
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

FP-NUCA: A Fast NOC Layer for Implementing
Large NUCA Caches

Anuj Arora, Mayur Harne, Hameedah Sultan, Akriti Bagaria and Smruti R. Sarangi

Abstract—NUCA caches have traditionally been proposed as a solution for mitigating wire delays, and delays introduced due to
complex networks on chip. Traditional approaches have reported significant performance gains with intelligent block placement,
location, replication, and migration schemes. In this paper, we propose a novel approach in this space, called FP-NUCA. It differs from
conventional approaches, and relies on a novel method of co-designing the last level cache and the network on chip. We artificially
constrain the communication pattern in the NUCA cache such that all the messages travel along a few predefined paths (fast paths)
for each set of banks. We leverage this communication pattern by designing a new type of NOC router called the Freeze router, which
augments a regular router by adding a layer of circuitry that gates the clock of the regular router when there is a fast path message
waiting to be transmitted. Messages along the fast path do not require buffering, switching, or routing. We incorporate a bank predictor
with our novel NOC for reducing the number of messages, and resultant energy consumption. We compare our performance with state
of the art protocols, and report speedups of up to 31% (mean: 6.3%), and ED2 reduction up to 46% (mean: 10.4%) for a suite of
Splash and Parsec benchmarks. We implement the Freeze router in VHDL and show that the additional fast path logic has minimal
area and timing overheads.

Index Terms—NUCA caches, Freeze router, Bank prediction

F

1 INTRODUCTION

Due to continued Moore’s law based scaling, the number
of cores per chip, and the size of the last level cache
(LLC) are doubling roughly every two years. As a direct
consequence of this trend, it is becoming increasingly
necessary to connect the cores and cache banks with a
complex NOC. Due to the increased number of links,
buffers, and routers on the NOC, the average time
to reach distant cache banks is showing an increasing
trend [5]. Along with increasing access latency, the NOC
is also becoming a major source of power consumption
in modern processors. Consequently, it is necessary to
design effective access protocols for the LLC such that
we can minimize access latency, and power consumption
for manycore processors of the future. In this paper,
we focus our attention on effectively co-designing the
shared last level L2 cache and the NOC.

Let us start with a historical perspective. Since the
beginning of this century, researchers realized that inter-
connect delay is not scaling with processor speed. Hence,
researchers proposed non-uniform cache architectures
(NUCA) architectures [6], [29] that essentially prioritize
nearby cache banks, and try to move data “closer”

• Anuj Arora, Akriti Bagaria and Smruti R. Sarangi are with the Depart-
ment of Computer Science and Engineering, Indian Institute of Technology
Delhi, New Delhi, India – 110016. E-mail: {mcs122812,mcs132541,
srsarangi}@cse.iitd.ac.in

• Hameedah Sultan is a student in the Electrical Engineering Department
at the Indian Institute of Technology Delhi, New Delhi, India – 110016.
E-mail: jvl132811@ee.iitd.ac.in

• Mayur Harne is with NVIDIA Inc., Panchshil Tech. Park, Shivaji Nagar,
Pune, India – 411005. E-mail: mharne@nvidia.com

to the cores. Some of the early work in this area [6],
[10] investigated different methods of data placement,
location, and ultimate migration of data towards cores
that tend to access them frequently. At that time, this
problem was very relevant because processor speed was
rapidly increasing [6], and interconnect delay was not
able to keep up with it. However, for the last 10 years,
processor speed has remained stagnant, and intercon-
nects are gradually getting faster, albeit at a very slow
pace. Nevertheless, the problem of designing large multi-
banked caches that are conscious of a wide variance of
access times depending on the placement of data, has not
vanished. It has simply reinvented itself with a different
flavor.

Today, large LLCs need to be NOC-aware. Data has
to be placed closer to the core such that we can avoid
costly traversals on the NOC. In this context, the problem
of creating NUCA caches can be divided into three
parts: (1) data placement, (2) search, (3) and migration.
For placing data, researchers have primarily looked at
two sets of approaches. The first approach proposes to
partition data statically based on their access patterns.
Data can be private to one core, or can be shared. We
can either annotate data at the page level [12] or use
compiler support. The idea here is to place private data
close to the requesting core, and shared data in far
away banks. The second approach is to achieve this split
dynamically [10], [13], [23]. Based on the access patterns
of data, heuristics [12], [13] have been proposed in prior
work to either keep them close to cores, or store them
in remote cache banks.

For the problem of searching for data, most NUCA
proposals associate a set of banks with each block. We

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

can start searching from any bank, and then iterate
through the entire set. The search policy has an im-
pact on performance. For the problem of migration,
most proposals have looked at migrating data towards
the core that has requested it. The proposed heuristics
typically incorporate a variety of threshold values for
making decisions on when to migrate and block, and its
target location within the bank set. Another interesting
design point in NUCA caches is the selective use of block
replication [9], [34]. In this paper, we shall not consider
replication of non-read-only blocks because, we need to
implement cache coherence for the LLC, which has been
deemed to be very expensive in terms of area, power,
and complexity in prior work [12], [29].

In this paper, we propose a new set of schemes col-
lectively called FP-NUCA (Freeze-Predict NUCA) for a
non uniform cache, which are very different from prior
work. The basic aim is to avoid complicating the cache
banks, and avoid adding additional software layers to
mark pages as shared or private. Our alternative strategy
is to restrict the communication pattern in the NUCA
cache, and subsequently leverage this communication
pattern to design a fast and power efficient NOC. We
divide our set of cache banks into bank sets. Each
requesting core (or L1 cache) has a designated home
bank in every bank set. All the requests from the re-
questing core go to the home bank, and then the home
bank searches for the block in the bank set according
a pre-defined search policy. We restrict the pattern of
messages such that they can only travel on a set of
pre-defined paths. We propose the design of the Freeze
router that augments a traditional 3-5 stage NOC router
with additional circuitry. The additional circuitry gates
the clock of (freezes) the router, whenever an FP-NUCA
message needs to be transmitted. The router transmits
the FP-NUCA message, and then resumes processing
normal messages. This strategy ensures that FP-NUCA
messages reach their destination without any stalls and
buffering overheads. Furthermore, we use the Freeze
routers to create a high speed path to a bank predictor.
We demonstrate roughly 20% energy reduction in the
NOC and cache subsystems by augmenting our scheme
with predictors.

We compared our results with two of the best per-
forming NUCA schemes proposed in the last five years
namely R-NUCA [12], and SP-NUCA [29]. The best
scheme in FP-NUCA outperforms R-NUCA by 6.3% and
SP-NUCA by 5.7%. The maximum speedups can go up
to 31%. Furthermore, we obtain on an average 10.4%
reduction (maximum: 46%) in ED2 by employing the
best FP-NUCA scheme.

The organization of this paper is as follows. We discuss
related work in Section 2. Subsequently, we characterize
the behavior of applications in Section 3, and try to find
the characteristics of applications that might potentially
benefit by using a FP-NUCA cache. Then, we discuss
the hardware implementation in Section 4, present the
results in Section 5, and finally conclude in Section 6.

2 BACKGROUND AND RELATED WORK

Figure 1 shows a typical tiled architecture of a manycore
CMP. In such CMPs, a set of cores and LLC (last level
cache) cache banks are logically grouped into a set of
tiles. The set of LLC cache banks in a tile are known as a
slice. Additionally, each tile contains the L1 caches, a set
of routers for communication on the NOC, and possibly
a memory controller. In this paper, we consider the LLC
to be the L2 cache that is split into multiple cache banks.

2.1 Bank Based Schemes

One of the earliest proposals by Kim et al. [6] proposed
a method to divide a large LLC into bank-sets with
variable access latencies. In this scheme, blocks do not
migrate between cache banks, and thus it is also known
as a static NUCA (S-NUCA) scheme. Here, cache lines
are statically mapped to cache banks. The D-NUCA
(dynamic NUCA) [10] scheme extends the basic S-NUCA
scheme. It associates a set of cache banks (bank-set) with
a cache line. While locating a block, it is necessary to
search all the banks in the bank-set. Secondly, frequently
accessed blocks can dynamically migrate towards the
requesting cores to minimize wire delay. Let us now
evaluate some major proposals in terms of block place-
ment, location, migration, and replication.

Core

L1

L2 bank

L2 C

Core L2 bank

L2 C

Core

L1

L2 bank

L2 C

Core L2 bank

L2 C

Core

L1

L2 bank

L2 C

Core L2 bank

L2 C

Core L2 bank

L2 C

Core L2 bank

L2 C

Router

L1

L1

I

I

I

I

I

I

I

I

L1

L1 L1

Link L2 C L2 cache controller

L1 L1 data cache I L1 instruction cache

tile

Fig. 1: Layout of a NUCA cache

R-NUCA [12] classifies memory accesses of workloads
into three distinct categories – private, read-only, and
shared. The classification is done at a page level and re-
quires operating system support. The authors propose to
keep the private data in a nearby bank, keep the shared
data in a unique remote bank, and distributed the read-
only data in overlapping clusters. The scheme prioritizes
private data over shared data and makes its access faster.
This strategy is useful under two circumstances. The first
is when most of the data accessed is private and it fits
within one bank, or the data is very heavily shared. For

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

read-only data such as instructions, this scheme reduces
conflict and capacity misses by distributing the data
across a set of cache banks.

Huh et al. [16] propose a NUCA based organization
that uses a similar classification of accesses and uses a
spectrum of cache bank mapping policies with different
sharing degrees. A private block has a sharing degree of
1, whereas a block accessed by N threads has a sharing
degree of N . Their dynamic bank-mapping scheme takes
the degree of sharing into account, and tries to minimize
hit delay.

2.2 Bank and Set Based Schemes
Merino et al. [29] proposed the SP-NUCA scheme that
dynamically partitions each set into private and shared
ways. A core first accesses its nearest bank, and then a
designated remote shared bank. If a block is not found
in both the banks, then it checks the private banks of
the rest of the cores, and performs a block migration
if necessary. The SP-NUCA proposal mainly focuses on
replacement algorithms to reduce on-chip access latency
without compromising on the hit-rate. It dynamically
changes the ways of each set from private to shared and
vice-versa depending upon the memory access pattern
of the workload. Merino et al. subsequently extended
this idea and proposed the ESP-NUCA [28] scheme that
incorporates selective replication, and management of
victim blocks. The main drawback of this scheme is the
hardware overhead for maintaining coherence among
replicas.

