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Abstract—Some of the fastest thermal estimation techniques at the
architectural level are based on Green’s functions (impulse response
of a unit power source). The resultant temperature profile can be
easily obtained by computing a convolution of the Green’s function
and the power profile. Sadly, existing approaches do not take process
and temperature variation into account, which are integral aspects of
today’s technologies. This problem is still open. In this paper, we provide
a closed-form solution for the Green’s function after taking process,
temperature, and thermal conductivity variation into account. Moreover,
during the process of computing the thermal map, we reduce the amount
of redundant work by identifying similar regions in the chip using
an unsupervised learning-based approach. We were able to obtain a
700,000X speedup over state-of-the-art proposals with a mean absolute
error limited to 0.7°C (1.5%).

I. INTRODUCTION

Temperature simulation has become one of the most important
steps in the overall semiconductor design flow. As the device di-
mensions keep decreasing, the impact of on-chip variability becomes
significant [1]. Parameter variations inclusive of process and tem-
perature variations lead to a deviation in the electrical and thermal
parameters of transistors. It has been shown that process variation can
result in up to a 20X variation in leakage power, and 30% frequency
variation [1]. With the dimensions scaling from 350 nm to 45 nm,
the yield was shown to go down from 90% to 30%, partly because of
the effects of process variation [2]. It has been estimated that process
variation can undo the complete performance gain obtained by a new
technology generation [2].

A thermal simulation that considers the effect of variation (process,
temperature, thermal conductivity) is important in all design stages.
There are many architectural techniques to compensate for the
adverse effects of process variation such as functional unit level
body biasing, and retiming. To assess the impact of such schemes,
researchers often generate a set of random variation maps and sub-
sequently perform architectural simulations. Similarly, while making
placement decisions, it is also necessary to generate a large number
of variation maps and evaluate the efficacy of different placement
strategies. The common feature of all of these approaches is that we
need to perform a large number of thermal simulations on dies that
have a significant amount of process, conductivity and temperature
variation — hence, there is a need for a fast thermal simulator in this
space.

Unfortunately, existing thermal simulators have failed to factor
in the effects of variation. Researchers have shown that a chip
designed by ignoring process variation may fail after fabrication [3].
In addition, most simulators also ignore the temperature dependence
of conductivity, leading to significant errors in thermal estimation.
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It was shown by Yang et al. [4] that ignoring the temperature
dependence of conductivity can lead to a 5°C error in temperature
estimation. Furthermore, state-of-the-art simulators are very slow
since they rely on the costly finite element and finite difference
based methods, limiting the scope of design space exploration. To
make problems worse, most existing thermal simulators consider the
effects of leakage power by iterating through the leakage-temperature
feedback loop. This further reduces their speed significantly.

Consequently, fast thermal estimation accounting for variability has
hitherto remained an open problem. To overcome these problems,
we propose VarSim in this paper. Our main contributions can be
summarized as follows:

1) VarSim considers the impact of variability as well as the depen-
dence of conductivity on temperature. To the best of our knowledge,
there is no existing technique that achieves this.

2) We identify a new way of characterizing the variation-aware
ambient leakage power. We use k-means clustering to cluster the
variation maps into regions with similar properties. We then construct
a dictionary of the clusters that can be used to characterize any
variability map. This step is offline, and is done for a chip only
once.

3) We derive a novel modified leakage aware Green’s function
to consider the impact of temperature-dependent conductivity and
leakage power. This Green’s function can directly be convolved
with the power profile at runtime to obtain the temperature profile
accounting for the two feedback effects. Where aggregate statistics
are needed, we run our algorithm multiple times with a range of
leakage power profiles to get the range of expected temperatures.

Since our approach is semi-analytical and is based on Green’s
functions, we obtain a several orders of magnitude speedup over
state-of-the-art approaches, with the maximum error within 4%.

Section II provides the relevant background and Section III de-
scribes our modeling methodology. We evaluate our method in
Section IV and conclude in Section V.

