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ABSTRACT

Large-scale sensor deployments and an increased use of pri-
vacy-preserving transformations have led to an increasing in-
terest in mining uncertain time series data. Traditional dis-
tance measures such as Euclidean distance or dynamic time
warping are not always effective for analyzing uncertain time
series data. Recently, some measures have been proposed to
account for uncertainty in time series data. However, we
show in this paper that their applicability is limited. In spe-
cific, these approaches do not provide an intuitive way to
compare two uncertain time series and do not easily accom-
modate multiple error functions.

In this paper, we provide a theoretical framework that
generalizes the notion of similarity between uncertain time
series. Secondly, we propose DUST, a novel distance mea-
sure that accommodates uncertainty and degenerates to the
Euclidean distance when the distance is large compared to
the error. We provide an extensive experimental validation
of our approach for the following applications: classification,
top-k motif search, and top-k nearest-neighbor queries.
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H.2.8 [Database Management]: Database Applications—
Data Mining
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Algorithms, Experimentation
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1. INTRODUCTION

Distance measures used for similarity search and data
mining are often focused towards data without uncertainty.
However, recently there has been a move to acknowledge
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Figure 1: Three brain tumor images (MRI Scan)

that in many application domains, data is uncertain and the
uncertainty has to be captured and accounted for. There is
a large body of research on managing, modeling, querying,
and mining uncertain data (see [18, 2] for recent surveys on
the topic). However, not many approaches deal with time
series or streaming data.

There are two main reasons why time series data may
be uncertain. First, physical data collection methods are
imperfect. For example, the accuracy of a wireless sensor
is associated with a certain error distribution. Second, to
preserve privacy a certain degree of uncertainty is sometimes
intentionally introduced into a time series. For example,
privacy-preserving methods may aggregate or perturb time
series data.

Traditional distance measures such as the Euclidean dis-
tance or dynamic time warping do not always work well for
uncertain time series data. Section 4 will validate this for a
large variety of data sets and different kinds of uncertainty.
Here we only show an illustrative example. We extracted
time series data from brain scan images taken from [16]. Fig-
ure 1 shows three brain scan images: the first image shows
a normal brain, the second image shows a slightly blurred
version of the first image, and the third one shows an im-
age of the brain when it had a tumor. We extracted a time
series of length 350 for each image by cutting through the
image at the height of the tumor shown in Figure 1(c) and
extracting the gray scale value for each pixel.

According to Euclidean distance, the time series generated
from the image in Figure 1(a) is 5% closer to the time series
generated for Figure 1(c) than to the time series generated
for Figure 1(b). However, intuitively we expect the image in
Figure 1(a) to be more similar to its slightly blurred version
in Figure 1(b) than to the version in Figure 1(c) which con-
tains the tumor. In this example, Euclidean distance and
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Figure 2: Three 8-dimensional time series

most other traditional distance measures produce an unin-
tuitive result, a problem which the new distance measure
proposed in this paper addresses.

For time series data the overall uncertainty arises from
the uncertainty at each time stamp. Thus, even though the
uncertainty for each individual value of a time series may be
very small, the uncertainty compounds with the number of
elements in a time series. Figure 2 shows three 8-dimensional
time series T1, T2, and T5. Assume for now that the values
in 77 and T3 are values without uncertainty whereas the
values in T are uncertain and affected by a normally dis-
tributed error function which is zero beyond three standard
deviations (30). The distances between values in 77 and
Ty are all small and bounded by 30 whereas there is one
large distance beyond 30 between values in 77 and 73. The
Euclidean distance between 77 and 75 is the same as the
Euclidean distance between 77 and T5. However, many ap-
plication domains would like to consider 71 and 7> as more
similar than 77 and T3. The probability that 77 and T3
are the same is effectively zero whereas there is some likeli-
hood that 77 and T» would have been the same if the sensor
producing T> would have been faultless.

