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Abstract—Modern UAVs are incredibly complex systems with numer-
ous tunable knobs such as the battery capacity, camera settings, sampling
rate, constraints on the route, etc. The area of theoretical exploration
of the optimization problems that arise in such settings is dominated
by traditional approaches that use regular nonlinear optimization often
enhanced with AI-based techniques such as genetic algorithms. These
techniques are sadly rather slow, have convergence issues, and are
typically not suitable for use at runtime. In this paper, we leverage recent
and promising research results that propose to convert the optimization
problem into a game and then find the set of equilibrium strategies of
different players. The strategies can then be mapped to the optimal values
of the tunable parameters. With simulation studies in virtual worlds,
we show that our solutions are 5-21% better than those produced by
traditional methods, and our approach is 10-100 times faster.

I. INTRODUCTION

With the growing demand of unmanned aerial vehicles (UAVs) for

a multitude of present-day applications, there has been an upsurge

in the global UAV market. The UAV market that was worth $2.67
billion in 2016 is expected to reach $10.28 billion by 2022 with a

CAGR (Compound Annual Growth Rate) of 25.2% [1]. According to

the U.S. Federal Aviation Administration (FAA), the number of UAVs

registered as of 2019 was 1.1 million and this number is expected to

exceed 4 million by 2021 [2].

Unfortunately, the software and computing aspects of a UAV have

not been given adequate importance in the literature. Boroujerdian

et al. [3] have shown that with the wrong choice of the algorithm

or its parameters, it is possible to compute routes that take four

times longer to traverse. This is a wastage of time as well as battery

power. In general, in UAVs, path planning is regarded as the slowest

operation [4]. The algorithms for path planning are well established,

however their behavior is governed by a large number of hyper-

parameters that need to be set based on runtime conditions. Hence,

tuning a path planning algorithm is disproportionately important in

UAV design. The state of the art uses a combination of traditional

optimization and AI enhanced algorithms to find the right set of

input parameters. We argue in this paper that these are very slow

approaches and cannot be carried out at runtime without incurring

significant penalties.

We instead propose a very different approach that actually uses

game theory. Even though an optimization problem of this kind is

not a traditional game with payoffs and players; however, we can use

some of the insights from latest research to very quickly solve an

optimization problem by first converting it into a game [5]. We thus

propose a novel approach to actually model a traditional optimization

problem that involves finding the hyper-parameters for a UAV path
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planning algorithm by actually finding the equilibrium strategies of

different players in an equivalent game [6], [7]. Our game-theoretic

approach is 10-100 times faster than the optimization based approach,

and our solutions are 5-21% better than the latter approach.

The novel contributions of this paper are as follows.

1) We perform simulations and model the path length and hover

time of a UAV as a function of the hyper-parameters using a

multi-layered perceptron model.

2) We propose a game-theoretic approach to formulate and solve

the resultant optimization problem that minimizes the overall

time taken by the UAV to reach its destination. We define

novel payoff functions to incorporate the selfish and altruistic

objectives of the players.

3) We derive interesting insights from the observed Nash equilib-

ria.

4) We show that our game-theoretic approach is 10-100X faster

and provides solutions that are 5-21% better than the best op-

timization based approaches for three different virtual worlds.

II. BACKGROUND

A. Navigation in UAVs

The problem of navigation in UAVs has been targeted by both

classical geometric methods and end-to-end learning-based methods.

However, for the case of UAVs, the classical methods are still

the most popular choice [3], [8] because of their simplicity and

deterministic approach. These methods follow three basic steps: �

perception: building a 3D view of the surroundings, and extracting

the information in the form of an obstacle/occupancy map, �

planning: using the information of the obstacles from the perception

step to create a collision-free path, and � control: sending the control

commands to the UAV to follow the planned path. This is referred

to as the Perception, Planning, and Control (PPC) paradigm.

We focus on the path planning step because it is the most time

consuming step in the entire pipeline (roughly 65% [4]). Yang et

al. [9] suggested that among all the path planning algorithms with

bounded time complexity, the sampling-based algorithms are self-

sufficient in determining an optimal path. We choose the most popular

sampling based algorithm, RRT*, for this work, which is known to

provide near-optimal solutions and allows re-planning.