PSA-NUCA [14] is a similar proposal that takes into
account the asymmetric distribution of memory accesses
in workloads. It proposes novel replacement, mapping
and replication policies by using pressure information,
which is defined as the number of accesses for each cache
set. Two recent proposals namely Elastic Cache [13]
and Cloud Cache [23] propose methods to partition the
address space into multiple sub-address spaces. Each
address space is tailored to a specific type of data, and
its directories and coherence engines are managed sepa-
rately. These schemes however were not experimentally
found to be conclusively better than R-NUCA. Hence,
we choose R-NUCA as a point of comparison.

2.3 Smart Search and Bank Prediction
Kim et al. [19] proposed smart search techniques using
partial-tag comparison in order to reduce the hit latency
and miss resolution time in a D-NUCA cache. The
partial-tag bits are stored in a smart search array located
in the cache controller. Bischewski et al. [4] studied the
effect of bank-predictors for distributed L1 caches.The
study concludes that accurate bank-prediction can signif-
icantly reduce the perceived cache access latency. Ricci et
al. [31] propose to use a Bloom filter for each set of cache
banks. To check if a block exists in a set of cache banks,
we simply need to check its associated Bloom filter. A
Bloom filter can give a false-positive result, but never a

false-negative result. If the output of the Bloom filter is
negative, then we need not search the bank cluster; we
can move to another bank cluster. We design our bank
predictor on the lines of the designs proposed in [4],
and integrate it into our design. We were not able to
locate prior work that incorporates and evaluates bank
predictors at the L2 level for shared caches.

2.4 Specialized NOCs

There is a plethora of prior work on NOCs. In this
paper, we focus on ideas that propose a quick(fast) path
between sets of nodes. The earliest solutions in this area
consisted of circuit switched networks [11] that can be
used to setup dedicated paths between pairs of nodes.
The transmission time between the nodes was low be-
cause there was no additional routing delay. However,
the flexibility of this approach is limited, and the time
for setting up a path is prohibitive. Hence, the focus
has moved to packet switched networks with fast paths
between pairs of nodes.

A seminal paper in this area is the work on express
virtual channels by Kumar et al. [21]. They propose
to partition the set of virtual channels (VCs) into two
groups. The first group consists of normal VCs, and the
second are express virtual channels (EVCs). We have two
kinds of nodes: source/sink nodes and bypass nodes.
Packets enter a dedicated EVC in a source node and
pass along a pre-specified route to the sink node. There
is no additional delay associated in the bypass nodes
because the EVCs for such traffic are always preallocated
and it is not necessary for packets to use the rest of the
router pipeline (VC allocation, route computation, and
switch traversal). The authors use different pre-specified
EVCs having different lengths. As compared to this, our
scheme is more generic; it does not limit the size of
the fast path. Moreover, our scheme is a wrapper on
an existing router; it does not propose modifications to
the core functionality. Krishna et al. [20] extend the work
on EVCs by introducing different types of interconnects
for different types of traffic: normal or express. They
observe that a major limitation of EVCs is the time it
takes to reserve buffers along the express path. Hence,
they propose to use a fast control plane for setting up
this path. In comparison, our scheme does not reserve
buffers along the path. The VIP [30] router is designed
on similar lines. Instead of having a dedicated express
virtual channel, it uses a 1-flit buffer at both the input
and the output to store a flit. A VIP path needs to be
configured in advance.

Let us now look at a set of schemes that do not rely on
prioritized virtual channels. One of the seminal works in
this field is ReNoc [32] that proposes to use multiplexers
to bypass the router pipeline completely. The idea is
to use a multiplexer between the output of a router,
and the incoming link. However, these multiplexers are
statically configured, and as mentioned in the paper they
are meant to be configured very infrequently. Instead

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

of directly bypassing the router, the SMART scheme
(Chen et al. [7]) proposes a bypass path over the input
buffers. A crossbar input port can either get its data
from the input buffers or from the bypass path. In this
case also, the multiplexers need to be configured in
advance, and it is possible for two requests to contend
for the same output port. This is solved by buffering.
LOCO [22] uses the SMART router to send fast unicast
and broadcast messages. It is the closest to our scheme.
It creates a hierarchical network using SMART links.
Cores are grouped into clusters. Each core is connected
with its home node (specific to each cluster) with a fast
SMART link. It can search for data in its home node.
It can also search for data in the home nodes of other
clusters by quickly broadcasting data over the virtual
network. Moreover, it supports data block migration
across clusters, and can adapt the cluster size based on
application characteristics.

FP-NUCA is different from prior work in the following
ways: it does not require any preconfiguration of paths;
it is oblivious to the design of the routers, and it does
not modify them; it relies on clock-gating the router, and
uses multiplexers at the output ports (other approaches
use multiplexers at the input ports, or within the router).

3 CHARACTERIZATION OF APPLICATIONS

In this section, we characterize a suite of applications and
kernels from the Parsec [3] and Splash-2 [33] benchmark
suites (see Table 1). It is necessary to understand the be-
havior of these applications from the point of view of the
LLC such that we can design effective NUCA protocols.
The procedure for collecting the memory accesses of the
LLC is as follows. We run the benchmarks till all the
threads are spawned. Then we warm up the caches by
running 100 million instructions. Subsequently, we run
on an average 200 million instructions per thread on an
architectural simulator and analyze their behavior. Our
simulated system is a 32 core machine, with a private
L1 cache (32 KB/core, cache coherent), and shared last
level L2 cache with 32 banks (256 KB/bank) (simulation
parameters shown in Table 2).

3.1 Block Access Frequency
Figure 2 plots the frequencies of accesses of blocks for
each benchmark. For example, in Blackscholes, only 2%
of the blocks are accessed only once, and 31% of blocks
are accessed 2-5 times in our simulation interval. For
7 benchmarks, 70% of the blocks are accessed only 2-5
times. For Fluidanimate, 80% of the blocks are accessed
just once. For Lu, 74% of the blocks have 6-10 accesses
during our simulation interval. If we consider a thresh-
old of 100 accesses, then only three benchmarks have a
sizeable (>10%) number of blocks in this category. They
are Swaptions(89%), Water-sp (42%) and Barnes(56%). We
can conclude from this experiment that for a majority
of the benchmarks, most of the blocks are accessed less
than 10 times. Hence, we need to have schemes that

Application Input size
PARSEC (simlarge)

Blackscholes 64KB options
Bodytrack 4 cameras, 4 frames, 4,000 particles, 5 annealing

layers
Canneal 15,000 swaps per temperature step,2,000 start

temperature, 400,000 net list elements
Fluidanimate 300,000 particles, 5 frames
Streamcluster 16KB input points, 16KB points, 128 point di-

mensions
Swaptions 64 swaptions, 20,000 simulations

Splash-2
Barnes 16KB particles
Fmm 8KB particles
Lu 512 x 512 matrix (lu contiguous)
Radiosity batch, largeroom
Water-nsq 512 molecules (water nsquared)
Water-sp 512 molecules (water spatial)

TABLE 1: Configuration of benchmarks

quickly migrate data to closer nodes. Let us now study
the nature of memory accesses between two consecutive
accesses to the same block.

3.2 Stack Distance
Let us characterize accesses to the L2 cache on the
basis of stack distance [2], which is a standard metric
for evaluating temporal locality. We define the stack
distance as follows. Let us assume that we maintain
a stack of block addresses. Whenever a given block is
addressed, we search for its address in the stack. If the
block is found at a depth of k, then we record the stack
distance of the block to be k. Here, the depth is defined
as the distance from the top of the stack (which has a
depth of 0). Note that the first time a block is added to
the stack, we do not record the stack distance. Bench-
marks with low stack distances exhibit high temporal
locality, because the same blocks tend to get reused
quickly. Defining the stack distance for multithreaded
benchmarks is slightly tricky because we need to order
concurrent requests. This ordering is important when the
stack distance is of the same order of magnitude as the
number of threads. However, for large values (as we
observe in our experiments), the ordering is insignificant.

Figure 3 shows the CDF (cumulative distribution
function of the stack distance) for all our simulated
benchmarks (across all the blocks accessed). We observe
that most of the values are between 100 and 10,000.
Blackscholes has the smallest average values of stack dis-
tance (≈ 250), whereas Lu has the largest stack distance
value (≈ 60, 000). The stack distance observed at the L2
cache is a function of the algorithm implemented by the
workload, and the operation of the L1 caches. Since the
L1 cache contains 256 cache blocks, stack distance values
less than 256 are definitely indicative of conflict misses.
6 out of 12 benchmarks have stack distance values less
than 256 for a third of their accesses. For 9 out of 12
benchmarks, 90% of the values are less than 25,000.
We also observe that there are two points of inflexion,
which are in the vicinity of 300 and 1000, for all the

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

Blackscholes
Bodytrack Canneal

Fluidanimate
Streamcluster

Swaptions Barnes Fmm Lu
Radiosity Water-nsq

Water-sp0

20

40

60

80

100

%
 o

f u
ni

qu
e

bl
oc

k
ad

dr
es

se
s

1 2-5 6-10 10-50 50-100 >100

Fig. 2: Block access frequency

1 10 100 1000 10000 100000 1000000
Stack Distance

0

20

40

60

80

100

120

%
 o

f
n
u
m

b
er

 o
f

b
lo

ck
 r

ef
er

en
ce

s

Blackscholes

Bodytrack

Canneal

Fluidanimate

Streamcluster

Swaptions

Barnes

Fmm

Lu

Radiosity

Water-nsquared

Water-spatial

Blackscholes

Bodytrack

Canneal

Fluidanimate

Streamcluster

Swaptions

Barnes

Fmm

Lu

Radiosity

Water-nsq

Water-sp

Fig. 3: CDF of the stack distance

benchmarks other than Water-sp and Blackscholes. The
insight that we obtain from this experiment is that stack
distance values are typically high (> 500), and even if
we assume the worst case where the requests to L2 are
equally distributed across bank sets, there are at least
60+ unique requests between two consecutive requests
to each bank set (assuming 8 bank sets). In practice,
we will have hundreds of cycles to migrate the block
between different banks of each bank set. This is more
than sufficient.

3.3 Shared/Private data

Almost all the prior works on NUCA caches have
exploited the sharing patterns in data for designing
optimal NUCA protocols [25]. This helps us in designing
methods to optimally allocate data between local and
remote cache banks, and also manage data migration
and replication. Let us thus study the nature of block
accesses. Figure 4 shows the distribution of the number
of cores that access a given block. We observe that for
benchmarks other than Streamcluster and Barnes, more
than 40-90% of the blocks are accessed by a single core.
The total number of blocks that are accessed by 2-4 cores
is typically between 25-40% for these benchmarks. 90%
of the blocks in Streamcluster are accessed by 3 cores
(because of the nature of the computation). 44% of the
blocks in Barnes are accessed by 2-4 cores, and the rest
of the blocks are accessed by more than 4 cores. For the
rest of the 11 benchmarks, only 4 of them have blocks

that are accessed by > 4 cores, 5-20% of the time. We
can thus conclude from this experiment that blocks
are accessed rather infrequently, and it would not be
wise to bring all of them close to the requesting cores.

