Expander: Lock-free Cache for a Concurrent Data Structure

Pooja Aggarwal
IBM Research Labs, India
aggarwal.pooja@in.ibm.com

Abstract—Parallel programming models and paradigms are
increasingly becoming more expressive with a steady increase
in the number of cores that can be placed on a single chip.
Concurrent data structures for shared memory parallel pro-
grams are now being used in operating systems, middle-ware,
and device drivers. In such a shared memory model, processes
communicate and synchronize by applying primitive operations
on memory words. To implement concurrent data structures
that are linearizable and possibly lock-free or wait-free, it is
often necessary to add additional information to memory words
in a data structure. This additional information can range from
a single bit to multiple bits that typically represent thread ids,
request ids, timestamps, and other application dependent fields.
Since most processors can perform compare-And-Set (CAS)
or load-link/store-conditional (LL/SC) operations on only 64
bits at a time, current approaches either use some bits in a
memory word to pack additional information (packing), or use
the bits to store a pointer to an object that contains additional
information (redirection), and the original data item.

The former approach restricts the number of bits for each
additional field and this reduces the range of the field, and the
latter approach is wasteful in terms of space. We propose a
novel and universal method called a memory word expander in
this paper. It caches information for a set of memory locations
that need to be augmented with additional information. It
supports traditional atomic get, set, and CAS operations, and
tries to maintain state for a minimum number of entries.
We experimentally demonstrate that it is possible to reduce
the runtime memory footprint by 20-35% for algorithms that
use redirection. For algorithms that use packing, the use
of the EXPANDER can make them feasible. The performance
overhead is within 2-13% for 32 threads. When we compare the
performance of the EXPANDER based non-blocking algorithms
with the version that uses locks, we have a performance gain
of at least 10-100X.

I. INTRODUCTION

Concurrent data structures for shared memory parallel
programs are now being used in operating systems, mid-
dleware, and device drivers. In such a shared memory
model, processes communicate and synchronize by applying
primitive operations on memory words. Each process is
assumed to run at an arbitrary speed, and might be subject
to arbitrarily long delays. This significantly complicates
the task of designing and verifying correct concurrent data
structures.

To implement concurrent non-blocking data structures, it
is often necessary to add additional information to memory
words in a data structure. This additional information can

Smruti R. Sarangi
Indian Institute of Technology, Delhi
srsarangi@cse.iitd.ac.in

range from a single bit to multiple bits that represent the
id of the owner thread, time-stamp, and other application
dependent fields. There are many implementations [1]-[5],
which store the ownerld within the memory word itself.
Occasionally, a timestamp field is stored to avoid ABA
issues [6] (see [7]-[11]). This additional information is
temporary. Once the operation is over, typically only the
final value of the memory word is required.

Since most processors can perform CAS or LL/SC oper-
ations on only 64 bits at a time, current approaches either
assign a few bits to pack additional information in a single
memory word, or use a pointer to an object. We refer to the
former approach as packing. The second method uses the
bits to store a pointer to an object that contains the original
data item along with additional information. We refer to this
approach as redirection. The former approach, packing, has
two major drawbacks. First, it restricts the number of bits for
each additional field and thus reduces the range of the field
(reduces scalability to larger systems). It also restricts the
space available for the original data item such as an entry in
a queue or a stack. It might not always be possible to reduce
the size of the data. In this case, the second approach is used,
which is wasteful in terms of space because we allot space
for temporary fields even when they might not be used. The
memory overhead in case of lock-free algorithms is a well
know problem [12]-[14]. Sagonas et al. [15] observe that
reduction in the memory footprint of concurrent programs
is key to efficient memory management. We try to solve
this problem by reducing the space wastage associated with
temporary fields (20-35%).

Our aim in this paper is to provide a generic(universal)
method to implement concurrent data structures without
performing packing or redirection. The main insight that we
use is that after an operation on a concurrent data structure
finishes, the memory words contain the final values, and
typically do not require the additional information that is
packed into them. If we can treat the memory words that
are currently being used in a special way, then we can
avoid both packing and redirection. We propose a novel
data structure called an EXPaNDER that caches the set of
memory locations that are currently being used. All the
accesses to these memory locations go through the EXPANDER.
It can pack an arbitrary number of fields, and can simulate
atomic operations (examples: get, set, and compare-and-

set(CAS)). It provides an illusion to the programmer that
a memory word consists of a large number of “packed”
fields without complicating the programming model. Once
the operation on a data structure is over, we can typically
discard the temporary information. At this point the contents
of the memory location can be removed from the EXPANDER.
The EXPANDER is a linearizable and lock-free structure, and
works in user space. It can be either used as a library or
can be implemented by the compiler/JVM (in this paper, we
implement the EXPANDER as a library).

Most changes to the code are very simple: simply re-
place an atomic operation by a call to the EXPANDER (see
Section VI for a reference implementation of a wait-
free queue). The percentage of atomic instructions per se
as compared to non-atomic instructions is typically less
than 1% in most parallel programs [16]. Hence, we can
afford to slow them down quite a bit, if the gains are com-
mensurate. We show that with such simple transformations
(i.e modifying < 1% instructions), the EXPANDER can reduce
the memory footprint (by 20-35%) (Section VIII), and
eliminate the need for packing fields without a significant
drop in performance. For algorithms that use packing, we
make them feasible for large systems with 100s of cores
(e.g:Intel MIC type processors), and for algorithms that use
redirection we significantly alleviate the pressure on the
caches by reducing the memory footprint by a fifth to a third.
All of this is achieved with a 2-13% drop in performance
for 32 threads. This is miniscule, when we consider the
fact that non-blocking implementations are several orders of
magnitude faster than blocking implementations.

II. RELATED WORK

Let us now outline the advantages and disadvantages
of a memory word expander with respect to packing and
redirection. Packing places very strict limitations on the size
of the temporary fields such as the thread id, request id, and
the original data item. With an EXPANDER we avoid these
limitations. An approach that uses redirection wastes space
in storing the temporary variables in a data structure that are
seldom used. We avoid this.

Harris et al. [17] proposed a method that is a combination
of packing and redirection. A memory word has 2 bits to
indicate the status of the rest of the bits. If the first bit is 1,
the last n — 2 bits are a pointer to an object that contains the
data item along with temporary fields. On the other hand,
the last n — 2 bits contain the data item if the first bit is 0.
In languages such as Java, it is not possible to implement
this scheme because Java does not allow users to modify
pointers. The EXPANDER does not have this limitation.

There is a vast amount of literature on concurrent data
structures and algorithms with a variety of progress guaran-
tees and correctness conditions. Table I lists the methods and
additional fields used by some of the highly cited papers on
non-blocking algorithms and data structures. However, we

are not aware of any work that is similar to the scheme that
we propose in this paper. The notion of caching a part of a
data structure has been used in universal constructions [10].
However, they construct a per-thread private cache and later
update the global data structure. In comparison our approach
proposes a cache that is global.

Algorithm
Wait-free multi-word CAS [4]
Universal construction [1]
CAS and LL/SC [2]
Wait-free multi-object opera-
tions [18]

Universal construction [19]
Multiword CAS [17]

Temporary Fields
index, thread id, descriptor
thread id, valid bit, count
thread id
parent id, operation id, lock,
value
unique id(timestamp)

2 bits to indicate the state of

the rest of the bits
pointer to record and a marked

lc)gunler/tag to avoid ABA is-
sues

enqueue Id, dequeue Id
value, type, freeze

mark bit and a success bit
request id, thread id, round,
timestamp, slot number, state

LLX/SCX primitives [20]

Lock free hashtable [8],linked
list, queue [10]

Wait-free queue [21]
Wait-free priority queue [22]
Wait-free linked list [23]
Wait-free slot scheduler [24]

-l Bl e I I | z'-cw-:w-ug
]

Table I: Packing (P) and Redirection (R) in concurrent data structures

A. Example

Let us consider the multi-word compare-and-set (MCAS)
operation. In its quintessential form, it requires an array,
addr, of n addresses, and two other n element arrays:
old and new. If Vi, xaddr[i] == old[i], then we set
V4, *xaddr[j] = mnew[j]. Let us consider a non-blocking
implementation. Assume that n = 5, thread ¢; has scanned
all the locations, and it has found the values in memory to be
equal to the old values. It then starts writing the new values
(using write or CAS operations). Assume that after writing
the first 4 values, another thread ¢{; comes and modifies
the 5" value. t.s operation cannot complete. It will need
to roll back the first 4 writes. However, it is possible that
another thread ¢; might have read some of the values that
t; wrote and later rolled back. We cannot allow thread ¢;
to alter its behavior on seeing the status of an un-linearized
request. To avoid such complexities, most implementations
of MCAS typically set a temporary lock on a word once
it has been read, and before it has been modified. This
stops other concurrent accesses from modifying the word.
We thus require to pack at least 1 bit. However, other
concurrent accesses cannot wait indefinitely if we need to
provide lock-free or wait-free guarantees. To support such
progress conditions, it is often necessary to pack a thread id
with each word to identify the owner of the memory word.
In our example, thread ¢; will typically have two options:
help thread ¢; in completing its request, or cancel thread
t;’s request and move forward with its own request. Both
the schemes have been used in prior work [25]. Once an
operation is over, we do not need the lock bit (assumed
to be 0), or the owner id (irrelevant). Hence, the EXPANDER
stops allocating space for them; instead it assumes that they
have default values. Aggarwal et al. [24] considered a more

advanced version of the MCAS operation where the problem
is to reserve a set of M slots in consecutive columns of a
large slot matrix. For their wait-free implementation they
required to pack 59 bits: state (2 bits), tid(thread id) (10
bits), slot Num (6 bits), round (5 bits), requestId (15 bits)
and timestamp (21 bits). Packing a large number of fields
into a memory word that contains data values is typical of
most sophisticated lock-free and wait-free algorithms.
III. OVERVIEW

There are two kinds of accesses made to the EXPANDER. The
first kind comprises of get, set, and C'AS (compare-And-
Set) operations on memory words. These methods internally
allocate an entry in the EXPANDER using the lookupAlloc
method. After the high level operation is done (eg: queue
enqueue/dequeue), the memory entry in the EXPANDER needs
to be explicitly freed (second type). Note that it is easily
possible to support many more types of operations such as
swap, LL/SC, and fetch&inc. Also note that we use Java for
our implementation in this paper (C/C++ can also be used).