The RRT* algorithm builds a path from the source to the des-

tination in the form of a tree. To grow the tree, the algorithm first

samples the environment (dimension: x×y×z) and chooses a random

point (prand). Subsequently, the node A in the tree that is the closest

to prand attempts to create a new node in the direction of prand.

We assume a step size (resolution) in the algorithm that restricts the

maximum distance (from A) at which the new node can be placed.



Thus, a new node B is placed at step-size units away from A in the

direction of prand. Node B is added to the vertex set of the tree if

the direct path from A to B is free of obstacles. After B is added

to the vertex set, it needs to connect to some vertices via edges to

become a part of the tree. Instead of directly creating an edge from

A to B, we create edges using the notion of a cost function. Each

vertex in the tree has an associated cost that quantifies the cost of

reaching that vertex from the start (root) node. To connect B, all

the nodes within a radius r are checked. If any node C from this

neighborhood has a path to B that is of lower cost as compared to

the cost of the path from A to B, then an edge is created between B
and C in place of the edge between A and B. Needless to say, the

edge between C and B should be free of obstacles. The minimum

distance between an edge and an obstacle should be at least equal to

the obstacle avoidance distance – this avoids collisions even if there

is a slight amount of nondeterminism in the UAV’s position.

The number of samples, step-size, obstacle avoidance distance, and

the dimensions of the environment form the hyperparameters of the

RRT* algorithm, which determine the behavior of the algorithm.

In this work, we perform experiments to identify this behavior

and develop a game-theoretic framework to predict this behavior at

runtime.

B. Game Theory Preliminaries

In a game-theoretic system, there are multiple selfish yet rational

players. Each player has a strategy, which it plays to maximize its

chances of winning the game. The notion of winning the game is

captured by the payoff or utility that a player derives by playing

a certain strategy. Thus, for a combination of strategies across the

players, each competing player obtains a payoff.

There is no notion of optimality here, because fundamentally the

players are at odds with each other. Hence, we define the notion of a

Nash equilibrium instead, where no player can increase its payoff by

unilaterally changing its strategy (the rest of the strategies remaining

the same). The notion of a Nash equilibrium is very powerful in

describing the results of games, and it is often possible to derive

profound insights about the inherent trade-offs and feasible solutions.

A Nash equilibrium is said to be stable if a small change in the

strategy for any player makes it strictly worse off. The strategies

should be independent, implying that the players can independently

choose their strategies regardless of the strategy of other players.

III. EXPERIMENTAL SETUP

A. Overview

In this work, we formulate an optimization problem where our

aim is to find a relationship between the parameters of RRT* such

that the total time to reach the destination is minimized. Due to the

complex relationship between the parameters (see Table I) and the

uncertain nature of sampling-based algorithms such as RRT*, we

need to collect a huge amount of data for multiple environments

to formulate a master equation for the optimization problem. This

process is extremely time-consuming if done in a real outdoor setting,

thus we perform exhaustive simulations in an open-source robotics

simulator, Gazebo, for multiple configurations and virtual worlds.

Since the convergence of the formulated optimization problem

takes a lot of time to solve, we map it to a game-theoretic framework

where the independent parameters are the players and the dependent

parameters are used to formulate the payoffs of the players. We,

in effect, perform sensitivity analyses of the dependent parameters

with respect to the independent parameters. Once the payoffs of

the players are formulated using the sensitivity results, we use

Gambit-v15.1.1 [10] along with its Python API to calculate the Nash

equilibria of the game.

B. Setup for Sensistivity Analyses
TABLE I

TUNABLE PARAMETERS

Parameter Description Range
Dimension size
(dim)

Dimension of the search space
for the UAV (physical 3D di-
mensions)

5 × 5 × 5 −
40 × 40 ×
40 m3

#samples (sam) Number of random samples
for RRT*

100− 5000

Step size (res) of
RRT*

Minimum step length that can
be taken in the direction of the
chosen random sample

0.01− 10 m

Obstacle avoidance
distance (obs av)

Minimum distance that should
be maintained between the
nearest obstacle and the calcu-
lated path

0.1− 0.5 m

These values are obtained as feasible ranges from the experiments.
Feasible values are those that do not degrade the accuracy significantly.

