], ATM net-
works [18], and green computing [19]. It is important to
note that all these slot schedulers are sequential. In our
prior work, we have proposed an software transactional
memory (STM) based solution [20].

3.2 Non-blocking Algorithms

To the best of our knowledge, lock-free and wait-free
algorithms for parallel slot scheduling have not been
proposed before. However, there has been a lot of work
in the field of non-blocking parallel algorithms and data
structures. Our algorithms have been inspired by some
of the techniques proposed in prior work.

The problem that is the most closely related to slot
scheduling is non-blocking multi-word compare-And-
Set (MCAS) [21, 22, 23]. Here, the problem is to atom-
ically read k memory locations, compare their values
with a set of k inputs, and then if all of them match, set
the values of the k memory locations to k new values.
This entire process needs to be done atomically, and
additional guarantees of lock-freedom and linearizability
are typically provided. The standard method for solv-
ing such problems is as follows. We have a two-pass
algorithm. In the first pass we atomically mark the k
memory locations as being temporarily reserved, and
also read the values stored in them. Subsequently, we
compare the values read from memory with the set of k
inputs. If all the pairs of values match, we are ready to
move to the second pass. Otherwise, we need to undo
our changes, by removing the mark bit in the memory
words that indicate temporary reservation. In the second
pass, the thread goes through all the slots that it had
temporarily reserved earlier, writes the new values, and
removes the mark bits. There are many things that can go
wrong in this process. It is possible that a thread i might
encounter a memory location that has been temporarily
reserved by another thread j. In this case, i cannot just
wait for j to finish because there is a possibility that i
might have to wait indefinitely. Instead, i needs to help
j complete. While i is helping j, it might encounter a
memory location that has been temporarily reserved by
thread k. In this case, both i and j need to help k.

Such kind of issues thoroughly complicate such algo-
rithms. Additionally, if we need to design an algorithm
that bounds the number of steps that operation is al-
lowed to take, then we need to ensure that no thread’s
request is left behind. It becomes the responsibility of
faster threads to help all requests from other threads

that are blocked. The reader can refer to the papers
by Sundell [21] and Harris et al. [23] for a deeper
discussion on the different heuristics that can be used
to solve such problems. We need to acknowledge the
fact that our slot scheduler uses similar high level ideas.
It is however very different at the implementation level.
Since we require the reserved slots to be in contiguous
columns, and provide a choice for slots in a column,
our helping, undo, and slot reservation mechanisms are
very different. We additionally have the notion of freeing
slots, which is not captured well by the MCAS literature.

4 OVERVIEW OF SLOT SCHEDULING

4.1 Definition of the Problem

Let us define the parSlotMap data structure that encap-
sulates a 2D matrix of slots and supports two methods:
schedule and free. Every column is numbered and this
number corresponds to time units (a column with a
higher number denotes a later point in time). A sched-
ule request (r) requires two parameters – the starting
slot’s column number (slotRequested), and the number
of slots(numSlots) to be reserved. Note that we start
searching the slot matrix at the column with number
slotRequested till we are able to reserve numSlots slots
in contiguous columns (one slot per column). Note that
the requested slots can be in same or in different rows,
and the starting slot of the scheduled request can be
ahead of the requested starting slot by an unbounded
number of slots. The free method takes only one pa-
rameter, which is the list of slots (slotList) that it wishes
to release.

Both schedule and free need to be linearizable, which
is a stronger correctness guarantee than sequential con-
sistency. Sequential consistency means that the schedule
generated by our concurrent scheduler should be the
same as that generated by a purely sequential scheduler.
Let us consider an example (1 ×M problem(M = 3)).
Assume there are two requests that start at index 1 and
want to book three slots. A sequential scheduler will try
to book them at the earliest possible slots. There are two
possible solutions: (request 1 (1-3), request 2 (4-6)), or
(request 1 (4-6), request 2 (1-3)). The parallel scheduler
should come up with one of these solutions. After the
schedule request is completed the status of the slots 1
to 6 should be marked as busy. Let us now assume that
request 1 completes before request 2 begins. In this case,
the schedule is linearizable only if the schedule follows
the real time order and is sequentially consistent i.e.,
request 1 gets 1-3 and request 2 gets 4-6. Similarly let
us consider an example of a free request. Assume there
is a request r which wants to free the slots 2 to 4. After
the request r is completed the status of the slots 2 to
4 should change from busy to free. Any subsequent
schedule request should be able to reserve these freed
slots. We have designed another set of algorithms where
we relax the constraint of reserving the earliest possible
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time slots and allow a request to get scheduled at some
later slots (see Appendix E).

4.2 Basic Approach

Let us first look at the lock-free implementation of the
schedule method. First, a thread starts searching from
the first slot (slotRequested) for free slots in the next
numSlots contiguous columns. For each column, the
thread iterates through all the rows till it finds a free
slot. Once it finds a free slot, it changes the slot’s status
from EMPTY to TMP using an atomic CAS operation. After
it has temporarily reserved the designated number of
slots, it does a second pass on the list of slots that it
has reserved(saved in the PATH array), and converts their
status from TMP to HARD using CAS operations. This step
makes the reservations permanent, and completes the
schedule operation.

Note that there are several things that can go wrong in
this process. A thread might not find enough free slots
in a column or its CAS operations might fail due to
contention. Now, in a column if all the slots are there
in the HARD state then their status cannot be expected to
change soon (unless there is a free request). Thus, the
thread needs to undo all of its temporary reservations,
and move beyond the column with all HARD slots (known
as a hard wall). Alternatively, it is possible that some of
the slots in a column might be in the TMP state, and there
is no empty slot. In this case there are two choices. The
first choice is to help the thread t (owner of the slot
in the TMP state) to complete its operation (referred to
as internal helping), and the second choice is to cancel
thread t and overwrite its slot. This decision needs to be
taken judiciously. After perhaps helping many threads,
and getting helped by many other threads, a request
completes. This algorithm is fairly complicated because
we need to implement all the helping mechanisms,
consider all the corner cases, and ensure linearizability.

The wait-free implementation is an extension of
the lock-free approach by using a standard technique.
Threads first announce their requests by creating an
entry in a REQUEST array. Subsequently, they proceed
to help older requests placed by other threads before
embarking on servicing their own request. This ensures
that no request remains unfinished for an indefinite
amount of time. This is called external helping.

4.2.1 Details

The solution to the N ×M schedule problem is broadly
implemented in four stages. Each stage denotes a par-
ticular state of the request as shown in Figure 2. The
operation progresses to the next stage by atomically
updating the state of the request.

1) At the outset, the request is in the NEW state. At this
stage, a thread tries to temporarily reserve the first
slot. If it is able to do so, the request moves to the
SOFT state.

2) In the SOFT state of the request, a thread continues
to temporarily reserve all the slots that it requires.
When it has finished doing so, it changes the
request’s state to FORCEHARD. This means that the
request has found the desired number of slots and
it is ready to make its reservation permanent.

3) In FORCEHARD state, the temporary reservation is
made permanent by converting the state of the
reserved slots in the SLOT matrix to the HARD state.
After this operation is over, the request transitions
to the DONE state.

4) Finally in the DONE state, the thread collates and
returns the list of slots allotted.

Let us comment on the need to have two separate
phases. The main reason is that the atomic primitives
can only operate on one memory word at a time. We
can thus change the status of one slot at a time. Now,
let’s say that thread i needs to book 5 contiguous slots in
an instance of the 1×M problem. After we have booked
the first 3 slots, we cannot be sure of the availability
of the last 2 slots. They might have been taken. We
might have to undo the reservation of the first three
slots. Meanwhile, assume that another thread, j, has
seen one of the first three slots to be booked, and has
changed its starting position. If thread i rolls back its
changes, j will be deemed to have made the wrong
decision, and linearizability will be violated. Hence, we
found it necessary to first temporarily book a set of slots,
then atomically set the state of the request to FORCEHARD

(point of linearizability), and then change the status of
the slots from TMP to HARD. The free operation is similarly
implemented in two phases (see Figure 4). Its steps are
as follows.

1) The request is placed in the NEW state. At this stage,
a thread indicates the first slot that it wishes to free.
The state of the slot changes from HARD to TMPFREE.
After doing so the request moves to the FSOFT state.

2) In the FSOFT state of the request, a thread temporar-
ily frees the remaining slots in its list by converting
the reserved slots in the HARD state to the TMPFREE

state. When it has finished doing so, it changes the
request’s state to HELP.

3) In the HELP state, a thread t checks for the schedule
requests that are not yet linearized. Now, if these
requests can take the slots just freed by t, then
thread t helps these requests in reserving the slots.
After this operation is over, the request transitions
to the FREEALL state.

4) In the FREEALL state, the temporarily freed slots
are permanently freed by changing the state from
TMPFREE to EMPTY. Finally, the request enters the DONE

state, and the thread returns.

Next, we briefly discuss how the state of each slot in
the SLOT matrix (see Figure 3) changes. For the schedule
request, the state of the slots in the SLOT matrix changes
from EMPTY (free) to TMP and eventually to HARD. In the
case of a free request, the state of the slot changes from
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5 SLOT SCHEDULING ALGORITHM

5.1 Data Structures

timestamp thread idslot num

Entry in the slot array in the TMP state

state
21 bits

round req. id

5 bits 6 bits 10 bits 15 bits 2 bits

thread idslot num

Entry in the slot array in the TMPFREE and HARD states

statereq. id

6 bits 10 bits 15 bits 2 bits

SLOT matrix

Fig. 5: The SLOT matrix
The SLOT matrix represents the Ousterhout matrix of

slots (see Figure 5). Each entry in the matrix is 64 bits
wide. When a slot is free, its state is EMPTY. When a thread
makes a temporary reservation, the corresponding slots
of the SLOT matrix transition to the TMP state. We pack
the following fields in each slot (64 bit long): state (2
bits), requestId (15 bits), tid(thread id) (10 bits), slotNum
(6 bits), round (5 bits), and a timestamp (21 bits) (see
Figure 5). slotnum indicates the number of slots reserved
by the thread. round indicates the iteration of a request. It
is possible that a thread is able to reserve some slots, and
is not able to proceed further because all the slots in a
column are booked by other threads. In this scenario, the
thread needs to start again with an incremented round.
Lastly, the timestamp field is needed for correctness as
explained in Section 5.5.

When a slot is temporarily freed, its state is TMPFREE.
We pack the following fields: state (2 bits), requestId
(15 bits), tid(thread id) (10 bits), and slotNum (6 bits).
slotNum in this case indicates the number of subsequent
slots a thread wishes to free. A slot in the HARD state
has the same format. In this case, slotNum indicates the
number of slots that have been reserved for that request
in subsequent columns. We derive the sizing of different
fields as described in Section 5.5.

Next, let us describe the REQUEST array that holds all
the ongoing requests for all the threads in the system. An
entry in the request array gets populated when a thread
places a new request to reserve a set of slots or to free a
set of reserved slots. It contains NUMTHREADS instances of
the Request class. NUMTHREADS refers to the maximum

class Request{
     long requestId, 
     int tid,
     int opType,
     int slotRequested,
     int numSlots,
     long iterState, 
     long[] shadowPath, 
     long[] path,
     int [] slotList
};

iterState - Request class

round row, col slot num state
5 bits 30 bits 6 bits 4 bits

REQUEST array

Fig. 6: The REQUEST array

number of threads in the system. The REQUEST array
contains instances of the Request class (see Figure 6).
In the Request class, requestId and tid(thread id) are
used to uniquely identify a request. opType is used to
indicate whether it is a schedule request or a free request.
slotRequested indicates the starting time slot number
beyond which the request needs to be scheduled and
numSlots denotes the number of slots a request wishes
to reserve or free. The iterState field contains the current
round of the request, the current index of a slot in the
SLOT matrix (row, col), number of slots reserved, and the
state of the request (as shown in Figure 6).

30 bits

valid bit

entry in the shadowPath arrayentry in the path array

timestamprow, col roundround row, colvalid bit
5 bits21 bits 1 bit5 bits 1 bit30 bits

(a) (b)

Fig. 7: The PATH and SHADOWPATH arrays

Let us now describe two more fields of the Request
class: the PATH and SHADOWPATH arrays (see Figure 7). The
PATH array stores the indices of the slots reserved by a
thread. Whenever multiple helpers try to reserve a slot
on behalf of a given thread, they first perform a CAS
(compare-and-set) on a particular slot in the SLOT matrix
and then save the entry in the PATH array atomically. To
avoid the problem of different helpers booking different
slots for the same request, we introduce the SHADOWPATH

array. This is used by threads to announce their intention
before booking a slot. Threads first search for a free slot,
make an entry for it in the SHADOWPATH array, and then
actually reserve it in the SLOT matrix. These two arrays
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are used for the schedule request. Each entry of the PATH

array and SHADOWPATH array contains multiple fields as
shown in Figure 7.