In this paper, we present a new distance measure, DUST),
that allows us to compute distances between uncertain time
series in an intuitive fashion. We extend the notion of sim-
ilarity between time series proposed by prior work [21, 3]
such that if two sets of sensor readings have a chance of be-
ing equal, the distance between them is lower as compared
to the case in which the two sets can never be the same.
We prove that DUST obeys most of the properties of an
ideal distance measure. Furthermore, we observe that when
the error is very small compared to the separation between
points belonging to the two time series, DUST converges
with traditional Euclidean distance.

Prior work has mostly considered error functions that fol-
low a Normal distribution. However, [5, 20] have observed
non-Gaussian error pdfs in actual sensor deployments. The
DUST distance measure can seamlessly handle such error
distributions. In Section 3.5 we propose a method to com-
pute the DU ST distance when the individual error distribu-
tions for the different time series elements are different and
possibly non-Gaussian. Subsequently, we provide a method
to efficiently compute the DU ST distance between two time
series.

In Section 4 we extensively evaluate the DUST distance
on the UCR datasets [12]. We perform three experiments:
classification, top-k motif search, and top-k nearest neigh-

bor queries. The DUST distance outperforms Euclidean
distance and dynamic time warping. It increases the classi-
fication accuracy by about 10%, and is able to substantially
mitigate the effect of sensor error. It is also far more re-
silient to error for motif and nearest-neighbor detection as
compared to Euclidean distance.

We present related work in Section 2, the theory and im-
plementation of the DUST distance in Section 3, an exper-
imental evaluation of DUST in Section 4, and we conclude
the paper in Section 5.

2. RELATED WORK

2.1 Similarity of Uncertain Time Series

There has been a considerable amount of work on repre-
senting and querying uncertain data. However, to the best
of our knowledge there are few papers that address querying
and mining of uncertain time series data.

In a 2008 paper Charu Aggarwal and Philip Yu presented
a framework for clustering uncertain data streams [1]. They
assume that some statistics are known about the uncer-
tainty. Based on this they create micro-clusters, and dy-
namically update them as new data points arrive based on
an expected value of similarity. This approach does not use
a distance measure, and is thus not applicable to general
data mining tasks.

In 2009, two independent papers [21, 3] introduced the
notion of a a probabilistic bounded range query (PBRQ) for
time series data. Given a distance bound € and a probability
threshold 7, two time series are considered to be similar if
the probability that the distance between them is equal or
less than €, is equal or greater than .

PBRQ. (T, DB) = {T’' € DB|Pr(DIST(T,T') < ¢) > 7}

However, the two approaches differ in their definition of the
distance function DIST used to compare two uncertain time
series.

Johannes ABfalg and others [3] assume that the uncer-
tainty of a time series is represented by a set of sample ob-
servations at each time slot. Thus, an uncertain time series
T represents a set of regular time series S(T) where each reg-
ular time series is constructed by picking one sample point
for each time slot. The distance between two uncertain time
series 17 and 7% is defined as the set of distances between
all combinations from S(7T1) and S(7:). First, not all ap-
plication domains provide multiple sample points for each
time slot, and second, this approach is not computationally
efficient. In our approach, DUST, we only deal with closed
form formulae and lookup tables.

Mi-Yen Yeh and others [21] present their scheme PROUD
to handle uncertainty for data streams. The uncertainty at
each time point is modeled as a continuous random variable
for which only the mean and standard deviation are known.
The distance between two time series is a random variable.
This is sufficient for computing the result of a probabilis-
tic bounded range query but again it does not allow us to
directly compute the distance between two time series. An-
other limitation of PROUD is that in order to make the
computation of a PBRQ more efficient and to allow early
pruning of candidates, PROUD assumes that the uncertain
deviation is the same for all time points of a series. We
consider this a limitation, which our scheme does not have.



2.2 Sensor Error Characterization

We typically see different kinds of faults in sensor datasets.
[19] distinguishes between single-sample spikes, longer dura-
tion noisy readings, and anomalous constant offset readings.
Those faults may be detected by cleaning approaches that
take into account dependencies between readings at different
time points (see for example, [10]). The distance measure
we propose does not cover such cases and is limited to errors
that occur independent of events at other time points. Also,
we assume that the error is due to the inherent imprecision
of a sensor. To detect random effects of external sources
more sophisticated cleaning approaches are necessary.