Let us now further look at the nature of memory
accesses. We classify data into three categories – instruc-
tions, private data, and shared data. For Blackscholes,
Bodytrack, Fluidanimate, Swaptions, Water-nsq, and Lu, the
percentage of private accesses is more than 60%. For all
the benchmarks, the memory footprint of instructions
is very small (<5%). Canneal, Streamcluster, Water-sp,
and Barnes have more than 80% shared accesses. Fmm
and Radiosity have a balanced profile of private and
shared accesses. Given the spectrum of behaviors, we
believe that keeping private data in a bank close to
the requesting core might not be a feasible solution
because all the data might not fit in that bank. We will
need to spill it to other banks, and for block location, we
would consequently require sophisticated search proto-
cols. Secondly, it is also not wise to use a scheme like
S-NUCA, which does not differentiate between shared
and private data, because for some benchmarks most
of the data is private, and it would be beneficial if a
thread can access its private data quickly.

4 HARDWARE IMPLEMENTATION

4.1 Design Principles and Policies

From our discussion in Section 3, we have made the
following conclusions. (1) It is beneficial to save private

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

Blackscholes
Bodytrack

Canneal
Fluidanimate

Streamcluster
SwaptionsBarnes Fmm Lu

Radiosity
Water-nsq

Water-sp0

20

40

60

80

100

%
 o

f b
lo

ck
s

1 core 2 cores 3 cores 4 cores >4 cores

Fig. 4: Degree of sharing across cores

Blackscholes
Bodytrack

Canneal
Fluidanimate

Streamcluster
SwaptionsBarnes Fmm Lu

Radiosity
Water-nsq

Water-sp0

20

40

60

80

100

%
 o

f P
riv

at
e-

Sh
ar

ed
 R

ef
s

Private Data Shared Data Instructions

Fig. 5: Percentage of private and shared data references

data closer to the requesting core; (2) however, we cannot
save private data in a fixed set of banks, or a fixed
number of ways in each set lest there is an overflow (3) It
is also necessary to quickly locate and access shared data.
(4) For most benchmarks shared blocks have limited
sharing, are accessed infrequently, and have a stack
distance between 300 and 10,000. Several proposals [12],
[29], [28] dedicate nearby banks and some ways in each
set for private data. This strategy is not expected to
yield benefits because for some benchmarks their entire
working set consists of private data. Another set of
proposals [13], [23], [6] distribute shared data across a
complex network of banks, and have elaborate strategies
for location and migration. Since each block is accessed
less than or equal to 5 times with a probability of 51%,
such complex schemes might not be justified.

P

P

P

Bank set

P

Tile

Home
bank

P

P

P

P

MC

MC

MC

MC

MC Memory
controller P Predictor Cache bank Core

Fig. 6: Layout of cores and cache banks

Hence, in this paper, we design a new scheme that
is in accordance with our observations, is simple, and
is fairly different from prior work. Figure 6 shows the
layout of cores and cache banks for a 32 core machine.
Similar to traditional D-NUCA schemes, we divide the
banks into bank sets. We can define bank sets row wise
or column wise. For the purpose of exposition, we
assume that we allocate bank sets row wise as shown
in Figure 6. Note that a bank might physically consist
of many smaller SRAM arrays (traditionally known as
a bank). We conducted experiments with different kinds

of layouts (1x1 chess board, 2x2 chess board, stripes) and
different tile sizes (1-4 banks per tile). However, we did
not observe any significant differences(<1-3%) in terms
of performance, maximum temperature, and power.

Let us start by defining the concept of a home bank (in
the LLC), with respect to a given block and core. We first
divide the physical address into the block, index, and
tag. We use the lower bits of the tag to compute the bank
set. Note that an alternative scheme for addressing bank
sets in [10] has lower performance. Now, the home bank
is the bank in the bank set that is closest to the requesting
core/tile (based on Euclidean distance). A controller in
the home bank known as the home bank controller
(HBC) co-ordinates with HBCs of other banks in the
bank set to search for the block according to a given
search policy. We have four kinds of search policies – Seq
(sequentially search through all the banks in the bank
set), Two-way (search in both the directions, left and right,
from the home bank simultaneously), BCast (search in all
the bank sets simultaneously), and PredBCast (broadcast
with bank prediction).

By default, all newly loaded blocks are placed in the
home bank. If it is necessary to evict a block from the
home bank, then we move it at random to any of the
blocks to the right or left. If we need to evict a block
from any other bank, then we move it one block away
from its home bank. For block migration, we follow a
reverse policy. Whenever, there is a hit in a bank that is
not the home bank of the requesting core, we move it to
the immediately next bank in the direction of the home
bank.

We incorporate a bank predictor in our design. The
main insights behind the design of our bank predictor is
as follows. The stack distance for 32 cores is limited to
10,000. If we assume 8 bank sets, then the expected stack
distance (correlated with measurements) is 10,000/8 =
1250. Hence, if we have one predictor for each bank
set that contains 1024 entries, and a LRU replacement
scheme, we expect to keep track of most of the frequently
used blocks in the bank sets. The protocol for accessing
the predictor is as follows. If a block is not found in the
home bank, then the home bank forwards the request to
the predictor for the respective bank set. The predictor
predicts a bank, and subsequently transfers the request

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

to that bank. If the bank does not contain a copy of the
block, then it forwards the requests to the rest of the
banks as per the search policy. If any bank has the block,
then it forwards it to the home bank.

The key observation that needs to be made here is that
we have artificially restricted the communication pattern
of the FP-NUCA messages. A request is first sent to the
home bank, and the home bank then sends messages to
the rest of the banks in the bank set (if required). All the
responses come back to the home bank, and then the
home bank forwards the block to the requesting core.

We design a novel NOC router (called the Freeze
router) that clock gates the routers of the NOC and
forwards the FP-NUCA messages to their destination
without using buffering, and by bypassing the pipeline
of the router. The Freeze router can thus route messages
with almost no overhead, which, along with more ef-
fective placement and searching, explains our relatively
superior performance over competing designs.

4.2 Home Bank Controller (HBC)

FP Message
Block id

Home bank id

Request id

42 bits

3 bits

8 bits

Hops-left 3 bits

Outstanding message
queue (OMQ)

32 bit timestamp

Cache Bank

Current request
queue (CRQ)

(A1) Search
cache bank

Hit

(B1) Search cache
 bank

(A2) to RC

(B2) to home
 bank

Search
Engine

Miss

NOC

Broadcast bit 1 bit

Fig. 7: Structure of the HBC

The structure of the HBC is shown in Figure 7. At the
outset, the HBC of the home bank accepts a request from
the requesting core (RC), and adds it to the outstanding
messages queue (OMQ) with a 32 bit time-stamp (incre-
mented every cycle), and a unique request id (home bank
id + 8 bit sequence number). Subsequently, it initiates a
search in the local bank, and if there is a hit, then it
returns the block to the RC. However, upon a miss, it is
necessary to initiate the search algorithm. Implementing
the sequential search algorithm is fairly trivial. The HBC
sends a request to the HBC of its neighboring bank,
which forwards the request to the next bank and so on
till there is a hit. If the request reaches the last bank,
then the direction of search is reversed (starting from
the HBC). The HBC concludes a LLC miss, if the request
returns from the last bank in both the directions.

Let us discuss the implementation of the two-way
algorithm, which is more involved and requires greater

support at the level of the HBC. We begin by sending a
request in both the directions (left and right). Each bank
adds the request to the CRQ when it is being processed.
Once the request has been processed (hit/miss decision
made), it is removed from the CRQ. Now, if there is
a hit in a bank, then its HBC sends a copy of the
block to the HBC of the home bank. The HBC of the
home bank then has to cancel the messages sent in the
other direction in the interest of reducing power and
contention. It computes the ID of the target bank based
on an estimate of the time it takes to access each cache
bank, and the number of cycles elapsed, and then sends
it a message. If there is no entry in the target CRQ
(delay due to contention) then the HBC forwards the
message in the direction of the home bank. Once, an
HBC finds the request in the CRQ, it deletes the request.
In our experiments, we assume a 2-port cache bank,
which gives equal priority to the requests in the OMQ
and CRQ.

Similarly, to implement the broadcast based search
algorithm, the HBC sends a request to all the banks
simultaneously. Each HBC initiates a search in its local
cache bank. If there is a hit, then a message is sent
to the HBC of the home bank. Let us now consider
the case when there is a miss in all the banks. The
HBC of the home bank needs to be made aware of this
fact such that it can send a message to the memory
controller. Instead of sending a message on every miss,
we propose a different solution. Each HBC has a notion
of a timeout (BT). If the local bank is taking more than
BT cycles to search for the block due to contention, then
it sends a BUSY packet to the HBC of the home bank.
Subsequently, it (and all the banks accessed next) need
to inform the home bank regarding the status of the
request. The home bank’s HBC waits for BT ×N cycles
(N is the number of banks on the critical path) if it
hasn’t received any BUSY packets. After that it informs
the memory controller to fetch the block of memory.
Otherwise, it waits till it has gotten hit/miss messages
from all the banks that had sent BUSY packets.

4.3 Prediction and Migration
We implement the bank predictor as a 4-way 1024 entry
cache (size chosen on the basis of the stack distance
profile for bank sets of size 2-8 MB). Each entry contains
the ID of the bank that most likely contains the block.
If the HBC of the predicted bank realizes that the bank
does not have the block, then it initiates the process of
search, and all the banks are instructed to send the block
back to the home bank. The HBC of the bank that has
a hit initiates a process of migration to the neighboring
bank (in the direction of the home bank) after the request
is serviced. It is not necessary to send another message
to the predictor to update itself. Whenever there is a hit
in the predictor, the predictor automatically assumes that
the block will migrate one step towards the home bank
at a later point of time. It thus dynamically updates the
ID of the entry.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

VC
Home

VC allocation

Switch allocation

Route computation

VC

FP data(N)

N

Output link

clock gating signal
FP enable signals

N
,S

,E
,W

S

E

W

Output link

clock

Fast path
engine

Fast path data

FP enable signals

FP enable signals

Flow control
engine

credits incredits out

Home FP request (N)

FP enable(N)

Remote FP data (N)

Home FP data (N)

1

0 FP data(N)

FP data(W)

Home
FP grant

Fast path engine

Pipeline buffer

Multiplexer

N

S

E

W

Crossbar switch

Remote FP data (N) Decrement
Hops-left

Remote FP data (N)

Remote FP request (N) zero

To HBC

Buffer control
signals/ route
information

Fig. 8: The design of the Freeze router

4.4 Freeze Router

The NOC is used for implementing directory based
cache coherence, location/placement/migration of
blocks in the LLC (in our case, the L2 cache), for
communicating with the memory controller, routing
interrupts, and for invalidating blocks that are used by
I/O devices (I/O coherence). Let us focus on FP-NUCA
messages that are only confined to communication in
the LLC. L1 coherence and I/O messages are roughly
3-4 times more than the messages in the L2 layer for a
directory hit rate of 50%. Let us now propose to give a
higher priority to messages in the LLC layer such that
we can take advantage of the message communication
pattern in our protocol.

