Towards an Optimal Countermeasure for Cache
Side-Channel Attacks

Nivedita Shrivastava and Smruti R. Sarangi

Abstract—In the last 15 years, we have witnessed a
never ending arm’s race between the attacker and the
defender with respect to cache-based side-channel at-
tacks. We have seen a slew of attacks, countermeasures
(CMs), counterattacks, counter-countermeasures and
so on. We analyze the evolution of this area, propose
three necessary conditions for designing a successful
CM, and then analyze timing and address-based CMs
for popular algorithms such as AES and PRESENT. We
show that an optimal yet trivial solution for timing-
based CMs is possible. Furthermore, address-based
CMs are inferior to timing-based CMs, and they can
be broken in O(n'°8(°8(")) time.

Index Terms—cache side-channel attacks, counter-
measures, leakage, formal guarantees
I. INTRODUCTION

OR the last 15 years, cache-based side-channel at-

tacks (CSCAs), countermeasures (CMs), and subse-
quent counterattacks (CTAs) have been a popular topic
in computer architecture research. They have far-reaching
implications in terms of the design of secure hardware.
Unfortunately, this is a cat-and-mouse game, where after
a CM is published, a few years later a CTA is created, and
the sequence continues.

Consider the timeline in Figure [I| - it shows a sequence
of CMs for CSCAs and the corresponding CTAs. In this
paper, we show that while designing the CM, the devel-
opers violated a basic axiom, which made the subsequent
development of a CTA possible. In some cases, the original
authors of the CM indicated the difficulty of developing a
CTA based on the prevailing levels of computational power
in CPUs; however, once we had access to faster hardware,
this assumption broke, and in some other cases, there were
basic flaws in the design of the CMs.

Our key contribution in this short paper is to list three
properties that any noise-based CM (one that does not
rely on strict partitioning of the caches) must satisfy to
make it immune to attacks (explained with examples).
We formally analyze the problem and show that for
timing-based CMs, a trivial algorithm is also optimal.
Furthermore, address-space based CMs are inferior and
can be easily broken in O(n'°8(°8(")) steps for popular
encryption algorithms like AES.

II. BACKGROUND

Cache-based Side-Channel Attacks (CSCAs):
The key idea behind such attacks is that it is possible for
an attacker process to deliberately induce a miss in a cache

The authors are with the Department of Electrical Engineering,
Indian Institute of Technology Delhi, Delhi, India, 110016.E-mail:
nivedita.shrivastava@ee.iitd.ac.in, srsarangi@cse.iitd.ac.in

Countermeasures

700 Cache Missing Counterattacks
Classification of 2000 CacheAttacks \ T CalcheGames
Countermeasures 0 RemoteTime 1““ \Vattikonda et al.
Timing based ”f&u CacheGames x SO Tmewarp
i Unraveling
Address based | Timewarp LU
1w RandomFill o E'Tewagl; -
T CaESAR 5520 | Entropyshei
oV BRUTUS
10\9‘ CAESARS ’)'Q’Lg Song et al
”LLQ‘—Q ScatterCache 0L

Fig. 1: A timeline of CMs and CTAs

line. Subsequently, the time required to access the cache
line can be monitored with a high-resolution nanosecond-
level timer (HRT). This can give us some information
about the memory behavior of the victim process [2§],
[31], [32] particularly if it is executing a cryptographic
algorithm that has data-dependent accesses.
Countermeasures (CMs): Early approaches pro-
posed strict partitioning based CMs where there was no
interaction between the attacker and victim processes.
However, this was too restrictive and the overheads were
high; hence, the current thinking is to increase the noise
with various obfuscation techniques such that it is hard
for the attacker to derive any useful information from
the quantities that she measures. For example, we can
add noise to the return value of the HRT, run decoy
processes [3], |37], randomize the address space [9], [24],
alter the frequency and use a prefetcher [10] to introduce
randomness. The efficacy of such a CM can be quantified
using information-theoretic results (standard approach).
Mutual Information (MI): Let the quantity of in-
terest that the attacker seeks be the random variable X
(cache set address or T-table (for AES-based encryption),
time between two events, etc.). From a mathematical
perspective, the choice of X (uni or multivariate [7]) can
be left to the designer of the CM or CTA. It is assumed
that if the attacker receives a sufficient number of samples
of X, a successful attack can be mounted.
The attacker actually gets Y = X + N = g(X), N is the
noise added by the CM using the noise-adding function g.
Information theoretically, we wish to minimize the mutual
information (MI) between X and Y defined as I(X;Y) =
H(X) — H(X|Y), where H(X) = —Sp(X)logs(p(X));
H(X|Y) = =3p(X,Y)log (pi))((yx)/ 2‘ The MI captures
all statistical dependences and is the gold standard for
estimating the strength of side-channel information [39).
There is a close correlation between the MI and other
statistical measures, such as the chi-squared function [41]




Table 1 - List of papers violating the properties. The CTA supports the fact that the failure of a CM is due to a property

violation.