3. DISTANCE BETWEEN UNCERTAIN
TIME SERIES

Let T1[1...n] and T5[1...n] be two time series. Throughout
the paper we denote the distance between two time series T
and T» by upper-case letters (for example, DIST (T, T?)).
We denote the distance between two time series values with
lower-case letters (for example, dist(T1[i],T2[i]). Also, the
lower case letter p denotes the probability distribution func-
tion (pdf), and the upper case letter P refers to the probabil-
ity. We first review approaches to measure the distance for
time series without uncertainty and then extend the results
to uncertain times series.

3.1 Time Series Without Uncertainty

Several approaches have been proposed for the case where
there is no uncertainty. Ding and others provide a survey of
most of the existing approaches in [8].

Two of the most common approaches are Euclidean Dis-
tance (EUCL) [9] and Dynamic Time Warping (DTW) [4].
The Euclidean distance between two time series is defined
as:

EUCL(T1, T) = /S, (T1[i] — Tli])? (1)

The Dynamic Time Warping (DTW) distance is defined
as:

DTW(i,§) =D(Ta[i, To[j) + min(DTW G — 1,5 = 1),
DTW (i,5 —1),DTW (i —1,5)) @
where DTW (i, 7) is short for DTW (Ti[1...4],T>[1...7]).

EUCL is called a lockstep measure because it computes the
distance between corresponding elements in both the time
series, whereas DTW is called an elastic measure. Along
with these two common distances, the survey in [8] also de-
scribes other distance measures such as Longest Common
Subsequence, Edit Distance with Real Penalty, Edit Dis-
tance on Real Sequence, DISSIM, and Sequence Weighted
Model. Discussing these distance measures is beyond the
scope of this paper.

We emphasize two key findings from [8].

1. For small dimensional data sets DTW is superior to
EUCL. Most of the sophisticated elastic measures have
an accuracy similar to DTW.

2. For large dimensional data sets the performance of
EUCL is similar to DTW.

Hence, we only consider DTW and EUCL in our paper.

3.2 Generalized Distance Between Uncertain
Time Series

3.2.1 Desired Properties of a Distance Measure

We first describe some desirable properties for a distance
measure. Ideally, a distance measure should be metric and
fulfill the following conditions:

1. Non-negativity : d(A, B) > 0.
2. Identity of indiscernibles : d(A,B) =0iff A=B
3. Symmetry : d(A, B) = d(B, A)

4. Triangle Inequality : d(A, B) + d(A,C) > d(B,C)

In the case of a distance measure for uncertain time series
data, the distance measure should also obey the following
additional property.

5. The distance should be similar to EUCL or DTW if
the magnitude of the error is very small.

Time series with a very small error as compared to dis-
tances between data values, become very similar to time
series without uncertainty. Thus, with decreasing error, the
distance measure for uncertain time series should asymptot-
ically converge with the distance measures for time series
without uncertainty.

3.2.2 Generalized Distance Measure

In this subsection we generalize the notion of distance be-
tween uncertain time series from definitions that have been
used in other papers [21, 3, 2]. Consider two time series T}
and T». Let TVi] refer to the i" element in a time series 7.
Each element z in a time series is an uncertain value and
can be represented as x = r(z) + £(x). Here r(x) is the real
value and &(x) represents the error. Like [21, 3], we assume
that all the error distributions for elements in a time series
are independent. According to [21, 3, 2] two time series are
considered similar if

P(DIST(Ty,Th) <€) > 7

where € is a very small number and 7 is relatively close to 1.
As discussed in Section 2 the distance function DIST varies
for different approaches. Again, note that the above notion
does not provide an absolute number for the similarity of
two time series. Johannes and others [3] further state that
Ty and T are closer than T7 and T3 if P(DIST(T1,T2) <
€) > P(DIST(T1,T3) <¢).

Let DIST(T1,T>) be denoted by the random variable X.
For sufficiently small values of €, P(X <€) = p(X = 0) e.
To eliminate €, we assume that even for large € the distance
between two uncertain values is only a function of p(X = 0)
. We use this assumption to build a new distance dust for
computing the distance between two uncertain values. We
show in Section 4 that making this assumption produces
good results for a wide variety of data sets and data mining
tasks.