Internally, the EXPANDER consists of a lock-free list-based
hash table as shown in Figure 1. We resolve collisions
by chaining (each entry has a linked list). Based on the
hash function, a memory word in the baseline data structure
(such as a concurrent list or queue) is mapped to one of
the buckets of the hash table. Operations on different hash
buckets are inherently disjoint and can proceed without
interference. Whenever there is a write request for a memory
location in the baseline data structure and additional fields
are associated with that memory word, a node is added to
the EXPANDER in one of the buckets. Subsequent read or write
requests for that location are serviced through the EXPANDER.
A single memory word can be expanded to contain an
arbitrary number of temporary fields. This value is specified
by the user depending on the application. The EXPANDER is
dynamic, allowing the hashtable and additional memory used
to grow and shrink arbitrarily.

A. Data Structures

Figure 1 shows the high level design of the EXPANDER.
We have an array list Head that contains numSets entries.
Each entry of the array listHead points to a linked list.
Each node of this linked list is of type MemCell, and is
uniquely identified by the field memIndez(also acts as the
hash key).

In the class MemCell, the next field maintains an
atomic reference to the next element in the list along
with a timestamp. The timestamp field can be updated
atomically and is a combination of stamp and mark (MSB
of timestamp). The stamp field is used to implement the
notion of a version for the next pointer. This strategy
avoids ABA problems. The mark field is used to indicate
whether a node is marked for deletion or not. The dataState
field is a pointer to an instance of the DataState class,
which contains three fields: contents of the memory word

(DataType data, also referred to as data item), temporary
fields (T'mpType[] tmpFields), and an atomic integer,
versionState. The versionState field is a combination of
the data version and state. Here, version acts as a time
stamp. There are different ways of packing the version and
the state in the MemClell data structure. We chose the
fastest implementation (determined experimentally). Addi-
tionally, the MemClell class supports two static methods
(getState and getVersion) to retrieve the state and version
from versionState.

The state field (of versionState) represents one of the
four states of a node in the linked list. The states are CLEAN,
DIRTY, WRITEBACK and FLUSH. By default each instance of
MemClell is created in the CLEAN state. It means that the
contents in the EXPANDER are the same as that in the baseline
data structure. DIRTY means that some write operation has
taken place on this node. WRITEBACK means that a thread is
trying to copy the contents of a node to the baseline data
structure. FLUSH means that write back is complete and now
the node can be deleted from the ExpaNDER. Figure 2 shows
how each entry of the EXPANDER moves from one state to the
next. The input to all these functions is an implementation of
the interface, EFxpNode (see Figure 3). This interface pro-
vides two methods (getData and setData) for reading and
writing a memory word irrespective of its type. Additionally,
the ExzpNode interface makes it mandatory to provide an
implementation of the function, hash(), which uniquely
identifies the encapsulated memory word. It can either be the
encapsulating object’s default hashcode (natively supported)
or a custom value such as an array index in the case of
the lock-free multi-word compare-And-Set algorithm (see
Section II-A). The result of this hash() function is saved in
the memIndex field of MemClell to uniquely identify the
node in the ExpANDER. The operations provided by EXPANDER
are shown in Figure 4.

IV. ALGORITHM

Here, we describe the implementation of the EXPANDER.
All our algorithms are linearizable and lock free.

A. lookUpAlloc()

We use this method to search for a node (MemClell) with
a given key, memlIndex, in the ExpANDER. If the node is not
present, then this method creates a node corresponding to
memIndex with default fields: state as CLEAN and stamp
as 0. Now, a node is added to the EXPANDER only when
we have a write operation (kSet or KCAS). We ensure this
by calling the lookUpAlloc method only upon receiving a
write request. The input to this method is an argument of
type ExpNode corresponding to a memory word. We first
calculate the hash key (memlIndex = expNode.hash()).
Then, we search for a node in the EXPANDER with its key
as memIndex. If we do not find a matching node, then
it is necessary to create a new node for the memory word

memory word to be
expanded

node of type

Memeell KkSet{)/kCAS()/
| | | kGet()
_)l data
—> . .
tmpFields(kFields
associated with
memory word)
next(reference) version [—> State
Baseline data structure Mark B“<_J TimeStamp

containing memory words Hash Table (listHead Array)

Figure 1: High level design of the EXPANDER

class Expander<DataType, TmpType> {
AtomicReferenceArray<MemCell> listHead; int numSets;

class MemCell {

/x stores the result of the hash() method x/
final int memIndex;
AtomicReference<DataState> dataState;
AtomicStampedReference<MemCell> next;

}

public class DataState { /x data + state x/
DataType data; TmpType[] tmpFields;
AtomicInteger versionState;

}

}
/» DataType same as that used in the Expander =/
interface ExpNode<DataType> ({

DataType getData(); void setData (DataType);
int hash();

}
Figure 3: Types and structures

and insert it in to the ExpaANDER. The implementation is this
method is similar to the add method of the lock-free linked
list described in [10].

B. kGet()

Similar to lookUpAlloc, this method also takes an
expNode as the single argument. It returns the data item and
the values of temporary fields (return type: DataState). In
the function, if a node corresponding to the key memlIndex
is found (Line 3) in the EXPANDER, then the contents of the
data item and temporary fields are returned (Line 5). Oth-
erwise, we read the value from the baseline data structure,
using expNode’s getData method. In both the scenarios,
the value associated with the key, memIndez, is returned
(Line 10). To avoid unnecessary memory allocations, a node
is not added to the EXPANDER in the case of a read operation
(kGet()). Threads can directly read the contents from the
baseline data structure itself.

C. kCAS()

The kC'AS() method has the same functionality as the
atomic instruction compareAndSet (CAS) and is similar to
the kSet operation. It compares a set of values correspond-
ing to a particular memory word (with key memlIndex)
with a specified set of values. If the stored values match, it
updates all the values atomically.

We first call lookUpAlloc in Line 15 to find/allocate a
node (MemCell). Then, we read the version number of

Figure 2: FSM of an
EXPANDER’s node

o kGet :- Returns the values (including temporary fields)
stored in the EXPANDER for a particular memory word.

e KCAS :- The expanded values corresponding to a single
memory word are read from the EXPANDER and are
compared against a set of values, and if all of them
match, the expanded values are updated atomically.

o kSet :- The values stored in a node inside the EXPANDER
are updated atomically.

o free :- The node corresponding to a given memory word
in the EXPANDER is deleted.

Figure 4: The basic operations provided by the EXPANDER

the data and the state in Lines 16—17. Both of these are
packed in the same word, versionState. If the state of
the node is FLUSH then we call the helpDel() method to
delete the node from the ExPANDER (Line 36). Otherwise, we
compare the stored and old data items and temporary fields
in Line 19 and if all of them match, we proceed to update
the contents of the node. However, if any of the values fail
to match, then we return false in Line 20. For updating the
contents of a node, we set the state to DIRTY if the state is
CLEAN (Line 22), and then proceed to perform a CAS on
the node.dataState field in Line 29. Note that in this case,
we change the version of the word. We assume a function,
newVersion, that returns a unique version number. It can
be implemented with a fetchAndIncrement call, or by
using a thread specific counter. In the latter case, the version
is a combination of the thread id, and the local count of
the thread. In case the state of the node is WRITEBACK, the
state remains the same and only the version is updated. This
call can return false only in the case of concurrent writes,
CAS, or remove operations. In this case a thread tries again
(Line 32).

D. kSet()

The kSet() method has the same functionality as the
atomic instruction Set and the implementation is similar to
the kC AS operation. Due to the lack of space we have not
shown the algorithm in the main paper.