II. THEORETICAL PRELIMINARIES
A. Fourier Equation

The fundamental equation governing heat transfer is the heat
equation, given by:

V.(kVT)+ ¢ = qu,%—f, ¢))
where p is the density of the material, C, is the volumetric specific
heat, T" is the temperature, ¢ is the thermal energy generation rate
inside the volume and « is the thermal conductivity. A solution of
the heat equation yields the temperature profile of the chip. However,
since the heat equation is too complex to solve analytically, most



thermal simulators rely on the finite difference methods (FDMs) or
finite element methods (FEMs) for getting fast numerical solutions.

B. Green’s Functions

A fast approach to solving the heat equation is to obtain the
impulse response of the chip (also called the Green’s function) by
applying a unit power source to the center of the chip, and convolving
this impulse response with the power profile to obtain the full-chip
temperature profile. This approach is analytical, and much faster
than FDM and FEM based approaches since the entire heat transfer
path is not modeled; rather only the power dissipating layers and
the boundary conditions are considered [5], [6]. Using the Green’s
function, the temperature profile can be calculated as :

T = fspx P 2)
where f,, is the Green’s function,  is the convolution operator, P
is the power profile and 7" is the temperature profile.

C. Process and Temperature Variation (or simply Variation)

The limitations of the manufacturing process of ICs impact the
physical properties of the chip. As a result, the properties of the chip
deviate from their nominal values. The parameters most susceptible
are threshold voltage, oxide thickness, gate width, and channel length.
These variations are classified into three categories: wafer-to-wafer,
die-to-die and within-die variations. The first two effects are constant
for a given die. These effects used to be more important for older
technology generations, and can be handled by simple methods
such as clock binning. For newer technology generations, within-
die variation dominates and requires more complicated management
strategies [2]. Within-die variation is further classified as:

1) Systematic variations: These are introduced because of litho-
graphic aberrations. As a result, proximate regions on the die have
similar values of parameters. It is modeled by a multivariate Gaussian
distribution [7] with a covariance matrix having a spherical correla-
tion.

2) Random variations: These are caused by random dopant fluc-
tuations (RDF) and are modeled as a zero-mean Gaussian random
variable. These variations do not exhibit any spatial correlation.

There are two variables in the heat equation that are affected by
parameter variation: leakage power and thermal conductivity.

1) Leakage power: The variability in leakage power arises because
of both systematic and random variations. However, the effects of
random variation tend to get averaged out at the architectural level
when considering temperature. The subthreshold leakage current,
Iieqr 1s given by Equation 3.
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where, vr is the thermal voltage (k7'/q), Vin is the threshold
voltage, Vo is the offset voltage in the sub-threshold region and
7 is a constant. Because of variability, the oxide thickness and gate
length change, which result in a change in the threshold voltage.
The temperature dependence of Ijeqr can be modeled by a linear
equation [5], [6], [8]. Equation 3 can then be approximated as:

Tiear o (1+ BAT)eP LA FFtoz Blox @
where [ represents the change in leakage power with temperature,
Bt,.. is a constant representing the variability in the oxide thickness
tor and Br, represents the variability in the gate length, L. Thus we
arrive at:

Pleak = (1 + /BAT)PlZ?zTI‘CO, (5)

where Pg}, is the leakage power at ambient temperature after

considering the impact of variability. For improved accuracy, we use
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a piece-wise linear leakage model, which provides an accuracy of
over 99% [9].

2) Conductivity: We study the effect of variability in the conduc-
tivity of silicon as well. This is because the Fourier equation dictates
that temperature is dependent on power as well as the conductivity
of the material. Because of random dopant fluctuations (RDF), the
doping profile varies, leading to significant variations in conductivity.
We consider variability in conductivity to be a Gaussian random
variable, K. To calculate its variance, we look at the variation
in doping profiles because of RDF from existing works [10], and
translate these dopant densities to the conductivity of silicon by
obtaining the corresponding values from the literature [11].