‘We observe:

P(DIST(Th, Ts) <

~ p(DIST(Ty,T3) = 0) >
= ILip(dist(T1[i], T2[i]) = 0) >
Wip(dist(T:[i], Ts[i]) = 0)
<3 — log(p(dist(T1[i], T>[i]) = 0)) <
Xi — log(p(dist(T1[i], Ts[i]) = 0))

Intuitively, we want dist to measure the distance between
two uncertain values x and y as the distance between the
respective true values r(z) and r(y). Hence, we define dist
as dist(z,y) = Fucl(r(z), r(y)).

Also, we experimentally observe that the distance be-
tween two uncertain values x and y is mostly dependent
on Az = |z — y|. When the underlying distribution of
the time series values is uniform or Gaussian and the er-
ror function is uniform or Gaussian, this is exactly true. We
prove this in the Appendix. Based on the observation that
the distance mostly depends on Az, we define a function
¢(Ax) = p(dist(0, Az) = 0), which is independent of z and
y and only depends on their difference.

Based on the above observations, the dust distance is de-
fined as follows:

dust(z,y) = \/—log(¢(]z — y)) —
= —log(4(0))

The constant x ensures that dust(xz,z) = 0 for all x. We
define the distance measure DUST as

€) > P(DIST(T1,T5) <€)
p(DIST(T1,Ts) = 0)

(
(

(4)

DUST(T1, Ts) = /27 dust(T1[i], T»[i])? (5)

Note that both the use of x for dust and the definition
of DUST assume that the two compared sequences have
the same number of elements and that two corresponding
elements have the same error distribution.!

Using Equations 3, 4, and 5, we establish the following
relationship between previously defined similarity measures
and the DUST distance measure:

P(DIST(T1,T2) < €) > P(DIST(T1,T3) < ¢)
=21 dust(Ti[i], To[i])* < 27 dust(T1[i], Ts[i])*
<:>.DUST(T17 Tg) < DUST(Tl, Tg)

Let us now see to what extent the dust distance and as
such the DUST distance obeys properties (1)-(5) introduced
in Section 3.2.1. Since the probability of equality for two dis-
similar elements is less than that of two similar elements, we
have dust(z,y) > dust(z,z). dust(z,z) by definition is zero.
This proves Property 1. We added the constant « in Eqn 4
to ensure that d(A, B) = 0 if A = B (first part of Property
2). We experimentally verified that the second part of Prop-
erty 2 (d(A, B) = 0 = A = B) holds for most standard error
distributions. Probabilities obey commutativity, thus Prop-
erty 3 holds. We examine Property 4 (Triangle Inequality)
in Section 3.3. In Section 3.4.2 we evaluate the dust dis-
tance for several common error functions. We observe that
the dust distances converge to the Euclidean distance for
small errors. This experimentally verifies Property 5.

1For other cases, we can use DTW in conjunction with a
non-normalized dust distance without x.

3.3 Triangle Inequality

Let us assume a normally distributed error with mean 0
and standard deviation o. Error functions are often modeled
as normal distributions. However, in most practical situa-
tions the error lies between —30 and 30 and is unlikely to
go beyond the 30 range. Let us consider an example with
three sensor readings z, y, and z, where |z — y| = 20 and
ly — 2| = 20. Now consider three time series 71 = zzzzw,
T> = yyyyy, T3 = xzxxz. We have EUCL(T1,T>) = 4.460
and EUCL(T»,T3) = 4.460. By the triangle inequality we
have |z — z| < 40 and thus EUCL(T1,Ts) < 40. However,
if the distance between x and z is 40, then the fact that T3
and T3 are closer than other pairs of distances, breaks our
intuition. If we consider raw probability, then 71 and T35 can
never be equal because = and z are 40 apart. 77 and T> can
still be equal in a statistical sense.