1 kGet(expNode) 38 free(expNode)

2 memlndex <— expNode.hash() 39 memlndex <— expNode.hash()

3 (node, prev) < lookUp(expNode) 40 (node, pred) <— lookUp(memlIndex)

4 if node.memindex = memlIndex then 41 if node.memIndex # memlindex then

5 dataState + 42 | return

node.dataState.get() 43 end

6 return dataState 44 while frue do

7 end 45 dataState <— node.dataState.get()

s else 46 oldValue <+

9 /* The value is not in the dataState.versionState.get()

EXPANDER so return the value 47 version <—
saved in the baseline data MemCell.getVersion(old Value)
structure */ 48 state <—

10 data <— expNode.getData() MemCell.getState(old Value)

11 return new DataState(data, null) 49 if state == WRITEBACK ||

/* null means no temporary state == FLUSH then
field is associated with this 50 return false /* Some other
memory word */ thread is deleting the node

12 end */

13 kCAS(expNode, oldData, 51 end

oldValues[], newData, newValues[]) 52 newState <— packCell

14 while true do (WRITEBACK, version)

15 node < lookUpAlloc(expNode) 53 newDataState <— new

16 dataState < node.dataState.get() DataState(dataState.data,

17 nodeState <— dataState.tmpFields, newState)

MemCell.getState(dataState. 54 res <—
versionState.get()) node.dataState.compare AndSet
18 if nodeState # FLUSH then 55 (dataState, newDataState)
19 /* Check if (oldData, 56 if res == true then
oldValues) = 57 | break
(dataState.data, 58 end
dataState.tmpFields) */ 59 end
2 /% if any one of the values 60 /* Only one thread succeeds in
differ then return false */ updating the state to WRITEBACK.*/
21 if nodeState = CLEAN 61 while frue do
then 62 expNode.setData(dataState.data)
2 newState < (DIRTY, 63 dataState <— node.dataState.get()
‘ new Version()) 64 oldState <—
23 end dataState.versionState.get()
24 else 65 version <—
25 newState <— MemCell.getVersion(oldState)
(nodeState, 66 newState <— packCell (FLUSH,
new Version()) version)
26 end 67 newDataState<— new
27 /* Try to atomically update DataState(dataState.data,
the EXPANDER with a dataState.tmpFields, newState)
dataState containing the 68 res <—
updated values */ node.dataState.compareAndSet

28 newDataState <— new 69 (dataState, newDataState)
DataState(newData, 70 if res = false then
new Values, newState) 71 continue/* There is a

29 if (node.dataState.CAS concurrent
(dataState, newDataState) kSet()/kCAS() going on
then at memIndex */

30 | return true 72 end

3 end 73 else

2 else 74 | break

33 | continue 75 end

34 end 76 end

35 end 77 helpDel(node)

36 helpDel(node)

37 end

E. free()

Once an entry is ready to be removed from the EXPANDER at
the end of the high level operation, we need to call the free
method. This method can either be user initiated or compiler
initiated. Note that it is possible for concurrent free calls
to remove the same word. This method is the most complex
and intricate in our set of algorithms. However, this method
will be called far more infrequently than get, set, and CAS
methods, and thus the additional complexity is not expected
to affect performance significantly.

The free method has two phases: (1) write the value

stored in the EXPANDER to the baseline data structure, and (2)
remove the entry from the ExpANDER. The first phase needs
to be performed by only one thread. We were not able to
accommodate helpers in this phase, because there is no way
to ensure that only one thread updates the value of a memory
word in the baseline data structure. Multiple helpers can
suffer variable delays and thus can possibly corrupt the state
of the memory word. Let us now assume that there are two
threads that want to remove the same memory word. Both
of them cannot enter phase 1. If one of them enters phase 1,
then the other thread needs to return false if it tries to enter
phase 1.

To ensure this exclusivity, we first atomically update
the state of the node, mapped to the key memIndex, to
WRITEBACK (Line 55). For only one thread res is true and
for the rest of the threads, we return false (Line 49). This
indicates that some other request is performing free for
the node with the key memIndex. Now, that a thread has
entered phase 1, it proceeds to write the value to the baseline
data structure and atomically updates the state of the node to
FLUSH (Line 66). This is done as a part of a loop (Lines 61
- 75) since it is possible that other writes are in progress due
to which the version of the node can get updated and result
in a failed compareAndSet call (Line 69). The important
point to note is that it is only one thread’s responsibility to
atomically set the state to FLUSH and update the value of the
baseline data structure corresponding to the key memIndex.
After the state has been set to FLUSH no other thread can
do any updates (kSet or kC AS operations). Threads then
invoke the helpDel method to remove the entry from the
EXPANDER (Lines 78-91). This method admits helpers. We
first logically delete the node from the EXPANDER by setting
the mark bit in the stamp field (Line 82 and Line 83). Next,
we try to physically remove the node from the EXPANDER
(Line 89).

We prove in Section VII that as long as the free method
is called a bounded number of times per high level oper-
ation (such as enqueue/dequeue), there are no changes to
our claims about correctness, linearizability, and progress
guarantees. A programmer simply needs to call it at least
once when she feels that the memory word will not be
actively used any more. This can also be done automatically
by a sophisticated compiler or garbage collector.

V. USAGE WITH WAIT-FREE ALGORITHMS

The EXPANDER is a lock-free data structure. If we use it
in a wait-free algorithm it will render the latter lock-free,
which is not desirable. Let us propose a simple modification
inspired by the fast path-slow path methodology (Kogan
and Petrank [26]) for an important subclass (S) of wait-free
algorithms.

We assume that for each method (such as enqueue,
dequeue) in the wait-free algorithm, we have a method
opDone(reqld), which returns true if the wait-free method

78 helpDel (node)
79 while true do

80 /* Logically delete the node */

81 succ <— node.next.getReference() ; stamp <— node.getStamp()
82 newStamp <— setMark(stamp)

83 status = node.next.attemptStamp(succ, newStamp)

84 if /status then

85 | continue

86 end

87 /* Physically delete the node */

88 pred <— getPredecessor (node) ; predStamp <— pred.getStamp()
89 pred.next.CAS(node,succ,predStamp, predStamp+1)

90 break

91 end

with id reqld has completed (entire method, not kSet).
Second, we also assume that after a method begins, if the rest
of the threads complete a cumulative total of A operations,
then it is guaranteed that some thread (including the current
thread) must have completed the current method. A lot of
wait-free algorithms (class S) that we consider such as
queues, multi-CAS operations, and lists have this property
because they use a high level request array, where older
requests are helped by younger requests. In contrast a simple
wait-free operation of atomically updating a memory word
does not follow this property.

Let us now modify each EXPANDER operation to fail at most
K times. For example, in the lookUp operation, we can
run the outermost while loop a maximum of K times. Let
it throw an exception (can return false also, the method
does not matter) after failing K times. When we call an
EXPANDER’S operation from the wait-free algorithm let us
invoke it as follows (example with kSet).

do {

flag = 0;

try{ expander.kSet(...)}

catch (Exception e){flag = 1;}

if (!flag) break;

}while (!opDone (reqId));

Since the EXPANDER as a whole is lock-free, if an operation
fails for K times, then it means that at least all other
operations have been successful for K’ times where K /K’
is a constant factor (some operations have multiple atomic
instructions). Since each EXPANDER operation (e.g: kSet) is
one step for the high level wait-free algorithm, we can say
that if an operation fails for [times, then other operations
have been successful [x K/ K’ times. When [K /K’ = X, we
are guaranteed that the wait-free method will be completed
(either by the current thread or by some other thread). Thus
for wait-free algorithms in S, we can say that they remain
wait-free even with an EXPANDER.

The aforementioned snippet of code can be inside the
EXPANDER’S API for the sake of elegance. It will be hidden
from the user.

VI. EXAMPLE: WAIT-FREE QUEUE

Let us make a point about the universal nature of the
expander. To use it in any setting, we just need to instantiate

the EXPANDER class with the right values of the class names:
DataType and TmpType, and provide an implementation
of the ExpNode interface. We simply need to replace set,
get, and C'AS functions with their counterparts that use
the ExpANDER. To use EXPANDER with wait-free algorithms we
need to to minor modification as explained in Section V. In
this section, we discuss the implementation details of the
wait-free queue using the ExPANDER. The basic algorithm
of our implementation is the same as that of Kogan et
al. [21] (using linked list). Our approach is very simple:
mostly single line changes to make atomic operations
use the ExpaNDER. The full code of the queue is shown in
Appendix A. We only describe the enqueue method here.

1 public class Queue

AtomicReference<<Node> head,tail
final int enqTid = 0, deqTid = 1

’ Expander <Node,Integer> exp ‘

/* The number of temporary fields associated
with a node in this case is 2: enqTid and deqTid*/
/* The number of threads are 64. */

exp <— new Expander

2

3

4

5 public Queue ()
6

7

8

e

10 <Node, Integer> (2, 64) ‘

1 /* Node contains the value and the reference field */

12 Node sentinel <— new Node(-1)

13 head < new AtomicReference<Node>(sentinel)

14 tail < new AtomicReference <Node>(sentinel)

15 public void enq(tid, value)

16 n < new Node (value)

17 help() /* help the pending requests */

18 /* Create a node in the EXPANDER */

19 values <— new Integer[2]

20 values[enqTid] <— tid /* tid represents the engT'id */
21 exp.kSet(n, n.next, values, false) | /* A new node is added to the
22 help_enq() /* Tries to link n to the tail node same as in [21] */
23 help_finish_enq()

24 void help_finish_enq()

25 /* read the last node of the queue */

26 last <— tail.get() ; next <— last.next.get()

27 if next = null then

23| return

29 end

30 /* Find out which thread has added the last node */

a ’ tid < exp.kGet(next).tmpFields[enqTid] ‘

32 /* Node next is added by the thread tid */

3 /* Update the status of the thread tid and tail pointer */
34 tail.compare AndSet(last,next)

35 /* Remove the node from the EXPANDER */

36 exp.free(next)

With every node that is added in the queue, two temporary
fields— engTid and deqTid — are saved in addition to the
value and reference fields. These fields correspond to the
thread id of the thread, which has enqueued or dequeued the
node respectively. We avoid saving these temporary fields as
it consumes extra space.