There are two primary kinds of messages in our
protocol. Messages and responses travel between the RC
to the home bank’s HBC along a column. Messages in
the bank set travel along a row. We shall prioritize these
messages. Note that all the messages from the RC to any
HBC have the same priority. They are sent in FIFO order
from the RC. All the other messages sent by the RC for
coherence and I/O have a lower priority.

Let us now design a router as shown in Figure 8 that
works as follows. The router has 5 input ports (1 for each
direction, and 1 for the local bank). If the fast path bit of a
message is set to 1, then it is a fast path(FP) message and
needs to pass through the router without any buffering.
Instead of queuing the message in the virtual channels
it is sent to the FP engine.

The FP engine starts by decrementing the Hops-left
field. If it becomes equal to 0, then it is sent to the HBC of

the local bank (the message has reached its destination).
Otherwise it is sent in the same direction to the next
router. Figure 8 shows a message that is travelling north.
Now, it is possible that there is a FP message that needs
to be sent, and the local bank is interested in sending
a FP message also. In this case, priority is given to the
remote request (otherwise, buffering is required). The FP
enable signal is asserted if either a local request or a
remote request needs to be sent as a FP message. If the
Broadcast bit is set then the message is delivered to every
HBC on the way (not shown in the figure). Note that
a FP message never makes a turn; hence, there are no
conflicts between remote FP messages.

The rest of the router is organized as a traditional
router with virtual channels, lookahead routing, and
bypassing (see [17]). Such routers typically have a 3
stage pipeline (buffer write (BW), switch allocation (SA),
switch traversal (ST)). However, for the first router in
the path of a message, there is an additional pipeline
stage (VA) that allocates a virtual channel. In a lookahead
router, route computation is done 1 hop in advance.
Hence, it is not on the critical path, and can be done
in parallel with the BW or SA stages. Let us now focus
on the pipeline registers. If a FP message needs to
be sent on any link, we propose to temporarily freeze
the entire router (all the channels) for 1 cycle. This
might sound overkill; however, it leads to a very simple
implementation, and the performance penalties are not
prohibitive. To freeze the router, we gate the clock of
the registers between the BW, SA, and ST stages. This
ensures that no message moves in the data path of the

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

router pipeline and no regular message is sent across any
link.

When these stages are clock-gated, we do not want
to lose any incoming message or flow control messages.
The message buffers can keep on accepting new data.
A buffer overflow will not occur since we use credit
based flow control, and neighboring routers will not
send messages after they run out of credits. We can also
perform the route computation and VC allocation during
this time. Similar to other state of the art designs we do
not have output buffering in our router [17].

For the outgoing link, we need to choose between the
high-priority fast path flits, and the low-priority flits that
pass through the router’s pipeline. To choose between
both the types of data, we use a multiplexer at each
output port of the router. One of the inputs is connected
to the fast path engine, and the other is connected to an
egress port of the crossbar. The multiplexer is controlled
by the signals generated by the fast path engine. It
always prioritizes the fast path. An astute reader might
argue that prioritizing some messages might not neces-
sarily be beneficial, because it might delay the other low
priority messages (e.g., L1 ↔ directory messages). Our
answer would be that we should only designate those
messages as fast path messages that are not very frequent
(or very infrequent), and often lie in the critical path of
the execution. Given our performance results, we would
like to believe that FP-NUCA messages in the L2 cache
fall in this category. Hence, if we prioritize them, we get
performance gains for applications such as Parsec and
Splash benchmarks.

4.5 Deadlock/Starvation Freedom

Any NOC protocol is prone to deadlock and starvation
unless additional steps are taken. We propose a simple
and practical method to avoid starvation. Note that star-
vation freedom implies deadlock freedom. Additional
solutions are proposed in Appendix D. We size our
structures (Section 5.1) such that we do not observe any
starvation in our simulation runs consisting of billions
of instructions. We thus design a starvation recovery
solution that is slow, yet practical. It is based on the
conjecture that starvation will rarely be seen in practice.

We incorporate two starvation counters with the OMQ
and CRQ for each HBC. Each starvation counter keeps a
count of the number of cycles the request at the head of
the respective queue has not been able to make progress.
If the starvation counter reaches a threshold (500 cycles
in our design), then we invoke the starvation recovery
algorithm. The HBC sends a message to all other HBCs
in its bank set to stop accepting any new messages
from their RCs, and to clear off their CRQs. Since every
message in a CRQ is also maintained in the OMQ of
some HBC, no information is lost. Once the network is
quiescent (achieved by waiting for 1 more cycle), the
HBC that suffered from starvation starts the process of
clearing of the OMQs of each node. In this process each

Parameter Value Parameter Value
Cores 32 Technology 22 nm
Frequency 3.6 GHz

Pipeline
Retire Width 4 Integer RF (phy) 160
Issue Width 6 Float RF (phy) 160
ROB size 168 Branch Predictor Tournament
IW size 54 (Pag-Pap)
LSQ size 64 Bmispred penalty 14 cycles
iTLB 128 entry dTLB 128 entry
Integer ALU 4 units Int ALU latency 1 cycle
Integer Mul 1 unit Int Mul latency 2 cycles
Integer Div 1 unit Int Div latency 4 cycles
Float ALU 2 units FP ALU latency 2 cycles
Float Mul 1 unit FP Mul latency 4 cycles
Float Div 1 unit FP Div latency 8 cycles

L1 i-cache, d-cache
Write-mode Write-back Block size 64 bytes
Associativity 4 Size 32 kB
Latency 2 cycles MSHRs 32
Directory fully mapped, MOESI, 4096 entries, 8-way

Shared L2
Write-mode Write-back Block size 64 bytes
Associativity 8 # banks 32
Latency (per bank) 8 cycles Bank size 256 KB

Main Memory
Latency 250 cycles Mem. controllers 4

NOC
Topology 2-D Mesh Routing Alg. X-Y
Flit size 16 bytes Hop-latency 1 cycle
Routing delay 2/3 cycles # Virt. channels 4
(w/wo bypassing) Buffers/port 8
Freeze Router: (routing + link) delay 1 cycle

Auxiliary structures (size in number of entries)
OMQ 16 CRQ 10

TABLE 2: Simulation parameters

request follows the Seq protocol and is sent to all the
banks. After a hit/miss decision has been made, the
next request in its OMQ is made to proceed and so on.
In this manner the OMQs of all the nodes in the bank
set are cleared. Note that there will be no starvation
or deadlock in this process because there is only one
request in flight. Once, all the OMQs are cleared, we
restart normal execution.

5 EVALUATION

5.1 Experimental Setup
Table 2 shows our simulated processor configuration.
The list of benchmarks along with their configurations
have already been shown in Table 1. We use the Tejas
simulator [27] for architectural simulation. For the NOC,
we take our models from the Garnet [1] simulator,
and we use Orion 2 [18] to estimate the power and
latencies of NOC components. For energy estimation of
the core, and dedicated buffers such as the OMQ and
CRQ, we use the McPat toolkit [24]. The VHDL design
and synthesis report of the Freeze router is explained in
Appendix C. To size the OMQ and CRQs we measured
the maximum size that they ever attain during all our
simulation runs (see Appendix A). The maximum OMQ
size is 9 entries (Blackscholes), and the maximum CRQ
size is 8 entries(Bodytrack). We thus overdesign and size

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

the OMQ and CRQ to have 16 and 10 entries respectively.
We thus never observe a deadlock/starvation situation
in our simulations. Lastly, note that whenever we refer
to the term “performance” in our evaluation, we refer
to a quantity that is inversely proportional to the total
simulated execution time. The speedup is always in
terms of increase in performance.

5.2 Comparison of FP-NUCA Policies
5.2.1 Benchmark Characterization
Before discussing the performance results, let us char-
acterize the behavior of benchmarks on our simulated
system using the PredBCast (broadcast with predict)
search policy. The hit rates of caches, and the number of
requests seen by the L2 cache is more or less (within 1%)
independent of the search policy. Now, we are concerned
about three vital parameters – number of requests to the
L2 cache per instruction, L2 cache hit rate, and L2 cache
latency. We are interested in the number of requests to
the L2 cache for getting an estimate of the sensitivity of
a benchmark to changes in the latency and hit rate of the
L2 cache. Given an L2 request, its latency is determined
by the number of hops it traverses to reach the home
bank, its hit rate at the home bank, and its hit rate in the
rest of the banks in the bank set.

Table 3 and Figure 9 show this information. The first
column in Table 3 shows the number of instruction
cache misses. For all our benchmarks, the code size
of the kernel of each benchmark is relatively small,
and thus the instruction cache has a very high hit rate
(> 99.8%). The L1 data cache hit rates vary from 71%
(Streamcluster) to 97.6% (Radiosity). Since the Splash and
Parsec benchmark suites are parallel applications, with
a non-trivial amount of data sharing, a sizeable number
of L1 cache misses find their data in other L1 caches.
We refer to this aspect as directory hits. Note that in our
directory, if a line has to be evicted in a directory, it
is invalidated in all the sharers. The directory hit rate
varies from 22.13%(Fluidanimate) to 94.44% (Radiosity).
Typical values range from 40-70%. Readers must note
that the L1 cache layer (inclusive of the directory) filters
out a significant number of requests. The fifth column
lists the number of requests that reach the L2 cache (per
1000 instructions). The numbers vary from 0.22(Radiosity)
to 31.54(Canneal). For 9 out of the 12 benchmarks the
number of requests per 1000 instructions that reach the
L2 cache are between 1.5 and 11.

