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Abstract—Plugin Hybrid Electric Vehicles (PHEVs) are set to
be the defining trend in road transportation for the 21st century.
Unfortunately, the process of charging a large number of PHEVs
will put a prohibitive amount of stress on conventional power
grids. As per current estimates, it will not be possible to satisfy
the peak demand of charging millions of PHEVs with current
infrastructure. Additionally, to ensure stability of the power grid,
the demand needs to be closely matched with supply all the time.
This is difficult to ensure in a dynamic scenario like PHEV
charging, where it is not possible to predict the load in the
future. This problem is further complicated by the introduction
of intermittent sources of alternate energy like wind power.

This paper proposes an IT infrastructure for managing energy
usage of PHEVs. The paper introduces a generalized currency
of energy called a token, which entitles its owner to produce or
consume a certain amount of electrical energy. Furthermore, the
paper propose an IT infrastructure to manage tokens produced
by millions of PHEVs and power stations. Simulation results for
the system that consider the behavior of millions of PHEVs using
data in prior work and traces from the Australian power grid
for the last five years are also presented.

Index Terms—PHEV scheduling, IT infrastructure, power
distribution

ACRONYMS

EV Electric Vehicle

PHEV Plug-in Hybrid Electric Vehicle

TMS Token Management System

LM Local Module

ACS Admission Control and Scheduling

FIFO First-In-First-Out

PACS PHEV Admission Control and Scheduling

ILP Integer Linear Program

genToken Generation Token

consToken Consumption Token

I. INTRODUCTION

A. Motivation

DUE to the dwindling supply of fossil fuels, hazardous

levels of urban air pollution, and other economic reasons,

the usage of electric vehicles (EVs) is expected to increase

substantially over the next few years [1], [2], [3], [4]. The next

generation of EVs, Plug-in Hybrid Electric Vehicles (PHEVs),

will contain a conventional combustion engine as well as a

motor driven by a rechargeable electric battery. PHEVs can

consume power from the power grid as well as provide power

back to the grid. As per the estimates in a report by Oak Ridge

National Laboratories [5], almost 30% of the vehicles in the

European Union will be PHEVs by 2020. Another study [6]

predicts that there will be 1.7 million PHEVs on the road

by 2015. United States alone will have a million charging

points [6] with over a half of them being public charging

stations.

A major trend in energy production is expected to be the

large scale adoption of renewable energy like solar, wind and

tidal energy. Unlike conventional power plants, sources of

energy such as wind power are intermittent in nature. Since

the power grid cannot store a significant amount of energy,

PHEVs can act as energy storage devices in this case.

Unfortunately, at present the power generation and distribu-

tion infrastructure is not equipped to handle such intermittent

sources of energy and millions of PHEVs as consumers [6],

[7], [2], [3]. Furthermore, due to the heavy capital and oper-

ational expenditure, the electricity production and distribution

grids are expected to change slowly as compared to the rapid

increase in the number of PHEVs. Finally, to maintain the

stability of the power grid, the energy supply needs to closely

match the energy demand at all instants of time [7], which

is difficult to ensure in this situation because of its dynamic

nature.

Recently, [6], [8], [9], [2] have observed that a solution to

the above problem that consists merely of physical systems

may turn out to be extremely expensive. Therefore, an IT

infrastructure is needed for the power generation and dis-

tribution system, which can efficiently manage the millions

of consumers and intermittent producers, and can provide an

acceptable level of service.

B. Contributions

In this context, this paper presents an IT system to manage

the charging and discharging of a large number of PHEVs.

The system proposed in this paper is based on the concept

of a token. A token is an electronic record that entitles its

owner to consume or produce a certain amount of electrical

energy. The attributes of a token abstract the energy related
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parameters for PHEVs’ charging and discharging operations.

Using operations on the tokens, this paper shows that it

is possible to seamlessly negotiate the exchange of energy

between producers and consumers through the power grid.

The token-based system architecture that is presented in

this paper can be divided into two parts: communication and

scheduling. The communication part consists of a distributed

communication protocol for creating and managing tokens.

The scheduling part of the system performs both admission

control and scheduling of tokens by matching the tokens

from consumers with token from producers. Through extensive

numerical simulations using real power generation traces, this

paper demonstrates that the proposed system is scalable for

large number of PHEVs.

C. Organization of the Paper

The rest of the paper is organized as follows. An overview

of the proposed IT system in given in Section II-A. A system

to create and manage tokens is presented in Section II-B and

Section II-C. Section III present the scheduling aspects of the

system. The simulation results are presented in Section IV.

Section V summarizes the related work in this area, and

Section VI presents some concluding remarks.

II. TOKEN-BASED SYSTEM FOR PHEVS

A. Overview

Our token-based IT system is designed for a PHEV charging

and discharging network overlaid on an electricity distribution

grid. The network is composed of electricity generators, con-

sumers, and intermediaries. The electricity generators can be

the power stations (owned by the electricity companies), or the

PHEVs. PHEVs may generate electricity when they discharge

their stored electrical energy to the grid [10], [11]. The

electricity consumers are the PHEVs when they are charging

from the grid. The intermediaries are charging stations where

the PHEVs can plug-in to the electricity grid to charge or

discharge.