The class Queue shows the implementation of the wait-
free queue with multiple enqueuers and dequeuers Lines 5-
14. The nodes are hashed (added) in the EXPANDER on the
basis of the hashcode of the Node. The DataType in this
case is of type Node [10]. The temporary fields that need
to be associated with a node of a queue are the two thread
ids, so T'mpT'ype is of type: Integer.

The code for the enqueue operation is shown in Lines 15-
36. Note that some lines have been removed (or commented
out) to enhance readability. The lines that use the EXPANDER
have been encased in a rectangle. A thread (¢;) places a
request 7 to enqueue a new node n in the linked list.
Along with this, we add the node 7 in the EXPANDER using
the function kSet() (Line 21). This is done to inform the
concurrent threads that an enqueue operation for thread ¢;
is in progress. Lets assume that the next pointer of the last
node tail points to the node n, indicating that some enqueue
operation is in progress. The thread then searches for the
node corresponding to the node n in the EXPANDER using the
function kGet() (Line 31). The function kGet() returns an
object of type Fxpander :: DataState. We subsequently
access the tmpFields array, which in this case is an array
of integers. We read the 0" entry corresponding to engT'id,
which refers to the thread id of the thread that has added
the node n to the queue. Once we know the thread id, all
the helpers try to help thread ¢; in completing its request r.
The tail pointer is updated and points to the node n. Once
the enqueue operation is completed the node n is removed
from the EXPANDER using the free method (Line 36).

VII. CORRECTNESS

We prove that our k\GET () and free() algorithms are lin-
earizable (appear to execute instantaneously) in this section.
Please refer to Appendix B for the proof of lock-freedom
and linearizability of kSET() and kC AS.

Theorem 1: kGet() is linearizable.

Proof: We need to find a point of time between the start
and end of kGet at which it seems to instantaneously exe-
cute. Let us consider the first case when a node is mapped in
the EXPANDER. In this scenario, the kGet() method linearizes
(has a point of linearizability) when a valid node having the
same memlIndez is found by the lookUp method. We then
return its content. Before executing this statement, the kGet
request cannot affect any other request because it does not
have its value, and after it has read the contents of the node,
no other request can change its state. Note that no thread
can change the value of the DataState object after it is
created. Thus, kGet seems to execute at this point.

Next, let us assume that the memory index is not mapped
in the EXPANDER and let the point in time at which the lookUp
method finds this fact be ¢;, and let the value stored in the
baseline structure at this point of time be z. Now, if the
kGet() method returns x, then it seems to execute at time
t;. We can thus make it linearize at time ¢;, when the lookUp
method does not find a node in the linked list.

Let us now consider the case when kGet() reads y (x #
y) from the baseline data structure at time, ¢;. This means
that between ¢; and t; some other thread has updated the
baseline data structure. This can only be done by the free
method. We claim that a kSet or kC AS method linearized
after time ¢;, and then a free method wrote its value before

t;. Assume that this is not the case. It cannot be the case that
the free method started after ¢;. It would not find the node
corresponding to the memory word and would thus exit. It
must have started before ¢;, and continued till some point of
time after ¢;. This means at ¢; it was alive. Since the value
in the baseline structure was x at t;, it must have written
y after ¢;,. This is only possible if it set the state of the
node to WRITEBACK before ¢; (at time ¢,,) and then wrote the
value after t;. It could not have set the state of the node to
WRITEBACK after ¢; because the node itself was not there. This
also means that this free method did not delete the node.
Then another free method might have deleted it between ¢,
and t;. However, to delete a node a free method should have
successfully updated the state of the node to WRITEBACK and
at any point of time, only one such operation can be alive.
This is not possible and there must have been a kSet or
kCAS after ¢; that wrote y to the memory word. Let us
linearize the kGet method after this point. In the sequential
history, we will read y for that memory word and thus the
execution is legal. We considered all three cases, and were
able to find the points of linearizability for all three cases.
Thus proved. []
Theorem 2: The free method is linearizable.

Proof: We need to prove that an execution of the
free operation to clean up a node appears to take place
instantaneously. We define the point at which we read the
node in the lookUp function as the point of linearizability
for the case where we find the node’s state to be WRITEBACK
or FLUSH (another thread is removing). Otherwise, we define
Line 83 as a point of linearizability for the free method.
At this point, a node is logically deleted from the EXPANDER.
Once a node for a particular memory word memlIndex is
logically deleted, it is equivalent to saying that no map-
ping for memIndex exists in the EXPANDER. All the read
operations access data from the baseline data structure and
writes allocate a new node for memIndex in the EXPANDER.
Before logically deleting a node, the state of the node is
set as FLUSH. This does not alter the behavior of the reads
(kGet()) as the value saved in the node is still visible to
the reads and can be directly returned. In the case of write
operations kSet() and kC AS(), a thread first helps the free
method to complete its operation (remove the node from the
EXPANDER) and then proceeds with allocating a new node and
performing the write (conditional write) operation. Before
the free method has reached the point of linearizability, it
does not alter the results of other write operations because
either they can proceed with the write (before state is set
to FLUSH), or they help free to complete the delete, and
then do the write. After the point of linearizability, the entry
is deleted, and this is visible to all concurrent operations
instantaneously. []

Theorem 3: For algorithms in set S (see Section V),
if we have a bounded number of free calls in each
high level method, then the correctness of the program

is not affected. Furthermore, it continues to maintain
its original progress guarantees (lock-freedom or wait-
freedom).

Proof: Let us distinguish between the terms high level
method and low level method. A high level method is a
method in the wait-free/lock-free algorithm that is using the
EXPANDER. In comparison, a low level method is an EXPANDER
operation such as kGet or kSet.

To prove the premise of the theorem, let us proceed as
follows. We know that kGet, kSet, kCAS and free are
linearizable. Given a high level program with a bounded
number of free calls per high level method, we can write
all of them in a serial schedule. The only effect that the extra
free calls will have is on the subsequent kGet, kSet, and
kC'AS calls to the same node.

There will be no effect on kGet because it is bound to
get the most up to date value from either the EXPANDER or
the baseline data structure. The kSet and kC AS operations
call lookUpAlloc first. Even if the node is not there in the
EXPANDER, it will be brought in first. Hence, an additional
free call, will at best entail more work, but will not change
the semantics of the program.

Secondly regarding progress conditions, we can use the
same reasoning as in Section V. Lock-free algorithms will
remain lock-free mainly because the additional free calls
are bounded in number per high level operation, and our
proofs do not presume any particular order between calls
to free and calls to other methods. High level wait-free
algorithms will remain wait-free as per the reasoning given
in Section V. u

VIII. EVALUATION

We performed all our experiments on a Dell PowerEdge
R820 server running the Ubuntu Linux 12.10 operating sys-
tem with the generic 3.5.0-17 kernel. It is a hyper-threaded
four socket, 64 bit machine. Each socket has eight 2.20GHz
Intel Xeon CPUs with a 16 MB L2 cache, and 64 GB main
memory. The total number of cores visible to software is 64.
We use the totalMemory() and freeMemory() functions
of Java’s built in Runtime class to estimate the memory
usage of each program.

Let us now describe our experimental methodology. Let
there be S threads in the system and let each thread complete
N requests. Let the total number of requests completed by
all the threads be N;,; (S x V), and let the time taken from
the start of the experiment be 7. We measure the time per
operation, t,.4, as the average time taken to complete an
operation (T/Ny,t). In our experiments, we set N equal to
1 million and we set the number of buckets in the hash table
equal to the number of threads.

We evaluated the ExPANDER with a wide variety of al-
gorithms as listed in Table II and Table III which use
redirection and packing respectively. Appendix C describes

the temporary fields in each of the benchmarks, and the
methods we use to store them in the EXPANDER.

A. Performance

Figure 6 shows the impact of using the EXPANDER on the
time per operation (t,.,) with 64 threads. The stars indicate
the t,., with 32 threads. All our algorithms implemented
using the ExpaNDER are 10-100X faster than the algorithm
using locks. Hence, we only report the slowdown with
reference to the non-blocking version that does not use an
EXPANDER.

The RrADIR algorithm is a specialized slot scheduling
algorithm for reserving bandwidth for solid state storage
devices (SSDs). It uses an 1D array of slots. The prob-
lem is to reserve a set of k (varying from 2 to 256)
contiguous slots in this array while respecting some con-
straints imposed by the physics of solid state drives. The
wait-free resource allocation for SSD bandwidth reserva-
tion [30] is termed, W F' Radir, and the EXPANDER version
is WF Radir Expander. The performance of both the al-
gorithms is nearly the same up to 40 threads. Beyond 40
threads, W F Radir Expander is 18% slower.