The last field, slotList (in the Request class), is used for
free requests. It contains the list of slots a thread wishes
to free.

5.2 Entry Points
A thread ti places a request to either schedule a request
or to free a set of slots by calling the applyOp method
(see Algorithm 1). Thread ti first atomically increments
a counter to generate the request id for the operation
(Line 2). Then, it creates a new request with the time
slots it is interested in booking or freeing, and sets the
corresponding entry in the REQUEST array with a new
request id (Line 8). In the lock-free algorithms, each
thread tries to atomically book/free a slot for itself
whereas in the wait-free case, it first helps other requests
that meet the helping criteria. A thread helps only those
requests for which the difference in the requestId is
greater than REQUESTTHRESHOLD (Line 21). These functions
are shared across the 1 × M and N × M variants of
our schedule and free algorithms. Each algorithm needs
to implement its variant of the processSchedule and
processFree functions. Note that in the findMinReq
method (invoked in Line 20), the request req is passed as
an argument. A request, which has requestId less than
req and has not yet completed is returned (i.e. state not
equal to DONE). This is later helped by the request, req,
to complete its operation.

Algorithm 1: Entry Points
1: function applyOp(tid,slotRequested,numSlots,optype)
2: reqId ← requestId.getAndIncrement()
3: if optype = schedule then
4: req ← createRequest(reqId, tid, slotRequested,

numSlots, NEW, optype)
5: else if optype = free then
6: req ← createRequest(reqId, tid, slotList, numSlots,

NEW, optype)
7: end if
8: REQUEST.set(tid, req) /* announce the request */
9: if WAITFREE then

10: help(req) /* help other requests */
11: end if
12: if optype = schedule then
13: return processSchedule(req)
14: else if optype = free then
15: return processFree(req)
16: end if
17: end function

18: function help(req)
19: while true do
20: minReq ← findMinReq(req)
21: if (req.getRequestId() - minReq.getRequestId() <

REQUESTTHRESHOLD) then
22: break
23: end if
24: if minReq.optype = schedule then
25: return processSchedule(minReq)
26: else if minReq.optype = free then
27: return processFree(minReq)

28: end if
29: end while
30: end function

31: function findMinReq (req)
32: minReq ← NULL
33: for i ∈ [0, NUMTHREADS-1] do
34: r ← requests[i]
35: (state, reqid) ← unpack(r)
36: if (state = DONE) || (reqid ≥ req.getRequest Id())

then
37: continue
38: end if
39: minReq ← min(minReq, r)
40: end for
41: return minReq
42: end function

end

5.3 The N ×M schedule Problem
Here, we describe the implementation of the N×M algo-
rithm. The implementation of the 1×M algorithm is dis-
cussed in Appendix D. The code for the processSchedule
method is shown in Algorithm 2. We assume that the
requested starting slot is in column col, and the number
of slots requested is numSlots (can vary from 1 to M ).

5.3.1 The processSchedule method
We show an overall flowchart of the processSchedule
function in Figure 8. It extends Figure 2 by listing the
actions that need to be taken for each request state. The
reader is requested to use this flowchart as a running
reference when we explain the algorithm line by line.

First, we unpack the iterState of the request in
Line 8, and execute a corresponding switch-case state-
ment for each request state. In the NEW (starting) state,
the bookF irstSlot method is used to reserve a slot
s[row1][col1] in the earliest possible column, col1, of
the SLOT matrix. We ensure that all the slots between
columns col (requested starting column) and col1 are
in the HARD state (permanently booked by some other
thread). The bookF irstSlot method calls the method
bookMinSlotInCol to reserve a slot. Since there can be
multiple helpers, it is possible that some other helper
might have booked the first slot. In this case we would
need to read the state of the request again.

If we are able to successfully reserve the first slot,
then the request enters the SOFT state; otherwise, it enters
the FAIL state and the schedule operation terminates
for the request. In specific, the request enters the FAIL

state, when we reach the end of the SLOT matrix, and
there are no more empty slots left. Now, in the SOFT

state of the request, the rest of the slots are reserved in
the TMP state by calling the bookMinSlotInCol method
iteratively (Line 27). The TMP state of a slot corresponds
to a temporary reservation.

After reserving a slot (in the TMP state), we enter its
index in the PATH array (Line 17). The state of the request
remains SOFT (Line 40), and then becomes FORCEHARD after
reserving the M th (last) slot (Line 38). If the state of the
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Fig. 8: The processSchedule function

request is successfully set to FORCEHARD, then it is the
point of linearization for the successful schedule call (see
Appendix A).

In case a thread is unable to reserve a slot in the SOFT

state, we set the state of the request to CANCEL (Lines 28
to 33). This happens because the request encountered
a column full of HARD entries (hard wall). It needs to
change its starting search position to the column after
the hard wall (Line 29), which is column col3.

In the CANCEL state (Lines 54-63), the temporarily re-
served slots are reset (i.e SOFT → EMPTY) along with the
PATH and SHADOWPATH arrays. The state of the request is
atomically set to NEW. We reset the starting column, and
set the round to min(round + 1, CANCELTHRESHOLD ). All
this information is packed as one word and atomically
assigned to the iterState field of the request.

After a request has entered the FORCEHARD state, it
is guaranteed that M slots have been reserved for the
thread and no other thread can overwrite these slots.
The state of all the slots reserved is made HARD and then
the request enters the DONE state (Lines 49-50).

Algorithm 2: processSchedule N ×M
1: function processSchedule (Request req)
2: Data
3: col, row0 ← the requested slot
4: state ← the current state of the requested
5: nstate ← the new state of the request
6: slotNum ← number of slots reserved so far
7: while TRUE do
8: (state,slotNum,round,row0,col)←unpack

(req.iterState)
9: switch (state)

10: case NEW :
11: (res, row1, col1) ← bookFirstSlot(req, col, round)
12: if res = FALSE then
13: /* unable to find a free slot */
14: /* set state to FAIL */
15: else if res = TRUE then
16: /* save the index of the slot in the PATH array

and set state as SOFT */
17: if pathCAS(req, round, slotNum, row1, col1)

then
18: nstate ← pack(SOFT,slotNum+1,round,

row1,col1)
19: else
20: /* reset the slot in SLOT and SHADOWPATH

array */
21: end if
22: end if

23: break
24: case SOFT :
25: (round1, row1, col1) ← unpack(req.PATH.

get(slotNum-1))
26: /* reserve remaining required slots */
27: (res,row2)← bookMinSlotInCol(req, col1+1, slot-

Num, round)
28: if res = FALSE then
29: /* changes its starting position */
30: col3 = col1 +2
31: /* request enters in cancel state */
32: nstate ← pack(CANCEL,0,round,0,col3)
33: req.iterState.CAS(state,nstate)
34: else if res = TRUE then
35: if pathCAS(req,round,slotNum,row2,col1+1)

then
36: if slotNum = numSlots then
37: /* Point of linearization: If nstate is suc-

cessfully set to FORCEHARD */
38: nstate ← pack(FORCEHARD, numSlots,

round, row0, col)
39: else
40: nstate ← pack(SOFT, slotNum+1, round,

row2, col1+2)
41: end if
42: else
43: /* reset the slot in SLOT and SHADOWPATH

array */
44: end if
45: end if
46: break
47: case FORCEHARD :
48: /* state of slots in SLOT matrix changes from TMP

to HARD */
49: forcehardAll(req)
50: nstate← pack(DONE, numSlots, round, row0, col)

51: case DONE :
52: /* return slots saved in the PATH */
53: return req.PATH
54: case CANCEL :
55: /* slots reserved in SLOT matrix for request req are

reset, PATH array and SHADOWPATH array get clear
*/

56: undoPath (req, round)
57: if cancelCount.get(req.getTid()) < CANCELTHRESH-

OLD then
58: nround ← round +1
59: else
60: nround ← CANCELTHRESHOLD
61: end if
62: /* a request starts anew from NEW state */
63: nstate ← pack(NEW, 0, nround, row0, col)
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Fig. 9: The getSlotStatus function

64: case FAIL :
65: return -1
66: req.iterState.CAS(state, nstate)
67: end switch
68: end while
69: end function

5.3.2 The getSlotStatus method

The bookMinSlotInCol method used in Line 27 calls
the getSlotStatus method to rank each slot in a col-
umn, and chooses a slot with the minimum rank.
Ranks are assigned to a slot based on its current state
as shown in Figure 9.
The getSlotStatus() method accepts four parameters
– req (request of thread tj) for which the slot is to
be reserved, current round of tj , the number of the
slot(slotNum ∈ [1 . . .M ]) that we are trying to book,
and the value stored at slot s[row][col]. This method
returns the rank of the slot s[row][col] (Lines 70-93).
The state of s[row][col] can be either HARD, TMP, TMPFREE or
EMPTY. First, if s[row][col] is already in the HARD state and
tj owns the slot s[row][col] then it means that some other
helper has already reserved this slot for tj and has set
it to HARD. The current thread is thus lagging behind;
hence, we set the rank to BEHIND. If this is not the case,
then the slot is permanently reserved for some other
request, no other thread can take this slot, and we set
the rank as HARD.
If the slot is in the TMP state and belongs to a different
request, then we check if we can cancel the thread (say
tk) that owns the slot. We give a preference to requests
that have already reserved more slots. If we decide
to cancel the thread, then we return CANCONVERT, else
we return CANNOTCONVERT. Note that if a thread has
already been cancelled CANCELTHRESHOLD times, then we
decide not to cancel it and return CANNOTCONVERT. In
case both the threads tj and tk have been cancelled
CANCELTHRESHOLD times then tj helps tk in completing
its request and then proceeds with its own request. In
this case the rank is returned as CANNOTCONVERT.
If the slot belongs to the same request, then the rank
can be either AHEAD or BEHIND. The slot has rank AHEAD

if it has been reserved by a previous cancelled run
of the same request, or by another helper. Likewise,
BEHIND means that the current run has been cancelled

and another helper has booked the slot in a higher
round.
If the slot is being freed by some other thread (tf ),
then its state would be TMPFREE and we set the rank of
the slot as TMPFREE. If the slot is already EMPTY then we
set the rank as EMPTY.
The order of the ranks is as follows: BEHIND < AHEAD

< EMPTY < TMPFREE < CANCONVERT < CANNOTCONVERT <
HARD.
70: function getSlotStatus(req, value, round, slotNum)
71: tid ← req.getTid()
72: reqId ← req.getReqId()
73: (reqId1, stat1, tid1, round1, slotNum1) ← un-

pack(value)
74: if stat1 = HARD then
75: return ((tid1,reqId1) = (tid,reqId)) ? BEHIND: HARD
76: end if
77: if stat1 = EMPTY then
78: return EMPTY
79: end if
80: if stat1 = TMPFREE then
81: return TMPFREE
82: end if
83: /* The state is SOFT and the tids are different */
84: if tid 6= tid1 then
85: return (slotNum1 > slotNum) ? CANNOTCONVERT:

( (cancelCount.get(tid1) < CANCELTHRESHOLD)? CAN-
CONVERT: CANNOTCONVERT)

86: end if
87: /* tids are same */
88: /* Give preference to the higher round */
89: if round1 <= round then
90: return AHEAD
91: end if
92: return BEHIND
93: end function

5.3.3 The bookMinSlotInCol method
This method reserves a slot, with minimum rank, in
the specified column in the SLOT matrix (Lines 94-141).
First, this method calls the method findMinInCol,
which in turn calls the getSlotStatus method that
returns the slot with the lowest rank (Line 96). Then, a
thread records its intention to reserve the slot by trying
to save its index in the SHADOWPATH array. Finally, it
tries to reserve the slot in the SLOT matrix based on its
rank as shown in Figure 10, and if successful it records
the row and column of the slot in the PATH array.
Let us now explain in detail. The bookMinSlotInCol
method accepts four parameters – request(req) of a
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thread tj , column(col) to reserve a slot in, the num-
ber of the slot(slotNum ∈ [1 . . .M ]) that we are
trying to reserve, and the current round(round). The
findMinInCol method returns the lowest ranked slot
along with its timestamp, tstamp. The timestamp is
needed for correctness as explained in Section 5.5.
Subsequently, all the helpers try to atomically update
the SHADOWPATH array at index slotNum (Line 98), and
only one of them succeeds. We read the value of the
entry that is finally stored in the SHADOWPATH array (by
the thread or by its helpers) and compute its rank
(Line 100-101).
If the rank is BEHIND, then it means that the thread
should return to the processSchedule method, read the
current state of the request, and proceed accordingly.
If the rank is AHEAD or EMPTY, we try to reserve the
slot s[row1][col1] (Line 113). Simultaneously, other helper
threads also observe the entry in the SHADOWPATH array
and try to reserve the slot. Whenever we are not able to
book the intended slot, the SHADOWPATH entry at index
slotNum is reset. If the rank is CANCONVERT, then it
means a lower priority thread (tl) has reserved the slot
s[row1][col1]. In this case, the thread tj tries to cancel the
request of the thread tj with the help of the method
otherCancel (Line 120). If thread tj is successful in
cancelling the request of thread tl, then it proceeds to
reserve the slot s[row1][col1].
If the rank is CANNOTCONVERT, then it means that we
have encountered a column that is full of temporary
reservations of other threads, and we cannot cancel
them. Hence, we start helping the request, which is
the current owner of the slot s[row1][col1] (Line 130).
If the rank is TMPFREE, then it means that all the
slots in that column are getting freed by some free
requests in progress. In this case, we help the free
request (Line 134), which is currently freeing the slot
s[row1][col1]. If the rank is HARD, then it means that all
the slots in that column are in the HARD state (already
booked). We call such kind of a column a hard wall. In
this case, we need to cancel the request of thread tj .
This involves converting all of its TMP slots to EMPTY,
and resetting the PATH and SHADOWPATH arrays. Then
the request needs to start anew from the column after
the hard wall.