The next column shows the hit rate of the L2 cache.
For 5 out of the 12 benchmarks the L2 hit rate is between
40-65%, and for the rest of the benchmarks it is between
81.43–98.85%. Thus, there are two classes of benchmarks.
The latter class has a relatively higher L2 hit rate than the
former. The L2 hit rate is related to the average number
of hops that a message needs to traverse (in the case of
a L2 hit). For most of the benchmarks with a high L2
hit rate, the hop count is low. This means that the data
is mostly available in the home bank. For benchmarks

with a low L2 hit rate, we need to traverse more hops
to locate the block.

Figure 9 shows this information in some more detail.
It classifies the L2 hits into the following categories:
home bank hits, predicted bank hits, and broadcast hits.
Blackscholes, Swaptions, Lu, and Water-sp have more than
80% hits in the home bank. The next category of bench-
marks (60-80% hits in the home bank) are Bodytrack,
Fluidanimate, Barnes, Fmm, and Water-nsq. The rest of the
benchmarks: Canneal, Streamcluster, and Radiosity have
the lowest hit rates in the home bank with Canneal being
the worst (54%). Predicted bank hits range from 20-40%,
and for some benchmarks such as Radiosity, the predictor
can predict almost all the banks for L2 hits that miss in
the home bank.

5.2.2 Results with Normal Routers
Let us start with Figure 10. It shows the performance of
different schemes with conventional routers that imple-
ment flit bypassing, and lookahead routing. The results
are normalized to the configuration with a sequential
search policy (Seq). We show the results for three other
configurations: Two-way, BCast, and PredBCast. We did
not evaluate a scheme with bank prediction and the
two-way search policy because we expect a large hit
rate in the bank predictor, and thus did not want to
complicate the design further by introducing a more
elaborate search policy. The last entry in the figure
shows the geometric mean (G.M) of the speedups for
each configuration over the Seq configuration, which we
assume to be the baseline (since it is very similar to
the original D-NUCA scheme [10]). We observe from
Figure 10 that the G.M speedup of Two-way over Seq is
2%, the mean speedup of BCast is 3.5% and the mean
speedup of PredBCast is 4%.

Let us start out by considering benchmarks with a
large amount of private data. In this class, we observe
the largest speedups in Fluidanimate(12%). Fluidanimate
has a very high percentage (95%) of private data. All of
this data does not fit in the home bank; it tends to get
distributed to other banks in the bank set. As a result of
this pattern, schemes that send more messages in parallel
tend to do better than Seq . Let us now consider the case
of Blackscholes, Lu, and Swaptions. All of them have a high
degree of private data; however, they do not show any
significant speedups similar to Fluidanimate. We observe
that for these three benchmarks, the percentage of L2
hits that find their data in the home bank is more than
85%. This means that their working sets are relatively
small as compared to Fluidanimate, and thus they do
not benefit from a more elaborate search policy. Water-
nsq also has a large amount of private data; however, it
shows a speedup in the range of 5-6%. This is because
it has a high block access frequency, and it benefits from
the fact that blocks evicted from the home bank can still
be found in nearby banks in the bank set.

Let us now look at benchmarks that have a large
amount of shared data: Canneal, Barnes, Water-sp, and

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

Application % I-cache % D-cache % Directory L2 Reqs % L2 Average
hit-rate hit-rate hit-rate per 1000 hit-rate Hop

instructions Length
Parsec

Blackscholes 99.99 96.69 46.89 5.02 94.77 3.79
Bodytrack 99.98 98.34 43.99 2.23 81.43 4.38
Canneal 99.96 77.85 34.54 31.54 54.00 4.09
Fluidanimate 99.98 85.86 22.13 8.14 46.53 4.22
Streamcluster 99.94 71.16 36.17 2.63 48.17 4.52
Swaptions 99.89 82.67 13.85 20.65 86.72 4.24

Splash-2
Barnes 99.97 92.20 79.13 4.15 97.35 3.27
Fmm 99.93 94.80 56.36 2.38 86.42 3.77
Lu 99.94 94.07 74.76 1.51 88.49 3.78
Radiosity 99.99 97.61 94.44 0.22 64.41 4.36
Water-nsq 99.94 94.24 70.62 2.87 41.18 4.17
Water-sp 99.96 82.51 11.08 10.92 98.85 3.54

TABLE 3: Memory system statistics

Blackscholes
Bodytrack

Canneal

Fluidanimate

Streamcluster
Swaptions

Barnes Fmm Lu
Radiosity

Water-nsq
Water-sp0

20

40

60

80

100

H
it

s
d

is
tr

ib
u
ti

o
n
 o

f
FP

-N
U

C
A

Home Bank Hits Predicted Bank Hits Broadcast HitsHome Bank Hits Predicted Bank Hits Broadcast Hits

Fig. 9: Distribution of cache hits in FP-NUCA

Blackscholes
Bodytrack

Canneal

Fluidanimate

Streamcluster
Swaptions

Barnes Fmm Lu
Radiosity

Water-nsq
Water-sp G.M.0.6

0.7

0.8

0.9

1.0

1.1

S
p
e
e
d
u
p
 (

n
o
rm

a
liz

e
d
 t

o
 S

e
q
)

Seq Two-way BCast PredBCastSeq Two-way BCast PredBCast

Fig. 10: Performance of different FP-NUCA policies (with normal
routers)

Streamcluster. Streamcluster has the highest speedup
(11%) in this class. This benchmark has a high degree of
sharing (more than 85% of blocks are shared by 3 cores),
and thus the blocks are uniformly distributed in the bank
set (see Figure 9). Hence, it does not benefit by prediction
because often messages need to travel to the end of the
bank set. In comparison the BCast scheme works the
best because it is the best scheme for quickly locating
uniformly dispersed data. Canneal, Barnes, and Water-
sp have much lower levels of sharing, and thus have a
higher percentage of home bank hits. Consequently, Seq
is a relatively better performing scheme.

Benchmarks that fall in the middle of the spectrum
are Bodytrack, Fmm and Radiosity. We can discard Ra-
diosity from consideration because very few accesses
(0.22/1000) reach the L2 cache. For Bodytrack and Fmm,
each block has at the most 2 sharing cores, and thus
their blocks tend to bounce between the home banks of
different cores. Their speedups are limited to 3% using
the BCast or PredBCast search policies. The reasons for
this is that most (roughly 60%) of the L2 hits find their
data in the home bank, and the remaining requests are
not very widely dispersed in the bank set.

5.2.3 Results with Freeze Routers

Figure 11 shows the results with Freeze routers instead
of normal routers. We observe a uniform increase in
the speedup by roughly 5%. The only counter-intuitive

result is that of the Seq configuration for Swaptions that
shows a slow down with Freeze routers. We believe that
this is because more than 97% of the L2 hits find their
data in the home bank. The route from the requesting
core to the home bank remains busy because of FP-
NUCA messages. Since these messages have the highest
priority, other messages starve, and this leads to a net
slowdown. This is the only example, in which using the
Freeze router has led to a more than 1% slowdown.

5.3 Comparison of FP-NUCA with other NUCA Poli-
cies
Now, let us compare our schemes with other high per-
forming NUCA policies such as R-NUCA, SP-NUCA,
and the baseline S-NUCA scheme. For implementing
the R-NUCA scheme we assume the best case scenario,
where we are aware of the private and shared pages by
performing a post facto analysis of the sharing patterns
of the blocks. We use this information to dynamically tag
blocks as shared, read-only, or private. R-NUCA places
private blocks in the nearest cache bank, places read-only
blocks in a cluster of 4 blocks, and distributes shared
data across the banks. For SP-NUCA, we augment the
directory to dynamically tag blocks as shared or private
(we do not assume any timing overhead). The directory
executes the protocols and does the job of locating
and migrating data across the blocks according to the
schemes described by Merino et al. [29]. For the baseline

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

Blackscholes
Bodytrack

Canneal
Fluidanimate

Streamcluster
Swaptions Barnes Fmm Lu

Radiosity
Water-nsq

Water-sp G.M.0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Sp
ee

du
p (

no
rm

ali
ze

d t
o S

eq
)

Seq Seq Frz Two-way Two-way Frz BCast BCast Frz PredBCast PredBCast FrzSeq Seq Frz Two-way Two-way Frz BCast BCast Frz PredBCast PredBCast Frz

Fig. 11: Performance of different FP-NUCA policies with Freeze routers

Blackscholes
Bodytrack

Canneal

Fluidanimate

Streamcluster
Swaptions

Barnes Fmm Lu
Radiosity

Water-nsq
Water-sp G.M.0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Sp
ee

du
p

R-Nuca SP-Nuca S-Nuca FP-Nuca Seq FP-Nuca Two-way FP-Nuca BCast FP-Nuca PredBCastR-Nuca SP-Nuca S-Nuca FP-Nuca Seq FP-Nuca Two-way FP-Nuca BCast FP-Nuca PredBCast

Fig. 12: Performance of different NUCA policies

S-NUCA scheme, we uniformly distribute the blocks
across the banks(see [6]). Note that henceforth all our
schemes use Freeze routers.

Figure 12 shows the speedups for our suite of bench-
marks. We normalize all the results to R-NUCA. To
summarize, we find SP-NUCA to be better than R-
NUCA by 2% (G.M. speedup), and S-NUCA to be better
than R-NUCA by 3.5%. The reader should note that the
original papers on R-NUCA and SP-NUCA found much
more positive results for database oriented workloads
such as the OLTP benchmarks. However, for scientific
benchmarks that have larger working sets, and different
sharing patterns the results are not that favorable. All
four of the FP-NUCA schemes do better than S-NUCA,
SP-NUCA, and R-NUCA. Swaptions shows the highest
speedups (30% with PredBCast). The other benchmarks
that perform well are Water-sp(14.2%), Blackscholes (7%),
Bodytrack (10%), and Barnes (8%).

Let us now try to understand the reasons behind the
speedups (see Figures 13 and Figure 14). Since the L1
layer is the same, we need to concentrate on the L2 cache
hit rate (Figure 13), and perceived latency (Figure 14).
We found the hit rate to be mostly independent of the
FP-NUCA scheme. We expect a higher hit rate with
FP-NUCA because it avoids replication, and uses all
the banks in the bank set to store data (rather than
storing data at the set level). We indeed do observe
an elevated hit rate for some of our best performing
benchmarks (Swaptions, Bodytrack, and Water-nsq). Access
latencies show a similar trend. Schemes with broadcast

have roughly 20-30% lower latency. The Two-way policy
is also faster than S-NUCA, SP-NUCA, and R-NUCA
for 9 out of 12 benchmarks. There are two contributory
factors for the lower latency. The first is the way that
we organize data by prioritizing their placement in the
home banks, and the second is the use of Freeze routers.
The latter is the dominant factor.