As shown in Figure 1, our token-based system is composed

of a central Token Management System (TMS) and multiple

Local Modules (LM). The TMS maintains the tokens and

controls the usage of the tokens. The LMs at the electricity

generators, consumers and intermediaries communicate with

the TMS to create and modify the token. We now describe

various components of the PHEV network and our IT system.

Nodes. There are three types of nodes in the PHEV net-

work: (1) PHEVs, (2) power stations, and (3) PHEV charg-

ing/discharging stations. Each node in the PHEV network

has two mandatory attributes: a node identifier and a node

type. A node identifier uniquely identifies a node. A node can

perform one of the three roles: electricity generator, electricity

consumer and intermediary. Each node may have one or more

optional attributes, such as its current role, current location, or

token usage history.

Tokens. A token is an electronic record that entitles a node to

generate or consume a certain amount of electrical power for a

Power Station

gt gt

Discharging PHEV

Fig. 1. The PHEV Network (TMS: Token Management System,
ACS: Admission Control and Scheduling, gt: generation token, ct:
consumption token)

certain amount of time. Each token has the following manda-

tory attributes: (1) token identifier, (2) token type, (3) generator

or consumer node id, (4) the electrical power level, (5) the

duration of power supply, (6) start time, (7) expiration time,

and (8) current status. A token identifier uniquely identifies a

token; i.e., no two tokens have the same identifier. Generation

and consumption are two types of tokens. The power denotes

the amount of electrical power that the generator or consumer

node of the token is entitled to generate or consume, and

the duration states the duration for which the power can be

generated or consumed. The start time and expiration time

provide the start and end times of the period within which

the token can be used for production or consumption, and we

call this period the validity period of the token. (For example,

if the start time, end time, and duration of a token is t1, t2,
and δ, respectively, then the token can be used for at most δ

time between the time instants t1 and t2. The interval from

t1 to t2 (also denoted by [t1, t2]) is called the validity period

of the token. Obviously, the duration should be less than or

equal to the length of the validity period.) Finally, the status of

the token states whether the request for this token is admitted

or rejected. Like the nodes in the PHEV network, a token

can have one or more optional attributes, such as the set

of charging stations where the token is valid, or the usage

history of the token. The total energy of a token is defined

as the product of its power level and its duration. We call the

tokens of type generation and consumption as genTokens and

consTokens, respectively.

Token Management System (TMS). The Token Management

System maintains the information about the nodes, tokens and

the token usage policies. It also does the admission control of

the tokens (i.e., whether the token is admitted to be scheduled

or rejected), and schedules the admitted tokens. It maintains

three lists: (1) a list of nodes in the PHEV network along with

their attributes, (2) a list of tokens along with their attributes,

and (3) a list of policies that control the usage of the tokens.



3

Optionally, it may maintain some overall system statistics, e.g.,

the number of charging tokens in a given geographical region.

Local Modules (LM). A local module is an application running

at a node through which the node participates in the PHEV

network. In particular, through the local module, a node creates

and modifies a token, and sends requests to the TMS for

using the token. In the next subsections, we describe the main

functions of the TMS.

B. Admission Control and Scheduling of Tokens (ACS)

In a PHEV network, the electricity generators and con-

sumers may send requests for using tokens depending on

their production and consumption requirements, respectively.

However, at any given instant of time in the PHEV network,

the total amount of power consumed should be less than

the total amount of power allocated for charging PHEVs.

(We call this the power constraint.) On the other hand, if

the power consumed is significantly less than the power

generated then the excess power may potentially be wasted.

(This power constraint aims to decouple the PHEV usage from

the rest of the electricity grid, which may be useful if the

power utilities want the PHEV usage to not adversely impact

other consumers. However, it is possible to extend the power

constraint to the whole power grid, which we plan to study as

part of future work.) At any given time, we define the (power)

utilization of our system as the ratio of power consumed to

power allocated for charging. We would like the utilization to

be close to 1, but it should never be higher than 1. Thus,

the accounting system needs to perform admission control

on the token usage request, as well as schedule the admitted

tokens based on the usage policies. In Section III, we present

a detailed description of the ACS.

C. Token usage policies

Even if a token can be scheduled while satisfying the power

constraint, the accounting system admits the token only if it

satisfies the usage policies. A usage policy is a function of the

token attributes, the local module attributes, the current state

of the token system (such as the current load), and the usage

histories. A policy evaluates to either true or false, and it can

be applicable to single or multiple tokens. We now describe

various usage policies that can be considered in our system.

• Temporal policy: A token should be used within its

start time and expiration time. For example, using the

validity period of a token, a PHEV user can indicate

how long she is willing to wait for charging her PHEV.

In our evaluation, we extensively study the effect of this

temporal policy on admission control and scheduling.

• Spatial policy: A consumption token may have a set of

valid station ids (i.e., set of the charging station ids where

the token can be used) as an optional attribute. A spatial

(or geographical) policy requires that a token is used at

one of its valid stations. For example, this policy can be

used to load-balance users across geographical regions.

• Spatio-Temporal policies: A spatio-temporal policy is a

combination of spatial and temporal policies that involve

restrictions due to both the valid charging stations and

validity periods of tokens. Another spatio-temporal policy

can restrict the number of PHEVs that are simultaneously

charging in a region. This restriction can be useful when

there is a limit on the amount of power that can be

supported by the local power distribution grid (e.g., the

power capacity of an electrical transformer).

• Usage history based policies: A policy can be based on

the usage history of the node that is trying to use a token.