94: function bookMinSlotInCol (req, col, slotNum, round)
95: while TRUE do
96: (row, rank1, tstamp )← findMinInCol(req, col, slot-

Num, round)
97: /* Set the SHADOWPATH entry */
98: shadowPathCAS(req,row,col,tstamp,slotNum)
99: /* currval is the value currently saved in SHADOW-

PATH array and def is the default value */
100: /* the value finally saved in the SHADOWPATH array

is (row1, col1) */
101: /* compute the rank of the slot (row1,col1) */
102: ...
103: /* expSval is the expected value of the slot

(row1,col1) */
104: /* newSval is the new value a thread wishes to save

in the slot (row1,col1) */
105: (reqid1, tid1, round1, slotNum1, stat1) ← unpack

(SLOT [row1][col1])
106: switch (rank)
107: case BEHIND :
108: /* undo SHADOWPATH array */
109: req.SHADOWPATH.CAS(slotNum, currval, def)
110: return (REFRESH, NULL)
111: case AHEAD || EMPTY :
112: /* reserve temporary slot */
113: if (SLOT [row1][col1].CAS(expSval, newSval) =

FALSE) ∧ (SLOT [row1][col1].get() 6= newSval)
then

114: req.SHADOWPATH.CAS(slotNum, currval, def)
115: continue
116: end if
117: return (TRUE, row1)
118: case CANCONVERT :
119: /* try to change other request’s state to CANCEL

*/
120: if otherCancel(tid1, round1) = FALSE then
121: continue
122: end if
123: if (SLOT [row1][col1].CAS(expSval, newSval) =

FALSE) ∧ (SLOT [row1][col1].get() 6= newSval)
then

124: req.SHADOWPATH.CAS(slotNum, currval, def)
125: continue
126: end if
127: return (TRUE, row1)
128: case CANNOTCONVERT :
129: req.SHADOWPATH.CAS(slotNum, currval, def)
130: processSchedule(request.get(tid1))
131: break
132: case TMPFREE :
133: req.SHADOWPATH.CAS(slotNum, currval, def)
134: processFree(request.get(tid1))
135: break
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136: case HARD :
137: req.SHADOWPATH.CAS(slotNum,currval, def)
138: return (FALSE, NEXT)
139: end switch
140: end while
141: end function

end

5.4 The free Operation
The processFree method captures the details of the
free operation (see Algorithm 3). The method accepts
the request, req, as an argument and tries to free the
intended slots i.e., change the state of slots to EMPTY. The
initial state of the request is NEW. In the NEW state, a
thread tries to temporarily free the first slot it wishes to
free (change its state from HARD to TMPFREE). In doing so, a
thread also saves the number of slots it will subsequently
free (Line 11). This information is helpful for conflicting
schedule requests. A schedule request will get to know
the number of consecutive slots that will be freed and it
can reserve those slots. After this, the request moves to
the next state which is FSOFT (Line 12).

In the FSOFT state, a request continues to temporarily
free the rest of the slots in its list (slotList). In this state
of the request we use the iterState field to additionally
store the number of slots, slotNo, left to be freed. If the
value of slotNo is equal to 1, then it means that the
required number of slots (M ) are freed. Once the state
of the desired number of slots is changed from HARD

to TMPFREE, the state of the request is changed to HELP

(Line 17).
Algorithm 3: Algorithm to Free Slots

1: function processFree(req)
2: Data
3: state ← current state of the request req
4: slotNo ← the number of slots to be freed by the

thread
5: startSlot (row,col) ← the slot to be freed
6: while TRUE do
7: expVal ← packSlot(req.reqTid,HARD)
8: freVal ← packSlot(req.threadid,

req.numSlot-1,TMPFREE)
9: switch (state)

10: case NEW :
11: SLOT [row][col].CAS(expVal, freVal)
12: req.iterState.CAS(reqState, packState(FSOFT,

slotNo-1))
13: break
14: case FSOFT :
15: SLOT [row][col].CAS(expVal, freVal)
16: if slotNo == 1 then
17: newState ← HELP
18: else
19: newState ← packState(TMPFREE, slotNo -1)
20: end if
21: req.iterState.CAS(reqState, newState)
22: break
23: case HELP :
24: for i ∈ [0, req.numSlots-1] do
25: checkHard ← checkBreakList(req.slotList(i))
26: if checkHard = TRUE then
27: /* find a schedule request that can be

scheduled at column i */

28: reqSch ← scanRequestArray(req)
29: /* check state of the schedule request */
30: reqState ← reqSch.iterState
31: if reqState 6= FORCEHARD ∧ reqState 6=

DONE then
32: /* help the request in getting scheduled

at column i */
33: notifyFreeSlot(req,reqSch,i)
34: end if
35: end if
36: end for
37: newState ← FREEALL
38: req.iterState.CAS(state, newState) /* point of

linearization */
39: case FREEALL :
40: for i ∈ [0, req.numSlots-1] do
41: startSlot ← req.slotList(i)
42: (row,col) ← unpack(startSlot)
43: SLOT [row][col].CAS(packSlot(req.threadid,

numSlot-(i+1),TMPFREE), EMPTY)
44: end for
45: req.iterState.CAS(state, DONE)
46: break
47: case DONE :
48: return TRUE
49: break
50: end switch
51: end while
52: end function

53: function notifyFreeSlot(reqf , reqs, index)
54: (round, row1, col1) ← unpack(reqs.PATH. get(0))
55: slot ← reqf .slotList(index)
56: (row,col) ← unpack(slot)
57: if col < col1 then
58: nstate ← pack(CANCEL,0,round,0,

max(reqs.slotRequested, col - reqs.numSlots + 1))
59: otherCancel(reqs, nstate)
60: end if
61: end function

end

Next, in the HELP phase, a request tries to help other
conflicting schedule requests in the system to reserve the
slots freed by it. To do so, a free request first checks
while freeing a slot whether it has broken a hard wall
or not (Line 25). Recall that a hard wall is a column
of slots, where the state of all the slots is HARD. This
check is required to enforce linearizability. Whenever, a
schedule request encounters a hard wall (say at column
k), it changes its starting index, and moves past the
hard wall (to column k + 1). Let us consider the case
of a concurrent free and schedule request that access
the same set of slots. Now, assume that the schedule
request finds a hard wall, moves ahead. Meanwhile, the
free request completes its operation. At a later point,
the schedule operation also completes. Since the point of
linearizability of the schedule operation is after the point
of linearizability of the free operation, it should have
seen the free operation. It should not have concluded
that a hard wall exists. Instead, it should have used the
slots freed by the free operation. However, this has not
been the case. To avoid this problem, it is necessary
for the free operation to wait till all concurrent, and
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conflicting schedule operations finish their execution. On
the other hand, if no hard wall is broken, then it means
that no schedule request has moved passed the columns
in which a free request is freeing the slots. Hence, in this
case, it is not necessary to help schedule requests.

In case a hard wall is broken, a free request first
scans the REQUEST array to see if some schedule request
is pending and conflicting. A request is considered as
pending if its not linearized yet. Additionally, a re-
quest is considered conflicting if its (slotRequested) lies
within [req.slotRequested, req.slotRequested + numSlots
-1]. Next, we invoke the notifyFreeSlot method if a
conflicting schedule request reqs is found (Lines 54- 60).
It accepts three arguments — free request reqf , schedule
request reqs and the index indicating the slot number for
which the hard wall was broken. We unpack the PATH

array of the request reqs and find the column col1 at
which reqs has reserved its first slot. If this column’s
number is greater than the number of the column (col)
at which the free request freed its slot, then it means
that the schedule request needs to be cancelled. We thus
cancel the schedule request, and make it start anew.
The new starting position is important. If the schedule
operation needed to book numSlots slots, then its new
starting position can be as early as col − numSlots + 1
(see Line 58 for more details).

After helping the schedule request, a free request
proceeds with it own request and enters the FREEALL

phase. In the FREEALL phase, a request permanently frees
all the slots. The status of the slots is changed from
TMPFREE to EMPTY (Line 43). Lastly, a request enters the
DONE state and returns successfully.

5.5 ABA Issues, Sizing of Fields, Recycling

The ABA problem represents a situation where a thread,
ti, may incorrectly succeed in a CAS operation, even
though the content of the memory location has changed
between the instant it read the old value and actually
performed the CAS. For example, a process Pi has read
a value of a shared memory (mem) as A and then sleeps.
Meanwhile process Pj enters the system and modifies
the value of shared memory mem to B and then back
to A. Later, process Pi begins its execution and sees
that the shared memory mem value has not changed
and continues. This is know as the ABA problem. The
same thing can happen, when we are trying to reserve
a slot. It is possible that the earliest thread might see an
empty slot, enter it in the SHADOWPATH array, and then
find the slot to be in the SOFT state. However, another
helper might also read the same SHADOWPATH entry, and
find the slot to be in the EMPTY state because the request
holding the slot might have gotten cancelled. To avoid
this problem, we associate a timestamp with every slot.
This is incremented, when a thread resets a slot after a
cancellation.

The maximum number of rounds for a request is equal
to the CANCELTHRESHOLD. We set it to 32 (5 bits). We limit

the number of slots (M ) to 64 (6 bits). We can support up
to 1024 threads (10 bits). We note that the total number
of timestamps required is equal to the number of times a
given slot can be part of a cancelled request. This is equal
to CANCELTHRESHOLD × NUMTHREADS × M . The required
number of bits for the timestamp field is 5+10+6 = 21.

In our algorithm, we assume that the SLOT matrix has
a finite size, and a request fails if it tries to get a slot
outside it. However, for realistic scenarios, we can extend
our algorithm to provide the illusion of a semi-infinite
size SLOT matrix, if we can place a bound on the skew
between requests’ starting slots across threads. If this
skew is W , then we can set the size of the SLOT matrix
to S > 2W , and assume the rows of the SLOT matrix to
be circular.

6 PROOF

We can prove that our all the algorithms obey sequen-
tial semantics (their execution matches that of a single
thread), and are linearizable. We also prove that our algo-
rithms lock-free and wait-free. The proofs are mentioned
in detail in Appendix A.

7 EVALUATION

7.1 Setup

We perform all our experiments on a hyper-threaded
four socket, 64 bit, Dell PowerEdge R810 server. Each
socket has eight 2.20GHz Intel Xeon CPUs, 16 MB L2
cache, and 64 GB main memory. We have 64 threads
visible to software. It runs Ubuntu Linux 12.10 using
the generic 3.20.25 kernel. All our algorithms are writ-
ten in Java 6 using Sun OpenJDK 1.6.0 24. We use
the java.util.concurrent, and java.util.concurrent.atomic
packages for synchronization primitives.

We evaluated the performance of our scheduling algo-
rithms by assuming that the inter-request distances are
truncated normal distributions (see Selke et. al. [24]). We
generated normal variates using the Box-Muller trans-
form (mean = 5, variance = 3* tid). We run the system
till the first thread completes κ requests. We define
three quantities – mean time per request (treq), fairness
(frn) and throughput of the scheduler. The fairness is
defined as the total number of requests completed by
all the threads divided by the theoretical maximum.
frn = tot requests/(κ ×NUMTHREADS). frn measures
the degree of imbalance across different threads. It varies
from 1/NUMTHREADS (min) to 1(max). If the value of
frn is equal to 1, then all the threads complete the same
number of requests – κ. The lower is the fairness, more
is the discrepancy in performance across the threads.