To overcome this shortcoming of the Fuclidean distance,
the dust distance has to break the triangle inequality for
small distances. Only then it can produce the intuitively
correct result. Note however, that for larger dust distances
the triangle inequality holds. Figure 3 illustrates an example
where the triangle inequality is violated for small dust dis-
tances. For the example, the triangle inequality only holds
if the separation between values is always greater than 4 o.
As the DUST distance combines individual dust distances,
the triangle inequality for DUST may also be violated.

30 40
1
1
1
= 1
e % .
= '
& 2 1
= 1
= d1 T 1 >
d, d,d,
Eucl distance
——  Eucl distance
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o d,

"
Tt
M
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dz
G o
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Figure 3: Violation of triangle inequality for small
dust distances
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Figure 4: dust distance for Gaussian error

3.4 Computing the dust Distance

We now describe how the dust distance between two val-
ues x and y can be computed. As stated in Section 3.2.2
we need to compute ¢(Azx) = p(dist(0, Az) = 0). This is
equivalent to computing p(r(x) = r(y)|z,y).

p(r(z) = ry)le,y) = /p(r(w) = 2|z)p(r(y) = zly)dz (6)
We thus need to compute: p(r(z) = z|z). By Bayes’ Theo-
rem this is equal to:

p(z|r(z) =

p(r(z) = z|z) =

We need to compute the two probability densities p(r(z) =
v) and p(z|r(z) = v). The former probability requires the
distribution of the data we work with. The distribution is
dependent on the process that is generating the time series.
Keogh and others [13] observe that most time series in the
UCR dataset follow a Gaussian distribution. Cho and oth-
ers [6] observe that the underlying process follows a uniform
distribution. p(z|r(z) = v) is the pdf of the error function
evaluated at x — v.

We can simplify the distance function dust(z,z + Az) to
a function fgus:(Az), which maps the Euclidean distance to
a distance computed according to Equations 4 and 6. In
the next sections we evaluate fq,s¢ for some of the most
common error functions. For simplicity, we assume that the
underlying distribution of the time series values is uniform.

3.4.1 Normal Distribution

In most cases, we assume that the error is distributed
normally. The normal distribution is given as:

22

e 202

N(z) =

2no

Here the mean is 0, and the standard deviation is o. In
the Appendix we prove that faust(z) < /0. We show the
results for different standard deviations in Figure 4. We ob-
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Figure 5: dust distances for different error functions

serve that for the case of normally distributed error there is
NO difference between Euclidean distance and dust.
The distance is just scaled by a constant factor. If the error
function is the same for all the elements in a time series,
then using DUST makes no difference. In this case, the
use of a sophisticated distance measure that accommodates
uncertainty is not necessary.

3.4.2 Other Distributions

Let us now take a look at some other distributions. We
consider a rectangular distribution rect, where the error is
uniform between —n and 7 and a triangular distribution tri,
where the error is 0 at +n and peaks at 0. In addition to such
standard distributions, there is a set of error distributions
called heavy-tailed distributions [5], which are asymmetric
and have a lot of large errors with a relatively higher prob-
ability than in the Normal distribution. We pick the log
normal distribution (Iign) as an example for a heavy-tailed
distribution:

1 (in(z) — p)*
o\ 2T exp(= 202 )

lgn(z) =
Finally, Sudano and others observe an asymmetric exponen-
tially distributed error (edf) in their sensor system [20]. This
error function is given by:

edf (z) = dexp(—Az)

We plot the four functions rect, tri, lgn, and edfin Figure 5.
The variance for all the error functions is 1. We observe that
the ¢ri distribution is an approximate straight line. This
is because its shape is roughly similar to that of a normal
distribution between £7. The rectangular distribution has
a slightly flatter error curve. However, we observe that the
dust distances for lgn and edf are far higher than for rect
and tri . The reason for this is their heavy tailed nature.
They have higher probabilities for larger deviations. This
reduces the probability of equality; consequently, the dust
distance increases. Please note that after 0.2 all curves are
roughly straight lines. That is after a distance of 0.2 the
dust distance exhibits a similar behavior as the Euclidean
distance.