The ExpANDER helps in efficiently implementing a wait-
free multi word compare-And-Set (MW C AS) operation [4]
(wFMcAs). The time taken per operation for w FMcAS and
W FMCASEzpander (MW CAS implemented using the Ex-
PANDER) is within 12% for 32 threads. Next, we consider slot
schedulers (SlotScheduler) that reserve a set of slots (vary-
ing from 3 to 64) in contiguous columns in a 2D matrix of
slots. They are used to implement scheduling in storage sys-
tems, networks, and video servers. We compare the results
of slot scheduling using the ExpANDER (W F'Slot Expander)
with a wait-free slot scheduler proposed in [24] (W F'Slot).
The performance of W FSlotExpander is 11% less than
W FSlot (for > 56 threads).

Now, we discuss a set of benchmarks which use redi-
rection. We evaluated the performance of our expanded
version of the wait-free queue (W FQueueExpander) by
comparing it to the wait-free queue proposed by Kogan et
al. [21] (W FQueue). The results presented in Figure 6 (for
70% push and 30% pop operations) show that the loss in
performance (time per operation) is limited to 10-20%. The
W FQueue algorithm stores two temporary fields, engT'id
and deqT'id, in each of the nodes in addition to the value
and reference fields. With our EXPANDER we need not save
these temporary fields in each node. Thus, the queue with
the EXPANDER uses 20-30% less memory for experiments with
more than 16 threads (see Figure 7).

We compared the performance of a lock-free linked list
by Michael et al. [8] (LF List) with our expanded version
of the lock-free linked (performing 60% add and 40%
remove operations). Both the lists perform nearly the same
(within 1.5%) (see Figure 6). Each node in the linked
list (LF List) contains three fields: value, mark and the

4.5e+06

Table II: List of benchmarks (redirection)

ER
30|
25|
20|
15}
10f
5|

& & S
o 5 L o e o
AN E

=1

in time per operation(%)
=

Reduction in memory usagel)

Slowdown

—
&

Figure 6: Slowdown in the time
per operation (trcq) Wwith the EX-
PANDER

Figure 7: Reduction in memory usage for
benchmarks (using redirection)

atomic reference to the next element. The temporary field,
mark, is typically packed with the next pointer using
Java’s AtomicMarkableReference type (internally uses the
redirection method). It is used to indicate the fact that a
node has been temporarily deleted. We need not associate
this field with all the nodes. As and when a node is selected
for deletion we need this information. Figure 7 shows that
the linked list implemented using the EXPANDER uses 18% less
memory with nearly no performance overheads. Similarly
we compare the performance of our expanded version of
a lock-free skiplist with a lock-free skiplist implementation
proposed by Herlihy et al. [29] (performing 60% add and
40% remove operations). In this case, the memory usage
is reduced by 35% since at each level the nodes need not
save the mark field. The consequent slowdown in the time
per operation is 15% (for > 40 threads). Lastly, we show
the comparison of a lock-free binary search tree (BST)
proposed by Natarajan et al. [28] with a binary search tree
implemented using our EXPANDER (performing 60% add and
40% remove operations). Both the algorithms perform nearly
the same (< 2%) and we save up to 7% memory when an
EXPANDER is used.

B. Sensitivity

Let us now do some sensitivity studies for various im-
plementations of the ExpANDER. We start by looking at when
we should add memory words to the ExPANDER. We study
this with the help of the rRaDIR benchmark (considered as a
representative). Assume that we add memory words to the
EXPANDER whenever it is accessed (read or write), even if no
temporary fields are associated with a word. We refer to this
implementation as (readsCached). In the second scheme,
memory words are added to the EXPANDER only when writes
take place using kSet() or kCAS() (readsNotCached). We

Workload Temporary fields oon readsCached mm
Wait-free enqueueld(4bytes), Workload Temporary fields (in bits)

Queue [21] | dequeueld(4bytes) Wait-free Multi | index(30), thread id(30), g o008

Lock-free mark bit (1 bit) word CAS [4] pointer(2) 2 sews

Linked Generalized request id(15), thread id(10), $2.50+06

List [27] wait-free slot round(5), timestamp(21), slot £ 2ei06

Lock-free tag (4bytes) scheduling [24] number(6), state(2) 21_5%06

binary flag(1byte) RADIR(slot request id(15), thread id(10), = 1or06

search scheduling for state(2)

tree [28] SSD based storage 500000

Lock-free mark bit(1 bit) devices) [30] o - mo L b Do L L g
Skiplist. [29] number of threads

Table III: List of benchmarks (packing)

time (in microseconds)

Figure 8: Impact of hashtable size on
treq for WFMCASExpander

Figure 5:
W F Radir Expander

1200

"readsCached —+— |

10000 1000 |- readsNotCached 4

WFMCAéExpaHder L

L—‘ 0

L L L L L
0 50 100 150 200 250 300 0 10 20 30 40 50 60 70
HashTable Size

800
600
1000
400

200

time (in microseconds)

100

number of threads

for W F Radir-

Figure 9:
Ezxpander

treq

observe that adding memory words on receiving a read
request increases the size of the EXPANDER by nearly 75% for
up to 32 threads (see Figure 5). Beyond 32 threads, the size
of the EXPANDER nearly doubles. When reads are not cached,
there is a roughly 75% improvement in performance for up
to 40 threads and beyond 40 threads we get roughly 36%
improvement in the time per operation (see Figure 9). This
justifies our choice of not adding the memory words to the
EXPANDER On receiving a read request.

Next, we experimented with two policies to recycle the
nodes in the ExpANDER for the multi word compare-And-
Set (MW CAS) benchmark. In the first scheme, nodes
are deleted from the EXPANDER as soon as the corre-
sponding memory words are no longer required by the
threads (WFMCASEzpander). In the second scheme, nodes
are deleted from the ExpANDER only when a thread com-
pletes its operation (MCASExzpFuil). The results show that
MCASEzpFull 1s approximately 10x slower than w FMCAS —
Expander.

Lastly, we study the impact of the hash table size since it
plays an important role in the performance of the EXPANDER.
We used the multi word compare-And-Set (MW CAS)
benchmark for this study. Figure 8 shows the time per
operation for 64 threads with various hash table sizes. We
observe that lower the hash table size, more is the time
taken per operation. The reason for the increased time per
operation is that the size of each hash bucket is large in
the case of a small hash table and this increases the search
overhead in each bucket. Once the table size is 64 (equivalent
to the number of threads), the time per operation is 192us,
which is nearly the same as for the version of the code
without the ExpaNDER. If the table size is increased beyond
64, the effect on the time per operation is negligible. The

Space overhead for different schemes -

last two experiments justify our choice of the hash table size,
and the strategy of eager deletion.

IX. CONCLUSION

We designed a novel universal data structure called a
memory word EXPANDER. It eliminated the need for both
redirection and packing. We showed that it is possible
to reduce the runtime memory footprint by 20-35% for
algorithms that use redirection. We studied three algorithms
that use packing and the performance overhead for all three
algorithms was 2-13% for 32 threads (< 20% for 56+
threads) and we further showed that we preserve the wait-
free property of algorithms for a large class of wait-free
algorithms.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

(12]

[13]

REFERENCES

J. H. Anderson, S. Ramamurthy, and R. Jain, “Implementing
wait-free objects on priority-based systems,” in PODC, 1997.

A. Israeli and L. Rappoport, “Disjoint-access-parallel imple-
mentations of strong shared memory primitives,” in PODC,
1994.

S. Feldman, P. LaBorde, and D. Dechev, “A wait-free multi-
word compare-and-swap operation,” IJPP, 2014.

H. Sundell, “Wait-free multi-word compare-and-swap using
greedy helping and grabbing,” International Journal of Par-
allel Programming, vol. 39, no. 6, pp. 694-716, 2011.

T. L. Harris, K. Fraser, and I. A. Pratt, “A practical multi-
word compare-and-swap operation,” in Distributed Comput-
ing, 2002.

M. M. Michael, “Aba prevention using single-word instruc-
tions,” IBM Research Division, RC23089 (W0401-136), Tech.
Rep, 2004.

——, “Scalable lock-free dynamic memory allocation,” ACM
Sigplan Notices, vol. 39, no. 6, pp. 3546, 2004.

——, “High performance dynamic lock-free hash tables and
list-based sets,” in SPAA, 2002.

J. D. Valois, “Implementing lock-free queues,” in PDCS,
1994,

M. Herlihy and N. Shavit, Art of Multiprocessor Program-
ming. Morgan Kaufmann, March 2008.

M. M. Michael and M. L. Scott, “Nonblocking algorithms
and preemption-safe locking on multiprogrammed shared
memory multiprocessors,” Journal of Parallel and Distributed
Computing, vol. 51, no. 1, pp. 1-26, 1998.

M. M. Michael, “Hazard pointers: Safe memory reclamation
for lock-free objects,” IEEE Transactions on Parallel and
Distributed Systems, vol. 15, no. 6, pp. 491-504, 2004.

M. Herlihy, V. Luchangco, P. Martin, and M. Moir, “Non-
blocking memory management support for dynamic-sized
data structures,” ACM Transactions on Computer Systems
(TOCS), 2005.

[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

M. M. Michael, “Safe memory reclamation for dynamic lock-
free objects using atomic reads and writes,” in PODC. ACM,
2002.

K. Sagonas and J. Wilhelmsson, “Efficient memory manage-
ment for concurrent programs that use message passing,” Sci.
Comput. Program., vol. 62, no. 2, pp. 98-121, 2006.