There may be a restriction on the amount of energy used

by a PHEV in a given period of time. Similarly, producing

electricity for the grid (by an electricity company or by a

discharging PHEV) can be denied based on a maximum

generation limit for a given time period.

We would like to note that our token system is designed in

a way that makes it easy to introduce and enforce new token

policies.

III. THE ADMISSION CONTROL AND SCHEDULING

SYSTEM

A. Problem Formulation and Hardness

Based on the above discussion, this section presents the

primary PHEV Admission Control and Scheduling (PACS)

problem as an Integer Linear Program (ILP). The objective

of the PACS problem is to maximize the average system

utilization over all available genTokens while satisfying the

validity periods of each scheduled consToken, and never

exceeding the power level of a genToken. Our ILP formulation

follows that of [12], [13] for a scheduling problem with

time-varying resources. We first introduce some notation and

assumptions for the ILP formulation.

We assume that time is divided into discrete intervals, and

each interval is denoted by an integer t ∈ [1, D], where D

is the maximum activation time over all genTokens. Let GS

be the set of available genTokens, and let CS be the set of

available consTokens. For each generation token gt ∈ GS, let

Igt denote the time interval in which the token is active (which

is assumed to be of the same length as its validity period),

and Pgt denotes the power level of the token. To capture the

property that a consToken can be possibly scheduled anywhere

in its validity period, we model each consToken ct ∈ CS as

a set of (consToken) instances. For each instance ci ∈ ct ∈
CS, let Ici denote the time interval in which the instance

is active, and Pci denotes the power level of the token. (In

other words, through token instances, we capture the different

periods in which a token can be possibly activated, e.g., if a

consToken has a duration of 5 and a validity period of [1,10],

then it consists of six instances that have activation intervals

[1, 5], [2, 6], . . . , [6, 10].)
Let |I| denote the size of an interval I , Sins denote the set of

all consToken instances, and xci,gt be a 0-1 decision variable

that is 1 if and only if instance ci is packed in genToken gt.

We now specify the ILP for PACS.

Objective:

Maximize

∑
gt∈GS

∑
ci∈Sins

xci,gt.Pci.|Ici|∑
gt∈GS Pgt.|Igt|

(1)
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Subject to:
∑

ci:t∈Ici

xci,gt.Pci ≤ Pgt, ∀gt ∈ GS, ∀t ∈ Igt (2)

∑

gt∈GS

∑

ci∈ct

xci,gt ≤ 1, ∀ct ∈ CS (3)

xci,gt ∈ {0, 1}, ∀ci ∈ Sins, ∀gt ∈ GS (4)

The objective function in Equation 1 maximizes the average

utilization over all active genTokens, which is the ratio of the

total energy of the selected consTokens to the total energy

of the genTokens. Note that, Pci.|Ici| is the total energy a

consToken instance ci, and Pgt.|Igt| is the total energy of a

genToken gt. The ILP has three constraints. The first constraint

in Equation 2 requires that, for every point in the activation

time of a genToken, the sum of the power levels of the

packed consToken instances is less than the power level of the

genToken. (In other words, the power level of a genToken is

never exceeded.) The second constraint in Equation 3 requires

that at most one instance of each consToken is activated.

Finally, the constraint in Equation 4 requires that the decision

variable is either 0 or 1, i.e., no splitting of a consToken is

allowed.

We now show that the following decision version of the

PACS problem is NP-complete: Given an average utilization

bound, F , between 0 and 1 (both inclusive), does there exist a

packing such that the average utilization over all genTokens is

at least F ? We show the NP-completeness by reduction from

the subset-sum problem [14].

Theorem 1: The decision version of the PACS problem is

NP-complete.

Proof: Given a packing of consTokens within genTokens,

it is easy to verify whether the average utilization of genTokens

is at least F . Thus the decision version of PACS is in NP.

In a subset-sum problem instance, given a positive integer

F , and set S of P positive integers {x1, . . . , xP }, we are asked
to find a subset of S such that the sum of the elements in the

subset is exactly F [14]. For this instance of the subset-sum

problem, we construct an instance of PACS as follows.

There is a single genToken and a set CT of P consTokens

{c1, . . . , cP }. The power level of the genToken is F and the

power level of each consToken ci is xi. The validity period of

all tokens are identical, and their durations are also identical.

The required bound on average utilization is 1. In other words,

there is only one instance per consToken, and we are required

to find a set of consTokens whose power levels add up to be

exactly equal to the power level of the genToken. Suppose

that S′ ⊆ S is a solution to the subset-sum problem instance.

Thus, sum of all xi ∈ S′ is exactly equal to F . Consider the

set, CS′, of consTokens {ci : xi ∈ S′}. Since, the power

level of each consToken ci is xi, the sum of power levels of

consTokens in CS′ is F , and therefore CS′ is a solution to

the PACS problem instance. Similarly in the reverse direction,

given a solution CS′ for PACS problem instance, we construct

a solution S′ of the subset-sum instance as {xi : ci ∈ CS′}.
This completes the reduction.

Thus, the primary admission control and scheduling prob-

lem is computationally hard to solve. Moreover, in a practical

setting, a PHEV network may have a large number of consTo-

kens, which will result in a large number of constraints for the

ILP formulation. Therefore, the next section presents a system

design that uses an effective heuristic for the PACS problem,

and evaluates it through simulations. As described below, the

system design and the heuristic is based on the ideas of token

batching, prioritization and splitting.