3.4.3 Why Use DUST?

Given the above observation, a question arises about the
applicability of DUST and other uncertain time series min-
ing techniques. We observe that if all the values have the
same error distribution, then we are better off using Eu-
clidean distance as it is computationally more efficient. How-
ever, DUST is required in the case of multiple error distri-
butions. DUST gives a theoretically sound way of comput-
ing distances between two time series where individual time
stamps may be associated with different error distributions.

In the case of sensor data not all sensors may be of the
same type and sensors may be manufactured by different
vendors. Hence, it is natural to have different error distri-
butions. Several works in the broader engineering commu-
nity [17, 15, 7] have mentioned this problem. For example,
Ciarlini and others [7] observe that it is not possible to place
sensors to monitor the materials in a cultural heritage site.
It is too invasive. However, we can place a multitude of
sensors in close proximity. Each one of them will have a
different error distribution.

3.5 Combining Multiple Distributions

In this section, we show a way to combine different error
distributions. In Figure 4 we observed that the dust distance
function has different slopes for different error distributions.
The difference in slope is acceptable if the Euclidean distance
is of the same order as the error margin. However, as the
separation of two points increases, the standard deviation
of the error becomes increasingly irrelevant. Hence, at this
point the dust distance should become the same for different
error distributions.

Let us assume that we have a set of error distributions
with the respective standard deviations i ...0,. Let o.
be a value significantly smaller than o;...0,. We assume
that for larger separations all the sensors approach this error
value. We observe experimentally that the results are not
very sensitive to the choice of o, (as long as o is small
enough). Let the original error distribution be f(x), and let
the adjusted error function be f’(z). We have

m<z<mn f(z)
fl@)=Sz<m N(0, o) (8)
T > 12 N(0,0¢)

N (u, o) is the Gaussian distribution. The constants 7; and
12 capture the fact that we are not interested in errors be-
yond the [771,1’]2] interval. For the case of a normal distri-
bution with zero mean, 71 = —30 and 12 = 30. For the
case of a triangular distribution (see Section 3.4.2) m1 = —n
and n2 = n. Figure 6 shows different dust distance curves
for Normal distributions with standard deviations equal to
1, 1.5, 2 and 3. Here 0. = 1. We see that all distributions
have different slopes up till 60, then they merge with the
line corresponding to . = 1.

3.6 Calculating the DUST Distance Efficiently

As described in Section 3.4, we need to compute a function
that maps the Euclidean distance between two values x and
z + Ax to the dust distance. We referred to this function
as faust(Ax). We compute a large number of sample points
representing this function, and compress them to form a
piecewise linear representation. If the difference of the slope
between adjacent segments is more than 25%, we start a new

16
14 +
12
10

dust

Eucl

Figure 6: DUST distances for different Gaussian dis-
tributions

segment. Each segment is a 3-tuple (z,y, m). The segment
starts from point (z,y), and it has a slope m. The last
segment is open ended and corresponds to the case in which
the curve converges with a straight line (see Figure 6).

We construct such a look-up table for all the applicable
error functions. In the worst-case, every time stamp 7'[¢]
in the time series data is associated with a different error
function and we need to construct n different look-up ta-
bles. Note that these look-up tables are computed off-line
and stored. Thus, the complexity of an on-line dust dis-
tance calculation is low. To calculate a dust distance for
Az, we first identify the appropriate look-up table and then
the appropriate segment within the look-up table. We then
subtract the starting point of the segment from Ax and mul-
tiply the obtained value by the slope for the segment. As we
do a binary search to identify the appropriate segment, the
worst-case complexity of a dust distance is O(log(n)) where
n is the number of segments. We typically have somewhere
between 5 to 15 segments.

When using DUST to perform 1-NN classification, most
of the time series are relatively far away and only a few
are close by. Hence, for most time series the distance at
each time stamp falls in the range of the last segment. To
optimize the computation, we first detect if the distance is
within the range of the last segment. We only search for the
appropriate segment if this is not the case.

4. EXPERIMENTAL VALIDATION

4.1 Overview

We evaluate the effectiveness of the DUST distance on
three different data mining tasks: 1-NN classification, mo-
tif detection, and top-k nearest-neighbor search. For clas-
sification, we look at the UCR classification datasets [12].
We randomly perturb a fraction of the values and plot the
accuracy of the classification for DUST and the Euclidean
distance.

