
emuARM : A Tool for Teaching the ARM Assembly
Language

Geetika Malhotra
Indian Institute of Technology, Delhi

Namita Atri
Maharaja Surajmal Institute of

Technology, Delhi

Smruti R. Sarangi
Indian Institute of Technology, Delhi

Abstract—Technology has always enhanced learning as well as
the overall teaching experience. With proper tools and resources
in hand, we can easily integrate educational and information
technologies into the academic environment. In this paper, we
present a software tool to enhance the learning of microprocessors
and computer architecture for students. We have developed an
ARM instruction set emulator, emuARM , which is a Java
based software tool for duplicating the functions of an ARMv5
microprocessor. Here, we present the internal design and features
of emuARM . We present a comparison of the features of emuARM
with other present ARM emulators in the market. At the end, we
present the results of a survey that attests the pedagogical value
of our tool.

I. INTRODUCTION

Education has now crossed the four walled traditional
classroom boundary. We have started living in a new world
where we can attend a virtual university from the comfort
of our homes. Technology has given a new form to the
conventional education system [1]. Here, we are presenting
a tool to help computer architecture students in understanding
and learning assembly language in a more productive manner.

The advent of the mobile era has provided people with
a wide range of easily accessible services on many subject
areas. In this generation of ever increasing array of mobile
devices, ARM is the industry’s leading supplier of mobile
device microprocessor technology, offering the widest range
of microprocessor cores to address the performance, power
and cost requirements for almost all application markets. This
influx of ARM microprocessors requires that every computer
science student takes a course on ARM assembly language [2],
[3]. This is because most courses in computer science include
a module in computer architecture and organization, and
teaching students how to write assembly language forces them
to understand the computer’s architecture. Assembly language
teaches how a computer works at the machine (i.e. register)
level. It is therefore necessary to teach assembly language to
all those who might later be working in computer architecture.

In this context, we discuss a tool, emuARM , which is
extremely useful for learning ARM assembly language. We
have designed and released it as an open source tool written in
Java under the Apache license. It is an ARM machine emulator,
that duplicates the functions of an ARM based microprocessor
on other computer systems so that the emulated behavior
closely resembles the behavior of the real system. emuARM
illustrates a wide range of features, which are fundamental to
the proficiency of this emulator. It has a simple and interactive
GUI. The components are presented in such a manner that the
user can focus his attention on all important ones at the same
time. The assembly program can be written quickly, or can be
imported from text files.

We have taken great care in designing the user interface,
and have adhered to the industry practice of not having more
than seven elements visible at the same point of time. In
concordance with this rule, the frames containing the register
set, the memory table, and the jump table have been allocated
on different tabs. Only one tab is visible at any point of time.
This will make it simple for teachers to explain the functioning
of the registers, memory and the jump table in context with
the execution of the program. The status window shows the
errors in syntax and execution, and the teachers can throw
some light on the behavior of program execution and reasons
behind the errors incurred. Probably the most useful aspect of
this emulator would be the debugger. Step Into, Step Out and
Step Over debug modules can simplify the task of explaining
the code and execution of every instruction and statement to
the students. The breakpoint facility enhances debugging by
providing more flexibility with limited step by step execution
of the code.

This paper examines the design and implementation of
emuARM and its features. It also entails a survey as a part of
the project which tells us about the students’ satisfaction with
this tool. In Section V, we compare various ARM emulator
tools based on a number of criteria that mostly pertain to the
user’s satisfaction quotient.

II. DESIGN OF EMUARM

The design of emuARM has been divided into two basic
modules, the front end and the back end. The front end
provides the users with a simple interface to interact with
the emulator and accept assembly language programs as input.
This is sent to the backend which then executes the program
and indicates the results in the register set, memory table and
the status window. The block diagram is shown in Figure 1.
The front end has three main components : file manager, editor
and the status manager. The activities performed at the frontend
are delegated to the backend so that appropriate actions can be
taken. The back end has six main components : parser, error
reporter, branch manager, debug module, register allocation
and memory manager.