We set a default REQUESTTHRESHOLD value of 50, and κ
to 10,000. We varied the number of threads from 1 to 64
and measured treq and frn for the N ×M and 1 ×M
variants of the problem. We perform each experiment
100 times, and report mean values. In our workload,
70% of the requests are schedule operations, and the
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Fig. 11: treq for the N × M algo-
rithm
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M algorithm
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Fig. 13: Fairness (frn) for the N ×
M algorithm across threads
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Fig. 14: treq for the 1×M algorithm
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remaining 30% are free operations (chosen at random).
We vary the number of slots randomly from 2 to 64
(uniform distribution). We consider three flavors of our
algorithms – lock-free (LF ), wait-free (WF ), and a ver-
sion with locks (LCK). Further, we have implemented
the version with locks in three ways – coarse grain lock-
ing (coarseLocking), fine grain locking (fineLocking)
and fair coarse grain locking (fairLocking). The coarse
grain locking algorithm performs better as compared to
the fine grain and fair locking algorithms. Therefore,
we have shown the comparison of our WF and LF
algorithms with the coarseLocking algorithm. Imple-
mentation details of different lock based algorithms and
their results are presented in Appendix C.

7.2 Performance of the N ×M and 1×M Algorithms
Figures 11 and 12 present the results for the N × M
problem. The LF algorithm is roughly 10X faster than all
the algorithms (in terms of mean treq). The performance
of WF and coarseLocking is nearly the same. However,
the variation observed in the case of coarseLocking is
very high. For coarseLocking, treq increases to up to
8030 µs (mean: 620µs) for 64 threads. In the worst case,
coarseLocking is 7X slower than WF (for >32 threads),
and it is two orders of magnitude slower than the LF
algorithm. As explained in detail in Appendix C.4, there
are two reasons for this trend: (1) the thread holding
the lock might go to sleep, (2) and it might take a very
long time to acquire the lock (even with fair locking
algorithms). In comparison the jitter (max. value - min.
value) observed in WF is 280 µs, and the jitter for LF
is 30µs for 64 threads.

The reasons for the roughly 7-10X difference between
the LF and WF algorithms can be understood by taking
a look at Table 1. It shows the number of requests on an
average helped by any single request. We observe that in
the WF algorithm, each request helps 7-13 other requests
in its lifetime, whereas the number is much lower (1-2)
for the LF algorithm. In WF , a request can perform both
external as well as internal helping (see Section 4.2).
As the number of threads increases external helping
increases dramatically. This also has a cascaded effect of
internal helping because if one request is stuck, multiple
requests try to help it. As a result, the contention in the
PATH and SHADOWPATH arrays increases. In comparison,
LF algorithms have only internal helping. This results
in lower contention and time per operation, at the cost
of fairness.

Figure 12 shows the results for fairness for a system
with greater than 32 threads: ≈90% for WF , ≈35% for
LF , and 15-25% for coarseLocking. In Figure 13, we
show the fairness values for each of the 64 threads in
a representative 64-threaded run. From the figure, we
can conclude that our wait-free implementation (WF )
is very fair since the value of fairness is 85-95% for all
the threads (due to external helping). In comparison,
for LF , the mean fairness is 36% and in the case of
coarseLocking it is just 13%. The average deviation of
fairness for all the algorithms is within 5% (across all
our runs).

A similar trend is observed in the case of the 1 ×
M problem. Figures 14 and 15 show the results for
treq and fairness. The LF algorithm is roughly 5-10X
faster than the WF and coarseLocking algorithms. The
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Number of
Threads

WF LF

external
helping

internal
helping

internal
helping

2 0 0 0
4 1 0 0
8 1 0 1
16 2 1 1
20 4 1 1
24 4 1 1
32 5 2 1
40 7 2 1
56 10 3 2
64 9 2 2

TABLE 1: Number of requests helped by a single request

coarseLocking algorithm is nearly 2X faster than the
WF algorithm on an average. However, the variation
observed for coarseLocking, for more than 40 threads
is very high. treq is around 3000 µs for 64 threads in
the worst case (15 times the mean). Whereas, the LF
and WF algorithms are very stable and the variations
are within 15% of the mean values. In the worst case,
treq is around 70 µs and 600 µs for 64 threads for LF
and WF respectively. Now, if we look at the fairness of
the system as a whole in Figure 15, we observe that the
fairness values for WF remains at more than 80%. For
up to 32 threads, fairness of WF and LF is nearly same.
Beyond 32 threads, fairness is around 70% for LF . For
coarseLocking, the fairness remains within 30-50% (for
> 32 threads). The average deviation of fairness for all
the algorithms was within 3%.

7.3 Throughput
Next, we study the throughput of our slot scheduler
by varying the average time between the arrival of two
requests from 0 to 5µs at intervals of 1 µs. Figure 17
shows the results. Note that the six points for each line
segment correspond to an average inter-request arrival
time of 0, 1, 2, 3, 4, and 5 µs respectively. The first note-
worthy trend is that LF scales as the number of threads
increases from 1 to 64. WF has comparable throughputs
till 16 threads since the fairness value of each thread
is as high as 94%, and then it becomes inferior to the
LF algorithm. The throughput of WF does not scale
beyond 16 threads because ensuring fairness proves to
be very expensive. A lot of computational bandwidth
is wasted in helping slower tasks, and thus throughput
suffers. In comparison, LF keeps on getting better. For
64 threads its throughput is around 4000k requests per
seconds. The coarseLocking algorithm has around 30%
less throughput as compared to WF till 16 threads. Our
wait-free algorithm has almost similar throughputs as
the coarseLocking algorithm (16-48 threads), with much
stronger progress guarantees.

7.4 Sensitivity
7.4.1 Sensitivity : Varying Capacity (N )
Figure 16 shows the time per request with different
capacities(N ) for LF and WF with the number of
threads set to 64. We observe that as the number of

resources increases, the time per request decreases. In
the case of the LF algorithm, the time per request treq
drops to 60µs from 414µs as the number of resources
increases(N ) increase from 2-16. Similarly, we observe
that treq for the WF algorithm drops to around 675µs as
the number of resources(N ) nears 16. When the number
of resources is low, more threads compete with each
other for the same time slot. This results in more can-
cellations, which leads to more wasted work. Hence, the
time per request is more when we have fewer resources.
Now, as we increase the number of resources(N ) beyond
16, treq increases since the time required to search for a
free slot in a column increases.

7.4.2 Sensitivity: Varying REQUESTTHRESHOLD

We show the performance of WF , for 64 threads, for
different values of the REQUESTTHRESHOLD. The parameter,
REQUESTTHRESHOLD controls the amount of external helping
being done by a thread. A lower value of REQUESTTHRESH-

OLD means that a thread needs to help more threads in
its iterations. More helping would result in more time
per request. Figure 18 shows that as REQUESTTHRESHOLD

varies from 10-50, treq decreases from 1550 µs to roughly
650 µs. We observe that fairness also decreases from 97%
to 68% as the REQUESTTHRESHOLD varies from 10-100 (see
Figure 19). As REQUESTTHRESHOLD increases, a thread helps
fewer requests in completing their operation. Thus, the
fairness of the system decreases. We observe that 50 is
the optimal value for the REQUESTTHRESHOLD.

We conclude our analysis by evaluating the sensitivity
of the WF algorithm with respect to the compare-And-
Set(CAS) instruction’s latency. We added a few extra
cycles to CAS latencies in our experiment by running a
dummy loop. Figure 20 shows the results. WF , WF (1),
WF (2), WF (3) and WF (4) correspond to a system
with 0, 1, 2, 3 and 4 additional µs for each CAS op-
eration. treq is nearly the same for WF , WF (1) and
WF (2) (within 10%). Whereas WF (3) and WF (4)
are 1.3X and 1.6X slower than WF for 64 threads.
This experiment shows that our wait-free algorithm is
fairly well tolerant to the latency of the underlying CAS
instruction.

8 CONCLUSION
In this paper, we presented lock-free and wait-free al-
gorithms for two variants of the generic slot scheduling
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problem. The solutions for the 1×M and N×M variants
of the problem are fairly elaborate: they use recursive
helping, and have fine grained co-ordination among
threads. We consider both the schedule and free meth-
ods that can dynamically reserve and free a set of slots in
contiguous columns of the slot matrix. We additionally
prove the linearizability correctness condition for all of
our algorithms, and lastly experimentally evaluate their
performance. The wait-free and coarseLocking versions
are slower than the lock-free version by 7-10X in almost
all the cases. The performance of the wait-free algorithm
is roughly similar to the version with locks. However, it
provides significantly more fairness and suffers from 25X
less jitter than the algorithms with locks.

REFERENCES
[1] P. Aggarwal and S. Sarangi, “Lock-free and wait-free slot schedul-

ing algorithms,” in IPDPS, 2013.
[2] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F.

Kaashoek, R. Morris, and N. Zeldovich, “An Analysis of Linux
Scalability to Many Cores,” in OSDI, 2010, pp. 1–16.

[3] S. Kumar, C. J. Hughes, and A. Nguyen, “Carbon: Architectural
Support for Fine-Grained Parallelism on Chip Multiprocessors,”
in ISCA, 2007.

[4] P. E. Mckenney, J. Appavoo, A. Kleen, O. Krieger, O. Krieger,
R. Russell, D. Sarma, and M. Soni, “Read-Copy Update,” in In
Ottawa Linux Symposium, 2001, pp. 338–367.

[5] A. Kogan and E. Petrank, “Wait-free Queues With Multiple En-
queuers and Dequeuers,” in PPoPP, 2011.

[6] B. Hall, “Slot Scheduling: General Purpose Multiprocessor
Scheduling for Heterogeneous Workloads,” Master’s thesis, Uni-
versity of Texas, Austin, december 2005.

[7] J. K. Ousterhout, “Scheduling Techniques for Concurrent Sys-
tems,” in ICDCS, 1982.

[8] M. P. Herlihy and J. M. Wing, “Linearizability: A Correctness
Condition for Concurrent Objects,” ACM Trans. Program. Lang.
Syst., vol. 12, no. 3, pp. 463–492, Jul. 1990.

[9] P. Aggarwal, G. Yasa, and S. R. Sarangi, “Radir: Lock-free and
wait-free bandwidth allocation models for solid state drives,” in
HiPC, 2014.

[10] S. W. Schlosser, J. Schindler, S. Papadomanolakis, M. Shao, A. Ail-
amaki, C. Faloutsos, and G. R. Ganger, “On multidimensional
data and modern disks,” in FAST, 2005.

[11] M.-Y. Wu, “On Runtime Parallel Scheduling for Processor Load
Balancing,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 8, no. 2, pp. 173 –186, feb 1997.

[12] E. Dekel and S. Sahni, “Parallel scheduling algorithms,” Opera-
tions Research, vol. 31, no. 1, pp. 24–49, 1983.

[13] J. E. Moreira, W. Chan, L. L. Fong, H. Franke, and M. A. Jette,
“An infrastructure for efficient parallel job execution in terascale
computing environments,” in SC, 1998.

[14] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R. Ganger,
“Argon: Performance insulation for shared storage servers.” in
FAST, 2007.

[15] J. H. Anderson and M. Moir, “Wait-free synchronization in mul-
tiprogrammed systems: Integrating priority-based and quantum-
based scheduling,” in PODC, 1999.

[16] S. Park and K. Shen, “Fios: a fair, efficient flash i/o scheduler,”
in FAST, 2012.

[17] J.-M. Liang, J.-J. Chen, H.-C. Wu, and Y.-C. Tseng, “Simple and
Regular Mini-Slot Scheduling for IEEE 802.16d Grid-based Mesh
Networks,” in VTC, 2010.

[18] S. R. Rathnavelu, “Adaptive time slot scheduling apparatus and
method for end-points in an atm network,” Mar. 20 2001, US
Patent 6,205,118.

[19] I. Goiri, K. Le, M. Haque, R. Beauchea, T. Nguyen, J. Guitart,
J. Torres, and R. Bianchini, “GreenSlot: Scheduling Energy Con-
sumption in Green Datacenters,” in High Performance Computing,
Networking, Storage and Analysis (SC), 2011.

[20] P. Aggarwal and S. R. Sarangi, “Software transactional memory
friendly slot schedulers,” in Distributed Computing and Internet
Technology. Springer, 2014, pp. 79–85.

[21] H. Sundell, “Wait-free multi-word compare-and-swap using
greedy helping and grabbing,” International Journal of Parallel
Programming, vol. 39, no. 6, pp. 694–716, 2011.

[22] Y. Afek, M. Merritt, G. Taubenfeld, and D. Touitou, “Disentan-
gling multi-object operations,” in PODC, 1997.