For the case of motif detection and nearest-neighbor search,
we need to define a metric for comparing the results between
different distance measures. We propose the following ax-
iom. Effective distance measures on uncertain data
should allow us to reason about the original data
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Figure 8: Classification accuracy for DUST vs DTW

without uncertainty. To evaluate the effectiveness of dif-
ferent measures we propose an approach similar to Johannes
et. al. [3]. We take original data, perturb it with different
error functions, and then evaluate the results with different
distance measures.

As the run times for computing the DUST distance are
fast, we focus our evaluation on the effectiveness of DUST.
For all experiments, we computed the average over 10 dif-
ferent random runs. To show the observed trends we plot
all graphs using Bazier curves.

4.2 Classification

In this section, we consider all the UCR datasets [12].
These datasets represent time series data, where the time se-
ries have been classified into a few classes. For each dataset
there is a training set and a test set. The objective is to
perform a 1-NN classification of the test set by finding the
nearest match in the training set. We assume that the data
has been generated by noisy sensors. Like prior work [3, 21]
we artificially perturb the data. For the first 10% of the
values we use a normal error function with standard devia-
tion o, and for the next 10% we use a standard deviation of
0 /2. This captures the fact that out of a lot of sensors most
of them are likely to be fairly accurate. Few of the sensors

will have some error, and a few more will have a slightly
larger value of error. Roughly similar trends were reported
by others [17, 15, 7].

We evaluate the accuracy for six configurations: on orig-
inal data using Euclidean distance (No Error) and DTW
(No Error-DTW ), on perturbed data using EUCL, DUST,
DTW, and DTW with dust (DUST-DTW).

For each element in the time series, we vary the standard
deviation of the error from 0.1 to 2 times the standard devi-
ation of the element. We compute the classification results
for the maximum standard deviation, which is 2. We show
the results in Figures 7 and 8.

We observe that in both figures DUST performs 5-15%
better than conventional approaches. Only 3 benchmarks
out of 20 are error resilient in the sense that the classifi-
cation accuracy does not decrease significantly. These are
FaceFour, OliveOil, and Wafer. For all the other bench-
marks there is close to a 10-20% loss in accuracy between
No Error and EUCL or DTW. The last group of bars in
Figures 7 and 8 show the mean values. In Figure 7, the
average classification accuracy is 77% for the case with no
error, 72% with DUST and 62% with EUCL. Similarly for
the case with DTW, the accuracy is 78% for no error, 74%
with DUST, and 67% with DTW. We observe that DTW
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Figure 9: Accuracy vs error for fish

is marginally better than FUCL. Overall, we conclude that
DUST makes up for more than 50% of the accuracy lost
due to uncertainty. In Figure 7 we observe that for Coffee
and CBF, DUST performs so well that it almost completely
makes up for the introduced error.

Figure 9 shows the accuracy versus standard deviation
for the benchmark fish. Both DUST and FUCL start at the
same point for small error. However, as the error increases
the curves start to diverge. We observe that the DUST
distance is far more resilient to uncertainty in the data.

4.3 Motif Detection

Motifs are defined as follows. A subsequence of a time se-
ries T[1...n] is a contiguous set of values Tsyp[j - - . k], where
k > j. A motif is a set of two time series 77 and T4 such that
T{ C T and T3 C T, and out of all such subsets the distance
between T and T4 is minimum. In our experiments we do
not consider this general case. Like [14], we consider motifs
with a fixed size n which are non-overlapping. We find top-k
motifs, which are the top-k closest pairs. Motifs are used to
find frequently occurring patterns in time series and can be
used to construct time series dictionaries, and are also the
basis for sophisticated clustering algorithms [11].

For detecting top-k motifs we use both the time series
datasets that were used in [14]. The first dataset captures
the behavior of an insect over time. The second is an EEG
(Electroencephalogram) dataset. We find motifs of size 128.