Property Violation ‘ Countermeasure Basic Technique/Claim Counterattack
P1: No functionality Disable RDTSC |21], |22] HRT unavailable CacheGames
(21]

disruption
dom delay to RDTSC [20]

P2: A large num. of
tries

P3.1.1: Det. obfus-
cation (many-to-one)
$3.1.2: Det. obfus-
cation (one-to-one)
$3.2.1: Unpredictable
statistical properties
(one-to-many)

Cache |9]
Hide the LSBs of RDTSC [20]
caches (8], [24]

put of RDTSC (1]
with the actual program |3|

delay to RDTSC [20]

(12]

and inter-class distance [42].
III. PROPERTIES

In this section, we shall list down the properties that
need to be followed for designing a successful noise-based
CM (refer to Table 1).

Property 1: No functionality disruption The exter-
nally introduced noise should not affect the functionality
of the system — no HRT can be turned off.

Property 2: Requires a large number of tries

The number of tries M (to recover the key) needs
to overwhelm the computational capability of a hacker
(today or in the near future). This has to be set based
on technological projections. A large number such as
264 ig considered to be safe with today’s technology. To
derive an upper bound on the information leakage, we
rely on the modified Massey’s inequality derived in [7];
it says that given the plaintext, M > (2~ 1(X:Y)+log(K)) /e,
where K is the number of bits in the key. We thus have
an upper bound ¢ for I(X;Y) given M. Note: For the
ease of readability, we will write I(X;Y|T) as I(X;Y)
everywhere. Assumption: The plaintext is given.
Property 3.1: Deterministic obfuscation In this case,
the mapping from X to Y is decided a priori. There are
two mutually exclusive subclasses that are exhaustive. In
all cases, the designers need to ensure I(X;Y) <.
[8.1.1] Many-to-one mapping: Different values of X may
map to the same value of Y. In the extreme case, Y can
be a constant. In this case, I(X;Y) = 0.

[3.1.2] One-to-one mapping: There is a one-to-one map-
ping between X and Y. The mapping is not known in
advance and is hard to compute because we have |X]|!
possible permutations. Now, by not considering unmapped
values of Y, and by suitably relabeling values, we can
create an equivalent bijective mapping from X to itself.
This is also a 1-way permutation.

Property 3.2: Nondeterministic obfuscation This
captures the one-to-many scenario, where the mapping
between X and Y possibly changes for every measurement.

CacheAttacks: Add an unbounded, ran-

Address randomization for caches: Scatter-

CEASER: Address randomization for the

Timewarp: Add crafted delays to the out-
RemoteTime: Execute a dummy ‘for’ loop
CacheAttacks: Add an unbounded random

RandomFill: Randomize the cache lines

Completely obfuscated RDTSC instruction
(time can appear to go backwards)

Requires 33.5 million LLC evictions to find
the victim’s cache lines

Timewarp |1]
Song et al. [14]

Degrade the clock granularity, the observed  Vattikonda et

value of RDTSC follows a step function al. [5)

The mapped address is generated from the BRUTUS [17]
real address using a linear block cipher

Difficult to find the noise distribution using  Unraveling

statistical analysis timewarp |18|
Obscured timing information of the actual -

program

Forces the attacker to perform and average -

many measurements

Randomly fill the cache lines and thus the EntropyShield
attacker will find it hard to guess the mapping (6]

For example, we can just add a random number to X to
get a value of Y. We need to still ensure that I(X;Y) <e,
(refer to Property 2). Let us now discuss an important
subclass of this property, which a lot of CMs have violated
in the past; this has made it easier to design CTAs.

[8.2.1] Unpredictable statistical properties An attacker
should not be able to estimate any useful statistical
properties of the noise distribution, even with multiple
measurements. For example, if the mean of the noise can
be estimated with a large number of samples, then it can
be subtracted from a given Y to get its corresponding
X. Given that the MI takes into account all statistical
dependences, it automatically means that the statistical
properties of the noise N or Y are not known and cannot
be predicted.

Summary: Any CM needs to satisfy Properties 1, 2,
and any one of the sub-properties of Property 3. Then, it
is guaranteed that we have a normally performing system
(Property 1), the information leaked per measurement is
< ¢ (Property 3), and thus M (# tries required) is much
more than the available computational capacity (Property
2).

IV. EXAMPLES OF PROPERTY VIOLATIONS

Let us now evaluate popular CMs and CTAs on the basis
of our properties (as mentioned in Table 1), and look at
the properties they violate.

A. Property 1: No Functionality Disruption

Percival |22| recommended to completely disable HRTS.
However, they are required by various applications such
as network drivers and games; disabling them will disrupt
their functionality [1], [21]. In comparison, Bangerter et
al. [21] altered the working of RDTSC (inst. to access
HRT) by adding an unbounded random offset. However,
it was pointed out that this CM may make time flow
backward [1]. As a result of this issue, a process that is
switching its context from one core to another may find a
negative offset in the system time [1]. Operating systems



may not work with this change. It is thus essential that two
consecutive RDTSC instructions always respect the wall
clock time [1]. Vattikonda [5] et al. also supported this
maxim by saying that inconsistent time will lead to in-
consistent system performance, for example, “inconsistent
file modification timestamps could affect applications like
make or kernel daemons”. The takeaway point is no CM
should morbidly impair the functioning of the system.

