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—— Abstract

We consider the on-line problem of representing a sparse bit string by a set of k intervals, where
k is much smaller than the length of the string. The goal is to minimize the total length of
these intervals under the condition that each 1-bit must be in one of these intervals. We give an
efficient greedy algorithm which takes time O(log k) per update (an update involves converting a
0-bit to a 1-bit), which is independent of the size of the entire string. We prove that this greedy
algorithm is 2-competitive. We use a natural linear programming relaxation for this problem,
and analyze the algorithm by finding a dual feasible solution whose value matches the cost of the
greedy algorithm.
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1 Introduction

In many applications, we need to maintain representations of sparse bit vectors. Such
representations should be compact, and one should be able to update them efficiently even
in the on-line setting. One way of achieving this is to cluster the 1-bits into small number
of intervals. More formally, given a long bit vector and a (relatively) small integer k, we
would like to find a set of k (disjoint) intervals such that each 1-bit is in one of these
intervals. Such a representation can lead to significant compression of data, and fast retrieval
of information. The goal here would be find these intervals such that they contain as few
0-bits as possible, i.e., we would like to minimize the total length of these intervals. We call
this the k-Coverproblem. Such representations have applications in many areas of computer
science including compilers, architecture and databases. In this problem, we address this
problem in the online or streaming setting : in each time step, one of the 0-bits becomes
1, and we would like to update our representation in time depending on k only. Indeed, in
many applications n could be very large, and even running time of O(logn) per time step
could be prohibitive.

Toussi et al. [1] proposed a new algorithm for compressing the information stored in a
traditional points-to[2] analysis pass in a compiler. In a points-to analysis, a compiler first
makes a list of all possible objects that are in the scope of a function, and then marks a
subset of them that can be possibly accessed by the function under consideration. There are
both off-line and online variants of this algorithm. If the analysis is done in one pass, then
we can consider it as an off-line version. If the analysis takes multiple passes especially after
taking inter-procedural information into account, we can consider it to be an online variant.
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[1] proposed to save this information in the form of a bit vector. Each bit corresponds to a
unique object/variable in the system. If a bit is 1, then there is a possibility that a given
function might access a certain variable. This bit vector can further be compressed to form
a ranged bit vector that saves only intervals containing the 1-bits. The authors do entertain
the possibility of having intermittent 0’s similar to our definition of a k-Cover problem. In
this case, if we decrease the value of k, then we have better compression, yet the compiler is
more conservative.

In the area of scientific databases, Sinha et al. [7, 8] reported the use of a scheme similar
to the k-Cover problem. They consider a variant of binning for bit vector databases that
is tailored for storing sparse vectors. They consider a hierarchical structure, where each
level stores a bit vector as a sequence of intervals. At the highest level, they store a set of k
intervals, where k might possibly be a variable. To filter out false positives, they introduce
additional levels to store each interval further as a set of intervals. The last level does not
have any false positives. This helps them answer range queries with different degrees of
approximation. There is clearly a tradeoff between time and accuracy.

In the areas of computer architecture [9, 10, 11] used similar ideas to compress post-silicon
debug information. In each epoch, the authors propose to mark a cache line with 1 if it is
written to in that interval. The default state of each line is 0. [11] proposed to save this
information in the form of a large bit vector. [10] tried to further improve upon this work by
trying to compress the bit vector using LZW compression. We can use the idea of covering
by k intervals in this context, because the bit vectors were found to be fairly sparse.

It is easy to solve the off-line version of the k-Cover problem. Indeed, the following
simple greedy algorithm works — define a gap in a bit-string as a maximal sequence of 0’s.
Then, the optimal solution should construct the k intervals such that it leaves out the largest
k — 1-gaps (excluding the leftmost and rightmost gaps). In fact, we can easily convert this to
an on-line algorithm which maintains a suitable data-structure for storing the gaps — each
update can be achieved in O(logn)-time. But as pointed out above, in many applications,
k could be much smaller than n, and we would like an algorithm whose running time per
update depends on k only.