As proposed in Section 4.1, we compute the accuracy of
DUST as follows. We first find the top-10 motifs without
any error. Then we perturb the data as described in Sec-
tion 4.2. We then compute the top-10 motifs using DUST
and FUCL. Subsequently, we compute the intersections of
these sets with the set of motifs computed earlier when there
was no error. We assume that the data is normalized with a
standard deviation of 1. The results are shown in Figures 10
and 11.

As expected, we observe that for extremely small errors,
there is no difference between DUST and EUCL. The accu-
racy of DUST is slightly lower for smaller standard devia-
tions. We will investigate the reasons for this phenomenon
as part of our future work. However, for larger standard
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Figure 11: Top-k motifs (Insect dataset)

deviations, DUST maintains the same level of accuracy for
a large range, whereas FUCL continues to degrade.

4.4 Top-r Nearest-Neighbor Search

We now consider the problem of finding the k nearest
neighbors. For this purpose we need a dataset with a large
number of entries. The larger the number of entries, the
more difficult it is to ensure that the set of k£ nearest neigh-
bors remains the same. We scanned the UCR datasets and
picked one of the datasets with the largest number of train-
ing examples. Both wafer and Two_Patterns had 999 entries
each. We randomly chose Wafer.

We chose the first entry of the test set and found its k
nearest neighbors. Then, we perturbed the training data,
and computed the k£ nearest neighbors again. We report the
intersection of these two sets.

Figure 12 and 13 show the error rates for different per-
centages of erroneous sensors in the time series, starting at
10% up to 40%. We observe that there is a sharp dip in the
accuracy between 20% and 30%. We will investigate this
phenomenon as a part of future work.

Figure 14 and 15 show the accuracy as a function of the
standard deviation for different error functions. Rect is the
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Figure 13: Accuracy vs Std Dev. for different % of
erroneous sensors using FUCL

rectangular distribution, Lgn is the log-normal distribution,
and Edf is the exponential distribution (see Section 3.4.2).
We observe that the accuracy of DUST is fairly consistent
across all the error functions. However, the accuracy of
EUCL dips sharply for log-normal and rectangular error
functions. In all cases DUST is considerably more resilient
to errors.

5. CONCLUSION

In this paper, we presented DUST, a novel approach for
measuring the similarity between uncertain time series. We
arrived at DUST after studying the kind of error distri-
butions involved in sensor deployments. We observed that
often different error distributions are involved in producing a
single time series. However, none of the previously published
similarity measures for uncertain time series can accommo-
date this phenomenon. DUST provides the unique ability
to combine any number of arbitrary error distributions. We
note here that the applicability of DUST is not confined to
only sensor-based systems, it is a generic distance measure
that can be used for a large variety of data and applications.
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Figure 14: Accuracy vs Std Dev. for different error
functions using DUST
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Figure 15: Accuracy vs Std Dev. for different error
functions using FEUCL

We also identified scenarios in which the use of sophisti-
cated measures that accommodate uncertainty fails to pro-
vide a significant benefit over traditional measures. For ex-
ample, if the same Normal distribution is producing the un-
certainty for all sensor readings in a time series, then Eu-
clidean distance produces similar results as measures that
accommodate uncertainty.

We validated our approach for a wide variety of publicly
available data sets and a broad range of parameters. In al-
most all cases DU ST significantly outperformed traditional
distance measures such as Euclidean distance and dynamic
time warping.
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APPENDIX

Let us consider two time series values z and y. Az = |z —
y|. Let the error be normally distributed with mean 0, and
standard deviation o.

Let us first assume that the data in the time series is
distributed uniformly in a range that is much larger than
the error. Using Equations 6 and 7, we calculate ¢(Ax)(see
Equation 4) to be:

1 _ a2
402

20m

Hence, dust(z,x + Az) = Az/20. This distance is depen-
dent only on Az and is inversely proportional to o.

Let us now assume that the original time series values
follow a Normal distribution (¢ = 0, 0 = 1). In this case,

P(Az) is:
2 -2 z2
l+to” - 1t2 e 4(1+A02)202
V2m

Hence, dust(z,z + Az) = Az/(20(1 + o2)).
distance is only dependent on Azx.

Again, the