S. Patel, R. Kalayappan, I. Mahajan, and S. R. Sarangi,
“A hardware implementation of the mcas synchronization
primitive,” in DATE, 2017.

T. L. Harris, K. Fraser, and I. A. Pratt, “A practical multi-
word compare-and-swap operation,” in Distributed Comput-
ing, 2002.

Y. Afek, M. Merritt, G. Taubenfeld, and D. Touitou, “Disen-
tangling multi-object operations,” in PODC, 1997.

G. Barnes, “A method for implementing lock-free shared-data
structures,” in SPAA, 1993.

T. Brown, F. Ellen, and E. Ruppert, “Pragmatic primitives for
non-blocking data structures,” in PODC, 2013.

A. Kogan and E. Petrank, “Wait-free queues with multiple
enqueuers and dequeuers,” ACM SIGPLAN Notices, 2011.

A. Israeli and L. Rappoport, “Efficient wait-free implemen-
tation of a concurrent priority queue,” in Distributed Algo-
rithms. Springer, 1993, pp. 1-17.

S. Timnat, A. Braginsky, A. Kogan, and E. Petrank, “Wait-
free linked-lists,” in Proceedings of the 17th ACM SIGPLAN
PPoPP, 2012.

P. Aggarwal and S. R. Sarangi, “Lock-free and wait-free slot
scheduling algorithms,” in /PDPS, 2013.

H. Attiya and E. Hillel, “Highly concurrent multi-word syn-
chronization,” Theoretical Computer Science, 2011.

A. Kogan and E. Petrank, “A methodology for creating fast
wait-free data structures,” in ACM SIGPLAN Notices, 2012,
pp- 141-150.

J. D. Valois, “Lock-free linked lists using compare-and-swap,”
in PODC, 1995.

A. Natarajan and N. Mittal, “Fast concurrent lock-free binary
search trees,” in Proceedings of the 19th ACM SIGPLAN
PPoPP, 2014.

M. P. Herlihy, Y. Lev, and N. N. Shavit, “Concurrent lock-
free skiplist with wait-free contains operator,” May 3 2011,
uS Patent 7,937,378.

P. Aggarwal, G. Yasa, and S. R. Sarangi, “Radir: Lock-
free and wait-free resource allocation model for flash drive
bandwidth reservation,” in HiPC, 2014.

APPENDIX A.
EXAMPLE: WAIT-FREE QUEUE

In this section, we discuss the implementation details of
the wait-free queue using the ExpaNDER. Kogan et al. [21]
describe an implementation of a wait-free queue, which
supports multiple concurrent dequeuers and enqueuers. The
queue is implemented in the form of a linked list and
additionally holds two references to the head and tail of
the list. To ensure that the implementation is wait-free, a
thread helps another thread (which is waiting for long) in
completing its operation.

1 public class Node implements ExpNode<Node>
2 Integer value

3 AtomicReference <Node> next

4 public Node(Integer val)

5 value=val

6 public int hash ()

7 return this.hashCode()

8 public Node getData ()

9 return next.get()

10 public void setData (Node b)

11 next.set(b)

12 end class

13 public class Queue

14 AtomicReference <Node> head,tail
15 final int enqTid = 0, deqTid = 1

16 Expander <Node,Integer> exp

17 public Queue ()

18 /* The number of temporary fields associated with a node in this case is
2: enqTid and deqTid*/

19 /* The number of threads are 64. It is used to called the hashtable size. */

20 ’ exp <— new Expander<Node, Integer> (2, 64)

21 /* Node contains the value and the reference field */

22 Node sentinel <— new Node(-1)

23 head <— new AtomicReference <Node>(sentinel)

24 tail <— new AtomicReference<Node>(sentinel)

25 public void enq(tid, value)

26 n < new Node (value)

27 help() /* help the pending requests */

28 /* Create a node in the EXPANDER */

29 values <— new Integer[2]

30 values[enqTid] < tid /* tid represents the engT'id */

31 /* A new node is added to the EXPANDER by hashing it on the basis

*

exp.kSet(n, n.next, values, false)

33 help_engq() /* Tries to link the node n to the tail node same as in
[21] */
34 help_finish_enq()

With every node that is added in the queue, two temporary
fields— enqgTid and deqT'id — are saved in addition to the
value and reference fields. These fields correspond to the
thread id of the thread, which has enqueued or dequeued
the node respectively. In case of an enqueue operation, a
thread first finds which thread has attached the last node to
the queue. This is done by reading the engT'id field of the
node. A thread then helps the thread with id as engT'id to
complete its operation. Similarly, for the dequeue operation
a thread tries to help the request placed by the thread whose
thread id is saved in the deqT'id field of the first node (head
node) of the queue. We notice that once the enqueue/dequeue
operation is over, we no longer require the engTid and
deqTid fields. Therefore, we avoid saving the temporary
fields enqTid and deqT'id in each node of the queue as

these fields consume extra space.

Let us discuss the design of the queue implemented using
the ExPANDER. The basic algorithm of our implementation is
the same as that of Kogan et al. [21]. In the EXPANDER based
design, each node of the queue requires only two fields:
value and the atomic reference to the next element. The
Node class implements the interface FxpNode and pro-
vides the implementation for the functions hash, getData
and setData as shown in the algorithm (Lines 1-11).

The class Queue shows the implementation of the wait-
free queue with multiple enqueuers and dequeuers. The
nodes are hashed (added) in the EXPANDER on the basis of the
hashcode of the Node (returned by Java’s native hashCode
function). The DataType in this case is of type Node. The
temporary fields that need to be associated with a node of
a queue are the two thread ids, so TmpType is of type:
Integer.

The code for the enqueue operation is shown in Lines 25-
47. Note that some lines have been removed (or commented
out) to enhance readability. The lines that use the EXPANDER
have been encased in a rectangle. We assume that the code
to ensure wait freedom is implemented as described in
Section V. The additional details of implementing opDone
(part of the original algorithm also) and passing the request
id are not shown for the sake of readability.

35 void help_finish_enq()
36 /* read the last node of the queue */
37 last < tail.get()

38 next <— last.next.get()
39 if next # null then

40 /* Find out which thread has added the last node */

M ’ tid < exp.kGet(next).tmpFields[enqTid]

2 /* Node next is added by the thread tid */

43 /* Update the status of the thread tid and tail pointer */
4 tail.compare AndSet(last,next)

45 /* Remove the node from the EXPANDER */

46 exp.free(next)

47 end

A thread (t;) places a request r to enqueue a new node
n in the linked list. Along with this, we add the node n
in the EXPANDER using the function kSet() (Line 32). This
is done to inform the concurrent threads that an enqueue
operation for thread ¢; is in progress. After adding the node
in the queue, a thread updates the tail pointer of the queue
to n. Lets assume that the next pointer of the last node
tail points to the node n, indicating that some enqueue
operation is in progress. The thread then searches for the
node corresponding to the node n in the EXPANDER using the
function kGet() (Line 41). The function kGet() returns an
object of type Expander :: DataState. We subsequently
access the tmpF'ields array, which in this case is an array
of integers. We read the 0" entry corresponding to engT'id,
which refers to the thread id of the thread that has added
the node n to the queue. Once we know the thread id, all
the helpers try to help thread ¢; in completing its request 7.
The tail pointer is updated and points to the node n. Once
the enqueue operation is completed the node n is removed

from the EXPANDER using the free method (Line 46).

48 public int deq(tid)

49 /* Place a request 7 to dequeue a node */

50 help() /* Help the pending requests */

51 help_deq(tid)

52 help_finish_deq()

53 void help_deq(tid)

s4 /* If the queue is not empty and the operation of thread tid is pending */
55 /* Add the first node of the list in the EXPANDER */

56 first <— head.get()

57 oldValues[deqTid] < -1

58 new Values[deqTid] < tid /* tid represents the deqTid */

59 ’ exp.kCAS(first, oldValues, new Values)
60 help_finish_deq()

61 help_finish_deq()

62 /* read the first node of the queue */
63 first <— head.get()

64 next <— first.next.get()

65 tid <— exp.kGet(first).tmpFields[deqTid]

66 if tid # -1 then

67 /* update the status of the thread tid */

68 /* update the head pointer */

69 head.compareAndSet(first,next)

70 /* remove the node from the EXPANDER */
7 exp.free(first)

72 end

Similarly, in the dequeue operation a thread adds the node
first (head) to the EXPANDER, corresponding to the head node
in the list (Line 59). We can subsequently perform atomic
operations on the fields of this node. The thread (dequeuer)
then tries to write its thread id in the first node using the
EXPANDER’S KC'AS() method. This is done to indicate which
thread is trying to dequeue a node. Now, if there are multiple
dequeuers, the thread for which kC AS returns true (Line 59)
will be able to dequeue the head (firsf) node successfully.
All the threads read the thread id (tid) associated with the
first node using the kGet() method (Line 65) and then
help the thread with id ¢id in completing its operation. The
code is shown in Lines 48-72.

Note that, only one node is added to the EXPANDER per
enqueue operation even though there are multiple helpers
trying to help a request in completing its operation. At any
point in time, the number of nodes added to the EXPANDER
is equal to (the number of enqueuers + min (1, no of
dequeuers)). As soon as an operation is completed, the
corresponding node is deleted from the ExpANDER. Other than
the lines for accessing the EXPANDER’s functions, the rest of
the Java code is the same for our version and the original
wait-free version proposed by Kogan et al. [21].