File manager provides a tree view of a system’s file struc-
ture in a hierarchical format. The root of the tree points to the
home directory of the user. It manages all the file operations.
The editor enables the user to write a new program or view
an existing program. Multiple tabs can be opened and closed.
The editor also contains line numbers and other text-editing
features. The status manager updates the register set, memory
table, jump table and the status window. Switching between
number formats like binary, decimal, octal and hexadecimal is
also allowed. Other than that, the status manager displays all
messages relevant to various emulator actions such as building



Fig. 1. Infrastructure of emuARM

a program, opening a file, and saving a file. All the errors listed
by the error handling module in the backend are also displayed
here. We have added separate macros to add print statements
in the status window to display register values. These print
statements can be useful in tracing the cause of the error during
debugging.

Let us now consider the backend of emuARM . The parser
takes an assembly language program as input and scans it
line by line. It tokenizes the instructions and then builds the
jump table. emuARM uses a hashmap to map the name of
the instruction to an instance of the instruction executor class,
whose job is to execute the instruction. The parser is integrated
with the error reporter, which raises exceptions and shows the
descriptive details of the error in the status window. The errors
may arise due to an unknown command, an invalid addressing
mode, or an invalid operand. It displays all the errors with the
line number and displays the result as “Build failed”.

emuARM performs a two pass analysis of the ARM as-
sembly code similar to most compilers. After the initial phase
of lexical analysis, and parsing, the first pass builds the jump
table from the parse tree. The jump table stores a list of all
the labels in the assembly code. Each branch statement in
emuARM uses a label as the branch target. The second pass
replaces the labels with their actual addresses. The memory
manager provides memory storage and retrieval capability in
a clear and lucid manner. It also displays the list of memory
locations used and their values in the memory table. Lastly, the
debug Module helps in tracing the program execution line by
line. emuARM supports the facilities of breakpoints, step-into,
step-out and step-over.

III. SAMPLE SESSION

In this section, we shall show the execution of a sample
program along with the operations performed by emuARM in
processing an instruction.

Consider the assembly language program of Figure 3.

This program may be executed completely or partially
(debugging). The code is read line by line. A jump table is
constructed in the first pass, and instructions are executed in

Fig. 3. Sample code for execution

the second pass after replacing the values of the labels with
address from the jump table. Every scanned line can be one
of the following:

1) A blank line
2) A comment
3) An instruction
4) An instruction followed by a comment

Now, for any statement we have to ignore the first two
cases and move ahead with the process of parsing the code.
In our sample code, the first three statements fall in case 3
while the fourth statement falls in case 4. We recall that in
assembly language, every comment starts with a “;” or “@”.
So, we tokenize the statement with “;” or “@” as the separator
and obtain the instruction as the first token.

In the ARM instruction set, the second operand can have an
optional shift argument that specifies the number of places that
it needs to be shifted to the left or the right. There is a dedicated
barrel shifter in the ARM processor for this purpose. Having a
barrel shifter other than the ALU unit of the processor allows
the programmers to perform shift operations in conjunction
with other processing operations. For example, we can perform
left shift as well as add in a single operation. First of all, we
check whether any shift operation is to be performed on the
operands or not. If there is a shift operation, then we execute
the operation first.

We can conditionally execute almost all instructions ir-
respective of their operation such as addition, subtraction,
branches, and loads. To enable conditional execution (also
known as predicated execution), we need to add suffixes such
as eq or ne after an instruction. For example, in line 4,
we execute the addeq instruction. This means that the add
instruction will be performed only if the previous comparison
has resulted in an equality.

After the execution of the shift operation if required, we
use a hashtable (instruction table) to determine the instance of
the class that needs to handle the instruction. Every instruction
has a dedicated handler class that contains routines to emulate
its execution on a real ARMv5 processor. The instruction along
with the operands is sent to the appropriate handler class. Flags
are updated if the instruction is either a compare instruction
or the S bit is set in the instruction. After the execution of
the instruction, the handler class updates the register file, and



Fig. 2. Interface of emuARM

memory if required. The register set will reflect the values as
shown in Figure 4 for our sample program.

Fig. 4. Register status after execution

The emulator window is shown in Figure 2. Along with the
basic functionalities of the editor, toolbar, menubar and status
window, it has the register status box, memory table, file tree
view and jump table. Students were asked to comment on this
layout, and the overall feedback was positive (see Section VI).

Till date emuARM implements all variants of ARM in-
structions in the standard unprivileged mode. There are plans
to extend the simulator to model Thumb instructions, and
privileged instructions.