[23] T. L. Harris, K. Fraser, and I. A. Pratt, “A practical multi-word
compare-and-swap operation,” in Distributed Computing, 2002, pp.
265–279.

[24] S. Sellke, N. B. Shroff, S. Bagchi, and C.-C. Wang, “Timing Channel
Capacity for Uniform and Gaussian Servers,” in Proceedings of the
Allerton Conference, 2006.

[25] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming,
Revised Reprint. Elsevier, 2012.

Pooja Aggarwal is a Ph.D student in the De-
partment of Computer Science and Engineering,
IIT Delhi, India. She has worked as a software
developer for 2 years with Aricent Technologies.
She received a B.E in Information Technology in
2009 from the Punjab Engineering College. Her
main research interests are lock-free and wait-
free algorithms.

Smruti R. Sarangi is an Assistant Professor
in the Department of Computer Science and
Engineering, IIT Delhi, India. He graduated with
a M.S and Ph.D in computer architecture from
the University of Illinois at Urbana-Champaign in
2007, and a B.Tech in computer science from IIT
Kharagpur, India, in 2002. He works in the areas
of computer architecture, parallel and distributed
systems. Prof. Sarangi is a member of the IEEE
and ACM.



15

APPENDIX A
PROOFS

In this appendix we present the proof of correctness
and the proof of lock/wait-freedom of the algorithms
described in Section 5. Let us start with some definitions.

Definition 1: A requestId is a unique identifier for each
request.

Definition 2: A request is an operation to either
reserve or free a set of slots in contiguous columns in
the SLOT matrix using the methods processSchedule or
processFree.

Let us now try to characterize what kind of schedules
are legal for a single thread (sequential) scheduler.

A.1 Legal Sequential Specification
For producing legal schedules, a parallel schedule needs
to obey conditions 1 and 2.

Condition 1
Every request should be scheduled at the earliest
possible time.

Condition 2
Every request should book only numSlots entries in
consecutive columns: one slot per each column.

However, for a parallel scheduler, sequential consis-
tency and producing legal schedules is not enough.
Let us consider the previous example (Section 4.1), and
assume that request 2 arrives a long time after request
1, and these are the only requests in the system. Then
we intuitively expect request 1 to get slots (1-3), and
request 2 to get slots (4-6). However, sequential consis-
tency would allow the reverse result. Hence, we need
a stronger correctness criteria that keeps the time of
request arrival in mind. This is called linearizability [8],
and is one of the most common correctness criteria for
parallel shared data structures.

A.2 Linearizability
Let us define a history as a chronological sequence of
events in the entire execution. Formally, history H ∈
(T,E, i, V ∗)∗. Here, T denotes the thread id, E denotes
the event (invocation or response), i denotes a sequence
number, and V denotes the return value/arguments
of a method. We define only two kinds of events in
our system namely invocations(inv) and responses(resp).
A matching invocation and response have the same
sequence number, which is unique. We refer to a
invocation-response pair with sequence number i as
request ri. Note that in our system, every invocation
has exactly one matching response, and vice versa, and
needless to say a response needs to come after its corre-
sponding invocation.

A request ri precedes request rj , if rj ’s invocation
comes after ri’s response. We denote this by ri ≺ rj . A

history, H , is sequential if an invocation is immediately
followed by its response. We define the term subhistory
(H|T ) as the subsequence of H containing all the events
of thread T . Two histories, H and H ′, are equivalent
if ∀T,H|T = H ′|T . Furthermore, we define a complete
history – complete(H) – as a history that does not have
any pending invocations.

Let the set of all sequential histories that are correct,
constitute the sequential specification of a scheduler. A
history is legal if it is a part of the sequential specification
and it is characterized by conditions 1 and 2. Typically
for concurrent objects, we define their correctness by
a condition called linearizability given by the following
conditions.

Condition 3
A history H is linearizable if complete(H) is equivalent
to a legal sequential history, S.

Condition 4
If ri ≺ rj in complete(H), then ri ≺ rj in S (sequential
history) also.

To prove conditions 3 and 4, it is sufficient to show
that there is a unique point between the invocation and
response of a method at which it appears to execute
instantaneously [25]. This point is known as the point
of linearization or the point of linearizability. This further
means that before the point of linearization, changes
made by the method are not visible to the external world,
and after the point, all the changes are immediately
visible. These changes are irrevocable. Let us call this
condition 5.
Condition 5
Every method call appears to execute instantaneously
at a certain point between its invocation and response.

To summarize, we need to prove that the execution
history of the parSlotMap data structure is both legal
(conditions 1 and 2), and linearizable (condition 5).

Theorem 1: The N×M schedule – LF and WF algo-
rithms take effect instantaneously.

Proof: We need to prove that there exists a point at
which the processSchedule function appears to execute
instantaneously.

Let us try to prove that this point of linearization of
a thread, t, is Line 38 when the state of the request
is successfully changed to FORCEHARD, or it is Line 14
when the request fails because of lack of space (see
Algorithm 2). Note that before the linearization point,
it is possible for other threads to cancel thread t using
the otherCancel function. However, after the status of
the request has been set to FORCEHARD, it is not possible to
overwrite the entries reserved by the request. To do so, it
is necessary to cancel the request. A request can only be
cancelled in the NEW and SOFT states (see Appendix B.4).
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Hence, the point of linearization (Line 38) ensures that
after its execution, changes made by the request are
visible as well as irrevocable. If a request is failing, then
this outcome is independent of other threads, since the
request has reached the end of the matrix.

Likewise, we need to prove that before the point of
linearization, no events visible to other threads cause
them to make permanent changes. Before the point of
linearization, another thread (say t) can view temporarily
reserved entries. It can perform two actions in response
to a temporary reservation – decide to help the thread
that has reserved the slot, or cancel the thread. In either
case, t does not change its starting position.

A thread will change its starting position in Line 29,
only if it is not able to complete its request at the current
starting position because of a hard wall. Recall that a
hard wall is defined as a column consisting of only HARD

entries. We show an example in Figure 21. In this figure
there are three requests – 1, 2, and 3, and each of them
needs 2 slots. Assume that requests 1 and 3 are able to
complete and convert the state of their slots to HARD.
Then request 2 will find column 3 to be a hard wall.
Since column 4 is also a hard wall it will restart from
column 5.

Note that a hard wall is created by threads that
have already passed their point of linearization. Since
the current thread will be linearized after them in the
sequential history, it can shift its starting position to
the next column after the hard wall without sacrificing
linearizability. Additionally, it cannot force other threads
to change their starting position (unalterable change in
their behavior).

Thus, we can treat the point of linearization as Lines 38
and 14. We have thus proven that the schedule function
appears to execute instantaneously. Alternatively, this
means that the execution history is equivalent to a
sequential history. However, we have still not proven
that it is a legal sequential history. Once, we prove the
latter, we can prove that the processSchedule operation
is linearizable.

Let us now prove that in the absence of free requests,
we always produce legal schedules.

Lemma 1: Every request is scheduled at the earliest
possible time slot when there are no concurrent free
operations. Alternatively, the equivalent sequential
history of an execution with respect to the schedule
requests is legal.

Proof: Since our algorithms take effect instanta-
neously (Theorem 1), the parallel execution history is
equivalent to a sequential history. We need to prove that
in this sequential history, a request is scheduled at the
earliest possible slot, or alternatively, the starting slot
has the least possible permissible value. If a request is
scheduled at its starting slot, then this lemma is trivially
satisfied. If it is not the case, then we note that the
starting slot changes in Line 29 (of Algorithm 2) only
if the request encounters a hard wall. This means that it
is not possible to schedule at the given slot. The earliest
possible starting slot, is a slot in a column immediately
after the hard wall. If the request can be satisfied with
this new starting slot, then the lemma is satisfied. Using
mathematical induction, we can continue this argument,
and prove that the slot at which a request is finally
scheduled is the earliest possible slot.

Let us now prove two lemmas for the schedule opera-
tion, when there are concurrent free requests. We define
a free request to be conflicting with a schedule request,
if the schedule request can possibly reserve slots freed
by the free request.

Lemma 2: A linear scan of the REQUEST array is
sufficient to notify a concurrent schedule request to
take the slots being freed by a free request.

Proof: A free request after temporarily freeing all
the slots enters its HELP phase (Line 17:Algorithm 3). In
this phase the request checks each entry in the REQUEST

array and tries to find a schedule request, which is not
linearized yet, and can reserve the slots freed by the free
request. Assume that while scanning the REQUEST array,
the free request reaches the ith entry. Let a new schedule
request, reqj , get placed at the jth entry, where j < i.
Assume it can reserve the slots freed by the free request.
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Since a free request has already reached the ith entry,
it has not notified reqj about the slots being freed. We
need to prove that reqj will still able to see the slots freed
by the free request even if reqj was not notified by the
free request.

The list of actions in the algorithm are as follows:
Step 1: The free request first changes the status of the
slots it wishes to free from HARD to TMPFREE and changes
its state to HELP.
Step 2: The free request starts scanning the REQUEST

array.
Step 3: A new schedule request (reqj) enters the system
using an atomic set instruction.

All these three operations are atomic. Step 1 follows
Step 2 since these two operations are issued by the same
thread. Step 2 and 3 can either be ordered as 2 → 3 or 3
→ 2. Let us first discuss the case 2 → 3. In this case the
schedule request reqj will see the slots freed by the free
request, and they will either be in the TMPFREE or EMPTY

states. If the slot is in EMPTY state, request reqj will try to
reserve it and if the state of the slot is TMPFREE, reqj will
help the free request.

Let us now consider the case: 3 → 2. If a schedule
request is placed before a free request starts the scan
then the free request will find reqj in the REQUEST array,
and it will be able to take the slots freed by it. Hence,
in both the cases, a schedule request is aware about a
concurrent and conflicting free request.

Lemma 3: A schedule request does not miss any
valid slots in the presence of concurrent free oper-
ations.

Proof: Slots which are in the progress of getting freed
due to a free request are valid slots for scheduling any
other request. For a schedule request reqs to not miss any
valid slots, the slots freed by a concurrent and conflicting
free request should be made available to the schedule
request. In other words, a schedule request should be
able to reserve the slots freed by a free request, which
has executed before it as per the equivalent sequential
history.

Let us say a schedule request reqs, enters the system
and changes its starting slot on seeing a hard wall at
column col and then sleeps. Meanwhile a free request
reqf comes in and breaks the hard wall at column col,
while freeing a set of slots, and finishes its operation.
Later, reqs wakes up and finishes its operation and
leaves the system. Now, as per the equivalent sequential
history request, reqf completed before reqs. So if these
two requests are conflicting, reqs should reserve a slot
in column col. As request reqs has already changed its
starting slot to a column after col, it will not get the slot
freed by reqf in the column col. To avoid this problem,
every free request helps conflicting schedule requests
upon breaking a hard wall and then it moves to the
FREEALL state.

Each free request will check whether while freeing a

slot it breaks a hard wall or not (Line 25:Algorithm 3).
Assume that a free request, reqf , breaks a hard wall
while freeing a slot s in column col. In this scenario reqf
linearly scans the REQUEST array to see if some schedule
request (not linearized yet (Line 29:Algorithm 3)) can
be scheduled in a slot s in column col. As proved in
Lemma 2, a linear scan ensures that request reqs will
not miss the slots freed by reqf . Now, reqf will help the
request reqs in getting scheduled earlier.

In case the schedule request reqs sees a slot in the
TMPFREE state, then it tries to help the request reqf
in completing its operation (Line 134:Algorithm 2). In
both the cases, the free request is linearized before the
schedule request. Thus if a schedule request takes the
slots freed by a free request, correctness is not violated.
Hence, we can say that a schedule request reserves the
earliest possible slots even in the presence of concurrent
free requests.

Now, that we have proved that we get the starting
point right for each request, let us prove that the rest of
the slots in a request are reserved correctly.

Lemma 4: Every request books numSlots entries in
consecutive columns: one slot per each column.

Proof: We need to prove that for a request, r, exactly
numSlots entries are allocated in consecutive columns
with one entry per column. Line 27 (of Algorithm 2)
ensures that the columns are consecutive because we
always increment them by 1.

To ensure that exactly one request is booked per
column by a thread and all of its helpers, we use
the path and shadowPath arrays. Different threads first
indicate their intent to book a certain slot by entering
it in the shadowPath array (Line 98:Algorithm 2). One
of the threads will succeed. All the other helpers will
see this entry, and try to book the slot specified in the
shadowPath entry. Note that there can be a subtle ABA
issue (see Section 5.5) here. It is possible that the thread,
which set the shadowPath entry might find the slot to
be occupied, whereas other helpers might find it to be
empty because of a cancellation. This is readily solved
by associating a timestamp with every slot in the SLOT

matrix. Since we are not booking an extra slot in the
column for the current round, we can conclude that a
column will not have two slots booked for the same
request and round. It is possible that some slots might
have been booked in previous cancelled rounds, and
would not have been cleaned up. However, the thread
that was cancelled will ultimately clean them up. This
does not deter other requests, because they will see that
the zombie slots belong to an older round of a request,
and they can be recycled. Thus, the statement of the
lemma is true.