B. Property 2: A Large Number of Tries

Even if the CM does not disrupt the system’s func-
tionality, assuming a constraint on the attacker’s capacity
is not wise. The constraint will be violated as soon as
the technology catches up. ScatterCache [9] proposes to
randomize the addresses. This makes it hard to find the
eviction sets (set of lines evicted by the victim). Sadly, we
can use a variety of search techniques to reduce the number
of tries and also try more using faster hardware (done in
this case by Song et al. [14]). They proposed to find the
eviction set in only O(wn) time, where w is the number
of ways in a cache and n is the number of addresses being
tracked. This made the CTA possible.

The number of tries should be in accordance with
Property 2; this will ensure that in the foreseeable future
it will be difficult to mount such attacks.

C. Property 3.1: Deterministic Obfuscation

Let us now look at cases where the mapping between
X and Y is deterministic. The basic precept is that the
mapping should not be easily discoverable.

Property 3.1.1: Many-to-One Mapping: Osvik et al. [20]
propose to obscure RDTSC’s return value by masking the
LSB bits; this makes the measured time a step function.
The hidden bit mask can be easily discovered via statistical
analyses [5]. An attacker can also determine the begin-
ning of a timing epoch (for which the output remains
constant because of the bit masking). Then she will keep
on invoking RDTSC and accordingly increment a proxy
counter that will help to estimate the real clock cycle (also
highlighted in Timewarp [1]).

Property 3.1.2: One-to-One Mapping: CEASER [24]
and CEASER-S [§] are cache architectures in this category
where a simple, linear block cipher is used to convert
the real address into a mapped address. The linear block
cipher uses the uptime, machine id, and key as variables,
which ensure that its output varies across different in-
stances of a secure process. However, the linear cipher
has limited confusion and diffusion properties — flipping a
certain number of bits called ‘invariant bits’ in the input
address will not alter some of the encrypted output bits.
As a result, it is possible for an attacker to study Y and
find some bits of X. This tremendously reduces the search
space. The problem arose because bytes in X were being
mapped to a very constrained set of Y values. This fact

was used to break this technique by the Brutus paper [17].
The only way to solve this is by increasing the searc

space such that a given X can possibly map to a large num-
ber of Y values making the process of learning the mapping
intractable. Learning the mapping should require a large

number of tries in accordance with Property 2. Unfortu-
nately, as shown in Section [V} the search space is quite
small for commonly used ciphers such as AES (industrial-
strength encryption) and PRESENT (lightweight encryp-
tion). This is why such methods are inherently weak.

D. Property 3.2: Nondeterministic Obfuscation

The idea is that the distribution of Y should not provide
any information about X and therefore should be unpre-
dictable. Note that if the noise is zero, X =Y.

Property 3.2.1: Unpredictable Statistical Properties:
This property is an important subset of the parent prop-
erty. An attacker should not have any estimate about
the statistical properties of the noise distribution or Y.
Information theoretically, we need to ensure I(X,Y|n) =
I(X,Y), where 7 represents any statistical property (e.g.
mean, variance, etc.), i.e., there should be no change in the
amount of MI between the leaked and actual data, even if
an adversary learns some statistical properties.

Assume that the mean of the noise is constant. Now, if X
remains constant (key and plaintext remaining the same),
we can just average out the noise and subtract it from Y,
we will get X. This was the problem with Timewarp [1],
which was later exploited by Sarani et al. [18] to design
a CTA. Consider Random Fill Cache [12], where several
dummy requests are made to addresses that are in the
same neighborhood as the original address. Dhavlle et
al. [6] leverage the knowledge of the statistical distribution
to design a CTA.

V. DISCUSSION: IMPOSSIBILITY RESULTS AND DESIGN
OF A UNIVERSAL CM

CMs can be grouped into two broad categories [1],
[17]: timing and address-based. The former obfuscates the
timing information captured by the HRT and the latter
obfuscates the addresses. X in the first case is the time
[1] and in the latter case is the accessed address in the
data structure of interest [9]. For AES, it is the T-table
and for PRESENT, it is the S-box.

Given the plaintext T', key K, we have a Markov chain
(key(K), Ty — X — Y |[7]. This will lead us to the
equation I(K;Y) = I(X;Y) (see Lemma 6 in [7]). This
basically means that the MI between X and Y deter-
mines the amount of information that can be extracted
out of Y about the key. The two assumptions are that
this is a Markov process and the noise distribution NV is
independent of the key, K (standard assumption). In the
generic case, we can use the data processing inequality in
information theory and write I(K;Y) < I(X;Y) (derived
from basic results in [7], please refer to Appendix A for the
complete proof.) Note that our aim is to minimize I(K;Y")
because we need to learn as little as possible about the key
from different observations (values of Y'). Considering both
cases, this translates to minimizing I(X;Y).

A. Timing-based CM

Consider a timing-based CM first. Here, the key idea
is to find all the times (values of Y') that are above a



threshold 7 across a set of measurements. At least one of
them will be more than 7 because it will correspond to a
cache miss. Based on these values of Y, a guess is made
about X. If we wish to minimize I(X;Y"), then we need to
ensure that the domain (list of allowed values) of Y is as
large as possible, which means that all the measurements
are > 7. Now, assume the limiting case where all values of
Y are equal to 7. This can easily be enforced in hardware
by pinning cache lines or by adding a dummy delay. We
now have I(X;Y) = 0 because Y is a constant. In this
case, this is a necessary and sufficient condition for a
universal CM. If instead, the attack is based on cache
hits, then also the same scheme will work. Furthermore,
we are minimizing the additional delay added to each
measurement by setting Y = 7. This scheme is thus
optimal because it minimizes the MI and (3. Y — 7).
Conclusion: Alternatively, this means that we do not
accrue any benefit by delaying any request for a duration
more than 7, and thus any non-trivial CM will perform
strictly worse than our trivial solution assuming that
(>°Y — 7) monotonically determines performance.