D. Transforms used in this work

Thermal problems are often easier to solve in the transform
domain. We use two types of transforms in this work in addition
to the widely known Fourier transform.

1) Discrete Cosine Transform (DCT): The DCT transforms a signal
from the spatial domain to the frequency domain. It uses the cosine
functions as its basis. It is purely real and concentrates energy well
into the low-frequency coefficients.

2) Hankel Transform: It is equivalent to the 2-D Fourier transform
of a radially symmetric function. The Hankel transform is defined as:

H(f(r) = H(s) = / () Fo(sr)rdr, ©)

where 7y is the Bessel function of 0the first kind of order 0.

III. THERMAL ESTIMATION CONSIDERING VARIABILITY
A. Overview

We begin by providing an overview of our approach (Figure 1).
Steps @ and @ are the offline components, and step ® is the online
component. Table I shows a glossary of all the terms used in our
derivations.

® We analytically derive the equation for a novel leakage aware
Green’s function accounting for variability and the dependence of
leakage power and conductivity on temperature.

® The expression derived for the modified Green’s function in
step @ requires the variation aware leakage power map at ambient
temperature, Pji5%,. We do not want to recompute the Green’s



functions every time we consider a new P 5y ~— this is too time
taking. We thus use a learning-based approach — we superimpose a
grid of 64 x64 blocks, and cluster the blocks based on their systematic
variation component. We construct a dictionary of such clusters. The
advantage of this approach is that if we get a new leakage power
map, we need not recompute the Green’s functions for each region,
we can simply look up the dictionary, and find the corresponding
Green’s functions.

® We calculate the full-chip variability-aware thermal profile in the
presence of leakage as well as dynamic power by convolving the
modified Green’s functions with the dynamic power map.

TABLE I: Glossary

Symbol  Meaning
P;;‘ZCO Leakage power at ambient temperature considering variability
B Temperature dependence of leakage power
« Temperature dependence of conductivity
K Conductivity of silicon
T Temperature
T Temperature rise above ambient temperature
fspo Green’s function without considering leakage and
temperature-dependent conductivity = fg;iic, + @
E(X)  Expected value of X
F Fourier transform operator
H Hankel transform operator
T,y Spatial coordinates
u, v Fourier frequency domain variables

h Hankel variable

t Time

C Thermal capacitance

Leakage aware Green’s functions considering temperature

k
f leaksp 2.
dependence of conductivity

B. Variation of the Thermal Conductivity with Temperature

The conductivity of silicon has a strong temperature dependence,

given by [12]:
T -n
Kk =ko (@) 5 @)

where ko is the conductivity of silicon at 300K, 7" is the temperature
in Kelvin, and 7 is a material-dependent constant. In the operating
range of ICs (40 — 100°C ), we can linearize Equation 7:

K(T) = ko' (1 — cAT), ®)
where k({ is the nominal conductivity of silicon at the ambient
temperature, and c is a constant.

Next, we study the variation of the Green’s function, f,p, with the
change in conductivity and obtain the following empirical relation
(using HotSpot [13]):

fsp(K) = fopo (1 — ¢ (k — ko)), ©)
where, fsp, is the Green’s function without considering the variation
of x with temperature (conductivity variation because of dopant
density variations is captured in fsp,), and ¢’ is another constant.
Combining Equations 8 and 9, we obtain a temperature-dependent
Green’s function to capture the dependence of conductivity on
temperature.

Fop(T) = fopy (1 + QAT), (10)

where « is a constant representing the variation of the Green’s
function with temperature.

C. Derivation of the Modified Green’s Functions

We follow the basic approach used by Sarangi et al. [5]. However,
their work does not include the temperature dependence of conduc-
tivity or the effects of variability.