APPENDIX B.
IMPLEMENTATION OF lookUp(), lookUpAlloc() AND
kSet()

A. lookUp()

This function locates the entry (of type MemClell) corre-
sponding to a memory word identified by expNode.hash()
in the ExPANDER. We search for the nodes in one of the linked
list (buckets) of the hash table where the nodes are arranged
in ascending order of their memIndex fields. If we find a
match, then we return the node and its predecessor. While

traversing the list, if we reach a node of the linked list
that has a key greater than memIndex, it indicates that the
corresponding node of the specified index is not mapped in
the EXPANDER. In this case we return the node with the least
larger index and its predecessor. We can use this pair of
nodes to insert a new node with index, memlIndex, between
them. Lastly, while traversing the list if a node is found to be
logically deleted, then that node is physically deleted from
the ExPANDER. We increment the timestamp associated with
the next field indicating that the linked list has been updated.
The implementation of our lookUp method is similar to the
search method of the lock-free linked list described in [10].

B. lookUpAlloc()

We use this method to search for a node (MemClell) with
a given key, memlIndex, in the EXPANDER. If the node is not
present, then this method creates a node corresponding to
memlIndex with default fields: state as cLEAN and stamp
as 0. Now, a node is added to the ExpANDER only when
we have a write operation (kSet or KCAS). We ensure this
by calling the lookUpAlloc method only upon receiving a
write request. The input to this method is an argument of
type ExzpNode corresponding to a memory word. We first
calculate the hash key (memlIndex = expNode.hash()).
Then, we search for a node in the ExPANDER with its key
as memIndex. If we do not find a matching node, then
it is necessary to create a new node for the memory word
and insert it in to the ExPANDER. The implementation is this
method is similar to the add method of the lock-free linked
list described in [10].

C. kSet()

This method is used to update the value of a memory word
(along with temporary fields) atomically. The parameters
are: the expNode, data item’s value, and list of tempo-
rary fields (tmpV alues). We first invoke the lookUpAlloc
method to return a node (of type MemC'ell) corresponding
to the expNode in Line 103. Next, we check the state of
the node. If the state is not equal to FLUSH then it means
that no write back is currently in progress and the write
request can proceed. The value stored in the node is simply
updated and its state is set to pIRTY (if it is in the CLEAN
state). Note that in this case, we change the version of
the word. We assume a function, newV ersion, that returns
a unique version number. It can be implemented with a
fetchAndIncrement call, or by using a thread specific
counter. In the latter case, the version is a combination of
the thread id, and the local count of the thread. In case the
state of the node is WRITEBACK, the state remains the same
and only the version is updated.

The compareAndSet() call on node tests the
versionState field (Line 115). The call fails in case
the state changes or the version is updated (i.e., some write
or remove operation is in progress). In both the cases a

thread retries (Line 116). Lastly, if the node’s state is FLUSH,
then it means that some other thread is trying to remove
the entry from the EXPANDER. In this case, the current thread
helps in removing the entry (node) corresponding to the
memory word (Line 121) and again looks for a valid entry
in the EXPANDER.

D. Proofs

In this appendix we present the proof of lock-freedom for
the algorithms described in Section IV.

Lemma I1: Every memory word has at the most one
valid entry in the EXPANDER at any point of time.

Proof: Whenever there is a write operation on a mem-
ory word (mem), a node corresponding to it is added in
the EXPANDER using the lookUpAlloc method. The nodes are
inserted in the EXPANDER in a sorted order based on the value
of the field memIndex. The sorted property is ensured by
Line 138. The memlIndex of the current node is always
between the memIndex fields of its neighbors in the linked
list. We can easily prove by induction that this property is
never violated.

Assume that at any point, we have two nodes in the linked
list belonging to the same memory word (same memIndex).
Let us consider the first such case, and let the requests that
added them be: R; and R;. Let R; add its node between
nodes, A and B, and R; between nodes C' and D. Let us
define the relation < between requests A and B as follows:
A < B, if AomemlIndex is less than B.memIndex. We
have: A < R; < B and C < R; < D. With no loss of
generality assume that B < C. We thus have R; < Rj,
which is not true (they have the same memlIndex), and the
sorted property of the linked list is ensured by Line 138.
Thus, every memory word will have at most one valid entry
in the EXPANDER (proof by contradiction).]

Lemma 2: The lookUp method is lock-free.

Proof: Each memory word in the baseline data structure
is accessed on the basis of its index. This index acts as a
key in the EXPANDER based on which the nodes are sorted in
the hash buckets. Whenever there is a search request for a
node n with particular index ind (lookUp:Line 75), we first
find a bucket b corresponding to that index ind. Next, we
traverse the linked list in the bucket b to find a node with
index ind. It is possible that new nodes are added/deleted in
the bucket b between the indices 0 and ¢nd. As the nodes are
sorted on the basis of their index, at the most ind nodes can
be added between O to ind. Therefore, the number of nodes
that need to be traversed in the linked list is bounded by
the value of the index of a node. Thus, the lookUp method
is lock-free (as well as wait-free) in the case of concurrent
insert operations. In case the nodes are deleted, a thread
restarts its search (lookUp:Line 88). This indicates that some
other thread has made progress by deleting a node from the
EXPANDER. Hence, our implementation is lock-free. [|

Theorem 4: The kGet() method is lock-free.

73
74
75
76
77
78
79
80
81
82
83
84
85
86

87

88
89
90
91
92
93
94
95
96
97
98
99
100

102
103
104
105
106
107
108
109
110
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

lookUp(expNode)

memlIndex <— expNode.hash()
setld <— hashExp(memIndex)
head < listHead[setld]

while true do

retry: pred <— head
while true do

end

end

predStamp <— pred.getStamp()
curr <— pred.next.getReference()
succ <— curr.next.get(currStamp)
marked <— getMarked(currStamp)
/* Delete nodes that are marked */
while marked do
/* loop terminates when pred’s next pointer points to an
unmarked node */
status <— pred.next.compareAndSet(curr, succ, predStamp,
predStamp+1)
if /status then
| continue retry
end
curr < pred.next.getReference()
succ <— curr.next.get(currStamp)
marked <— getMarked(currStamp)

end

if currmemlindex > memiIndex then
| return (curr, pred)

end

pred <— curr

kSet(expNode, data, tmpValues[], flag)

while true do

node <— lookUpAlloc(expNode)

dataState <— node.dataState.get()

nodeState <— MemCell.getState(dataState.versionState.get())
if nodeState~ FLUSH then

end

end

if nodeState = CLEAN then
| newState < (DIRTY, new Version())
end
else
/* if the state is DIRTY or WRITEBACK then the state
remains the same. Only the version is updated */
newState <— (nodeState, new Version())
end
newDataState <— new DataState(data, tmpValues, newState)
res <— node.dataState.compareAndSet(dataState, newDataState)
if res = false then
| continue
end
break

helpDel(node)

lookUpAlloc(expNode)
memlIndex <— expNode.hash()

while frue do
(curr, pred) <— lookUp(expNode)
if currmemiIndex = memindex then

end

end
else

end

return curr

predStamp <— pred.getStamp()
marked <— getMarked(predStamp)
if marked then
| continue
end
/* create a node in the EXPANDER */
node <— new MemCell(memIndex, expNode.getData(), curr)
if pred.next. CAS(curr, node, predStamp,predStamp+1) then
| return node
end

Proof: In the kGet() method a value is either returned
from the ExpANDER (kGet():Line 5) or from the baseline data
structure (kGet():Line 10). Reading a value of a memory
word from the baseline data structure is a single step
operation, hence it is lock-free. To read a value from the
EXPANDER, we first search for a node in the EXPANDER using
the lookUp function (kGet():Line 3) and then its contents
are returned. The lookUp method is lock-free as proved in
Lemma 2. This implies that the kGet() function is also lock-
free. Concurrent writes or remove operations do not alter the
behavior of the kGet method since the process of reading
the contents of a node is independent of the state of the
node.]

Lemma 3: The lookUpAlloc method is lock-free.

Proof: A node with key k is inserted in a sorted order
in the linked list corresponding to its hash bucket using the
lookUpAlloc method. A thread first finds the pred and curr
nodes using the lookUp method (Line 126). pred is a node
with the largest key less than k£ and curr is the node with
the least key greater than or equal to k. If a node with key
k is not present, then a new node n is inserted between
pred and curr using the compare AndSet() primitive. The
compareAndSet() operation tests both the mark and the
reference; it succeeds only if pred is unmarked and refers
to curr. If the compareAndSet() call is successful, the
method returns true; otherwise, we start from the beginning
of the list. compareAndSet() fails when some other thread
has inserted a node between pred and curr, pred is marked,
or curr is deleted. In all the cases it means that some other
thread is able to make progress by either adding/deleting
a node to/from the ExpaNDER. Thus, we have a lock-free
implementation since the system as a whole has made
progress.]

Lemma 4: The helpDel method is lock-free.