We use an NVIDIA Xavier board (state-of-the-art board for au-

tonomous machines such as UAVs) for the sensitivity analyses. It

consists of 8 ARMv8.2 cores having a frequency of 2.26 GHz, main

memory of 16 GB, 8 MB L2 cache, 4 MB L3 cache, and a 512-

core NVIDIA Volta GPU with 64 Tensor cores. We emulate the

path planning algorithm on the NVIDIA Xavier board to get the

sensitivity results. The algorithm runs within the Robot Operating

System (ROS). ROS allows running multiple concurrent processes,

also called nodes. These nodes pass data between each other using

non-blocking FIFO queues [3]. ROS uses the publish-subscribe model

where some nodes publish messages while other nodes receive the

messages by subscribing to the publishing nodes. The messages can

belong to some specific categories, also called ROS topics. For the

sensitivity analyses, we kept the simulation environment the same.

We primarily relied on prerecorded messages for simulation that were

stored in a ROS bag file during the outdoor flight of the UAV. ROS
bag files help us realize a deterministic simulation by replaying the

prerecorded messages.
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Fig. 4. Overview of our approach

C. Gazebo and Rviz for UAV Simulation

To collect the data for formulating the optimization problem, we

simulate (as explained above) the virtual world and the UAV in

Gazebo-9. Gazebo takes in a world file that specifies the environment

along with a map of the obstacles, and the UAV’s specifications.

After the planning step, the control commands are sent to the Gazebo

engine to make the UAV move in the desired direction. We use Rviz-

v1.13.13 for visualizing the surroundings in the form of an occupancy

map. Rviz is a ROS graphical interface that allows us to visualize

the position, orientation of the UAV, and the locations of obstacles.

For creating the virtual Gazebo worlds, we have used the standard

tools that have been used in most prior work [11], [12].



RM
SE

 (%
)

40
35
30
25
20
15
10

5
0

MLP (a
ct.

 ta
nh)

Decis
ion Tre

e

Random Fo
rest

MLP (a
ct.

 sig
moid)

Lin
ear R

egressi
on

Hover time
Path length

Fig. 1. RMSE comparison of different tech-
niques for World 1
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Fig. 3. RMSE comparison of different tech-
niques for World 3

D. IPOPT, and AMPL

In order to solve the nonlinear optimization problem formulated

using the data collected from Gazebo, we used a nonlinear solver

called IPOPT-v3.12.13 [13]. It uses an algebraic modeling language,

AMPL, to model the objective function and the constraints of the

optimization problem. Figure 4 shows an overview of the formulation

of the optimization problem and the game-theoretic approach. These

are discussed in detail in Sections IV and V.

IV. FORMULATION OF THE OPTIMIZATION PROBLEM

As explained in Section III-A, we need to perform exhaustive

simulations in Gazebo to collect multiple data points corresponding

to different configurations and different virtual worlds. Subsequently,

we use ML based techniques to fit a curve on these data points. The

equation for the curve is then used to formulate the constraints of the

optimization problem. The objective of the formulation is to minimize

the total time taken to reach the destination (see Section III-A). The

total time is defined as the sum of the hover time and the flight

time. Here, hover time (HT) is the time elapsed before a decision is

made by the planner. The UAV hovers at the current position during

this time and is not doing any useful work. The flight time (FT)

is defined as the time taken to reach the destination position. It is

roughly proportional to the distance travelled, also called the path

length (PL). Thus, in order to minimize the time taken to reach the

destination, we need to minimize either HT or FT or both. Let us

discuss these steps in detail.

A. Collection of Data Points

The idea is to collect the flight data (HT and PL) for multiple

virtual worlds from Gazebo for varying configurations of the tunable

parameters (shown in Table I) of the RRT* based path planning

algorithm. We performed simulations for all possible configurations

of the independent parameters in their feasible ranges. We collected

300 data points for each virtual world. A data point is an n-tuple of the

parameter configuration (res, sam, dim, obs av), input environment

(obs den), HT, and PL. The input environment is captured in terms

of the obstacle density (obs den) of the virtual world. For each

simulation, the start and the end points were kept the same so that

the effect of changing configurations can be accurately captured.