The power profile (P) is the sum of the dynamic power (Pgayn)
and the leakage power (Pieqk). Using Equation 5, we get:

P = Payn + P2, (14 BAT). an

Let us assume that initially no dynamic power is applied to

the chip. The entire temperature rise is because of leakage. From
Equation 2, we have:

To = fapo * Pieak, (12)

Now, let us apply a unit impulse (Dirac delta) source at the center

of the chip as the dynamic power. Using Equations 10 and 11 in
Equation 2, we get:

Ty = fapo (1 + QAT) % (8(z,y) + Plan, (L + BAT)),  (13)
where x,y are the spatial coordinates. Subtracting Ty from T, we
arrive at the rise in temperature because of the impulse source, in the
presence of variability in leakage power and temperature-dependent
conductivity:

T=T — Ty
= fspo(L+aT) + fopo (1 +aT) x Pak, (1 + BT)

- fspo * Pllgylﬂco
Our goal here is to solve for the temperature rise, 7. To get rid
of the convolution operation, we use the property that the Fourier
transform of the convolution of two functions is equal to their product
in the frequency domain. We compute the Fourier transform of both
the sides of Equation 14 to arrive at Equation 15.

F(T) = (F(fspo) + aF (fspoT)) + (F(fspo) + aF (fopo T)) %
(F(Pieaky) + BF(PidaroT)) = F(fspo ) F (Preako)
:}—(fSpo) +a}—(fsp0T) +ﬂf(f.9po)F(Plzz7coT)
~—
I Ir1 III
+ aF (fspo T)F (Pieako) + aBF (Pieako T)F (fopo T)

v \4

(14)

15
In Equation 15, term [ is the baseline Green’s function, term( I I)
is the additional increase in temperature because of temperature-
dependent conductivity, term [1I represents the temperature rise
because of the temperature-dependent leakage power, term IV rep-
resents the compounded effect of the baseline leakage power and the
temperature-dependent Green’s function because of the conductivity,
and term V' is the additional temperature rise arising from the
compounded effect of the temperature-dependent Green’s function
and temperature-dependent leakage power. The last term will be
small, since the two effects individually lead to a small increase
in the temperature profile, and their compounded effect will not
be very large. Hence we neglect this term. We also make another
simplifying assumption to enable the calculation of F(Pjg%,T).
Although P35  is a distribution, we assume it to be a constant equal
to its expected value. Thus F(Plar, T) = E(PLey, ) F(T), where
E represents the expected value. All the assumptions are justified
empirically in Section IV.

F(T) =F(fopo) + aF (fspo T)(1 + E(Preai, )+
BE(Pieako)F (fspo) F(T)

:}—(fspo) +C“l]:(fsz707—) +r3/}—(f8100)}-(7—)7

where o = a(1+ E(Pi%,)) and 6 = BE(PL,).

(16)



The bottleneck in the above equation is the computation of
d

F(fopoT)- Let G(u,v) = F(fopoT)- Let fop, = fapy + fspegv

where det is the deterministic component of the Green’s function

and f5p is the component of the Green’s function due to variability.
Glu,v) = F((Fipg + fpa) T)
= E(f0 )F(T) + F(f5, T)
(u,v)
x(u,v
To compute the second term, we take advantage of the Hankel
transform. The 2D Fourier transform in the above equation can be

replaced by the zero-order Hankel transform, since it is a radially
symmetric function, and then we apply integration by parts.

a7

x(u,v) = H(F24T) = / (F2T) Jo(hryrdr

0

= ngg/ TJO(hT)TdT—/ fsd:; dT/ T Jo(hr)rdr

= sl = [ gt ar o)
(18)
We convert this equation back to Cartesian coordinates, into the
Fourier domain and substitute this back in Equation 17:
var det
spo )F(T) + fapg P

/ / 2 dody F(T)
~F(T)fspg

P (tm- [ /_Z o)
19)

Using this back in Equation 16 and solving for F(7), we get:

(fSPO)
1—ao (fspo S oS fspodxdy) = B'"F(fspo)

The Green’s function f,, can be broken down into a rapidly
decaying function fs;;c and a constant ¢ (established in prior
work [5], [6], and also in our experiments).