Theorem 2: The N×M schedule –LF algorithm is
legal, linearizable, and lock-free.

Proof: Theorem 1 and, Lemma 1, 3 and 4 establish
the fact that N×M–LF is legal and linearizable. We need
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to prove lock freedom. Since we use only non-blocking
primitives, it is possible to have a live-lock, where a
group of threads do not make forward progress by suc-
cessfully scheduling requests. Let us assume that thread,
ti, is a part of a live-lock. For the first CANCELTHRESHOLD

times, ti will get cancelled. Subsequently, it will start
helping some other request, r. ti can either successfully
schedule r, or transition to helping another request. Note
that in every step, the number of active requests in the
system is decreasing by one. Ultimately, thread ti will
be helping some request that gets scheduled successfully
because it will be the only active request in the system.
This leads to a contradiction, and thus we prove that
N ×M–LF is lock-free.

Theorem 3: The N×M schedule –WF algorithm is
wait-free.

Proof: By Theorem 2, we have established that the
processSchedule algorithm is lock-free. To make this
algorithm wait-free, we use a standard technique based
on an universal construction (see [25]). The threads first
announce their requests by entering their requests in the
REQUEST array. When a new request arrives it checks if
there is any request whose id differs by more than RE-

QUESTTHRESHOLD. If there is any request, then this request
is helped.

Assume that it is possible for a request to wait in-
definitely. Let the request with the lowest request id in
the system by reqmin. Since our algorithms are lock-
free some requests are always making progress. Their
request ids are increasing. Ultimately, their request ids
will exceed the request id of reqmin by more than
REQUESTTHRESHOLD. Thus, these threads will begin to help
reqmin. It is not possible for any subsequent request
to complete without helping reqmin to complete. Ulti-
mately, a time will come when all the requests would be
helping reqmin. Since our algorithm is lock-free, one of
the threads will succeed and reqmin will get completed.
Hence, we can conclude that no request will wait indef-
initely, and thus our algorithm is wait-free.

Let us now prove that all the free methods are legal,
linearizable, and lock-free (or wait-free).

Theorem 4: The N ×Mfree- LF and WF algorithms
appear to execute instantaneously.

Proof: We need to prove that there exists a point
(called the point of linearization) at which the free
function appears to execute instantaneously. Let us try
to prove that the point of linearization of a thread, t, is
Line 37 (of Algorithm 3) when the state of the request
is successfully changed from HELP to FREEALL. Note that
before the point of linearization, it is possible that for
only some slots it is visible that the free operation is
in progress (their status is TMPFREE). However, after the
status of the request has been set to FREEALL, the slots
which a free request wishes to free are made available to

all the conflicting schedule operations. Hence, the point
of linearization (Line 37:Algorithm 3) ensures that after
its execution, changes made by the request are visible as
well as irrevocable: the slots will eventually get freed.

Let us now consider all the concurrent schedule re-
quests that find slots in the TMPFREE states before the
free operation has linearized. First, the free operation
needs to get linearized, and then these schedule oper-
ations should get linearized. This will ensure that in
the equivalent sequential history, the free appears first,
and the schedule operations that use the slots that it
has freed appear later. This is required to ensure a legal
sequential history. In order to do so, a schedule request
first helps the concurrent and conflicting free request in
completing its operation and then the schedule request
tries to reserve the slot. Note that no schedule request
directly changes the state of the slot from TMPFREE to TMP.
This ensures that the schedule request only takes the
slots of those free requests which have been linearized
before it. To summarize, this particular step ensure that
if any schedule request sees a free request that is in
progress and has not reached its point of linearizability,
then it suspends itself, and helps the free request to
complete. From the point of view of the schedule request,
the effect is as if it has not seen the free request at all.
This means that before a free request has linearized its
temporary changes are effectively not visible.

A schedule request, which is already linearized will
not alter its behavior on seeing a free request that is
in progress. Next, we consider concurrent free requests.
We assume that two free requests never contend on a
slot, so one free request will not alter the behavior of
another free request.

Thus, the free request appears to execute instanta-
neously at Line 37.

Theorem 5: The N ×Mfree–WF algorithm is legal,
linearizable, and wait-free.

Proof: Theorem 4 and Lemma 3 establish the fact that
the free operation is legal and linearizable.

To prove that free- WF is wait-free, we need to prove
that a free request is completed in a finite number of
steps. After a free request enters the system, it starts by
temporarily freeing the desired slots. During this phase
a free and schedule request can collide. Firstly, a free
request will continue temporarily freeing the desired
slots (change their state from HARD to TMPFREE). Next, the
free request helps colliding schedule requests in starting
from new positions. The number of requests, which a
free request can help is equivalent to the number of
requests it collides with. The point of collision of two
requests is the slot one aims to either free or schedule.
No two free requests contend with each other. Now at
each slot only one request can schedule so for each slot a
free request will help only one schedule request. A free
request will therefore help M requests, where M is the
number of slots it wishes to frees. This process a finite
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number of steps.
After helping the requests it proceeds with perma-

nently freeing the slots (changing the state from TMPFREE

to EMPTY). Since, at each phase the free request has a
finite number of steps. Thus, free- WF is wait-free.

APPENDIX B
AUXILIARY FUNCTIONS

In this appendix, we give details of the functions used
in the algorithm described in Section 5.

B.1 Functions to Book Slots
First, we discuss the bookF irstSlot method. This method
is used for reserving the first slot of the schedule request
with the help of the function bookMinSlotInCol (see
Section 5.3.3). The SLOT matrix is scanned to find an
available slot in a column. The search terminates as
soon as an available slot (for more information see
the getSlotStatus and bookMinSlotInCol functions in
Section 5.3.2 and 5.3.3) is found or the state of the request
is not NEW.

Next, the findMinInCol function is used to find a slot
in a column with the minimum rank. It internally uses
the getSlotStatus method to find the rank of each slot in
a column. The slot with the minimum rank along with
its timestamp is returned (see Algorithm 4 Lines 18- 30).

The forcehardAll function is used to change the status
of all the temporarily reserved slots from TMP to HARD.
We also save number of slots that have been reserved
for a request (say req) in subsequent columns. This is
useful for other schedule requests (in 1 ×M problem).
As a thread can directly jump to the column next to the
last reserved slot by the request (req) (see Algorithm 4
Lines 31- 36).

Lastly, the HardWall method is used to check whether
a column (index) is a HARD wall or not. We need to check
whether all entries in the column are in the HARD state or
not. If all the entries are in the HARD state then we return
TRUE otherwise, the column (index) is not a hard wall.

Algorithm 4: bookF irstSlot
1: function bookFirstSlot (req, startCol, round)
2: for col ∈ [startCol, SLOT.length()] ∧ (col +

req.numSlot < SLOT.length()) do
3: reqState ← req.iterState
4: if reqState 6= NEW then
5: return (REFRESH, NULL, NULL)
6: end if
7: (res, row) ← bookMinSlotInCol(req, col,

slotNum, round)
8: if (res = FALSE) ∧ (row = NULL) then
9: return (REFRESH, NULL, NULL)

10: else if (res = FALSE) ∧ (row = NEXT) then
11: continue
12: else
13: return (TRUE, row, col)
14: end if
15: end for
16: return (FALSE, NULL, NULL)
17: end function

18: function findMinInCol (req, col, slotNum, round)
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19: minRank ← MAX

20: for i ∈ [0, N - 1] do
21: val ← SLOT [i][col].get()
22: otherRank ← getSlotStatus(req.gettid(), val,

round, slotNum)
23: if minRank > otherRank then
24: minRank ← otherRank
25: row ← i
26: end if
27: end for
28: tstamp ← SLOT [row][col].getTstamp()
29: return (row, minRank, tstamp)
30: end function

31: function forcehardAll (req)
32: for i ∈ [1,length(req.path)] do
33: (row,col) ← unpack(req.path[i-1])
34: SLOT [row][col].set(pack(HARD,req.getTid(),

req.requestid,req.numSlots -i))
35: end for
36: end function

37: function HardWall(index)
38: for i ∈ [0, N -1] do
39: state ← SLOT [i][index].getState()
40: if state = HARD then
41: continue
42: else
43: return FALSE

44: end if
45: end for
46: return TRUE

47: end function
end

B.2 Functions to Reset the State
Now, we describe a set of functions undoSlot, undoPath
and undoShadowpath, which are used to reset the state
of various fields such as a slot in the SLOT matrix, the
PATH array and the SHADOWPATH array respectively (see
Algorithm 5). These functions are mainly used when a
request either gets cancelled or some other helper has
already reserved a slot. In these scenarios we need to
undo the changes done by a particular thread.

In the method undoSlot, a slot is atomically reset to
its default value with a higher time stamp (Line 5). The
index and the time stamp of the slot which a thread
wishes to reset is saved in the SHADOWPATH array. Before
resetting the slot, the value of SHADOWPATH array is read.
A thread resets the value of a slot only if the entry
in the SHADOWPATH array is valid and the time stamp
matches. Otherwise, it means some other thread has
already cleared the slot.

Next, the method undoShadowpath is used to set an
entry in the SHADOWPATH array to its default value and
mark it as INVALID. This is done when a thread is unable
to reserve a slot which it has saved in its SHADOWPATH

array.

Lastly, when a thread gets cancelled then it has to clear
its PATH array, SHADOWPATH array and the slots reserved so
far. This is done with the help of undoPath method. In
each entry of the PATH array, along with the index of a
slot of the SLOT array, a round of an request is saved. This
round indicates the iteration of a request. If the round
saved in the PATH array is different from the one passed
as an argument, it means that some other helper has
already cleared the PATH array (Line 21). If the round
matches, then the PATH array is cleared and each entry
has updated round. This updated round is the current
iteration of a request. The SHADOWPATH array and the slots
are cleared as explained in the method undoShadowpath
and undoSlot.

Algorithm 5: Undo Methods
1: function undoSlot(req,slotNum)
2: (storeRound, row, col, status) ←

req.path.get(slotNum)
3: tstamp ← req.SHADOWPATH.getTstamp(slotNum)
4: if status = VALID then
5: newVal ← pack(0,0,0,tstamp+1)
6: oldVal ←

pack(req.getTid(),tstamp,round,slotNum)
7: slots[row][col].compareAndSet(oldVal,

newVal)
8: end if
9: end function

10: function undoShadowpath(req,slotNum,row,col)
11: tstamp ← req.SHADOWPATH.getTstamp(slotNum)
12: expVal ← pack(tstamp, row, col, VALID)
13: newVal ← pack(0,0,0,INVALID)
14:

req.SHADOWPATH.compareAndSet(slotNum,expval,
newVal)

15: end function

16: function undoPath (req, round)
17: cancelVal ← pack(round+1, 0, 0,INVALID)
18: for i ∈ [0,length(path) - 1] do
19: (storeRound, row, col, status) ←

req.path.get(i)
20: if round 6= storeRound then
21: continue
22: end if
23: tstamp ← req.SHADOWPATH.getTstamp(i)
24: req.path.compareAndSet(i, pack(storeRound,

row, col, status), cancelVal)
25: req.SHADOWPATH.compareAndSet(i,

pack(tstamp, row, col, status),
pack(0,0,0,INVALID))

26: if status = VALID then
27: newVal ← pack(0,0,0,tstamp+1)
28: oldVal ← pack(req.getTid(),tstamp,round,i)
29: SLOT [row][col].compareAndSet(oldVal,

newVal)
30: end if
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31: end for
32: end function

end

B.3 Functions to Co-ordinate Among Helpers
The method pathCAS is used to save the index of
the slot reserved by a thread in the TMP state in the
reservation PATH array. In the case of internal helping,
multiple threads try to reserve a slot for a particular
thread. Lets assume that a request is in the SOFT state
and is trying to reserve a slot in the column col. All the
entries in the column col are in the HARD state. In this
case, the request req will move to the CANCEL state and
start anew with a new round. It is possible that some
slow helper may read the old state of the request, req,
as SOFT, try to reserve a slot, and make an entry in the
PATH array using a CAS operation. As the request has
entered a new round, the thread will fail and it needs to
undo the reservation in the SLOT matrix(see Algorithm 6
Line 11).