5.4 Energy-Delay2

Let us now sum up all our discussion up till now by
considering the ED2 metric. This metric encompasses
both the energy consumption of the entire system (in-
cluding core energy), and the performance benefits. The
results are shown in Figure 15. Other than Canneal, and
Fluidanimate, FP-NUCA is conclusively better. On an
average PredBCast reduces ED2 by 10.5% as compared
to R-NUCA, and 8.7% as compared to SP-NUCA. We
see the maximum amount of benefit in Swaptions (47%),
and Water-sp (23%), as compared to R-NUCA. Readers
can refer to Appendix B for a detailed breakup of the
energy consumed by different subsystems for our suite
of benchmarks, and for an explanation of the trends in
energy consumption.

5.5 Synthesis Results
We synthesized the Freeze router using Cadence tools,
and the UMC 90nm library. The results were scaled to
22nm using the results in [15]. The results are shown
in Table 16. We can quickly conclude that the area

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

Blackscholes
Bodytrack

Canneal

Fluidanimate

Streamcluster
Swaptions

Barnes Fmm Lu
Radiosity

Water-nsq
Water-sp0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
o
rm

a
liz

e
d
 L

2
 h

it
ra

te
R-Nuca SP-Nuca S-Nuca FP-NucaR-Nuca SP-Nuca S-Nuca FP-Nuca

Fig. 13: L2 hit rate (normalized to R-NUCA)

Blackscholes
Bodytrack

Canneal

Fluidanimate

Streamcluster
Swaptions

Barnes Fmm Lu
Radiosity

Water-nsq
Water-sp G.M.0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 L

2
 A

cc
e
ss

 L
a
te

n
cy

R-Nuca SP-Nuca S-Nuca FP-Nuca Seq FP-Nuca Two-way FP-Nuca BCast FP-Nuca PredBCastR-Nuca SP-Nuca S-Nuca FP-Nuca Seq FP-Nuca Two-way FP-Nuca BCast FP-Nuca PredBCast

Fig. 14: L2 (NUCA) access latency (network latency + cache latency)
(normalized to R-NUCA)

Blackscholes
Bodytrack

Canneal

Fluidanimate

Streamcluster
Swaptions

Barnes Fmm Lu
Radiosity

Water-nsq
Water-sp G.M.0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d

 E
D
2

R-Nuca SP-Nuca S-Nuca FP-Nuca Seq FP-Nuca Two-way FP-Nuca BCast FP-Nuca PredBCastR-Nuca SP-Nuca S-Nuca FP-Nuca Seq FP-Nuca Two-way FP-Nuca BCast FP-Nuca PredBCast

Fig. 15: ED2 (normalized)

Normal Router Fast path
engine

Area(µm2) 59869.5 1643.69
Max. delay (ps) 228.7 104.06
(per stage)
Percentage of
sequential 80.2 27.03
part
Percentage of
combinational 19.8 72.97
part
Power (mW) 115.01 1.76

Fig. 16: Synthesis report

overhead of the FP engine is 2.5% over a normal router,
and the time taken to traverse the fast path (104 ps) is
significantly lesser than a clock cycle (277 ps).

6 CONCLUSION

In this paper, we presented a set of schemes collectively
referred to as FP-NUCA (Freeze-Predict NUCA). The FP-
NUCA scheme is based on a novel placement strategy
that prioritizes the cache bank(home bank) that is closest
to the requesting core/tile in terms of Euclidean distance.
By artificially restricting the communication between the
home bank and other banks in the bank set, we were
able to design the Freeze router that can fast forward
L2 cache messages. Secondly, we were able to seam-
lessly integrate a bank predictor in our design, which
can reduce the total number of messages and resultant
energy consumption. The net effect of our optimizations
is that the PredBCast policy is 6.3% faster than R-NUCA,
and 5.7% faster than SP-NUCA. In terms of the ED2

metric, it is efficient by 10.4% as compared to the R-
NUCA scheme.

REFERENCES

[1] N. Agarwal, T. Krishna, L. Peh, and N. K. Jha, “Garnet: A detailed
on-chip network model inside a full-system simulator,” in ISPASS,
2009, pp. 33–42.

[2] G. Almási, C. Caşcaval, and D. A. Padua, “Calculating stack
distances efficiently,” SIGPLAN Not., vol. 38, no. 2 supplement,
pp. 37–43, jun 2002.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC bench-
mark suite: characterization and architectural implications,” in
PACT, 2008, pp. 72–81.

[4] S. Bieschewski, J.-M. Parcerisa, and A. Gonzalez, “Memory bank
predictors,” in ICCD, 2005, pp. 666–668.

[5] L. Carloni, P. Pande, and Y. Xie, “Networks-on-chip in emerging
interconnect paradigms: Advantages and challenges,” in NOCS,
May 2009, pp. 93–102.

[6] K. Changkyu, D. Burger, and S. Keckler, “Nonuniform cache
architectures for wire-delay dominated on-chip caches,” Micro,
IEEE, vol. 23, pp. 99–107, 2003.

[7] C.-H. O. Chen, S. Park, T. Krishna, S. Subramanian, A. P. Chan-
drakasan, and L.-S. Peh, “Smart: A single-cycle reconfigurable
noc for soc applications,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2013, March 2013, pp. 338–343.

[8] L. Chen, R. Wang, and T. Pinkston, “Critical bubble scheme: An
efficient implementation of globally aware network flow control,”
in Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE
International, May 2011, pp. 592–603.

[9] Z. Chishti, M. D. Powell, and T. Vijaykumar, “Optimizing replica-
tion, communication, and capacity allocation in cmps,” in ISCA,
2005, pp. 357–368.

[10] Z. Chishti, M. D. Powell, and T. N. Vijaykumar, “Distance asso-
ciativity for high-performance energy-efficient non-uniform cache
architectures,” in MICRO, 2003, pp. 55–66.

[11] W. J. Dally and B. P. Towles, Principles and Practices of Interconnec-
tion Networks. Morgan Kaufmann, 2004.

[12] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Re-
active nuca: near-optimal block placement and replication in
distributed caches,” in ISCA, 2009, pp. 184–195.

[13] E. Herrero, J. González, and R. Canal, “Elastic cooperative
caching: An autonomous dynamically adaptive memory hierar-
chy for chip multiprocessors,” in ISCA, 2010, pp. 419–428.

[14] A. Huang, J. Gao, W. Guo, W. Shi, M. Zhang, and J. Jiang, “PSA-
NUCA: A pressure self-adapting dynamic non-uniform cache
architecture,” in NAS, 2012, pp. 181–188.

[15] W. Huang, K. Rajamani, M. R. Stan, and K. Skadron, “Scaling
with design constraints: Predicting the future of big chips,” IEEE
Micro, vol. 31, no. 4, pp. 16–29, 2011.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

[16] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler,
“A nuca substrate for flexible cmp cache sharing,” in ICS, 2005.

[17] N. E. Jerger and L.-S. Peh, “On-chip networks,” Synthesis Lectures
on Computer Architecture, vol. 4, no. 1, pp. 1–141, 2009.

[18] A. B. Kahng, B. Li, L. Peh, and K. Samadi, “Orion 2.0: a fast and
accurate noc power and area model for early-stage design space
exploration,” in DATE, 2009, pp. 423–428.

[19] C. Kim, D. Burger, and S. W. J. Keckler, “An adaptive,
non-uniform cache structure for wire-delay dominated on-chip
caches,” in ASPLOS, 2002, pp. 211–222.

[20] T. Krishna, A. Kumar, P. Chiang, M. Erez, and L.-S. Peh, “Noc with
near-ideal express virtual channels using global-line communica-
tion,” in High Performance Interconnects, 2008. HOTI’08. 16th IEEE
Symposium on. IEEE, 2008, pp. 11–20.

[21] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha, “Express vir-
tual channels: towards the ideal interconnection fabric,” in ACM
SIGARCH Computer Architecture News, vol. 35, no. 2. ACM, 2007,
pp. 150–161.

[22] W.-C. Kwon, T. Krishna, and L.-S. Peh, “Locality-oblivious cache
organization leveraging single-cycle multi-hop nocs,” in Proceed-
ings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’14,
2014, pp. 715–728.

[23] H. Lee, S. Cho, and B. R. Childers, “Cloudcache: Expanding and
shrinking private caches,” in HPCA, 2011, pp. 219–230.

[24] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “McPAT: an integrated power, area, and timing
modeling framework for multicore and manycore architectures,”
in MICRO, 2009, pp. 469–480.

[25] H. Luo, X. Xiang, and C. Ding, “Characterizing active data sharing
in threaded applications using shared footprint,” in Proceedings of
the The 11th International Workshop on Dynamic Analysis, 2013.

[26] S. Ma, Z. Wang, Z. Liu, and N. Enright Jerger, “Leaving one slot
empty: Flit bubble flow control for torus cache-coherent nocs,”
Transactions on Computers (preprint), 2013.

[27] G. Malhotra, P. Aggarwal, A. Sagar, and S. R. Sarangi, “ParTejas:
A parallel simulator for multicore processors,” in ISPASS, 2014.

[28] J. Merino, V. Puente, and J. Gregorio, “ESP-NUCA: A low-cost
adaptive non-uniform cache architecture.” in HPCA, 2010, pp. 1–
10.

[29] J. Merino, V. Puente, P. Prieto, and J. A. Gregorio, “SP-
NUCA: a cost effective dynamic non-uniform cache architecture,”
SIGARCH Comput. Archit. News, vol. 36, pp. 64–71, May 2008.

[30] M. Modarressi, A. Tavakkol, and H. Sarbazi-Azad, “Virtual point-
to-point connections for nocs,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 29, no. 6, pp. 855–
868, June 2010.

[31] R. Ricci, S. Barrus, D. Gebhardt, and R. Balasubramonian, “Lever-
aging bloom filters for smart search within nuca caches,” in 7th
Workshop on Complexity-Effective Design (WCED), 2006.

[32] M. Stensgaard and J. Sparso, “Renoc: A network-on-chip archi-
tecture with reconfigurable topology,” in Networks-on-Chip, 2008.
NoCS 2008. Second ACM/IEEE International Symposium on, April
2008, pp. 55–64.

[33] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
“The SPLASH-2 programs: Characterization and methodological
considerations,” in ACM SIGARCH Computer Architecture News,
vol. 23, no. 2. ACM, 1995, pp. 24–36.