B. System Description

...

Gen-Token Queue

gt gt...

..
.

Active Gen-Tokens

Power Stations

Dispatcher

Cons-Token Queue

..
.

Cons-Token Batches

Cons-Tokens

...

...

Fig. 2. The token admission control and scheduling system

We now describe the core of Token Management System

that does the Admission Control and Scheduling (ACS)

of tokens (Figure 2). (Appendix A and Figure 16 present

the application-level distributed protocol among the various

components of the PHEV network.)

consToken batching. In a real PHEV network, most

genTokens, which are typically created by electricity

companies on behalf of power stations, are very large

compared to a consToken, which are typically created by

charging PHEVs. Therefore, we group consTokens in batches,

based on their start time and duration. We refer to a batch

of consTokens as a consBatch. The maximum size of a

batch is denoted by MAX BATCH SIZE. Creating such

batches also reduces the computation load on the dispatcher.

(A dispatcher is described below.) Our system can handle

changes in the batch size during an execution. However, in
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our experiments we use a fixed batch size for simplicity.1

Queues. The ACS maintains two incoming queues for

genTokens and consBatchs, called genTokenPriorityQueue

and consTokenFIFOQueue, respectively. At a high-level, the

ACS selects some incoming genTokens and some incoming

consBatch, and a sub-system of ACS, called dispatcher, packs

the consTokens in genTokens. If a consToken is packed in a

genToken, it implies that the genToken provides the required

electrical power to the consToken.

genToken prioritization. To perform the online scheduling

of tokens, the ACS first dequeues a set of genTokens from

the genToken queue. The selection of these tokens from the

genToken queue is dependent on the genToken prioritization

scheme. (Hence, we use a priority token for genTokens.)

At a given time, a genToken that is being packed by the

dispatcher is said to be active. The list of active genTokens is

denoted by agt, and the maximum number of active genTokens

that is allowed is denoted MAX GEN ACTIV E. In our

experiments, we evaluate the following genToken prioritization

schemes: (1)First-in-First-Out (FIFO): tokens are dequeued

according to increasing order of their arrival time at TMS,

(2) round-robin (rr): tokens are dequeued in a round-robin

manner across each power source (and within each source,

tokens are dequeued in FIFO order), (3) earliest or latest:

tokens are dequeued in the increasing or decreasing order

of their expiration times, respectively, (4) smallest or largest:

tokens are dequeued in the increasing or decreasing order of

their power levels, respectively and (5) largest-latest: tokens

are dequeued in the decreasing order of power level and

expiration time, with ties being broken by the expiration time.

Dispatcher. The dispatcher (along with consBatch activation

scheme described next) executes a heuristic for the PACS

problem (where consTokens are replaced by consBatches).

The heuristic, although suboptimal, simplifies the solving

of the PACS problem by batching the consTokens, and

by considering the consToken batches in FIFO order for

packing into genTokens. In particular, to select the next

consBatch, the dispatcher dequeues from the consToken

queue in the First-In-First-Out (FIFO) order of their batching

time. The order in which the genTokens are tried for packing

a consBatch is determined by the scheduling schemes of

the dispatcher. The scheduling scheme considers the active

genTokens in one of the following ways: (1) endTime: in

the increasing order of their expiration time, (2) freeEnergy:

in the decreasing order of the amount of energy that is left

in the token (3) random: selected using a uniform random

distribution, and (4) util: in the increasing order of their

current utilization, where the current utilization of the token

is defined as 1 - (free energy/total energy).

consBatch Activation To pack a given consBatch token, cb,

in a genToken, gt, we need to find an activation time t for cb

1A discharging PHEV can also create a genToken, which can be of a similar
size as a consToken from a charging PHEV. As in the case of consTokens,
we can handle such small genTokens by batching them. However, we omit
the details for the sake of brevity.

in gt. (In terms of our PACS problem formulation, selecting

an activation time for a consBatch is equivalent to selecting an

instance for the consBatch.) Selecting an activation time t for

cb implies that for each consToken ct ∈ cb, the consumer of ct

can use ct to consume power from time t to t + ct.duration

(where ct.duration is the duration of ct). Then, in genToken,

gt, we say that consBatch cb is active from t to t+cb.duration,

and consToken ct is active from t to t + ct.duration. For

packing cb, the dispatcher searches for the lowest activation

time of cb in gt such that, the following two conditions are

satisfied: (1) At each time instant, the sum of the power levels

of all the active consBatches that are packed in a genToken, gt,

is less than the power level of gt, and (2) the activation period

of cb satisfy the validity period requirements, i.e., for each

ct ∈ cb, its activation period is contained in its validity period.

If no such activation time is found in genToken, gt, then the

next active genToken is selected using one of the scheduling

schemes of the dispatcher. If the dispatcher is unable to pack

a consBatch in gt, then it increments gt.num rejects by 1.

Note that, the first condition of consBatch Activation corre-

sponds to Equation 2 in the PACS problem formulation, and

the second condition corresponds to selecting a valid instance

of consBatch. Since the heuristic selects only one activation

time for a consBatch, and it does not split the consBatches,

the heuristics also satisfies Equations 3 and 4.

If the allowed activation time of a consBatch can be any

time within the validity period of genToken, then we call it

an unslotted activation. If there are only some pre-defined

time instants (at regular intervals) where a consBatch can be

activated, then we call it a slotted activation.