Next, multiple helpers can find different slots in the
same column (col), which can be reserved for a request
req. If each of the threads first tries to reserve a slot in
the SLOT matrix and later updates the PATH array, then
only one of them will succeed in updating the path and
the rest will fail. But this causes more than one slot in
the SLOT matrix to be in the TMP state for the same request
req which can unnecessarily delay other low priority
requests. In order to avoid this a SHADOWPATH array is
used by the threads to announce their intention to book
a slot. Threads first search for a free slot, make an entry
for it in the SHADOWPATH array, and then actually reserve
it in the SLOT matrix. This is done using the function
shadowPathCAS.

In the FORCEHARD state, a thread makes the temporary
reservation as permanent by converting the reserved
slots in the SLOT matrix to the HARD state using the
function forcehardAll. The list of slots to be reserved
in the HARD state is saved in the PATH array.

Algorithm 6: pathCAS and shadowPathCAS

1: function pathCAS (req, round, slotNum, row,
col)

2: expVal ← pack(round, 0, 0, INVALID)
3: newVal ← pack(round, row, col, VALID)
4: if (req.path.compareAndSet(slotNum, expVal ,

newVal) = FALSE) || (req.path.get(slotNum) 6=
newVal) then

5: tstamp ← SLOT [row][col].getStamp()
6: e ← pack(row,col,tstamp,VALID)
7: d ← pack(0,0,0,INVALID)
8: req.SHADOWPATH.compareAndSet(e, d)
9: es ← pack(req.getTid(), slotNum, round,

tstamp)
10: ds ← pack(0,0,0,tstamp+1)
11: SLOT [row][col].compareAndSet(es, ds)

12: end if
13: end function

14: function shadowPathCAS (req, row, col, tstamp,
slotNum)

15: expVal ← pack(0, 0, 0, INVALID)
16: newVal ← pack(row, col, tstamp, VALID)
17: req.SHADOWPATH.compareAndSet(slotNum,

expVal, newVal)
18: end function

end

B.4 The otherCancel Function

The otherCancel method is used to cancel other requests
(see Algorithm 7). This function is invoked if we find
the rank of the lowest ranked slot to be CANCONVERT.
This means that the request, r, which owns this slot
has reserved a lesser number of slots than the current
request. Intuitively, we would want to give more priority
to a request that has already done more work (does not
affect correctness). In this case, we will try to set the state
of request r to CANCEL. Recall that one thread can change
the state of another thread’s request to CANCEL only if
the current request state of that thread is either NEW or
SOFT (Line 6 and 12). It might be possible that the same
request keeps on getting cancelled by other threads. To
avoid this a CANCELTHRESHOLD is set, which means that a
request can get cancelled at the most CANCELTHRESHOLD

times by other threads. After this it cannot be cancelled
anymore by other threads. After cancelling a request,
the thread can take its slot and continue. The cancelled
thread needs to start anew.

Algorithm 7: cancel method

1: function otherCancel (tid, round)
2: req ← request.get(tid)
3: state ← req.getState()
4: (stat, slot, round, row, col) ← unpack(state)
5: newState ← pack(CANCEL, slot, round, row, col)
6: if stat = NEW ∧ cancelCount(tid).get() <

CANCELTHRESHOLD then
7: if req.state.compareAndSet(state, newState)

then
8: cancelCount(tid).getAndIncrement()
9: return TRUE

10: end if
11: end if
12: while stat = SOFT ∧ cancelCount(tid).get() <

CANCELTHRESHOLD do
13: if req.state.compareAndSet(state, newState)

then
14: cancelCount(tid).getAndIncrement()
15: return TRUE

16: end if
17: state ← req.getState()
18: (stat, slot, round, row, col) ← unpack(state)
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19: newState ← pack(CANCEL, slot, round, row,
col)

20: end while
21: return FALSE

22: end function
end

APPENDIX C
SLOT SCHEDULING – LOCKED VERSION

In this appendix, we discuss the implementation details
of different lock based algorithms. In specific, we look
at coarse grain locking with and without fair locks, and
a fine grain locking algorithm.

C.1 Coarse Grain Locking
To implement the lock based version of the slot schedul-
ing algorithm, let us first look at a very simple and naive
approach (see Algorithm 8), which is also our most high
performing lock based implementation.

Assume that thread ti places a request to book
numSlots slots starting from time slot slot. Thread ti first
scans the SLOT matrix to find numSlots consecutive EMPTY

slots lying between [slot, slot + numSlots -1] (Line 4).
When a slot is found to be EMPTY, ti stores its index in
a local array record (Line 6). Once the required number
of slots are found, ti books these slots by changing the
state of the slots from EMPTY to HARD (Line 15). This
method is annotated with the keyword synchronized,
which makes it execute as a critical section. Only one
thread can execute this function at a time. All other
threads attempting to call the processSchedule function
(i.e trying to enter the synchronized block) are blocked
until the thread inside the synchronized block exits the
block.

Algorithm 8: processSchedule- locked
1: synchronized
2: function processSchedule (tid, slot,numSlots)
3: slotCount ← 0, index ← 0
4: for i ∈ [slot, SLOT.length] ∧ (slotCount <

numSlots) do
5: if ∃ j, SLOT [i][j] = EMPTY then
6: record[index++] ← j
7: slotCount++
8: else
9: reset slotCount and record, start searching

again
10: end if
11: end for
12: if slotCount = numSlots then
13: /* reserve the slot by setting the threadId in

SLOT array */
14: for i ∈ [0,numSlots] do
15: SLOT [row + i][record[i]] ← threadId
16: end for
17: return record;
18: else
19: return FAIL;
20: end if
21: end function

22: synchronized
23: function processFree (tid, slotList[],numSlots)
24: for i ∈ [0,numSlots) do
25: (row,col) ← slotList[i]
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26: SLOT [row][col] ← EMPTY

27: end for
28: end function

end
There are three steps in this method: (1) acquiring

the lock, (2) searching for numSlots free slots, and (3)
and changing their status from EMPTY to HARD. Step (3) is
very fast. In fact for a lock based algorithm this step
is faster than non-blocking algorithms. The reason is
that non-blocking algorithms use the atomic get, set, and
CAS primitives to access the SLOT matrix. These are slow
operations because they need to execute slow memory
fence instructions. Whereas, in the case of the lock based
algorithm we use regular reads and writes to access the
SLOT matrix. These memory operations are significantly
faster than their atomic (get, set, CAS) counterparts.

However, the speed of step (3) is compensated by
steps (1) and (2). The execution time of steps (1) and (2)
depends on the amount of contention and the memory
access patterns of the threads. Since the number of
software threads is always less than or equal to the
number of hardware threads, OS scheduling is not an
issue. However, in the hardware, the order and timing
of atomic memory operations can dictate the order in
which threads acquire the lock, and subsequently get a
chance to reserve their slots. We have observed that these
steps are very jitter prone and the variance in execution
times is very large. We shall discuss this point in more
detail in Section C.4.

Let us now consider the free operation. The
processFree method is invoked whenever a thread
issues a free request. Similar to the processSchedule
method it executes in a critical section, and gets an
exclusive lock on the SLOT matrix.

Note that our lock based implementation is fairly
naive. We made an effort to make it more sophisticated
by trying to make the granularity of locking finer. In
specific, we tried to split the SLOT matrix and use a
separate lock for each part. Alternatively, we tried to
remove some steps out of the critical section such as the
step to search for a possible set of free slots. Different
combinations of these approaches did not yield any sig-
nificant improvements in terms of performance. Hence,
we decided to stick with this particular implementation
(as shown in Algorithm 8).

C.2 Slot Scheduling with Fair Locking

We had observed in our experiments with locks that the
process of acquiring the lock takes a variable amount of
time and is very jitter prone. We thus decided to look at
fair locks that have stronger guarantees. To implement
slot scheduling algorithms by using fair locking mecha-
nisms, we used reentrant locks that have native support
in Java. The fair version of reentrant locks ensures that
the time a thread needs to wait for acquiring a lock is
finite as long as the thread that is executing a critical sec-
tion does not go off to sleep for an indefinite amount of

time [Cederman, 2013]. Using this particular method for
implementing fair locking is a standard recommended
practice as mentioned in Java’s online documentation.

C.3 Slot Scheduling with Fine Grain Locking

Lastly, we briefly discuss the implementation of the
slot scheduling algorithm with fine grain locking mech-
anisms. In this case, we divide the whole schedule
operation into multiple stages similar to our lock-free
implementation. Each stage is executed as a critical
section annotated with the keyword, sychronized. In
our approach, we divide the total computation into 3-5
stages (see [20] for more detail). Each state of the request
corresponds to a stage in the computation. To allow for
greater parallelism, and overlap between threads, we do
not store any state in any thread’s local storage. Instead,
all the state is stored in the SLOT matrix itself similar to
our non-blocking algorithms.

The approach is thus as follows. A request first
searches for the first available slot, at which it can book
a request. Then, it acquires a lock, and temporarily
reserves the slots, and releases the lock. Subsequently,
it acquires a lock again, checks the slots that it had tem-
porarily reserved, and then makes their status HARD. Our
initial thinking was that by dividing the entire operation
into finer chunks and executing each chunk as a critical
section will increase the overlap between threads, reduce
starvation, and will be beneficial. However, this did not
turn out to be the case. We tried many more variants
such as acquiring locks on smaller portions of the SLOT

matrix, and varying the number of stages into which
we split the computation. However, the results for this
particular method with the best combinations were not
encouraging.

C.4 Results: Characterization of Locking

Before we take a look at the results for slot scheduling
with different kinds of locking mechanisms, let us look at
the performance aspects of the process of acquiring and
releasing locks. It is very important to understand this
process because we shall use the crucial insights learned
in this section to explain the results for slot scheduling.
We shall observe in Section C.5 that the results have
a lot of variance (or jitter). We want to prove in this
section, that the jitter is because of the variable and non-
deterministic delays suffered while acquiring a lock.

Let us start out by defining the term “OS jitter”, which
refers to the interference experienced by an applica-
tion due to activities such as the running of daemon
processes, periodic tasks such as timer interrupts and
asynchronous interrupts received by the operating sys-
tem. Various studies have shown the effects of OS jitter
on parallel applications running on high performance
systems. Our aim here is to first measure the interference
caused by the OS/JVM and show that it is not respon-
sible for the variance that we observe in our results. We
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measure the OS jitter in our system by using the method-
ology suggested by [Mann et al, IEEE International
Conference, 2007] after following his recommendations
to minimize OS jitter in the system. His approach to
measure OS jitter is to measure the time it takes to run
a simple set of arithmetic computations, thousands of
times. The duration of each iteration should be of the
order of hundreds of microseconds. We performed this
experiment. However, instead of running one thread, we
ran 64 threads, where each thread measures the time it
takes for each iteration of a for loop to run. Figure 22
shows the result of this experiment aggregated across all
the threads. We aimed for a mean request duration of 450
µs. We plot the results for a randomly chosen set of 1000
iterations. We observe that there is a swing of ± 150µs
in the worst case. On the basis of this experiment, we
concluded that the baseline system can at the most create
jitter limited to 20% of the total execution time for sub-
millisecond tasks (similar results obtained by [Chandran
et al, IEEE TPDS, 2014]).

Next, we did the same experiment by running each
iteration in a critical section. We used different types
of locks such as MCSlocks (MCS), fair locking by us-
ing reentrant locks (Reentrant) and traditional locks
that are declared by using the synchronized keyword
(Synchronized). The threads do not share any memory.
The Baseline implementation is similar to our previous
experiment. It does not have locks. We run each experi-
ment for 1 million iterations for 32 and 64 threads.

Figure 23 shows the results. In the Baseline method,
the average time per operation is the same for 32 and
64 threads (around 450 µs). Increasing the number of
threads has no impact on the performance of Baseline.
Next, we observe the time per operation for the lock
based algorithms. These algorithms are 7-12X slower
than the Baseline method for a system with 32 threads.
Even though there is no shared structure among the
threads, the time per operation for the lock based al-
gorithms is more as compared to the Baseline algo-
rithm. This is because the threads contend with each
other to acquire the lock. As the number of threads
increases to 64, the time per operation for Synchronized
and Reentrant increases by 2-3X. Moreover, the jitter
observed in the case of lock based algorithms is in the
order of milliseconds: 70 to 430ms in the worst case
(mean is 3ms and 7ms for Synchronized and Reentrant
respectively).

Recall that we had established with the help of Fig-
ure 22 that the jitter introduced by the OS and JVM
is limited to 150µs, whereas the jitter by adding locks
is at least 20X more. Thus, we can conclude that the
process of acquiring a lock is extremely jitter prone at
sub-millisecond time scales.

C.5 Results for Slot Scheduling

We implemented three kinds of slot scheduling:
coarse locking (coarseLocking), fine grain locking

(fineLocking) and coarse locking with fair
locks(fairLocking).