B. Curve Fitting

The configuration parameters and the obstacle density together

form the feature vector of these datapoints. To get the exact de-

pendence of the flight data (HT and PL) on the feature vector,

we performed curve fitting. The curve fitting problem takes in the

collected data points as its input and provides a trained predictor

model as the output. The equation for this model is the fitted curve

that provides a relationship of the flight data with the configuration

parameters and the input environment. Here the idea is to consider

80% of the collected data points and fit the curve using these points.

We use the remaining 20% of the data points as the test points. We

use the root mean square error (RMSE) metric to quantify the error

of prediction.

All the data points are normalized using min-max scaling. Since

two values (HT and PL) need to be predicted for each feature vector,

this is a multi-output regression problem. Figures 1, 2, and 3 show

the comparison of five different learning techniques for the three

different virtual worlds. We achieve a lower root mean square error

(RMSE) for the curve derived from the multi-layer perceptron (MLP)

algorithm with a Sigmoid-based activation function and 2 hidden

layers, each having 10 neurons. MLP performs better than all the

competing techniques because the relationship is complex and it is

difficult to predict using the simple linear regression or decision tree

based models. It can be observed that the RMSE (%) is higher in

the first virtual world as compared to the other two virtual worlds

because its average HT is lower as compared to the other two worlds.

This is mainly due to a lower obstacle density in the first world.

C. Formulation of the Optimization Problem

minimize Totaltime = HT + FT

= HT + ζ ∗ PL (1)

s.t. h1[i] =
5∑

j=1

wᵀ
1 [i, j] ∗ v[j] + b1[i], ∀i ∈ [1, 10]

h1o[i] =1/(1 + e−h1[i]), ∀i ∈ [1, 10]

h2[i] =

10∑
j=1

wᵀ
2 [i, j] ∗ h1o[j] + b2[i], ∀i ∈ [1, 10]

h2o[i] =1/(1 + e−h2[i]), ∀i ∈ [1, 10]

h3[i] =

10∑
j=1

wᵀ
3 [i, j] ∗ h2o[j] + b3[i], ∀i ∈ [1, 2]

(2)

Our objective is to minimize the total time taken by a UAV to

reach the destination (see Equation 1). Here the total time is written

as a sum of HT and FT, where FT is expressed in terms of PL. The

curve derived from the MLP formulation provides the equations for

the constraints as shown in Equation 2. Here h1, h2, h3, h1o, h2o are

the neurons in the hidden layers of the MLP. We use two hidden layers

and correspondingly three weight matrices w1, w2, w3 and three bias

vectors b1, b2, b3 from the input layer to h1, h1o to h2, and h2o to

h3, respectively, where h3 is passed to the Sigmoid layer to give the

outputs HT and PL. The input to the MLP is the feature vector v
that captures the configuration parameters and the input environment.

Here, v = 〈res, sam, dim, obs av, obs den〉.
The process for deriving the curve from the parameters of the MLP

is as follows. In Equation 2, the first constraint for the first hidden
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layer h1 is the sum of the product of the weights (w1) learned from

curve fitting and the feature vector (v). A bias term b1 is also added

for each neuron (h1[i]) of the hidden layer (h1). The second equation

for h1o introduces a nonlinearity in the equation using the Sigmoid

activation function. The equations for the second hidden layer (h2)

are obtained similarly.

1/(1 + e−h3[1])− ξh ≤HT ≤ 1/(1 + e−h3[1]) + ξh

1/(1 + e−h3[2])− ξp ≤PL ≤ 1/(1 + e−h3[2]) + ξp

1 ≤ HT ≤ FT/2

dist(start, dest.) ≤ PL ≤ 2 ∗ dist(start, dest.)
0.01 ≤ v[1] ≤ 10

100 ≤ v[2] ≤ 5000

dist(start, dest.) ≤ v[3] ≤ 5 ∗ dist(start, dest.)
0.1 ≤ v[4] ≤ 0.5

(3)

The output of the second hidden layer is multiplied by its corre-

sponding weights and passed through the Sigmoid layer to generate

the constraints on HT and PL. The equations for HT and PL
capture the final regression output along with the error margins: ξh
and ξp (see Equation 3). These two equations are expanded using

the Taylor Series expansion of e−y , which is 1 − y
1!