IV. CUSTOMIZING THE INSTRUCTION SET AND
EXTENDING EMUARM

In most student projects, it is typically necessary for
students to add new instructions to the instruction set. For
example, students might be asked to extend the instruction
set, or make changes to existing instructions. emuARM makes
it fairly easy for students to make these changes. We use
Java’s built in object oriented features to nicely modularize the
code. We have four generic instruction interfaces as shown in
Figure 5. It is necessary for each instruction to implement any
one of these interfaces.

Instructions can have different number of tokens in them.
For example, a branch instruction has two tokens and an
add instruction has four tokens. Here, a token corresponds

Fig. 5. Interface implemented by instructions

to one operand, or the name of the instruction. Hence, we
can select an appropriate interface depending on our need. For
example, InsInterface2 is for a one address format instruction
that generates two tokens. Note that the first token is the
instruction name and the rest of the tokens are operands that
follow the first token. ARM has instructions in 1, 2, 3, and 4
address formats. Hence, we have four separate interfaces (one
for each format). If the user decides to add instructions that
take more source operands, then she can add an appropriate
interface on the lines of those shown in Figure 5.

Figure 6 shows the sample code for adding a new inter-
face, which is easily constructed by adding a new switch
case entry in the execute(StringTokenizer st) method of
the Emit.java class. After creating an entry, we need to
implement the execute function to get the desired functionality.

Lastly, we have to add an entry of the newly implemented
instruction in the instruction table.



Parameter emuARM QEMU SkyEye armware
Ease of installation 4 4
Easily usable 4 4 4
User manual is easy to understand 4 4 4
Graphical user interface exists 4
Covers all the standard ARM instructions 4 4 4 4
Error reporting facility 4 4 4 4
Breakpoints and other debugging facilities 4 4

TABLE I: Comparison among tools

Fig. 6. Adding a new interface

Fig. 7. Adding an instruction’s entry in the instruction table

V. RELATED WORK

A. Education Technologies

Technology driven education is becoming a major trend.
Being an interactive, GUI based and easily installable tool,
emuARM can be a part of the online learning package of
a computer architecture course. De Bruno, Depover, and
Dillenbourg[4] observe the importance of such tools in the field
of education in general. They advocate the use of such assistive
tools as important learning aids. [5] also makes the case for e-
learning tools especially in distance education scenarios where
interacting with the instructor is difficult. Note that emuARM is
suitable for both assignments in conventional classroom based
teaching, and also in a remote classroom based setting.

Dabbagh and Kitsantas [6] demonstrate how instructional
designers and educators can provide opportunities for student
self-regulation using such pedagogical tools. They note that
such tools allow users to learn languages such as ARM
assembly in the privacy of their homes. They can make as
many mistakes as possible.

A lot of instruction set emulators such as spim (MIPS

emulator) do not have expressive graphical interfaces. This
makes using them difficult. As pointed out by Kasmarik [7],
the learning experience is enhanced by 15-20% by using a
graphical user interface.

B. ARM Emulators

There are many commercial and open source tools available
for emulation of the ARM instruction set. In our opinion, none
of them are tailored for educational purposes. We present a
feature by feature comparison in Table I.

QEMU is a very popular dynamic binary translator (see
[8]). Currently, it can emulate x86, PowerPC, ARM and Sparc
processors. It is a batch mode tool, does not natively support
debugging, and is meant for professionals. We have used
QEMU primarily in our development process to verify the
correctness of emuARM . We tried to use QEMU in a course
with 135 students. Over 90% of them had reservations because
it is not extremely friendly to novice users.

ARMulator [9], is a commercial tool provided by ARM to
all users of ARM-based chips. It emulates the instruction sets
of various ARM processors and their supporting architectures.
It provides an environment for the development of ARM based
software on a range of host systems. It supports the simulation
of prototype ARM-based systems, ahead of the availability of
real hardware, so that software and hardware development can
proceed in parallel. This tool is not sold separately and hence
is not suitable for a broader audience comprising mostly of
students.

ARMware [10] converts ARM code snippets into blocks
of x86 machine code snippets. It is an advanced emulator that
offers support for dynamic compilation, and multi threading.
However, it lacks a well written user manual, graphical user
interface, and modules for adding extra instructions.