If a consBatch can be packed in one active genToken

while satisfying all the conditions, then the ACS admits all

consTokens in the batch, and sends CONS ACK messages

to the corresponding consumers along with the activation

time. Otherwise, the ACS rejects the consBatch, and it sends

CONS NACK messages.

genToken Replacement An active genToken is replaced

when (1) its utilization is above a certain fixed threshold,

which is denoted by MAX UTIL or (2) if the number of

rejected consTokens (num rejects), is more than a fixed

threshold, which is denoted by NUM MAX REJECTS.

Such a genToken is replaced by the token with the highest

priority in the genToken queue.

C. Splitting of consBatch

In the above system, if the consBatch sizes are comparable

to the genToken sizes, it is difficult to achieve an average

utilization that is close to 1. This problem occurs because

the system does not allow a consBatch to be split across

multiple genTokens. This section proposes schemes to split a

consBatch into multiple parts, and pack each part in possibly

different genTokens. To this end, a consBatch is viewed as a

rectangle on power and time axes. This section consider three

schemes for splitting the consBatches. All the three schemes

first try to schedule the original consBatch. If a scheme is
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unable to do so, then it tries to split the set of consBatch, and

schedule the smaller consBatches individually. It is possible

that some of these batches might get scheduled successfully,

and it might not be possible to schedule the rest. For the

consBatches that could not be scheduled, the system extracts

the individual consTokens, and sends Reject messages to the

associated PHEVs.

Start time End time Start time End time

Start time + End time

2

Power Power Power

Validity Period = 2 * duration

Duration 

validity validity

0 0 0

Split in Time Axis

New Duration  = Duation / 2

Fig. 3. One dimensional splitting on Time axis

1) One-dimensional split on time axis: In this case, the

consBatch is split on the time axis into two smaller batches,

i.e. the power required by the split batches remains the same

as the original consBatch but the duration and the validity

period are halved (see Figure 3). Other attributes such as the

startTime and endTime remain the same.

Start time End time
0

Power

Start time End time

End timeStart time

0

0

Power / 2

Power / 2

Power split

Fig. 4. One dimensional splitting on Power axis

2) One-dimensional split on power axis: In power axis

based split, a consBatch split into two smaller batches along

the power axis, i.e., the power required by the split batches

is half of the power of the original. However, other attributes

like the startTime, endTime, and duration remain the same.

This is shown in Figure 4.

3) Two-dimensional split: This scheme combines both the

one dimensional schemes. A single consBatch is split along

both the power and time axes to create four smaller cons-

Batches. The split batches have half the power and duration

of the original (see Figure 5).

4) Token splitting in the PACS problem: To show that

a splitting scheme cannot adversely impact the genToken

utilization, the next theorem shows that the optimal value of

a PACS problem instance cannot decrease due to splitting.

Start time End Time

Validity Period = 2 * duration

Power

Duration

0

Power / 2 Power / 2

Start time End TimeStart time + End time

2

Va y V y

V y Va y

new duration = Duration/2

Power/2 Power/2

Start Time End Time
Start Time + End Time

2Two dimensional Splitting

Fig. 5. Two dimensional splitting of a consBatch

First, consider the ILPs for variants of PACS that allow

splitting by considering more consBatches and instances. (Re-

call that, due to consToken batching in the system, consToken

is substituted by consBatch in the original PACS formulation.)

A PACS problem instance with Time Split (PACSTS) can be

obtained by creating a new set CSTS from the set of available

consBatches, and another new set STS
ins of their instances, as

follows. For every consBatch cb in CS, introduce two batches

in CSTS , each with validity period that partitions the validity

period of cb into two equal parts, and with duration that is half

the duration of cb. Also, following the new validity period and

duration, introduce new instances in STS
ins.

Now, the ILP for PACSTS can be obtained by replacing CS

and Sins with CSTS and STS
ins, respectively, in Equations 1

to 4. PACS with Power Split (PACSPS) and PACS with 2D

Split (PACS2DS) are obtained similarly by introducing two

and four batches, respectively, for each original consBatch,

and modifying their instances appropriately.

For the theorem below, consider a PACS problem instance

pi, and the instances piTS, piPS , and pi2DS derived from pi

for problems PACSTS , PACSPS and PACS2DS , respectively.

Let opt(x) denote the optimal value of the objective (average

genToken utilization) for a problem instance x. The following

theorem shows that splitting does not degrade the optimal

value of the problem.

Theorem 2: (a) opt(pi) ≤ opt(piTS) ≤ opt(pi2DS) and

(b) opt(pi) ≤ opt(piPS) ≤ opt(pi2DS).
Proof: Observe that for each consBatch instance in pi,

(1) there are two corresponding batches in piTS with half

the validity period and duration of the original, and (2) there

are two corresponding batches in piPS with half the power

level of the original. For any feasible solution of pi (including

the optimal solution of pi), construct a corresponding feasible

solution of piTS with the same value of the objective as

follows: for each consBatch instance ci selected for packing in

a genToken, pack the two corresponding batches in piTS in the

same genToken. One can similarly construct a feasible solution

for piPS from any feasible solution for pi with the same

value of the objective. Therefore, opt(pi) ≤ opt(piTS) and

opt(pi) ≤ opt(piPS). Next notice that, each batch in piTS has

two corresponding batches with half the power level in pi2DS

because each batch in piTS is further split along the power

axis to obtain batches for pi2DS . Thus, one can construct a

feasible solution for pi2DS from any feasible solution for piTS
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(including the optimal solution of piTS) with the same value

of the objective by packing the split batches into the same

genToken as the original. Similarly, noticing that each batch

in piPS has two corresponding batches with half the validity

period and duration in pi2DS , one can construct a feasible

solution for pi2DS from any feasible solution for piPS. There-

fore, opt(piPS) ≤ opt(pi2DS) and opt(piTS) ≤ opt(pi2DS).