+ y2

2!
− y3

3!
...;

hence, the formulated optimization problem can have a polynomial

form (see Equations 1, 2, and 3). The next two constraints on

HT and PL ensure a good quality of the solution. Equation 3

shows the constraints on the feasible regions of all the configuration

parameters: res (v[1]), sam (v[2]), dim (v[3]), and obs av (v[4]).
These are obtained by the experimental observations. There is no

constraint on the obstacle density (v[5]) because it is an environmental

parameter and depends on the navigation scene. dist(start, dest.) is

the Euclidean distance between the start and the end points.

V. GAME THEORY

We show in Section VI that solving the formulated optimization

problem using a nonlinear solver takes time and sometimes even does

not converge to a solution. Thus, we propose to develop games where

the tunable parameters of the RRT* path planning algorithm are the

players. We divide the parameters into dependent and independent

parameters. The independent parameters (shown in Table I) are the

players while the dependent parameters are used in conjunction with

the independent parameters to formulate the payoffs of these players.

This is because the dependent parameters are able to accurately model

the physical quantities that govern the motion and hence the behavior

of the UAV.

Our approach is to make the payoff of the players a function of

two objectives: altruistic and selfish. The altruistic objective of the

players is to minimize the hover time and the path length, which

amounts to minimizing the wasted energy as well. It is negative in

nature. We use hover energy as a proxy for hover time and energy

consumed to travel a sub-optimal path as a proxy for the path length

in our payoff equations. The selfish objective of the players is

proportional to their individual parameters. Thus, the payoffs of the

players is a combination of maximization of the selfish objective and

minimization of the wasted energy, given the map of the environment.

A. Sensitivity Analyses

We performed the sensitivity analyses of the UAV flight (HT and

PL) with respect to the parameters of the path planning algorithm

on the NVIDIA Xavier board. Figure 5 shows the relationship of

the worst-case hover time with the number of obstacles present in

the search space. The worst-case hover time is when the UAV has

to do re-planning at every obstacle. With an increase in the number

of obstacles, the congestion in the search space increases, thereby

leading to a higher hover time.

Figure 6 shows the relationship of the length of the path with

the number of obstacles, while the source and destination for all the

experimental points are kept the same. As the number of obstacles

increases, the number of free spaces to form a collision-free path

reduces. Thus, the length of the path increases because the planner

has to take many detours.

If the resolution (step-size) of the path increases, the UAV takes

larger steps in the direction of the destination, thereby reducing the

number of collision checks and replanning steps. Hence, the hover

time reduces. Figure 7 shows the relationship of the resolution with

the hover time of the UAV.

B. Game Setup

We developed a game with five players: number of samples (sam),

obstacle avoidance distance (obs av), dimension of the search space

(dim), resolution of the path (res), and the obstacle density (obs den).

Here, the first four players are the tunable parameters of the path

planning algorithm and obstacle density is the input to capture the

nature of the world through which the navigation is to be done. A

higher obstacle density tries to reduce the payoff of the players by

increasing the hover time and the path length as observed in Figures 5

and 6.

The complexity of the RRT* algorithm is directly proportional to

the number of samples. Thus, the decision time and hence the hover

time increases with an increase in the number of samples. The sam
player would want to increase the number of samples to get a better

decision, however it wants to minimize the wasted energy. In this

case, the wasted energy is equal to the hovering energy, which is

equal to the product of the hovering power and the hover time [14]

(see Equation 4). The hovering power is constant [15] for a UAV with

a given mass m, propeller radius r and the number of propellers n
(see Equation 4). The payoff of the sam player is shown in Equation 5.

Ehover = Phover ∗HT, Phover =
√

(m∗g)3
2∗ρ∗n∗π∗r2 (4)



Payoff sam = α ∗ sam− Ehover − θ ∗ obs den

= α ∗ sam− β ∗HT − θ ∗ obs den (5)

The obs av player wants that the UAV should fly at a distance from

the obstacles. Thus, it would want to increase this distance while this

would lead to an increase in the time for path planning and increased

path length. Moreover, there will be a nonlinear relationship with

the path length owing to the uncertainty in the sampling-based path

planning algorithms. Hence, the payoff is captured in Equation 7,

where Epl is the energy spent in covering the path. It is equal to

Ev if the UAV covers the entire path d at a constant velocity v (see

Equation 6).