B. Address-based CM

For addresses, the many-to-one mapping is not relevant
because it violates the basic notion of memory — one
address contains one datum. The one-to-many mapping
is possible if we have redundant copies; however, the re-
dundancy can be discovered with multiple measurements,
and because we need to limit the storage space, we cannot
provision a large number of copies. Hence, in practice, only
the one-to-one mapping is used. While describing Property
3.1, we proved that this can be made equivalent to a 1-way
permutation. Now, note that a keyed 1-way permutation
is a block cipher — the key determines the mapping.

We have two options: either we use a block cipher to
map X to Y or use an explicit mapping table. Consider
the first approach. It means that to remove side channels,
we need to map X — Y using another block cipher, which
will have its own side channels — a never-ending process.

Now, consider the case where we have an explicit map-
ping table (X — Y) stored in hardware. This is feasible
because most T-tables or S-boxes contain up to 256-1024
entries. If there are n entries, we can have n! possible map-
pings and thus it may appear that discovering the right
mapping is a difficult problem. This is false. Algorithms
such as AES and PRESENT have an interesting property
for two pieces of plaintext 7" and 7", where d(T,T") = 1.
Definitions: d is the Hamming distance and (w,w’) is a
neighboring pair if d(w,w’) = 1. The corresponding values
of Y have the same property, d(Y,Y’) = 1, because for
accessing T-tables or S-boxes we need to XOR plain text
bytes with key bytes. A XOR operation preserves the
Hamming distance (for the same key).

Let us use this information to represent the entries
as a hypercube. Recall that in any labeling of a hy-
percube, adjacent vertices have a Hamming distance of
1. By choosing plaintext pairs or by observing them in
a large sequence, we can find neighboring pairs of Y

values. With O(n.log(n)) observations we can find all
the neighboring pairs and we can construct a hypercube
with n vertices. We will however not know the labeling —
Y — X mapping. The total number of possible labelings
of a hypercube is equal to n(logn)!. Now, according to
the Stirling’s approximation: n! =~ v2wn(n/e)™. (logn)!
can be represented as v/2mlogn (logn/e)l°e™  which is
bounded by n'°g°g” nOM) Hence, n(logn)! is bounded by
n@Uoslogn). total number of possible labelings (Y — X
mappings) in a hypercube. For the complete proof, please
refer to Appendix B.

Conclusion: This basically means that we need to
try out n@Uogloen) candidate mappings to find out the
correct X <> Y mapping. This function has a very slow
growth rate and we can exhaustively consider all the
combinations. For practical values of n (< 1024), this is
computationally feasible and thus even with an explicit
mapping table, this family of approaches is very weak,
especially, as compared to the trivial yet optimal timing-
based scheme.

REFERENCES

[1] R. Martin et al., “Timewarp: Rethinking timekeeping and
performance monitoring mechanisms to mitigate side-channel
attacks,” in ISCA, 2012.

[2] D. Page, “Partitioned cache architecture as a éide-channel
defence mechanism,” 2005.

[3] D. Jayasinghe et al., “Remote cache timing attack on advanced
encryption standard and countermeasures,” in ICIAfS, 2010.

[4] M. Alam et al., “How secure are deep learning algorithms from
side-channel based reverse engineering?” in Proc. of the 56th
Annu. Design Automation Conf. 2019, 2019, pp. 1-2.

[5] B. C. Vattikonda et al., “Eliminating fine grained timers in
xen,” in Cloud computing security workshop, 2011.

[6] A. Dhavlle et al., “Entropy-shield: Side-channel entropy maxi-
mization for timing-based side-channel attacks,” in ISQED’20.

[7] E. de Chérisey et al., “Best information is most successful,”
CHES, 2019.

[8] M. K. Qureshi, “New attacks and defense for encrypted-address
cache,” in ISCA, 2019, pp. 360-371.

[9] M. Werner et al., “Scattercache: Thwarting cache attacks via
cache set randomization,” in USENIX, 2019.

[10] H. Wang et al., “Mitigating cache-based side-channel attacks
through randomization: A comprehensive system and architec-
ture level analysis,” in DATE, 2020.

[11] J. Seo et al., “Sgx-shield: Enabling address space layout ran-
domization for sgx programs.” in NDSS, 2017.

] F. Liu et al., “Random fill cache architecture,” in MICRO’14.
[13] D. Gruss et al., “Cache template attacks: Automating attacks
on inclusive last-level caches,” in USENIX, 2015, pp. 897-912.
[14] W. Song et al., “Randomized last-level caches are still vulner-

able to cache side-channel attacks! but we can fix it,” in S&P,
2021.

[15] W. Song and P. Liu, “Dynamically finding minimal eviction
sets can be quicker than you think for side-channel attacks
against the {LLC},” in RAID, 2019.

[16] L. Zhang et al., “Brute force attack on block cipher algorithm
based on distributed computation,” Comput. Eng., vol. 34,
no. 13, pp. 121-123, 2008.