G(u,v) = E(

F(T) =

(20)

]:(fsilico)+¢5(u7 1))
1—ﬂ/]‘-(f.>zlzco) /B ¢6(u ’U)
—d¢+a [T [T

k —1
Jicaksp=F
carsp a/f%lzco

fgp0 dxdy
(21)

D. Leakage Power at Ambient Temperature: K-Means Clustering

Because of the systematic component of process variation, different
regions of the chip have different values of the baseline leakage
power, Pz} . This is an input to the final equation for the modified
Green’s function (Equation 21) (subsumed in parameters o’ and /3').
Whenever the variation map changes, we have to recompute the
Green'’s function for each region. This is inefficient. We can leverage
the fact that we have a large spatial correlation in the systematic
variation component. This can be used to store a dictionary of pre-
computed Green’s functions. Whenever we have a new variation map,
we can break it into a set of regions, look up the dictionary and find
the corresponding Green’s functions.

The first problem is to uniquely characterize the variation within a
rectangular region on the die. Given that the systematic component
primarily determines the mean of the distribution of the baseline
leakage power, we use the mean as one of the parameters. However,
it is possible that different distributions have the same mean, and this
can lead to aliasing. To capture this effect, we propose to compute

Leakage Power Profile

; 1.8
100
16
S 14
8
5 B 12
>  AEET
> 500 ]
5 600
© 0.8
w
& 700
S 800 0.6
900 ‘ 0.4
1000

200 400 600 800 1000
Grids along x direction
Fig. 2: Leakage power in the presence of variability. Note the spatial

correlation in the leakage power values.

the Discrete Cosine Transform (DCT) of the baseline leakage power
values in a block and filter out the high-frequency components. The
mean of the remaining coefficients is used as the second feature.

Subsequently, we consider a large number of randomly generated
variation maps, and cluster the regions using standard K-Means
clustering — each block is represented by its two features (mean,
mean of filtered DCT). For each block, we store the corresponding
Green’s function (computed using Equation 21). During the process
of lookup, we compute the (mean,DCT mean) tuple for a given region
and choose the entry in the dictionary that minimizes the Euclidean
distance.

E. Thermal Estimation at the Edges and Corners

To compute the full-chip thermal profile, we convolve the modified
Green’s functions with the power profile. In this process, the edges
and corners are special cases. Since the boundaries are adiabatic, we
apply an analogy with the method of images from electromagnetics
(also used in [14]). In this approach, we double the size of the area
that we are considering with the die in the middle and zero-pad the
regions outside the die. Then for each power source, we add a mirror
image source that is on the other side of the die boundary (same
distance). We obtain the temperature map by convolving the power
profile with the respective Green’s functions.

IV. EVALUATION
A. Setup

We augment the popular thermal modeling tool Hotspot [13] to
carry out thermal simulations with variable leakage power as well
as conductivity. Our HotSpot thermal simulation routines have been
written in R. We run all our Hotspot simulations on an Intel i7-
7700 4-core CPU running Ubuntu 16.04 with 16 GB of RAM.
We implemented and tested our proposed algorithm in Matlab on
a Windows 8 desktop with an Intel i7-2600S processor and 8 GB of
RAM. We discretized the chip into a 64 x 64 grid.

1) Error Metric: We use the mean absolute error and the per-
centage error relative to the maximum temperature rise as the error
metric. Other thermal modeling tools often report errors relative to the
maximum temperature in the die, which under-represents the error.