Ev =

∫ t2=d/v

t1=0

P (v)dt = P (v) ∗ d/v (6)

Payoff obs =α′ ∗ obs av − γ ∗ PLλ−
Epl − Ehover − θ ∗ obs den

=α′ ∗ obs av − γ ∗ PLλ−
κ ∗ PL− β ∗HT − θ ∗ obs den

(7)

The relationship of the hover time and resolution of the path

planning step is accurately captured in Figure 7. The hover time is a

hyperbolic function of the resolution of the path. Thus, the res player

would want to decrease the resolution, still observe all the obstacles

and form a collision-free path, however the hovering energy would

increase. Hence, the payoff can be captured using Equation 8.

Payoff res = α′′/res− Ehover − θ ∗ obs den

= α′′/res− β ∗HT − θ ∗ obs den
(8)

As the dimension increases, the sample density reduces. This

reduces the number of samples to choose from for the next nearest

node. Thus, the time spent in planning and hence hovering increases.

Due to the dispersed samples, the path length also increases. The

relationship of the dimension with the path length is nonlinear,

however the exact relationship is hard to deduce. The dim player

would want to do the planning for a larger dimension, however it

needs to minimize the wasted energy as a result of increased hovering

and increase in the path length (Epl). Equation 9 captures the payoff

for the dim player.

Payoff dim = α′′′ ∗ dim− γ′ ∗ PLλ′−
Epl − Ehover − θ ∗ obs den

=α′′′ ∗ dim− γ′ ∗ PLλ′−
κ ∗ PL− β ∗HT − θ ∗ obs den

(9)

All the constants – the αs, γs, and θ – are the hyper-parameters

of the game. κ and β are constants derived from P (v) and Phover .

We are using the constant λ in the equations involving PL because

the exact function is not known. We will however derive insights for

different values of λ.

C. Insights

We varied the strategies of the players in the feasible ranges

obtained from real measurements (in prior work) and observed that:

� If all the αs are smaller than βs, γs, κs, and θ and λ = 2,

we get a pure non-trivial NE (Nash Equilibrium). The res and sam
players play their trivial strategy, while the obs av and dim players

play their non-trivial strategy. This is mainly because the altruistic

objective dominates over the selfish objective and hence the players

with a nonlinear dependence on PL in their altruistic objective need

to tone down their strategies at the NE.

� Upon decreasing the value of λ to 0.5, we observe that the

players with a nonlinear dependence on PL start moving towards

more intuitive strategies as compared to the completely non-intuitive

strategies in the previous case. This is because the strength of the

non-linear dependence is drastically reduced from λ = 2 to λ = 0.5.

� As the density of the obstacles increases, the players start

moving towards their trivial strategy.

VI. RESULTS

A. Similar Results from Related Work

The time taken to solve the optimization problem for parameter

tuning typically takes between 30 min to 2 hours [16], [17]. Burger

et al. [17] explored 100 parameter combinations in 30 min while Cano

et al. [16] explored 24 configurations in 2 hours. In comparison, our

game-theoretic approach explores 256 configurations for a 4-player

game in merely 0.01sec on an 8-core 3.4 GHz desktop machine using

optimized Nash solvers provided by Gambit v15.1.1.

B. Comparison of Optimization-based and Game Theory-based Ap-
proaches

We compare the hover time and the path length obtained using

the optimization based approach and the game-theoretic approach

for three different virtual worlds. Figures 8, 9, and 10 show the

occupancy map of the three worlds used in the experiments. Table II

shows the comparison of the hover time and the path length obtained

using the two approaches.