[17] R. Bodduna et al., “Brutus: Refuting the security claims of
the cache timing randomization countermeasure proposed in
ceaser,” IEEE CAL, vol. 19, no. 1, pp. 9-12, 2020.

[18] S. Bhattacharya et al., “Unraveling timewarp: What all the
fuzz is about?” in HASP, 2013.

[19] Y. Zhang and M. Reiter, “Diippel: Retrofitting commodity op-
erating systems to mitigate cache side channels in the cloud,”
in Proc. of the ACM SIGSAC conf. on Comput. & commun.
security, 2013, pp. 827-838.

[20] D. A. Osvik et al., “Cache attacks and countermeasures: the
case of aes,” in Cryptographers’ track at the RSA conf., 2006.



D. Gullasch et al., “Cache games—bringing access-based cache
attacks on aes to practice,” in S&P, 2011.

C. Percival, “Cache missing for fun and profit,” 2005.

S. Hong et al., “Security analysis of deep neural networks
operating in the presence of cache side-channel attacks,” arXiv
preprint arXiv:1810.03487, 2018.

M. K. Qureshi, “Ceaser: Mitigating conflict-based cache at-
tacks via encrypted-address and remapping,” in MICRO, 2018.
W. Song and P. Liu, “Dynamically finding minimal eviction
sets can be quicker than you think for side-channel attacks
against the {LLC},” in RAID, 2019.

P. Vila et al., “Theory and practice of finding eviction sets,”
in S&P, 2019.

M.-M. Bazm et al., “Side-channels beyond the cloud edge:
New isolation threats and solutions,” in 1st Cyber Security in
Networking Conf., 2017, pp. 1-8.

Y. Yarom and K. Falkner, “Flush+ reload: A high resolution,
low noise, 13 cache side-channel attack,” in USENIX, 2014.

I. Intel, “and ia-32 architectures software developer’s manual,”
Volume 3A: System Programming Guide, Part, vol. 1, no. 64,
p. 64, 64.

A. Saxena and B. Panda, “Dabangg: Time for fearless flush
based cache attacks” IACR Cryptol. ePrint Arch., vol. 2020,
p. 637, 2020.

D. Gruss et al., “Flush+ flush: a fast and stealthy cache
attack,” in Detection of Intrusions and Malware, and Vulner-
ability Assessment, 2016.

F. Liu et al., “Last-level cache side-channel attacks are practi-
cal,” in S&P, 2015.

D. A. Osvik et al., “Cache attacks and countermeasures: the
case of aes,” in Cryptographers’ track at the RSA conf., 2006,
pp. 1-20.

D. Sanchez and C. Kozyrakis, “The zcache: Decoupling ways
and associativity,” in 2010 43rd Annual IEEE/ACM Int. Symp.
on Microarchitecture, 2010, pp. 187-198.

A. Seznec, “A case for two-way skewed-associative caches,”
ACM SIGARCH computer architecture news, vol. 21, no. 2,
pp. 169-178, 1993.

A. Gonzéilez, M. Valero, N. Topham, and J. M. Parcerisa,
“Eliminating cache conflict misses through xor-based place-
ment functions,” in Proceedings of the 11th international con-
ference on Supercomputing, 1997, pp. 76-83.

D. Page, “Partitioned cache architecture as a side-channel
defence mechanism,” Cryptology ePrint Archive, 2005.

Q. Ge and et al., “A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware,”
JCEN, 2018.

L. Batina et al., “Mutual information analysis: a comprehen-
sive study,” J. of Cryptology, 2011.

M. Randolph et al., “Power side-channel attack analysis: A
review of 20 years of study for the layman,” Cryptography,
2020.

S. Weisberg, Applied linear regression. J. Wiley & Sons, 2005.
A. Heuser et al., “Information theoretic comparison of side-
channel distinguishers: Inter-class distance, confusion, and suc-
cess,” in Trusted Computing for Embedded Systems, 2015.

R. Spreitzer and T. Plos, “Cache-access pattern attack on
disaligned aes t-tables,” in International Workshop on Con-
structive Side-Channel Analysis and Secure Design. Springer,
2013, pp. 200-214.

D. Gruss, R. Spreitzer, and S. Mangard, “Cache template
attacks: Automating attacks on inclusive {Last-Level} caches,”
in 24th USENIX Security Symposium (USENIX Security 15),
2015, pp. 897-912.

M. Neve and J.-P. Seifert, “Advances on access-driven cache
attacks on aes,” in International Workshop on Selected Areas
in Cryptography. Springer, 2006, pp. 147-162.

D. Wang, Z. Qian, N. Abu-Ghazaleh, and S. V. Krishnamurthy,
“Papp: Prefetcher-aware prime and probe side-channel attack,”
in Proceedings of the 56th Annual Design Automation Confer-
ence 2019, 2019, pp. 1-6.

A. Saxena and B. Panda, “Dabangg: time for fearless flush
based cache attacks,” Cryptology ePrint Archive, 2020.

G. Didier and C. Maurice, “Calibration done right: Noiseless
flush+ flush attacks,” in International Conference on Detec-
tion of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2021, pp. 278-298.