[34] M. Zhang and K. Asanovic, “Victim replication: Maximizing
capacity while hiding wire delay in tiled chip multiprocessors,”
SIGARCH Comput. Archit. News, vol. 33, no. 2, pp. 336–345, May
2005.

Anuj Arora is a Master’s student at the De-
partment of Computer Science & Engg, Indian
Institute of Technology, Delhi. He obtained his
Bachelor’s degree in Computer Science from
Guru Gobind Singh Indraprastha University in
2012. His research interests include non-uniform
cache designs for manycore architectures.

Mayur Harne received his Master’s degree in
Computer Science from the Indian Institute of
Technology, New Delhi in 2013. After his gradu-
ation, he has been working at NVIDIA Graphics
Pvt. Ltd in the Android video driver team as a
System Software Engineer.

Hameedah Sultan is pursuing her Master’s de-
gree in VLSI Design from IIT Delhi. She has
completed her Bachelor’s degree in Electronics
Engineering from Aligarh Muslim University in
2013. Currently she is working in the area of
thermal and noise simulation.

Akriti Bagaria is a Master’s student at the De-
partment of Computer Science & Engg, Indian
Institute of Technology, Delhi. She obtained her
Bachelor’s degree in Computer Science from
Guru Gobind Singh Indraprastha University in
2012.

Smruti R. Sarangi is an Assistant Professor
in the Department of Computer Science and
Engineering, IIT Delhi, India. He has spent four
years in industry working in IBM India Research
Labs, and Synopsys. He graduated with a M.S
and Ph.D in computer architecture from the
University of Illinois at Urbana-Champaign in
2007, and a B.Tech in computer science from IIT
Kharagpur, India, in 2002. He works in the areas
of computer architecture, parallel and distributed
systems. Prof. Sarangi is a member of the IEEE

and ACM.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 15

APPENDIX A
OPTIMALLY SIZING THE OMQ AND CRQ

Benchmark Max. OMQ Size Max. CRQ Size
Blackscholes 9 7
Bodytrack 8 8
Canneal 6 5
Fluidanimate 7 7
Streamcluster 6 4
Swaptions 9 7
Barnes 6 4
Fmm 7 6
Lu 8 6
Radiosity 4 3
Water-nsq 7 5
Water-sp 6 4

TABLE 4: Maximum sizes of the OMQ and CRQ

Table 4 shows the maximum occupancy of the OMQ
and CRQ observed during our simulations for each
benchmark. We observe that the maximum occupancy of
the OMQ never exceeds 9, and the maximum occupancy
of the CRQ never exceeds 8. Hence, if we set the size of
the OMQ to 16 entries, and the size of the CRQ to 10
entries, then we will never have a situation in which
these queues fill up, and there is a deadlock/starvation
situation in our simulations. However, it is possible
to have pathological situations where these queues fill
up and there is starvation in the system because of
unfulfilled requests. We shall discuss methods to handle
such issues in Appendix D.

APPENDIX B
ENERGY CONSUMPTION

Benchmark NOC + Benchmark NOC +
L2 cache L2 cache
Energy (%) Energy (%)

Parsec Splash
Blackscholes 2.60 Barnes 2.70
Bodytrack 4.37 Fmm 3.29
Canneal 48.29 Lu 1.91
Fluidanimate 20.86 Radiosity 0.52
Streamcluster 9.72 Water-nsq 7.10
Swaptions 24.08 Water-sp 3.55

TABLE 5: Percentage of (NOC + L2 cache energy)

Let us now compare the FP-NUCA schemes with
other schemes in terms of energy consumption. Our
contributions are mainly in reducing the number of
NOC requests, and the L2 cache accesses. Hence, let
us first focus on the combined energy of these two
subsystems. Table 5 shows the relative percentage of
energy in the NOC and L2 cache as a function of the
energy consumption of the entire system (processor +
NOC + cache + clock). The Parsec benchmarks have a
much higher value of energy consumption. Canneal is an
outlier (48.29%). This is because it has the lowest L1 and
directory hit rates among all the benchmarks. Hence, it
has the maximum number of requests reaching the L2

cache (see Table 3). The (NOC+L2 Cache) account for
10-20% of the total energy in Fluidanimate, Streamcluster,
and Swaptions. Blackscholes and Bodytrack have much
lower NOC activity (and energy also). In comparison,
the energy consumption of these subsystems in Splash
benchmarks is much lower. Here, Radiosity is an outlier
(0.52%). This is because it has the least number of
messages reaching the L2 cache. For the rest of the
benchmarks, the percentage varies from 1.91 to 7.10 %.

Let us now evaluate the energy consumption for
all the FP-NUCA schemes (with Freeze routers) and
compare them with R-NUCA, SP-NUCA, and S-NUCA
(see Figure 17). Here, again we use R-NUCA as the
baseline, and show normalized values. We can draw
a quick conclusion that the (L2 cache + NOC) in SP-
NUCA is 12.1% more energy consuming. SP-NUCA
consumes more energy because it occasionally resorts
to broadcasting a message to all the banks. S-NUCA
is the best scheme because it has the simplest access
protocol. FP-NUCA schemes increase the energy dissi-
pation of these two subsystems by 30.69-61.41% on an
average. The only benchmarks that show a reduction
in (NOC+L2 Cache) energy for FP-NUCA schemes are
Blackscholes, Swaptions, and Water-sp. These are exactly
those benchmarks that have a very high percentage of
hits in the home bank > 90%. Since additional messages
are not sent, the energy consumption is lower than SP-
NUCA and R-NUCA. Let us now compare the FP-NUCA
schemes among themselves. Predictably, BCast is the
worst (17.16% more than Seq). Two-way and PredBCast
have roughly similar energy consumption, and both of
them are better than Seq. Hence, we can conclude that
we are justified in creating the novel schemes from the
point of view of energy consumption.

APPENDIX C
HARDWARE IMPLEMENTATION

C.1 Hardware details

In order to determine the hardware requirements of
our proposed router, we implemented it in VHDL and
synthesized the design.

We add a fast path bit in every message. If it is 1,
then it is a fast path message, otherwise it is a regular
message. Now, if an incoming message is a fast path
message (determined by the fast path bit), then it is sent
to the fast path engine in the respective direction (north,
south, east, west and home).

If it is a regular message, it is stored in a flit input
buffer, which was synthesized using flip-flops. We create
designs with two different flit widths: 16 bytes and
32 bytes. From the input buffer, the messages are sent
to virtual channels. There are 8 virtual channels per
physical port in each direction, each of which has a 4-
flit deep input buffer. Since we use lookahead routing,
the virtual channels are allocated in the previous stage.
Consequently, the id of the virtual channel is already

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 16

Blackscholes
Bodytrack

Canneal
Fluidanimate

Streamcluster
Swaptions Barnes Fmm Lu

Radiosity
Water-nsq

Water-sp G.M.0.0

0.5

1.0

1.5

2.0

2.5

3.0

No
rm

al
iz

ed
 T

ot
al

 D
yn

am
ic

 E
ne

rg
y

R-Nuca SP-Nuca S-Nuca FP-Nuca Seq FP-Nuca Two-way FP-Nuca BCast FP-Nuca PredBCastR-Nuca SP-Nuca S-Nuca FP-Nuca Seq FP-Nuca Two-way FP-Nuca BCast FP-Nuca PredBCast

Fig. 17: Network + L2 cache energy (normalized)

a part of the message and this id is used to route the
message to the respective virtual channel.

Simultaneously, we need to compute the route and
virtual channel id for the next hop. We send the destina-
tion (6 bits) to the route computation engine. The route
computation engine implements dimension ordered X-
Y routing. It consists of a comparator that compares
the column id of the router with the column id of the
destination. If the columns are different, then it routes
the message to the left or the right based on the sign
bit of the result of the comparison. If the columns are
the same (‘zero’ flag of the comparator is set), then we
compare the row number of the router with the row
number of the destination. Based on the sign of the
result, we compute the route (up or down).

We implement each virtual channel as a queue. Dedi-
cated head and tail registers maintain the start and end
indices. Each queue also has a register called size that
maintains its current size. If the virtual channel is empty
then flits can bypass the queue, and directly proceed
to the switch allocation stage. They are buffered in
pipeline latches (also referred to as flit buffers). Messages
subsequently pass through flit buffers and then a 5 × 5
crossbar switch. Allocation of switch ports is based on a
round-robin policy.

Fast path messages do not traverse the normal router’s
pipeline, and pass only through the fast path engine
(which is a mostly combinational block, with the clock
signal going only to the ’decrement hops left’ block).
Hence, fast path data can be obtained at the output of
the FP engine very quickly. The FP engine also sets
FP enable signals, which gate the clock of the normal
router, to freeze it for a cycle when a fast path message
has to be transmitted. The input and credit based flow
control buffers of the normal router are not controlled by
the gated clock and hence they can keep accepting new
data on every clock cycle. Finally the FP enable signals
generated by the FP engine act as select signals for the
output multiplexers in each direction, to choose between
regular data and fast path data.

C.2 Synthesis results

Simulation results show that the functionality of the
router obtained matches the expected functionality. We
synthesized the circuit in UMC 90nm technology with
the 90 nm standard cell library using the Cadence En-
counter RTL Compiler, and performed timing, area and
power analysis. The clock frequency was set to 450 ps.
This was sufficient to satisfy the timing requirements.
We found out that around 20% of the area is due to
the combinational logic and the remaining 80% area
is occupied by the sequential part of the circuit. The
critical path lies inside the regular router, and the freeze
path circuitry does not adversely affect the operating
frequency of the circuit.

Next, we scaled the area and power consumption to 22
nm technology using the ITRS scaling method outlined
in [15]. For scaling the delay, we employ the methods
used by the McPat simulator [24]. Taking into effect
the tremendous increase in chip power density for high
frequencies, they suggest increasing the clock frequency
by 15% every generation. We use the same scaling factor
for the delay. Hence, we scaled the area by 50%, delay
by 15% and power by 0.527 for each technology node.
The area, delay and power consumption obtained for flit
sizes of 16 bytes and 32 bytes are listed in Table 6.

We use a frequency of 3.6 GHz. The clock period is
thus 278 ps. From Table 6, we observe that for both
the 16 byte and 32 byte flit routers, the critical path
in any pipeline stage fits within a clock cycle. We can
additionally afford a 10% timing margin. The fast path
engine is more than twice as fast as the regular path.
The high fanouts of control signals such as FP enable did
cause a problem. However, we were able to reduce the
timing overhead by using a tree of inverters. The area
overhead of the FP engine is minimal (roughly 2-3% of
the router area). As expected the regular router mostly
has sequential elements, and the FP engine mostly has
combinational elements. Lastly, the power consumption
of the FP engine is also negligible (roughly 2% of the
regular router).