TABLE II
COMPARISON OF OPTIMIZATION-BASED APPROACH AND THE

GAME-THEORETIC FRAMEWORK

Environment Optimization Game Theory
HT (sec) PL (m) HT (sec) PL (m)

World 1 0.72 6.3 0.56 5.8
World 2 0.4 5.7 0.29 5.24
World 3 0.5 8.3 0.4 7.9

We observe from Table II that our game-theoretic approach pro-

vides solutions that are 5-21% better than the best optimization based

approach. In terms of the time taken to calculate the optimal solution,

it takes 0.01s to compute the Nash Equilibrium in Gambit. On the

contrary, the IPOPT solver does not converge to a solution in finite

time. The numbers reported in Table II correspond to the results

obtained by simplifying the search space in IPOPT. For the cases

where IPOPT converges with the actual or reduced search space, it

still takes 0.1− 1s to reach the solution, which is 10− 100X slower

than the time taken by Gambit. We also observe that the values of

the hover time and the path length for World 3 are more than that

for World 2. Both the worlds (10m× 10m× 10m) correspond to a

forest, however the tree density is half in World 2 (0.1 trees/m2) as

compared to World 3 (0.2 trees/m2) as shown in Figures 9 and 10.

A higher obstacle density leads to higher congestion and hence more

hover time, which is expected.

C. Comparison with the Random Configurations

In this section, we show the results for World 1 (see Figure 8)

by considering two to three parameters as the players while the

other parameters are assigned random values within their feasible

range. Table III shows a comparison of the planning time for the

random and the best parameter configuration of these players. The

best configuration is the one that is provided by the game theory



Fig. 8. 3D Occupancy map along with path
planning in Rviz corresponding to World 1

Fig. 9. 3D Occupancy map in Rviz for a forest
with tree density 0.1 corresponding to World 2

Fig. 10. 3D Occupancy map in Rviz for a forest
with tree density 0.2 corresponding to World 3

based approach. We observe a 15-57% improvement in the planning

time.

Scalability: It has been reported that the delays become very large

while calculating the Nash Equilibrium in Gambit as the number of

players or the number of strategies increases [10]. Nevertheless, this is

not a problem for the path planning algorithms because the number

of parameters in these algorithms and their ranges (strategies) are

relatively small and finite [12], [16]. Thus, our solution is scalable

for a wide range of path planning algorithms for practical settings.

TABLE III
COMPARISON OF PLANNING TIME (SEC) FOR RANDOM AND BEST

CONFIGURATIONS

Players Random Best Improvement(%)
sam, res 4.9 2.08 57.55
sam, dim 6.15 4.71 23.4
res, dim 4.98 2.64 46.9

res, obs av 2.3 1.2 47.8
sam, dim, res 1.9 1.6 15.78

start: (0, 0, 2); dest.: (5.5, -2.0, 1.0)

VII. RELATED WORK

There are multiple proposals that target the problem of parameter

tuning for path planning algorithms by formulating an optimization

problem that aims to optimize a cost metric such as the hover time,

planning time, or path length.

Luo et al. [18] and Dunlap et al. [19] studied the effect of

tuning the parameters that determine the path length. They show

that the relationship of the path length with these parameters has a

very complicated form. Cano et al. [16] formulated the optimization

problem as a cost minimization problem. The aim was to find a

parameter combination that provides a valid trajectory using the path

planning algorithm and minimizes the planning time. Since the time

required for parameter exploration and tuning is large, they employed

four intelligent search space exploration techniques based on random

sampling, random forest, Bayesian Optimization, and AUC Bandit.

Similarly, Burger et al. [17] solved the optimization problem using the

SMAC [20] tool. The tool internally uses random forests to explore

the parameter space. Due to the time consuming nature of these

techniques, they set a cut-off time for the exploration. In contrast,

our game-theoretic formulation provides theoretical guarantees about

the solution and is much more time-efficient.

VIII. CONCLUSION

This paper proposes a very novel solution to the hyper-parameter

estimation problem in the path planning routines used in UAVs. It

takes a diametrically different approach as compared to conventional

work; it proposes to convert a regular nonlinear optimization problem

to a game, and quickly find the set of equilibrium strategies for the

game. This gave us a 10-100 X speedup without compromising on

the quality of the solution. Our work has broad implications beyond

the scope of the current problem; it has potential applications in a

wide number of optimization problems that arise in cyber physical

systems.
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