[49]

[59]

[60]

[61]

(62]

(63]

[65]

[66]

M. A. Mukhtar, M. Mushtaq, M. K. Bhatti, V. Lapotre,
and G. Gogniat, “Flush+ prefetch: A countermeasure against
access-driven cache-based side-channel attacks,” Journal of
Systems Architecture, vol. 104, p. 101698, 2020.

M. Yan, C. W. Fletcher, and J. Torrellas, “Cache telepathy:
Leveraging shared resource attacks to learn {DNN} archi-
tectures,” in 29th USENIX Security Symposium (USENIX
Security 20), 2020, pp. 2003-2020.

W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering cnn
models using side-channel attacks,” IEEE Design € Test, 2022.
M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell,
and J. Torrellas, “Attack directories, not caches: Side channel
attacks in a non-inclusive world,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 888-904.

A. Dhavlle, R. Mehta, S. Rafatirad, H. Homayoun, and S. M. P.
Dinakarrao, “Entropy-shield: Side-channel entropy maximiza-
tion for timing-based side-channel attacks,” in 2020 21st Inter-
national Symposium on Quality Electronic Design (ISQED).
IEEE, 2020, pp. 161-166.

Y. Zhang and M. K. Reiter, “Diippel: Retrofitting commod-
ity operating systems to mitigate cache side channels in the
cloud,” in Proceedings of the 2018 ACM SIGSAC' conference
on Computer & communications security, 2013, pp. 827-838.

D. Sanchez and C. Kozyrakis, “The zcache: Decoupling ways
and associativity,” in 2010 43rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture. TEEE, 2010, pp. 187—
198.

A. Jaamoum, T. Hiscock, and G. Di Natale, “Scramble cache:
An efficient cache architecture for randomized set permuta-
tion,” in 2021 Design, Automation & Test in Europe Confer-
ence & Ezhibition (DATE). IEEE, 2021, pp. 621-626.

D. Page, “Defending against cache-based side-channel at-
tacks,” Information Security Technical Report, vol. 8, no. 1,
pp- 30-44, 2003.

V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and
J. Emer, “Dawg: A defense against cache timing attacks
in speculative execution processors,” in 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2018, pp. 974-987.

M. Mushtaq, A. Akram, M. K. Bhatti, M. Chaudhry,
V. Lapotre, and G. Gogniat, “Nights-watch: A cache-based
side-channel intrusion detector using hardware performance
counters,” in Proceedings of the 7th International Workshop on
Hardware and Architectural Support for Security and Privacy,
2018, pp. 1-8.

M. Mushtaq, A. Akram, M. K. Bhatti, R. N. B. Rais,
V. Lapotre, and G. Gogniat, “Run-time detection of prime+
probe side-channel attack on aes encryption algorithm,” in
2018 Global Information Infrastructure and Networking Sym-
posium (GIIS). 1EEE, 2018, pp. 1-5.

M. Mushtaq, J. Bricq, M. K. Bhatti, A. Akram, V. Lapotre,
G. Gogniat, and P. Benoit, “Whisper: A tool for run-time
detection of side-channel attacks,” IEEE Access, vol. 8, pp.
83 871-83 900, 2020.

M. Mushtaq, A. Akram, M. K. Bhatti, M. Chaudhry,
M. Yousaf, U. Farooq, V. Lapotre, and G. Gogniat, “Machine
learning for security: The case of side-channel attack detection
at run-time,” in 2018 25th IEEE International Conference on
Electronics, Circuits and Systems (ICECS). IEEE, 2018, pp.
485-488.

M. Mushtaq, A. Akram, M. K. Bhatti, V. Lapotre, and G. Gog-
niat, “Cache-based side-channel intrusion detection using hard-
ware performance counters,” in CryptArchi 2018-16th Interna-
tional Workshops on Cryptographic architectures embedded in
logic devices, 2018.

J. Kong, O. Aciigmez, J.-P. Seifert, and H. Zhou, “Hardware-
software integrated approaches to defend against software
cache-based side channel attacks,” in 2009 IEEFE 15th interna-
tional symposium on high performance computer architecture.
IEEE, 2009, pp. 393-404.

T. Kim, M. Peinado, and G. Mainar-Ruiz,
“{STEALTHMEM }:{System-Level } protection against
{Cache-Based} side channel attacks in the cloud,” in 21st
USENIX Security Symposium (USENIX Security 12), 2012,
pp. 189-204.

J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou, “Deconstruct-
ing new cache designs for thwarting software cache-based side



[74]

[75]

[76]

[77]

(86]

channel attacks,” in Proceedings of the 2nd ACM workshop on
Computer security architectures, 2008, pp. 25-34.

Z. Lv, Y. Zhao, and C. Zhang, “Degradetimer: Mitigating
dedicated thread timer based microarchitectural timing chan-
nels,” in ICC 2020-2020 IEEE International Conference on
Communications (ICC). IEEE, 2020, pp. 1-7.

Y. Cao, Z. Chen, S. Li, and S. Wu, “Deterministic browser,”
in Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, 2017, pp. 163-178.
W.-M. Hu, “Reducing timing channels with fuzzy time,” Jour-
nal of computer security, vol. 1, no. 3-4, pp. 233-254, 1992.
M. Sabbagh, Y. Fei, T. Wahl, and A. A. Ding, “Scadet: A
side-channel attack detection tool for tracking prime-probe,”
in 2018 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). ACM, 2018, pp. 1-8.