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 17

Flit size = 16 bytes Flit size = 32 bytes
Normal Router Fast path Normal Router Fast path

engine engine
Area(µm2) 59869.5 1643.69 119358.34 3338.88
Max. delay (ps) 228.7 104.06 257.29 117.21
(per stage)
Percentage of
sequential 80.2 27.03 80.0 25.77
part
Percentage of
combinational 19.8 72.97 20.0 74.23
part
Power (mW) 115.01 1.76 196.19 3.01

TABLE 6: Power consumption, delay and area of the fast path circuitry and ordinary router for flit sizes of 16 bytes and 32 bytes (scaled to 22
nm)

APPENDIX D
ADDITIONAL SOLUTIONS FOR HANDLING
DEADLOCK AND STARVATION

D.1 Deadlock

Deadlock might occur in the Two-way and the Seq pro-
tocols if two or more CRQs are full and there is a circu-
lar wait. In the BCast protocol, deadlock cannot occur
as there is no inter-CRQ communication. To prevent
deadlocks, we need to augment our existing protocol.
Note that in the Two-way and the Seq protocols, a cycle
always consists of two nodes, because in these protocols
a request is forwarded only to the adjacent nodes. We
take the size of a CRQ to be slightly more than the
largest CRQ occupancy observed (which in our case was
9). Therefore there is a miniscule chance that there will
actually be a deadlock (we can still have one though).

We propose two additional solutions for handling
a deadlock. The first is a conventional solution, and
the latter is our novel solution. We augment the latter
solution to handle starvation also in Section D.2.

D.1.1 Conventional Solution: Solution 1

The first solution is to allow the simulation to enter
into a deadlock, detect it and then recover from it. The
key consideration in this design is that we want to
move requests quickly when there is no deadlock and
avoid the overhead of deadlock handling and detection
as much as possible. We employ a deadlock detector,
which tracks the allocation and state of CRQs. It uses
the standard method of viewing the various CRQs as
nodes in a directed graph. We envision a bank set specific
deadlock detector. Each CRQ is a node, and there can be
edges between nodes. There is an edge from node A to
node B if A waits for B to free an entry. There might be
a deadlock if the graph contains a cycle.

The mechanism is as follows. If a request (either in the
OMQ or CRQ) cannot be allocated an entry in the CRQ
of a neighboring bank, then it waits for the other CRQ to
free an entry for a time period equal to DeadlockT imeout
(100 cycles is a representative value). If the period,
DeadlockT imeout, expires, then the HBC invokes the
deadlock detector. The deadlock detector queries all the

CRQs to find dependences. It adds an arrow between
two CRQs if one CRQ is waiting for the other. If there
is a cycle, then there might be a deadlock. We can have
some race conditions here. It is possible that when a cycle
is created, one of the edges ceases to exist. We might
incorrectly infer a deadlock (false positives are possible).
However, this will not cause any correctness issues. It
will just add some extra timing overhead because the
deadlock recovery protocol will be invoked.

This protocol assumes that deadlocks are rare (which
is the case if the CRQ and OMQ are sized appropri-
ately). The deadlock detector broadcasts a message to
clear all the CRQs, and kill all the messages in flight.
Subsequently, it locks all the OMQs, and does not allow
any new request to enter them. During this time, if any
core sends a message to a locked OMQ, then it gets a
NACK message as a reply. It retries later. The deadlock
recovery circuit drains all the OMQs one by one in a
sequential fashion. During this period, only one request
in the entire bank set can be processed. All the other
requests wait. Once all the OMQs are empty, normal
operation can resume.

D.1.2 Our Novel Solution: Solution 2

The other alternative is to not allow the system to
enter into a deadlock. To ensure this, we introduce an
Exchange message. Assume that a request needs to go
to its neighboring CRQ, and it cannot go because the
CRQ is full. For example, if a message in node A’s
CRQ needs to go to node B’s CRQ, and B’s CRQ is
full, then the message at the head of A’s CRQ needs to
wait. Here, a deadlock situation is possible, if B is also
trying to send a message to A’s CRQ, and A’s CRQ is
full. In fact, any deadlock in our protocol will always
involve a cycle between neighboring CRQs because we
only send messages to neighboring nodes. If we analyze
this situation carefully, we can observe that we can solve
this deadlock situation if we allow A and B to exchange
messages at the head of their queues. The occupancy of
the queues will remain the same. However, there will
be no deadlock. We thus use the Exchange message here.
Whenever a message is stuck in A’s CRQ because it is
not able to enter into B’s CRQ, we send an Exchange

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 18

message to B. If B is also waiting on A, then it replies
with its data to A. A then sends the message at the head
of its CRQ to B, and the deadlock is resolved.

Since any deadlock involves a cycle in the dependence
graph between neighboring nodes in our protocol, this
mechanism guarantees that we will not have any dead-
locks during the operation of the algorithm. This strategy
does not require a dedicated deadlock detection and
recovery engine.

D.2 Starvation

Let us now consider the issue of starvation. Starvation
is defined as any single request not being able to make
progress. It is perfectly possible for requests in other
OMQs or CRQs to make progress. Note that starvation
freedom implies deadlock freedom. However, the con-
verse is not true. Let us assume a system that avoids
deadlocks using the Exchange message (as proposed in
Section D.1.2). We shall slightly augment this system to
recover from starvation related issues.

Let us now look at the some of the scenarios that can
cause starvation. CRQs can lead to permanent starvation
of OMQs in the Two-way and the Seq protocols. Here,
a request in the OMQ can starve as the CRQ may be
busy accepting requests from its neighbors indefinitely.
Similarly, a request in a CRQ can starve because the
neighboring CRQ is full and busy processing other
requests. Starvation is also possible in the broadcast
protocol. Here, a request in the OMQ can be denied an
entry in the CRQ indefinitely because the CRQ may keep
accepting new requests from other OMQs.

To prevent starvation, we incorporate a starvation
counter. The purpose of the starvation counter is to
check if a request is near starvation. If a request has
been stalled for a certain number of clock cycles (sct
or starvation count threshold, 100 cycles in our design),
then the HBC sends a special message to the HBCs
of other banks. This messages instructs all the OMQs
to freeze, allow all outstanding messages in the CRQs
of the bank set to reach their destinations and then
resume. We have already proved in Section D.1.2 that by
using an Exchange message this process is guaranteed to
terminate.

Now, if the size of each CRQ is n and the number
of banks in a bank set is b, then we claim that all the
requests present in the CRQs can be serviced in at most
O(nb2) cycles in the Seq and Two-way protocols, and in
O(n) cycles in the BCast protocol.

Proof: The maximum number of requests present in the
CRQs can at the most be nb. In the broadcast protocol, in
one cycle b requests are serviced (if we assume that the
bank is pipelined). Hence, in O(n) cycles all nb requests
will be serviced.

In the Two-way and Seq protocols, at least one request
is guaranteed to move (either to some adjacent CRQ or
to the HBC for local processing in case of a hit) in an

interval of T cycles. Here T is the time it takes to perform
an Exchange operation between CRQs. This is because we
cannot have a circular wait between the CRQs since they
perform an Exchange operation whenever there is a cyclic
dependence between adjacent CRQs. Now, each message
can at the most move b−1 hops. Thus, the total number
of hops that all the messages in all the CRQs can traverse
is nb×(b−1). Since there is at least one movement every
T cycles, the total number of cycles it will take for all
the requests is O(nb2).

APPENDIX E
COMPARISON OF IPC FOR DIFFERENT FLIT
SIZES

In this section, we study the relationship between the
flit size and the gain in IPC for the Bcast configuration
with Freeze routers. We compare the BCast configuration
with the R-NUCA configuration for the same flit size.
Figure 18 plots the relative speedup (vs. R-NUCA) for
three different flit sizes: 8, 16, and 32 bytes. Let us first
comment on the decrease in gains. The mean speedup
with 32 bytes was 7%. This number reduced to 6.3% for
a 16 byte flit, and 4.7% for a 8 byte flit. The trends for
other configurations are the same.

There are two reasons for a reduction in the speedup
as compared to R-NUCA, which also uses flits of the
same size. The first reason is that it takes longer for
receiving the entire packet, if there are additional flits.
However, this was not a very significant issue in our
design because the additional 2-4 cycle latency was
insignificant in a large NOC. Another additional factor
is that the Tejas simulator by default supports the critical
word fetch, and early-restart schemes. These schemes
propose to send the requested words first to the L1
cache and processor such that it can resume its operation.
The rest of the words in the cache line subsequently
follow. Here, also the order of flits is important. The
simulator tries to leverage spatial locality by sending the
adjacent words first. Since the critical data is the first to
be received, the RC (requesting core) was found to be
relatively immune to the number of flits in the response
message.

The second and most important reason for a reduction
in the speedup is that a message with more flits delays
other colliding slow path messages. For example, with
32 byte flits, we require 3 flits to transmit a cache line
(including the head flit), and with 16 byte flits we require
5 flits. Another message colliding with a FP message will
be delayed by 3 or 5 cycles for both the cases respectively.
The additional delay of 2 cycles with 16 byte flits can
negatively impact performance.

We observed one interesting effect that occasionally
worked in our favor. For most of the benchmarks
(blackscholes, bodytrack, canneal, fluidanimate, swaptions,
barnes, fmm, water-nsquared, water-spatial), the BCast con-
figuration gets better than R-NUCA with an increase in

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 19

blackscholes
bodytrack canneal

fluidanimate
streamcluster

swaptions barnes FMM lu
radiosity

water-nsquared
water-spatial G.M.0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
S

p
e
e
d

u
p

 (
n
o
rm

a
liz

e
d

 t
o
 R

N
U

C
A

) Bcast Frz 8 Bcast Frz 16 Bcast Frz 32Bcast Frz 8 Bcast Frz 16 Bcast Frz 32

Fig. 18: Relative speedups for flit sizes of 8, 16 and 32 bytes

flit size. However, for some benchmarks (lu, srtreamclus-
ter) the trends are reverse. Additionally, the expected
slowdown due to the delaying of slow-path flits was
less than our expectation. This is because, we observed
that by introducing short delays in slow path flit streams,
we were occasionally able to avoid contention: situations
where a router runs out of credits, and can thus not send
messages upstream. Sometimes a small delay in the flit
stream avoids such situations. A similar effect has been
observed by Chen et al. [8], and Sheng et al. [26].