IV. EVALUATION

A. Experimental Setup

The implementation consists of a multi-threaded PHEV

simulator in Java 1.6. The token system, and the token ac-

counting system were implemented fully. Instead of simulating

individual of PHEVs, the simulation considers consBatches

of 100 (MAX BATCH SIZE) PHEVs as explained in

Section III. The implementation also contained the protocol

for requesting consTokens and genTokens including the ACK

and NACK messages.

To simulate realistic power demands, the experiments use

the power traces for the last five years from the Australian

Power Grid [15]. Figure 6 shows the power supply for the

month of december in 2009: it presents the data for five Aus-

tralian states: South Australia (SA), Tasmania (TAS), Queens-

land (QLD), Victoria (VIC), and New South Wales(NSW). We

observe daily cycles and weekly cycles. We assume that the

power available for charging PHEVs is roughly 10% of the

overall power.

We simulate the Token Management System (TMS) based

on data from [10], [11], [16]. A typical PHEV has a battery

capacity of 10-15kWh [10], [11], and the typical power usage

of a PHEV while charging is 25kW [16]. Hence, a PHEV

will typically take 20-30 minutes to charge (which is set as

the duration of a typical consToken). A power station should

typically produce long genTokens [10]. Currently, power sta-

tions are given contracts on a daily basis. However, in the

near future, power stations will require about eight hours of

continuous power generation to remain viable. They cannot be

frequently switched on and off based on demand. Hence, we

take the duration of a genToken to be eight hours, and assume

that the duration of a consToken is 5% of this value (i.e. 24

mins). It is expected that as we integrate sources of renewable

energy that are more intermittent in nature, this duration will

further reduce. We choose the util scheduling scheme for the

dispatcher, the largest first prioritization scheme for genTokens

and the two-dimensional splitting algorithm as the default.

Unless specified otherwise, we use 5 active power stations

(MAX GEN ACTIV E), one for each state, and do not use

slots. The default consToken validity time is twice its duration.

The values of MAX UTIL and NUM MAX REJECTS

are set to 1 and 5, respectively (see Figure 16).

B. Throughput

We plot the utilization of genTokens as a function of the

number of PHEVs that we desire to service per hour in

Figure 7. We observe that for any number of power stations(

in the current case, up till 5) the utilization reaches very close

to 98%. We further observe that with just 1 power station the

saturation level, i.e., the maximum utilization is attained with

500k PHEVs per hour. As we increase the number of power

stations, the saturation level increases. It reaches about 3.2

million for 5 power stations.

Figure 8 plots the actual number of PHEVs serviced for

different power stations. We observe that beyond a point, we

are not able to get any further improvement since we attain

the peak utilization. Secondly, for different power stations

the curves saturate at different points as expected. We would

ideally like to operate at the point at which the curves saturate

to maximize the utilization, and ensure that the probability

of a consToken finding a free slot is high. Figure 9 shows

scenarios in which we consider smaller genTokens. We vary

the relative ratio of the duration of the consToken and that of

the genToken from 2% to 100%. We observe that for different

duration ratios, the graphs saturate at different utilizations. For

2%, the maximum utilization level achievable is approximately

99.5% whereas for 70%, it drops down to around 84%, and

further for 100%, it drops down even more to 67%. The

realization is that the saturation level decreases as the duration

ratio of the consToken This happens because there is a lot of

internal fragmentation as the relative size of the consToken

is increased. The ideal range is from 2% to 35% where the

utilization remains above 90%.

C. Splitting

In this section, we plot the utilization of genTokens by

using different algorithms for the splitting consTokens. For

consTokens with a very small consToken duration to genToken

duration ratio (5%), we do not find a significant difference

between the different algorithms (see Figure 10). The two-

dimensional split and time-split algorithms perform slightly

better as they reach the peak earlier. The utilization varies

between 98% to 99%. But for consTokens with higher con-

sToken duration to genToken duration ratio (30%), we can

see considerable improvement in utilization in case of two-

dimensional and time split algorithms as shown in Figure 11.

At saturation, the two-dimensional split algorithm shows 95%

utilization, the time split algorithm shows 94.5% utilization

whereas the power split and no split algorithms show around

84-85% utilization.

We can conclude from Figures 10 and 11 that internal

fragmentation becomes a problem for packing consTokens

in genTokens as their relative size increases. Consequently,

splitting a token leads to higher utilizations. Furthermore, we

empirically observe that splitting along the time axis, is better

than splitting along the power axis.

D. Sensitivity

In this section, we vary the different parameters in TMS and

measure their effect on the experimental results. In Figure 12,

we vary the different scheduling schemes in the dispatcher

and measure the utilization. We observe that the endTime

algorithm shows better performance than any other scheme.

This is because we should try to make the maximize the

utilization of any genToken before its expiration.
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Thus giving priority to the genTokens whose end times

would soon approach, increases the utilization considerably.