G. Sangeetha and G. Sumathi, “An optimistic technique to
detect cache based side channel attacks in cloud,” Peer-to-Peer
Networking and Applications, vol. 14, no. 4, pp. 2473-2486,
2021.

Z. He and R. B. Lee, “How secure is your cache against
side-channel attacks?” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture,
2017, pp. 341-353.

S. Hong, M. Davinroy, Y. Kaya, S. N. Locke, I. Rackow,
K. Kulda, D. Dachman-Soled, and T. Dumitrag, “Security
analysis of deep neural networks operating in the presence of
cache side-channel attacks,” arXiv preprint arXiv:1810.03487,
2018.

W. Cheng, O. Rioul, and S. Guilley, “Guessing a secret cryp-
tographic key from side-channel leakages,” in 2019 IEEE Fu-
ropean School of Information Theory (ESIT’19), 2019.

D. Zhang, C. Zhou, S. Li, D. Yu, and K. He, “Evaluation of
information leakage of cryptographic chip based on variance,”
IEEE Letters on Electromagnetic Compatibility Practice and
Applications, vol. 2, no. 4, pp. 174-177, 2020.

C. Su and Q. Zeng, “Survey of cpu cache-based side-channel
attacks: systematic analysis, security models, and countermea-
sures,” Security and Communication Networks, vol. 2021, 2021.
C. Shen, C. Chen, and J. Zhang, “Micro-architectural cache
side-channel attacks and countermeasures,” in 2021 26th Asia
and South Pacific Design Automation Conference (ASP-
DAC). 1EEE, 2021, pp. 441-448.

W. Cheng, Y. Liu, S. Guilley, and O. Rioul, “Attacking
masked cryptographic implementations: Information-theoretic
bounds,” arXiv preprint arXiv:2105.07436, 2021.

J. Cho, T. Kim, S. Kim, M. Im, T. Kim, and Y. Shin, “Real-
time detection for cache side channel attack using performance
counter monitor,” Applied Sciences, vol. 10, no. 3, p. 984, 2020.
P. P. Bhade and S. Sinha, “Detection of cache side channel
attacks using thread level monitoring of hardware performance
counters,” in 2021 IEEE 14th International Symposium on
Embedded Multicore/Many-core Systems-on-Chip (MCSoC).
IEEE, 2021, pp. 210-217.

B. Gulmezoglu, A. Moghimi, T. Eisenbarth, and B. Sunar,
“Fortuneteller: Predicting microarchitectural attacks via un-
supervised deep learning,” arXiv preprint arXiv:1907.03651,
2019.

P. Vasilikos, H. R. Nielson, F. Nielson, and B. Kopf, “Timing
leaks and coarse-grained clocks,” in 2019 IEEE 32nd Computer
Security Foundations Symposium (CSF). IEEE, 2019, pp. 32—
3215.

Z. Wang, S. Peng, X. Guo, and W. Jiang, “Zero in and time-
fuzz: detection and mitigation of cache side-channel attacks,”
in International Conference on Security for Information Tech-
nology and Communications. Springer, 2018, pp. 410-424.
G. Saileshwar and M. Qureshi, “{MIRAGE}: Mitigating
{Conflict-Based} cache attacks with a practical {Fully-
Associative} design,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 1379-1396.

M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure
hierarchy-aware cache replacement policy (sharp): Defending
against cache-based side channel attacks,” in 2017 ACM/IEEFE
44th Annual International Symposium on Computer Architec-
ture (ISCA). 1EEE, 2017, pp. 347-360.

T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-
time side-channel attack detection system in clouds,” in Inter-

(93]

[94]

[95]

[98]

[99]

[100]

national Symposium on Research in Attacks, Intrusions, and
Defenses. Springer, 2016, pp. 118-140.

S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz,
“Thwarting cache side-channel attacks through dynamic soft-
ware diversity.” in NDSS, 2015, pp. 8-11.

S. Enomoto and H. Kuzuno, “Flushblocker: Lightweight mit-
igating mechanism for cpu cache flush instruction based at-
tacks,” in 2021 IEEE FEuropean Symposium on Security and
Privacy Workshops (EuroS&PW). IEEE, 2021, pp. 74-79.
H. Chabanne, J.-L. Danger, L. Guiga, and U. Kiihne, “Side
channel attacks for architecture extraction of neural networks,”
CAAI Transactions on Intelligence Technology, vol. 6, no. 1,
pp- 3-16, 2021.

F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure cache
architecture thwarting cache side-channel attacks,” IEEE Mi-
cro, vol. 36, no. 5, pp. 8-16, 2016.

H. Wang, H. Sayadi, T. Mohsenin, L. Zhao, A. Sasan, S. Rafati-
rad, and H. Homayoun, “Mitigating cache-based side-channel
attacks through randomization: A comprehensive system and
architecture level analysis,” in 2020 Design, Automation &
Test in Europe Conference & Ezhibition (DATE). IEEE, 2020,
pp- 1414-1419.

F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and
R. B. Lee, “Catalyst: Defeating last-level cache side channel
attacks in cloud computing,” in 2016 IEEFE international sym-
posium on high performance computer architecture (HPCA).
IEEE, 2016, pp. 406—418.