B. Calibration of the Setup

To calibrate our HotSpot setup, we use the commercial CFD
software Ansys Icepak. It is an industry-standard tool widely used
for high-accuracy thermal simulations. We model an identical layout
in HotSpot and Icepak, and compare the temperature values obtained
from the two tools. We find that the normalized temperature values
obtained using both of these tools conform well (within 1.5%).
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Simulator Considering x(T)  Without considering x(T')
Hotspot! 18 minutes 4s

3D-ICE - 1.36 s

Icepak 15 minutes 15 minutes
Jaffari et al.[15] - 158 s

VarSim 1.3 ms 1.3 ms

1. To model temperature-dependent conductivity, detailed thermal modeling
is done in HotSpot, since the properties of each block are different.
2. HotSpot, 3D-ICE and Icepak do not consider variability

TABLE II: Speed of existing simulators
C. Results

1) Dictionary using K-Means clustering: To obtain the leakage
power values in the presence of systematic and random variations,
we use the widely used variation modeling tool, Varius [7]. We obtain
the leakage power at a fine granularity (1024 x 1024) from Varius.
We then discretize the chip into 64 X 64 blocks, each containing
16 x 16 elements. We construct a dictionary using the mean and low
frequency DCT coefficients of each block as features. To select the
optimum number of clusters, we vary the number of clusters until
no significant gain in accuracy is obtained. The mean absolute error
and the sum of within cluster distances is plotted in Figure 3(a). The
cluster assignments for the optimal size are shown in Figure 3(b).

2) Modified Green’s functions: We begin by applying a unit
impulse power source to the center of the chip and obtain the
baseline Green’s function using HotSpot considering the variability
in conductivity due to random dopant fluctuations. We then use
Equation 21 to obtain the modified Green’s function accounting for
the effects of temperature-dependent conductivity and leakage power
(captures the effect of the systematic component). Our approach
takes 0.55 ms to compute the modified Green’s function with an
error limited to 3%. Next, we construct a dictionary of the Green’s
functions using the approach described in Section III-D. For a new
variation map, we first obtain the corresponding Green’s function by
looking up the dictionary for each block, and finding the cluster with
the maximum similarity.

3) Full-chip thermal simulations: At runtime, the sum of the dy-
namic and baseline leakage power profiles is mirrored and convolved
with the calculated Green’s functions. This step takes an additional
0.74 ms. Thus the total time taken by our algorithm is 1.3 ms, with
the maximum error limited to 4%.

To validate our proposal, we adopt the following approach: the
leakage power obtained from Varius is added to the dynamic power
profile, and HotSpot is invoked iteratively. After each iteration, we
update the leakage power and conductivity values on the basis of the
current temperature. We keep iterating until the temperature values
converge. HotSpot supports modeling of variable conductivity only

when detailed 3D modeling is enabled, since different conductivity
values for different blocks increase the complexity greatly. As a result,
HotSpot requires 18 min to compute the final temperature. If we do
not model variable conductivity, the simulation completes in 4s.
Test Case 1 [Real floorplan]: We validate our approach using the
floorplan of the Alpha21264 processor. The power values are taken
from the ev6 test case of HotSpot. The leakage and dynamic power
profile, and the corresponding temperature profiles are shown in
Figure 4. We can see in Figure 4c, that the calculated thermal profile
matches the actual thermal profile very well (within 2%).

Test Case 2 [Stress testing]: In this case, multiple dynamic power
sources are applied to different locations on the chip. The total
dynamic power is 8 W. Although the total power applied is lower
than test case 1, the power density of the sources is much higher.
Consequently, the maximum temperature in the chip is higher than
test case 1. In this case too, the temperature obtained using our
algorithm matches the actual value very well, with a mean absolute
error limited to 0.7°C (1.2%).
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D. Analysis of Results

To further understand the importance of the individual effects we
have modeled, we carry out multiple simulations with a few effects
not modeled. Table III summarizes the error obtained in various
scenarios. As seen in Table III, not accounting for any kind of
variability leads to a temperature estimation error of up to 22%. If
we ignore the temperature dependence of conductivity but consider
variability and temperature dependence of leakage, the error varies
from 2 to 7.5%. Ignoring variations in the conductivity profile leads
to < 1% error in thermal estimation. Thus in thermal modeling,
the effects of random variations in the conductivity profile can be
safely ignored, but considering variability in leakage power, and
the temperature dependence of leakage power and conductivity is
absolutely essential.