When the number of PHEVs is very large, the scheduling

schemes for the genTokens do not affect utilization, since

some or the other consToken will get scheduled into each of

the genTokens. Figure 13 shows the utilization as a function

of the prioritization scheme for selecting genTokens: rr,

fifo, largest, smallest, earliest, and latest. We observe

that for small number of PHEVs (uptil 700k PHEVs), the

latest scheme performs better. As the number of PHEVs

increases, the largest scheme performs the best. The superior

performance of the latest scheme owes to giving priority to

genTokens which would expire sooner. With an increase in

the number of PHEVs, there are enough consTokens to be

packed into all genTokens. There is contention among the

genTokens to get into the active genToken space(agt) because

some genTokens may have to expire without getting a chance

to enter agt. Thus preferring the ones with larger power helps

because more conTokens can be packed. The largest-latest

scheme, which is a combination of the two schemes, yields

considerably better throughout for any number of PHEVs.

Figure 14 shows the number of PHEVs serviced as a

function of the validity time of a consToken. The validity time

is a multiple of the duration. We vary this factor from 1 to 10.

As expected, we observe an increase in the number of PHEVs

that we can service with increasing validity periods because it

gives us a larger window to schedule the consTokens. Lastly

Figure 15 shows a slotted activation, where we vary the

number of slots from 50 to 300. As expected, all the schemes

are worse than the unslotted case. Even with 700 slots we are

pretty far from the unslotted case. The utilization for 300 and

above slots is above 90%. Consequently, we can conclude that

to get acceptable performance, we need to have a minimum

of 300 slots in a genToken.

V. RELATED WORK

To the best of our knowledge, this paper presents the first

work that proposes an IT infrastructure for implementing

energy-as-a-service for PHEVs. This section discusses the

related work on characterizing the power demands for PHEVs,

and the application of tokens in networked and distributed

systems.

1) Power demands for PHEVs: The seminal papers by

Kempton and Tomic [10], [11] provide an overview of the

electricity markets in the future. They describe the charging

requirements of PHEVs along with their economic conse-

quences. They observe that PHEVs have a massive potential
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for supplying power back to the grid, called Vehicle-to-Grid

(V2G), and estimate the economic impact of V2G to be

about 12 billions dollars per year in the US. Several other

studies [3], [2] have looked at the potential for reduction in

emissions, and the additional infrastructure that is required

in the power grid. They observe that in developed countries,

the power grid will be able to manage the peak requirement

for less than 30% PHEV market penetration. Beyond that,

there is need to schedule the PHEV charging appropriately

using IT infrastructure and communication hardware. Putrus

et. al. [7] consider the problem of supply-demand matching in

power distribution networks. They observe that the problem

of supply-demand matching gets exacerbated with increasing

number of PHEVs.

Cirrincione et. al. [17] propose an intelligent energy man-

agement system, where there is a producer, consumer, and

a broker. The broker provides the list of producers to the

consumer. Unlike the Token Management System (TMS)

presented in this paper, the system in [17] does not schedule

on demand. Kulshreshtha et. al. [18] present the architecture

of a smart parking lot for charging PHEVs. Here PHEVs

submit their requests to a centralized agent, which has a fixed

power budget. It then schedules the PHEVs in ascending order

of their charging times. In comparison, TMS implements a

much larger distributed system, pays much more attention

to the communication aspects, and considers many different

scheduling schemes.

2) Token-based systems: Tokens have traditionally been

used for granting exclusive access to resources. The rest of

this section discusses some important applications of tokens

in networked and distributed systems, and points out how they

differ from TMS.

Token passing is used as a general communication channel

access mechanism in which a token is passed between different

nodes that share a common channel [19]. A node is authorized

to transmit on the channel only when it holds the token, thus

avoiding collisions during transmission. Token passing is used

in multiple communication protocol, e.g., IEEE 802.5 Token

Ring, IEEE 802.4 Token Bus, and Fiber Distributed Data In-

terface (FDDI). TMS is different from token passing protocols

in the following ways: (1) it allows both the generators and

consumers of the resource (power) to interact using generator

and consumer tokens, whereas in earlier token passing protocol

the generator of the resource (the communication channel)

is a passive entity, (2) it handles production, scheduling and
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distribution of multiple concurrent tokens, and (3) it can handle

variability in the amount of resource over time.

Tokens are also used for traffic shaping in a communication

network. In the token bucket scheme [19], tokens are generated

periodically in a bucket at a given rate, and a node uses up

certain number of tokens in the bucket to transmit a packet.

Token bucket schemes can shape the traffic from the node so as

to maintain an average bit rate, while allowing for some level

of burstiness. TMS is orthogonal to the token bucket scheme

since it does not shape the token generation and consumption

rate. However, token buckets can be used in TMS to impose

limits on these rates.

In peer-to-peer systems, [20], [21] present tokens based

schemes for sharing resources between peers. They use tokens

as a proof of service usage. Tokens are also tagged with the

name of the original owner. The dynamic distribution of tokens

determines the resource usage. [22] uses generalized tokens to

evaluate the trustworthiness of nodes in a peer to peer system,

and to also ensure fair resource usage. [23] uses a token based

scheme to provide incentives to users to collaborate more in a

peer to peer setting. In all these schemes, tokens are viewed as

a proof of usage and are discarded after they are received. In

TMS, tokens contain much more information, and are viewed

as active entities containing state.