M. Mushtaq, M. A. Mukhtar, V. Lapotre, M. K. Bhatti, and
G. Gogniat, “Winter is here! a decade of cache-based side-
channel attacks, detection & mitigation for rsa,” Information
Systems, vol. 92, p. 101524, 2020.

A. Akram, M. Mushtaq, M. K. Bhatti, V. Lapotre, and G. Gog-
niat, “Meet the sherlock holmes’ of side channel leakage: A
survey of cache sca detection techniques,” IEEE Access, vol. 8,
pp- 70836-70 860, 2020.

E. De Cherisey, S. Guilley, O. Rioul, and P. Piantanida, “An
information-theoretic model for side-channel attacks in embed-
ded hardware,” in 2019 IEEE International Symposium on
Information Theory (ISIT). IEEE, 2019, pp. 310-315.

A. Ito, R. Ueno, and N. Homma, “On the success rate of
side-channel attacks on masked implementations: Information-
theoretical bounds and their practical usage,” Cryptology
ePrint Archive, 2022.

B. Mao, W. Hu, A. Althoff, J. Matai, J. Oberg, D. Mu, T. Sher-
wood, and R. Kastner, “Quantifying timing-based information
flow in cryptographic hardware,” in 2015 IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD).
IEEE, 2015, pp. 552-559.

B. Gierlichs, L. Batina, and P. Tuyls, “Mutual information
analysis—a universal differential side-channel attack,” Cryptol-
ogy ePrint Archive, 2007.

A. Duc, S. Dziembowski, and S. Faust, “Unifying leakage
models: from probing attacks to noisy leakage.” in Annual
International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2014, pp. 423-440.

Y. Fei, A. A. Ding, J. Lao, and L. Zhang, “A statistics-
based fundamental model for side-channel attack analysis,”
Cryptology ePrint Archive, 2014.

APPENDIX A

Lemma 1: I(K;Y|T) establishes a lower bound on
I(X;Y|T).
Proof: Given the plaintext T, key K, we have a Markov

chain (key(

K), Ty - X — Y [7]. This basically means

that the MI between X and Y determines the amount of
information that can be extracted out of Y about the key.
The two assumptions are that this is a Markov process
and the noise distribution NNV is independent of the key, K.

In the generic case, we can use the data processing
inequality in information theory and write I(K;Y|T) <
I(X;Y|T) (derived from Eqn.8 in [7]).



Using Equation 10 in [7]:
I(X,T); (Y, 1)) = I(X;Y[T) + H(T) (1)

I((K,T); (Y, T)) = I(K; Y[T) + H(T) (2)
Now, using Equation 8 in [7]:

I(K.T); (Y, T)) < I((X; 1), (Y3 7)) 3)
Using the previous equations, we get:

I(K;Y|T) <I(X;Y|T) (4)

APPENDIX B

Lemma 2: An adversary needs to try out < n@{oglogn)

candidate mappings to find out the correct X - Y mapping
for encryption schemes like AES and PRESENT.

Proof: In certain algorithms, such as AES, it is nec-
essary to XOR plain text bytes with key bytes prior
to accessing T-tables or S-boxes. The Hamming distance
between two plaintexts is retained by the XOR operation.
Section 3.2 of Reference [43] also emphasizes this point.

Assume, we have address mapping as a countermeasure.
This means that the i*” entry of the T-table or S-box is
actually mapped to the j** entry. In other words, the ta-
bles are permuted and this permutation is not known. The
attacker can use an ingenious strategy. She can provide two
plaintexts that are a Hamming distance of 1 apart. She will
then get the indices of the entries in the corresponding
tables (using a traditional side-channel attack). These are
mapped to T-table or S-box entries that are a Hamming
distance of 1 apart. She can continue to do this and find
the neighbors of every entry that are a Hamming distance
of 1 away. This structure is nothing but a hypercube. In
this case, we know the structure of the hypercube, but we
still do not know which address is mapped to which entry
of the T-table/S-box. We just have the Hamming distance
information. In short, we need a labeling of the hypercube.
A brute force approach is to go through all labelings and
see if we can break the cipher.

Now, it is well known that a hypercube with n vertices
has n(logn)! labelings. We apply the Stirling’s approxima-
tion to expand (logn)!:

m! < V2mm (%)m e (5)

Now, e < m for m > 2, and v2mm < 2.51m < m? for
m > 3. Hence, for m > 3.

m! < m? (T) < mmt3 (6)

e
Let us now replace m with logn. Now (logn)en =
nloglog™  This can be easily proven by taking the log of
both sides.
We thus have:

(1og Tl)' < (logn)lognJrB — (logn)&nloglogn < nloglogn+3

(7)

Given that the number of labelings is n(logn)!, we have
the following for n > 8 (logn > 3).

n(log TL)' < nloglogn+4 _ nO(loglogn) (8)

Hence, the number of labelings of the hypercube is
upper-bounded by n©leglogn),

Now, we add another lemma to further back up our
argument. The results are not included in the main
manuscript due to space constraints.



	Introduction
	Background
	Properties
	Examples of Property Violations
	Property 1: No Functionality Disruption
	Property 2: A Large Number of Tries
	Property 3.1: Deterministic Obfuscation
	Property 3.2: Nondeterministic Obfuscation

	Discussion: Impossibility Results and Design of a Universal CM
	Timing-based CM
	Address-based CM

	References