Figure 24 shows the values of treq for the 1 × M
algorithm. We observe that fineLocking is three orders
of magnitude slower than the rest of the algorithms.
This is mainly because acquiring a lock is a slow and
jitter prone process. The LF algorithm is roughly 5-
10X faster than the WF , coarseLocking and fairLocking
algorithms. The performance of WF , coarseLocking and
fairLocking is nearly the same. However, the varia-
tion in the coarseLocking and fairlocking algorithms
(shown with error bars) is very high (order of 2-3ms).
We have not shown the variance of WF and LF for
the sake of readability in this figure. However, their
variance is limited to 100-200 µs, which is 20X better
than the algorithms with locks. Additionally, note that
fairLocking has a noticeably smaller variance for less
than 20 threads; however, the mean values of treq for
both the coarse locking algorithms (with and without
fair locks) is comparable.

Similar trends are observed for the N ×M problem
(see Figure 25). In the worst case, fairLocking and
coarseLocking are 8-10X slower than WF . The time per
request goes up to 8000µs and 13000µs for coarseLocking
and fairLocking respectively (for 64 threads). The jitter
in both the cases, is of the order of thousands of mi-
croseconds.

From Figures 24 and 25, we can conclude that
coarseLocking is the best algorithm with locks.
fairLocking might be better in some cases, especially
with regards to the jitter; however, it is not uniformly
better. Additionally, its mean performance is inferior to
the coarseLocking algorithm.
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APPENDIX D
THE 1×M SCHEDULE PROBLEM

Here we present the algorithm for reserving the slots
in the 1 × M schedule problem, where the number of
resources is 1 and a request wishes to reserve M slots
(see Algorithm 9). A new request is placed in the NEW

state. In this state a thread (t) temporarily reserves a
slot in the SLOT array with the help of the function
reserveSlots (explained in Appendix D.1). On success-
fully reserving the first slot, the request moves to the SOFT

state (Line 14) using a CAS operation. In the SOFT state
the remaining slots are reserved temporarily (change the
state of the slot from EMPTY to TMP). Once it finishes doing
so, the request moves to the FORCEHARD state (Line 28).
In this state the reservation made by the thread t (or by
some helping thread on behalf of t) is made permanent
(Line 40) by changing the state of a slot from TMP to
HARD. Lastly, the request enters the DONE state. The first
slot reserved by the thread is returned. The rest of the
slots reserved can be calculated based on it. A thread is
unable to reserve its slots if all the slots are permanently
reserved till the thread reaches the end of the SLOT array

(Line 10). In each SOFT state, a thread tries to book the
next consecutive slot (Line 30). The request continues to
stay in the SOFT state till the required number of time-
slots are not reserved temporarily.

If a thread is unable to temporarily reserve a slot
in its SOFT state, we move the request to the CANCEL

state. In the CANCEL state (Lines 45- 48), the temporarily
reserved slots are reset to their default values (EMPTY).
The request.slotAllocated field is also reset. The request
again starts from the NEW state with a new round (round)
and starting slot (index). The round field is used to
synchronize the helpers. Once the request enters the
FORCEHARD state, it is guaranteed that M slots are reserved
for the thread and no other thread can overwrite these
slots.

Algorithm 9: process 1×M
1: function processSchedule(request)
2: while TRUE do
3: iterState ← request.iterState.get()
4: (reqState,round,index) ← unpackState(iterState)
5: switch (reqState)
6: case NEW :
7: (status,res) ← reserveSlots(request,index, round,

reqState)
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8: if status = FAIL then
9: /* linearization point */

10: request.iterState.CAS(iterState,
packState(0,0,0,FAIL))

11: else if status = RETRY then
12: /* read state again */
13: else
14: if request.iterState.CAS(iterState,

packState(1,round,res+1,SOFT)) then
15: request.slotAllocated.CAS(-1,res)
16: else
17: /* clear the slot reserved */
18: end if
19: end if
20: break
21: case SOFT :
22: slotRev ← getSlotReserved(reqState)
23: /* reserve remaining slots */
24: (status, res) ← reserveSlots(request,

index,round,reqState)
25: if status = SUCCESS then
26: if slotRev+1 = req.numSlots then
27: /* linearization point */
28: newReqState ← Request.packState(req.

numSlots,round,index,FORCEHARD)
29: else
30: newReqState ← Request.packState(slot

Rev+1,round,index+1,SOFT)
31: end if
32: request.iterState.CAS(iterState, newReqState)
33: else if status = CANCEL then
34: request.iterState.CAS(iterState,pack

State(slotRev, round, index, CANCEL))
35: else
36: RETRY/* read state again */
37: end if
38: break
39: case FORCEHARD :
40: /* make the reservation permanent */
41: /* change state of slot from TMP to HARD */
42: request.iterState.CAS(iterState, DONE)
43: break
44: case CANCEL :
45: /* reset the slots reserved till now */
46: /* Increment the request round */
47: /* reset the slot Allocated field of request */
48: request.iterState.CAS(iterState,

packState(0,round+1,index+1,NEW))
49: break
50: case DONE :
51: return request.slotAllocated
52: case FAIL :
53: return -1
54: end switch
55: end while
56: end function

D.1 Reserve Slots

This method accepts four parameters — request(req)
of a thread t, the slot to be reserved currSlot, current
round round of the request and the state of the re-
quest reqState. Depending upon the rank of the slot
(currSlot) we execute the corresponding switch-case
statement. The field round indicates the iteration of
a request. It is used to synchronize all the helpers of
a request. If the slot is in the EMPTY state, we try to

temporarily reserve the slot and change the state of
the slot from EMPTY to TMP (Line 64). If the slot is in
the TMPFREE state, it means some free request is trying
to free a slot. In this case, we help the free request
(Line 72) and then we proceed with reserving the rest
of the slots.
Next, when the state of the slot is TMP it indicates that
some other thread has temporarily reserved the slot
currSlot. If the threadid saved in the slot is the same
as that of the request req (Line 75), we simply return
to the processSchedule method and read the state of
the request again. Otherwise, the slot is temporarily
reserved for another request, otherReq. Now, we have
two requests req and otherReq contending for the
same slot currSlot. If the priority of the request req
is higher than otherReq, request req wins the con-
tention and will overwrite the slot after cancelling
the request otherReq thus changing the state of the
request otherReq to CANCEL atomically (Lines 80 - 87).
The request req will help the request otherReq in case
req has a lower priority. We increment the priority of
a request to avoid starvation (Line 95). The request
which has reserved more slots is assigned a higher
priority.
Next, we discuss the case where the slot is found in
the HARD state. In the NEW state of the request, a request
tries to search for the next empty slot (Line 106). When
the state of the slot is made HARD, along with the
threadId, we save the number of consecutive slots
(slotMove) reserved in the HARD state. The search index
moves directly to slot (currSlot + slotMove) instead of
incrementing by 1. The search terminates when either
a slot is successfully reserved or the request reaches
the end of the SLOT array (Line 114). In the SOFT state,
we return CANCEL (Line 108). On receiving the result of
the function reseveSlots as CANCEL, the request moves
to the CANCEL state. Lastly, it is possible that some other
helper has reserved the slot for request req (Line 100)
and changed its state to HARD. In this case the thread
returns to the processSchedule method and reads the
state of the request req again.
57: function reserveSlots(request,currSlot, round, reqState)

58: for i ∈ [currSlot, SLOT.length()] do
59: slotState ← getSlotState(SLOT.get(i))
60: (threadid,round1,state) ← unpackSlot(SLOT. get(i))
61: newVal ← packTransientState(request)
62: switch (slotState)
63: case EMPTY :
64: res ← SLOT.CAS(currSlot,EMPTY,newVal)
65: if res = TRUE then
66: return (SUCCESS, currSlot)
67: end if
68: break
69: case TMPFREE :
70: otherReq ← REQUEST.get(threadid)
71: /* res = HELP */
72: processFree(otherReq)
73: break
74: case TMP :
75: if threadid = req.threadid then
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76: return (RETRY, null)
77: else
78: otherReq ← REQUEST.get(threadid)
79: res ← getHighPriorityRequest(req,otherReq,i)
80: if res = req then
81: /* preempt lower priority request */
82: if cancelReq(otherReq) then
83: oldValue ← packTransientState(

threadid, round1, state)
84: newValue ← packTransientState(req.

threadid, round, SOFT)
85: res1 ← SLOT.CAS(currSlot, oldValue,

newValue)
86: if res1 = TRUE then
87: return (SUCCESS, currSlot)
88: end if
89: break
90: end if
91: else
92: /* res = HELP */
93: processSchedule(otherReq)
94: /* increase priority to avoid starvation */
95: req.priority.getAndIncrement()
96: end if
97: end if
98: break
99: case HARD :

100: if threadid = req.threadid then
101: /* slot reserved on req’s behalf */
102: return (RETRY, null)
103: else
104: if req.iterState = NEW then
105: slotMove ← getReserveSlot(SLOT. get(i))
106: i ← i + slotMove
107: else
108: return (CANCEL, null)
109: end if
110: end if
111: break
112: end switch
113: end for
114: return (FAIL, -1)
115: end function

end

APPENDIX E
RELAXED SLOT SCHEDULING

In this appendix, we discuss another set of algorithms
where we relax the constraint of reserving the earliest
possible time slots and allow a request to get scheduled
at some later slots. We refer these set of algorithms as re-
laxed lock-free and relaxed wait-free algorithms respectively.
Here we sacrifice linearizability to gain performance.

Lock-free and wait-free algorithms are fairly compli-
cated. These algorithms ensure that a request is sched-
uled at the earliest possible slot and does not miss a
valid slot. In the relaxed version of lock-free and wait-
free algorithms, we allow a thread to change its starting
position even if the threads encounter a soft wall. A
column full of SOFT entries is referred to as a soft wall. This
helps in reducing contention. A thread neither internally
helps another thread nor it overwrites the slot (currSlot)
temporarily reserved by some other thread. In case of the
wait-free version of relaxed scheduling, helping is limited
to only externally helping. We refer to this implementa-
tion of wait-free and lock-free algorithms as WFRelaxed
and LFRelaxed respectively It is possible that a thread
tj , which has currently reserved a slot, currSlot, gets
cancelled later. In this scenario, another thread ti which
had changed its starting position, seeing that thread tj
had temporarily reserved the slot currSlot, misses a
valid slot (which is currSlot). This implementation is
not linearizable but it improves the performance of the
algorithms roughly by a factor of 2.

We designed another non-blocking slot scheduling
algorithm where a thread having a higher priority can
overwrite the slots temporarily reserved by some other
low priority thread but does not help a higher priority
thread (i.e internal helping is not done). We refer to this
implementation of wait-free and lock-free algorithms as
WFOvWrt and LFOvWrt respectively. These versions
also have much better performance at the cost of sacri-
ficing linearizability.

E.1 Results
Next, we compare the performance of the wait-free
(WF ) algorithm with relaxed wait-free (WFRelaxed)
and WFOvWrt. A thread places a request for the time
slot immediately next to the last allocated slot in the
LF and WF algorithms. This introduces high contention
among the threads. Figure 26 shows that WFRelaxed
is nearly 2x faster than WF as contention in the case
of the WFRelaxed algorithm is resolved by one thread
moving ahead in case of a conflict. The performance of
WFOvWrt lies in the middle of WF and WFRelaxed
(i.e WFOvWrt is 30% faster than WF for less than
24 threads). Recall that in the WFOvWrt algorithm, a
thread cancels another thread upon a conflict.

In the case of lock-free algorithms, the performance of
LFRelaxed and LFOvWrt are nearly 2x better than LF
beyond 32 threads (see Figure 27). The difference in the
performance of LFRelaxed and LFOvWrt is roughly
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Fig. 26: treq for relaxed version of WF
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Fig. 27: treq for relaxed version of LF
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Fig. 28: delay per request for WF
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Fig. 29: delay per request for LF

similar because in both the cases, we avoid internal
helping. For less than 32 threads the difference in the
performance is within 10-12% as there are less number
of requests conflicting with each other.

The schedule generated by relaxed lock-free and wait-
free algorithms is not optimal as the requests are not
being scheduled at the earliest possible slot. The qual-
ity of the schedule can be measured in terms of de-
lay in scheduling a request. delay signifies the devia-
tion/difference in the starting slot requested and the
actual starting slot alloted to a request. Figures 28 and 29
show the average delay incurred in scheduling a request.
This is 8 time slots for 32 threads and 12 time slots for 64
threads in the case of WF . Whereas, for WFRelaxed and
WFOVWrt the delay is around 40 time slots per request
because we move forward due to contention. This results
in missing some valid time slots for scheduling a request.
For lock-free algorithms, the delay is around 5 to 12
time slots for LF and it goes up to 22 time slots for
LFRelaxed for 64 threads.