Tokens are also used in network security protocols like

Kerberos [24] to setup a mutually agreed private key, and

are also used for authentication and trust management. In

these network security protocols, a token is simply used to

encapsulate a message. However, in TMS, tokens maintain

state information, and they have a wide range of attributes to

capture various access policies. Furthermore, in contrast to all

the above token based schemes in communication networks,

the tokens in TMS can be merged and split to provide a fine-

grained access control.

Token based algorithms are also used for one of the funda-

mental problems in distributed computing systems: the mutual

exclusion problem. Mutual exclusion algorithms are used to

prevent multiple processes to simultaneously access common

resources, i.e., to ensure that at most one process uses the

common resources at every time instant. In token based mutual

exclusion algorithms, a process can access a common resource

only when it holds the token, but the algorithms differ in how

the tokens are exchanged between the processes [25]. One

of the requirements of TMS is indeed similar to the mutual

exclusion problem: At every time instant, the consumption

of (the common resource) power by PHEVs should be at

most equal to the generation of power allocated to PHEVs.

However, TMS circumvents the problem of solving mutual

exclusion in a distributed setting by controlling the access

from a central Admission Control and Scheduling System

(ACS). Also, since the amount of power varies with time and

the system needs to satisfy various other access policies (in

addition to the power constraint), mutual exclusion algorithms

cannot be applied directly to TMS.

VI. CONCLUSION

This paper presented the generalized architecture of an

IT system to provide energy-as-a-service for PHEVs and

power producers using the notion of a token as its internal

currency. The paper presented a token management system

(TMS) to manage tokens generated by millions of PHEVs

and many different kinds of power stations. The TMS contains

the Admission Control System (ACS) that takes all the vital

scheduling and policy decisions in this system. The paper

presented several scheduling policies for different modules in

the ACS. Section A presented the communication protocol

between different entities in the system. Finally, simulation

results are obtained by implementing the infrastructure and

simulating millions of PHEVs using traces from the Australian

power grid for the last five years.

The primary observation from the simulations is that we

are able to get a fairly high level of utilization(>95%) for

a multitude of power stations. Secondly, the performance of

scheduling expressed in terms of the utilization of genTokens

and the admission rate of consTokens, is very sensitive to the

choice of the number of slots, the durations of the tokens,

and its validity period. In comparison, the service quality is

moderately sensitive to the scheduling and splitting policies.

We would like to conclude by observing that the system

presented in this paper is not limited to PHEV charging.
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As a part of future work, we plan to generalize it to much

larger utility networks, and incorporate many more sources of

renewable energy.

APPENDIX

A. The Communication Protocol

1: at a generator g
2: upon power generation request do
3: create genToken gt
4: send <GEN REQ, gt> to ACS
5: upon receiving <GEN ACK, gt> from ACS do
6: start generation for gt from its start time
7: upon receiving <GEN NACK, gt> from ACS do
8: remove gt from local token list

9: at a consumer c
10: upon power consumption request do
11: create consToken ct
12: send <CONS REQ, ct> to ACS
13: upon receiving <CONS ACK, ct, activation time> from

ACS do
14: start generation for gt from activation time
15: upon receiving <CONS NACK, ct> from ACS do
16: remove ct from local token list

17: at TMS
18: upon receiving <GEN REQ, gt> from generator g do
19: genTokenPriorityQueue.enqueue(gt)
20: upon receiving <CONS REQ, ct> from consumer c do
21: {batch consToken}
22: select a consBatch cb with with similar start time and

duration as ct; add ct to cb
23: if size of cb ≥ MAX BATCH SIZE then
24: consTokenFIFOQueue.enqueue(cb); cb := ∅

25: at ACS {Admission Control and Scheduling}
26: while true do
27: {remove almost filled active genTokens}
28: {agt is the list of active genTokens}
29: for each genToken gt ∈ agt do
30: if (gt.utilization ≥ MAX UTIL) and

(gt.num rejects ≥ NUM MAX REJECTS)
then

31: remove gt from agt

32: {add new active genToken}
33: while size of agt < MAX GEN ACTIV E do
34: gt := genTokenPriorityQueue.dequeue()
35: if gt has not expired then
36: add gt to agt
37: send <GEN ACK, gt> to the generator of gt
38: else
39: send <GEN NACK, gt> to the generator of gt

cb := consTokenFIFOQueue.dequeue()
40: dispatcher schedules consBatch cb by assigning an

activation time in a genToken
41: for each genToken gt ∈ agt do update gt.utilization and

gt.num rejects
42: if cb is admitted then
43: for each ct ∈ cb do send

<CONS ACK,ct, activation time> to the consumer
of ct

44: else
45: for each ct ∈ consBatch do send <CONS NACK,ct>

to the consumer of ct

Fig. 16. Application-level communication protocol

The PHEV network can be viewed as a distributed system

composed of the LMs at various nodes and the TMS. In

Figure 16, we present the application level distributed protocol

among the various components of the PHEV network. Request

for a genToken is sent using a GEN REQ message. The ACS

replies with a GEN ACK or a GEN NACK depending

on whether the genToken is used for scheduling or not. Sim-

ilarly, request for a consToken is sent using a CONS REQ

message, and the ACS replies with a CONS ACK or a

CONS NACK depending on whether the consToken is

scheduled or not.
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