Proof: The main purpose of the helpDel method is to
delete the nodes whose status has been set to FLUSH. First,
these nodes are logically deleted by setting their mark bits.
Next, these logically deleted nodes are physically removed
from the expanpeEr. For logically deleting a node n, its
mark field is set (Line 83). If the attemptStamp() call,
to logically delete the node fails, it means some thread
either modified the next pointer of the node n using the
lookUpAlloc method (and updated the stamp) or has set
its mark bit. This indicates that some other thread has
made progress. Once the node is marked for deletion, a
single attempt is made to physically remove the node by
updating the next pointer of its predecessor pred using
compareAndSet(). All the operations are performed using
atomic primitives. These primitives guarantee that at least
one of the threads succeeds in performing its operation.
Thus, we have a lock-free implementation.

Theorem 5: The kSet() and kC AS() methods are lock-
free.

Proof: The write operation at a memory word takes
place using the kSet() and kC'AS() methods. The write
request is accomplished by first searching for a node n in
the ExpaNDER and then updating its value atomically if the
state of the node is not FLUSH. In case, the node n is not
present in the EXPANDER then a new node n is added in the EX-
PANDER using the lookUpAlloc() method (kSet():Lines 103,
kECAS():Line 15). All the threads that wish to write to a
node n (in the FLUSH state), first help in deleting the node
from the EXPANDER. Since the lookUpAlloc() and helpDel
methods are lock-free (see Lemma 3, 4), it is ensured
that at least one thread will eventually get a node with
its state not equal to FLUSH (referred to as a valid node).
Once a valid node is returned, a thread can proceed with
its write operation. The write operation takes place using
the compareAndSet instruction. The compareAndSet call
(kSet(): Line 115, kC' AS():Line 29) can fail if some other
thread is making progress by either performing a write
operation on the node or removing the node from the
EXPANDER. All the operations are performed using atomic
primitives. These primitives guarantee that at least one of
the threads succeeds in performing its operation. Thus, we
have a lock-free implementation. []

Theorem 6: The free() method is lock-free.

Proof: A node is deleted from the EXPANDER by first up-
dating the state of the node to WRITEBACK (free():Line 55).
Next, the state of the node is set to FLUSH so that the node
can be physically removed from the EXPANDER. (Line 66).
Both the steps are done in a loop.

In the write back phase, the loop (free():Line 44-59)
terminates when one thread succeeds in updating the state to
WRITEBACK. A thread fails in updating the state of the node n
when write operations are in progress. It means some thread
is doing its operation. It is possible that multiple threads
concurrently try to set the state of a node n as WRITEBACK.
The compare AndSet call (free():Line 55) will succeed for
only one thread ¢ and the rest of the threads exit immediately.
A thread that succeeds in updating the state, writes the
contents to the baseline data structure. This step is done
to ensure that only one thread proceeds with the write back
operation (constraint imposed by the Java memory model).
Next, the state of the node n is set to FLUsH. In this phase, the
compareAndSet call (free():Line 69) will fail only in case
of concurrent write operations. Once the state of the node n
is set to FLUSH, a single attempt is made to remove the node
n from the EXPANDER using the lock-free method helpDel.
Thus, the implementation is lock-free since at any point in
time at least one thread makes progress in completing its
operation. []

Theorem 7: The kSet() and kC AS methods are lin-
earizable.

Proof: Next, for the kSet() method we say that it
appears to execute instantaneously at Line 115. It uses the
atomic compareAndSet() instruction to update the value of
a node. Before this point no changes are made to the node
in the EXPANDER; after the compareAndSet() instruction is
executed successfully, all the threads can see the new value
written by kSet().

Lastly, the point of linearizability of kC AS() is Line 29.
In this line it atomically updates the value of a memory word
(along with the associated values) mapped in the EXPANDER.
If the compareAndSet() call is successful then the new
values are visible to all the threads, otherwise this function
does not have any affect.]

APPENDIX C.
BENCHMARK DETAILS

In this appendix we describe the temporary fields used in
each of the benchmarks, and the methods we use to store
them in the EXPANDER.

A. Wait-free Queues

Kogan et al. [21] describe an implementation of a prac-
tical wait-free queue, which supports multiple concurrent
dequeuers and enqueuers. It stores two temporary fields,
enqgT'id and deqT'id, in each of the nodes in addition to
the value and reference fields. In the ExPANDER based design,
each node of the queue requires only two fields: value and
the atomic reference to the next element. When a thread ¢;
places a request for an enqueue operation, a node n that
t; wishes to insert is brought in to the EXPANDER and a
temporary field, engT'id, is associated with it. The entries
in the EXPANDER are hashed on the basis of the hashcodes
(returned by Java’s built in hashCode method) of the queue
nodes.

All the other threads with concurrent enqueue operations
try to help ¢; in completing its operation. Once, the enqueue
operation is complete, the node n is removed from the
EXPANDER.

Similarly when a dequeue request comes in, concurrent
threads try to add the first node (head node) of the queue in
the ExpANDER. Along with the value field, a temporary field,
deqT'id is added. The thread which is successful in adding
the node in the ExpANDER is able to dequeue the first node.
Rest of the threads try again. Once the dequeue operation is
completed the node is removed from the EXPANDER.

B. Lock-free Linked List and SkipList

Each node in the linked list and skiplist (see [10]) contains
three fields: value, mark and an atomic reference to the
next element. The temporary field, mark, is typically
packed with the next pointer using Java’s AtomicMark-
ableReference type (internally uses the redirection method).
It is used to indicate the fact that a node has been temporarily
deleted. In our ExpaNDER whenever the next pointer (i.e., the
atomic reference field is updated), the node is brought in to
the ExpANDER and the kC'AS() method is used to perform
the update of either the mark bit or the next pointer. If the
mark bit is set, the node remains in the EXPANDER. Otherwise
the node is removed from the ExpANDER. When the node
is physically removed from the linked list or the skiplist,
the node is also removed from the EXPANDER. At any time
only those nodes that are marked (logically deleted) are in
the ExpaNDER. In the case of the skiplist only one entry
corresponding to a node in a skiplist is maintained in the
EXPANDER at the time of deletion, irrespective of the number
of times the node occurs in the lanes.

C. Lock-free Binary Search Tree

In the lock-free implementation of a binary search tree
proposed by Natarajan et al. [28], a node contains three
fields: key, atomic reference to the leftchild and atomic
reference to the rightchild. Each reference field further
contains a tag, flag and addressfield. The tag and flag
fields are used at the time of deletion. The implementation of
a lock-free binary search tree using the EXPANDER is similar
to the way we implemented a linked list. In this case the
nodes for which either the flag bit or tag bit are to be set
are brought in to the ExpaNDER. Once the addition/deletion
operation is over, we no longer require these temporary
fields. Subsequently, the corresponding nodes are deleted
from the EXPANDER.

D. Wait-free multi-word compareAndSet

In [4] a wait-free implementation of multi-word compare-
AndSet is proposed. The algorithm is implemented in three
stages. First, a temporary lock is acquired on the memory
words. Next, we check the contents of the memory words
and perform a conditional update. Finally, we unlock all the
memory words. The information of a word’s lock-status is
stored within the memory word itself. The three temporary
fields: threadid, index and descriptor are stored in the
same memory word to indicate that the word is locked.
The ExpanDER helps in efficiently implementing a wait-
free multi word compare-And-Set algorithm. Whenever a
memory word is locked, it is added to the ExpANDER. Then
the temporary fields are set using the XC AS method. During
the unlock phase, all the memory words are removed from
the ExpaNDER (using the free method) since we need not
associate any more temporary fields with them.

E. Wait-free resource reservation model for SSDs: RADIR

Next, we consider the RADIR algorithm that is a specialized
slot scheduling algorithm for solid state storage devices
(SSDs) [30]. It uses an 1D array of slots. The problem is to
reserve a set of k contiguous slots. The implementation is
similar to wait-free multi-word compare-And-Set. In the lock
phase, we save the threadid, round and state in each slot
that a thread wants to reserve. In the EXPANDER based design,
whenever a thread tries to reserve a slot (lock a slot) a write
operation is issued for that particular slot (memory word).
The entry is mapped in the EXPANDER and the temporary fields
are associated with it using the kC' AS method. Subsequent
read/write operations for that memory word/slot takes place
from within the EXPANDER itself. In the reservation phase, the
value written in the EXPANDER is written back to the baseline
data structure using the free method and the words are
deleted from the EXPANDER.

F. Wait-free Slot Scheduling

We consider slot schedulers that reserve a set of slots
in contiguous columns, in a 2D matrix of slots. They are

used to implement scheduling in storage systems, networks,
and video servers. Aggarwal et al. present wait-free im-
plementations for slot scheduling in reference [24]. The
slots are reserved in two passes. In the first pass, the
slots are reserved temporarily. In this phase, the temporary
fields that are associated with a slot are: state (2 bits),
tid(thread id) (10 bits), slotNum (6 bits), round (5 bits),
requestld (15 bits) and a timestamp (21 bits). Once the
required number of slots are reserved, the reservation is
made permanent. In the EXPANDER based design, the slots that
a thread wishes to reserve are added to the EXPANDER one by
one. All the temporary/book-keeping information is stored
in the EXPANDER in the tmpF'ields array. Once the schedule
operation is over (i.e., the reservation is made permanent),
the final values are written in the actual slots of the baseline
data structure and the corresponding entries are deleted from
the EXPANDER.