Comparison with state-of-the-art approaches: Since there is no
state-of-the-art work that considers variability as well as temperature-
dependent leakage, we compare our results against the modified
version of HotSpot. Our algorithm provides a 700,000X speedup over



TABLE 1II: Errors in various scenarios

Effects considered Test Case 1 (Alpha21264) Test Case 2

Max. Temp. (K) Max. Deviation (K) Percent Deviation | Max. Temp. (K) Max. Deviation (K) Percent Deviation
No effects 341.36 6.77 22.6 372.90 9.01 14.1
Rand.-cond., Cond.(T) 341.86 6.27 20.9 377.59 4.32 6.8
Leakage-var 344.04 4.09 13.6 375.29 6.62 11.6
Leakage(T) 344.30 3.83 12.8 374.56 7.35 12.2
Rand.-cond., Cond.(T), Leakage(T) 34491 3.22 10.7 378.39 3.52 5.8
Leakage-var, Leakage(T) 347.43 0.70 2.33 377.16 4.75 7.5
Cond.(T), Leakage-var, Leakage(T) 348.12 0.01 0.03 381.36 0.55 0.86
Rand.-cond., Cond.(T), Leakage- 348.13 - - 381.91 - -
var, Leakage(T)
VarSim 347.58 0.55 1.8 379.31 2.60 4.1

Leakage(T) = temperature-dep. Ieakage, Leakage-var = variability in Ieakage, Rand.-cond. = random conductivity, cond.(T) = temperature-dep. conductivity

HotSpot, while maintaining the error within 4%. Table II summarizes
the simulation speed of various tools.

E. Related Work

While variability itself is a well-studied area, there are only a few
works that consider its impact on temperature. A major limitation
of the works that consider the effects of leakage power variability
is that they assume the operating temperature to be equal to the
ambient temperature [15], i.e. ignore the temperature dependence of
leakage power. In our work, we observe that considering variability
but ignoring temperature dependence of leakage can result in a 4 to
6°C error, which is completely unacceptable.

Jaffari and Anis [15] statistically calculate the expected value of
temperature considering the impact of variability. They first obtain the
leakage converged temperature iteratively without considering varia-
tion, and then statistically compute the effect of parameter variation.
They use their technique to iteratively update power and temperature
to estimate the fullchip power, temperature and the probability density
function of the temperature. However, a major limitation of their
technique is that it is iterative, making it extremely slow (= 158s for
a 50 x 50 grid), 121X slower than VarSim. Juan et al. [16] use a linear
regression-based model to train and predict the temperature profile
of a 3D IC in the presence of variability. They use measured values
of leakage power for training. However, learning-based methods are
very sensitive to input data and do not generalize well when test
conditions change. Varipower [17] models power variability at the
architectural functional unit level by performing circuit-level Monte
Carlo simulations incorporating parameter variation. However, it does
not model the effects of temperature effects of variability in power.
Yang et al. [4] propose a temporally and spatially adaptive thermal
analysis technique that accounts for the temperature dependence of
conductivity. However, they do not consider leakage power. Ziabari et
al. [18] consider the temperature-dependence of conductivity by using
a lookup table to store Green’s functions with different conductivities.
At runtime, they iteratively update the Green’s function until the
temperature profile converges. They too have not modeled leakage. In
comparison, our approach encompasses the effects of leakage power,
variability in leakage as well as temperature dependent conductivity
analytically. Process variation along with the variation of conductivity
with temperature has never been considered before.

V. CONCLUSION

In this paper, we propose a fast leakage and variability-aware
thermal estimation technique that also captures the temperature
dependence of conductivity. We construct a dictionary of leakage
power maps that can characterize any variation profile. We then derive
a closed-form of the Green’s function that captures the temperature
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dependence of leakage power as well as conductivity. Our approach
is several orders of magnitude faster than the state-of-the-art while
maintaining an error within 4%.
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