SkyEye [11] is another ARM based full system simulator.
Our experience with SkyEye has been extremely positive from
the point of view of the quality of tool. However, the reason
that students do not prefer it is because it lacks a graphical
user interface, and takes a long time to setup and use.

Apart from all these tools, the ARM processor family is
very well supported by the GNU C/C++ toolchain. It provides
tools for creating an ARM assembly file from C/C++ code
and executing the assembly code, along with rich sources of
documentation.

Table I lists a comparison in the features of emuARM with
other tools. As we can see from this table, a list of seven
fundamental characteristics have been used to compare the
features of other ARM emulators. We observe that our tool
scores well in all the counts, and these results are corroborated
by the results of our survey (see Section VI).



VI. SURVEY

We recorded the number of downloads using a Google
analytics framework for users from all over the world. After
getting an overwhelming response, we decided to design a tar-
geted survey to be able to get some useful feedback. From a fo-
cus group, we primarily wanted to evaluate the effectiveness of
emuARM and its contribution to their learning. The survey was
conducted through an online questionnaire system. Students
who took the CSL211(Introduction to Computer Architecture)
course at the Indian Institute of Technology, Delhi, were
asked to voluntarily participate in this investigation, and their
anonymity was ensured. A total of 30 students successfully
completed the questionnaire. They were all undergraduate
students in their second or third year of their engineering
course. The data was collected from June 15, 2013, to July 15,
2013. The survey included ten questions for each participant
with three options each, as can be seen in the Table II. These
questions focus on fundamental features of emuARM and its
usability. The participants enthusiastically agreed to participate
in the survey.

Table II summarizes the information obtained from this
survey. The second column gives the response statistics in the
form of percentages of the number of users opting for an option
with respect to the total number of users. These values have
been calculated based on responses collected. Most of these
students answered the questions in favor of emuARM on a
different range of criteria.

Three quarters of the participants observed that installing
emuARM was fairly easy. However, the rest of the participants
had an issue with the version of Java. emuARM requires
at least Java 6. Some students found it difficult to upgrade
their versions of Java to 6. The next question was regarding
the relevance of the tool. We asked the students if they
found assembly programming difficult, and over 90% of the
students answered in the affirmative. Next, we looked at the
debugging feature. Roughly 86% of the participants found the
debugging interface to be acceptable. A majority of them really
appreciated the interface. Around 13% were not concerned
about the debugging features provided by emuARM .

Henceforth, we asked the students about the nature of the
user manual and its relevance to their sessions with emuARM .
Ironically, 93% of the participants did not feel the need to refer
to the manual. They were of the opinion that the user interface
is self explanatory. From an educational point of view, this is a
rather positive observation, because we would not ideally like
students to be referring to the user manual frequently. Out of
the rest of the respondents, 50% liked the manual, and the rest
of them did not refer to the manual.

We then asked the students about issues, and bugs in the
tool. In specific, we were interested to know if there were
any functional errors. Three quarters of the students did not
find any issues. Interestingly, 20% of the students reported
incorrect executions. We investigated each of these incidents.
In some cases, the students had written a wrong program;
however, there were some bugs in emuARM , which were
subsequently rectified. A concomitant question was regarding
the error location facility of emuARM . 73% of the participants
found it to be useful. 10% of the participants were not able to
identify the location of the error even after using the facility,
and 16.67% reported no errors in their programs.

The last three questions, were broad overview questions.
We asked them about the user interface and its overall attrac-

tiveness. Two third of the participants found the user interface
to be nice and user friendly. Just for the UI, 26.67% reported
referring to the manual. 6% did report some problems with
the user interface. We are in the process of addressing their
versions, and their issues will be redressed in the next release
of emuARM . In question 9, we asked the students if they found
emuARM to be a helpful tool in trying to learn more about
the ARM instruction set and microprocessor. Two third of the
class really liked the tool, and the rest of the participants were
equally divided between a negative and a neutral viewpoint.
The last question (9) was the most important question. We
asked the respondents if they would like to use emuARM as
a learning aid and possibly also recommend it to others for
learning and teaching purposes. 50% recommended emuARM
and had rave comments. 30% believed that other tools such as
GNU tools which they were already using, could be a possible
alternative to emuARM . Their main concern was that they
did not wish to migrate to a new tool. Issues in emuARM
were perceived by us to be a less of a concern. 20% of the
participants had not used any other tool; hence, they did not
have an opinion.

To summarize, emuARM v1.0 has been recommended for
use by more than two-third of the participants in our survey.
The readers need to note that these respondents are students
of a very prestigious engineering university in India, and they
are well aware of a wide range of software tools. Some of the
features of emuARM were appreciated by more than 90% of
the participants, and almost all of them found it be a nice and
novel effort in this space.

VII. CONCLUSION

In this paper, we introduced a new tool, emuARM , and
presented its design and working. This tool enables effective
and efficient teaching of ARM assembly. Through the survey,
we proved students’ satisfaction towards the tool.

REFERENCES

[1] H. A. Latchman, C. Salzmann, D. Gillet, and H. Bouzekri, “Information
technology enhanced learning in distance and conventional education,”
IEEE Transactions on Education, vol. 42, no. 4, pp. 247–254, 1999.

[2] ARM Architecture Reference Manual , ARM Limited, 2000.
[3] J. R. Gibson, ARM Assembly Language an Introduction. Lulu, 2011.
[4] B. D. Lievre, C. Depover, and P. Dillenbourg, “The relationship between

tutoring mode and learners use of help tools in distance education,”
Instructional Science, vol. 34, no. 2, pp. 97–129, 2006.

[5] C. C. Ardito, M. D. Marsico, R. Lanzilotti, S. Levialdi, T. T. Roselli,
V. Rossano, and M. Tersigni, “Usability of e-learning tools,” in Pro-
ceedings of the working conference on Advanced visual interfaces, ser.
AVI’04, 2004, pp. 80–84.

[6] N. Dabbagh and A. Kitsantas, “Supporting self-regulation in student-
centered web-based learning environments,” International Journal on
E-Learning, vol. 3, no. 1, pp. 40–47, 2004.

[7] K. Kasmarik and J. Thurbon, “Experimental evaluation of a program
visualisation tool for use in computer science education,” in Proceedings
of the Asia-Pacific symposium on Information visualisation, ser. APVis
’03, vol. 24, 2003, pp. 111–116.

[8] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Proceed-
ings of the annual conference on USENIX Annual Technical Conference,
ser. ATEC’05, 2005, p. 41.

[9] The armulator. [Online]. Available: http://infocenter.arm.com/
help/index.jsp?topic=/com.arm.doc.dai0032f/index.html

[10] armware, this is an arm emulator. [Online]. Available: http://
code.google.com/p/armware/



S. No. QUESTION %
1. Was there any problem installing emuARM ?

a) No, not at all 76.67%
b) Can be better 6.67%
c) I did not do on my own 16.67%

2. Do you find coding in assembly difficult?
a) Yes, of course. 90%
b) No. Its fun. 3.33%
c) Neutral. 6.67%

3. Did the debugging tool help in finding the bugs ?
a) Yes. The breakpoint feature is nice. 53.33%
b) It is okay. 33.33%
c) I did not care. 13.33%

4. Was the manual helpful in understanding the user interface and working ?
a) The GUI is very understandable. There was no need to refer to the manual. 93.33%
b) Yes, Manual helped. 3.33%
c) I did not refer to the manual. I asked my friend. 3.33%

5. Does emuARM give correct results ? %
a) Yes 76.67%
b) No. 20%
c) Do not know. Never used. 3.33%

6. Does the error reporting facility help in guiding with pointing out the location and nature of error ?
a) Yes, it helped every time. 73.33%
b) No, I had no clue about the nature/location of errors. 10%
c) I never get an error. 16.67%

7. Is the emuARM interface simple to work with and easy to understand ?
a) Yes, the interface is easy and attractive. 66.67%
b) I had to refer to the manual to understand it. 26.67%
c) It is very difficult to understand the interface. 6.67%

8. Do you think its a helpful tool for learning ARM microprocessor ?
a) Yes, I loved it 66.67%
b) No, It is not very good. 16.67%
c) It is okay. 16.67%

9. Do you prefer emuARM as a tool for learning over other tools ?
a) Yes, I do 50%
b) No, I do not 30%
c) I haven’t used any other tool. 20%

TABLE II: SURVEY QUESTIONS

[11] Skyeye, a very fast full system simulator. [Online]. Available:
http://sourceforge.net/apps/trac/skyeye/wiki/UM1