Our Results We give a simple greedy 2-competitive algorithm for the k-Cover problem.
Further our algorithm only takes O(log k)-time per update. The analysis of our algorithm
requires non-trivial ideas. We do not have any natural charging or potential function based
arguments for bounding the competitive ratio of our algorithm. Instead, we use a dual fitting
based argument. We first write a natural LP relaxation for the k-Cover problem (which has
integrality gap of 1). We then show that we can assign values to the variables in the dual
LP such that the values are feasible and the objective function is close to the cost of the
greedy algorithm. We expect our techniques to be useful for analyzing other on-line string
algorithms.

Related Work There is a vast amount of literature on string algorithms and string compres-
sion techniques [5, 6]. To the best of our knowledge, this problem has not been considered
before in this context. Our problem is a special case of the clustering problem which minimizes
the sum of cluster diameters [4]. A constant factor approximation algorithm is known for
the latter problem (for any arbitrary metric) [3].

In Section 2, we define the problem formally and describe the greedy algorithm. Sub-
sequently, we analyze the greedy algorithm by first giving an LP relaxation for our problem
(Section 3) and then setting the dual variables (Section 4). Finally, we show that the greedy
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algorithm cannot be better than 2-competitive (Section 5).

2 Preliminaries

We are given a sequence of n bits. At time ¢, let .S; denote the sequence of these bits. Let bgt)
denote the i*" bit at time ¢. Initially, in Sp, all the bits are 0. At each point of time ¢, one of
the bits which was 0 at time (¢ — 1) becomes 1. The input instance also specifies a parameter
k. The algorithm needs to maintain a set of k disjoint intervals (which we will call covers) at
all points of time ¢ — these covers must satisfy the property that any bit which is 1 should lie
in one of these covers. Let Cl(t), ceey C,it) denote the set of covers at time ¢. For an interval I,
I(I) and r(I) will denote the left and the right end-points of I. Define a gap as the sequence
of 0’s between two consecutive covers. We shall use G§t> to denote the gap between Ci(t) and

Ci(j-)p i.e., the open interval (r(C-(t)), l(C’i(i)l)). Our goal is to minimize the total length of

K3
covers at any time, i.e., Y., |C’i(t) |. Let opt, be the value of the optimal solution at time ¢.

We propose a simple greedy algorithm 4. Suppose at time ¢, the bit d; becomes one. If d;
lies in one of the covers at time ¢, we do not need to do anything. Otherwise, we tentatively
create one more cover consisting of the singleton element d;. Now we have a set of k + 1
covers (which cover all the 1 bits). Among these k + 1 covers, we find two consecutive covers
with the minimum gap between them — call these C' and C’, and assume that C' lies to the
left of C’. We merge them into a single cover, i.e., we replace C' and C’ by [I(C),r(C")].
Thus we again have only k covers at time ¢t + 1 and they contain all the 1 bits. Note that we
always grow the current covers.

For the sake of simplifying the analysis, we shall make the following assumption : at any
point of time ¢, the bit d; that becomes 1 does not lie in any of the existing covers. This
assumption is without loss of generality — if we forbid such bits from becoming 1, we do not
affect our algorithm A, and this can only reduce the value of the optimum solution.

3 A Linear Programming Relaxation and its dual

In order to bound the cost of A, we need to have a handle on the value of the optimum
(for any time t). Although it is easy to understand what the optimum is, it will be more
convenient to deal with a lower bound given by a linear programming relaxation. For a time
t, consider the following LP relaxation. For any interval I, it has variables xgt), which is
supposed to be 1 if I gets chosen in the set of covers at time ¢, otherwise it should be 0. Let
I[(I) denote the length of I. The objective function in (1) measures the total length of the
chosen intervals. The first constraint (2) says that for any bit which is 1, one of the covers
must contain it. The second constraint (3) requires that we can choose only k intervals.
Given any solution to our problem instance, we can define a solution to this LP (where we
set azgt) to 1 iff we take I in our set of covers at time ¢) which satisfies all the constraints.
Therefore, the optimal value of this LP is a lower bound on opt,.
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min Y I(1)z{ (1)
I
S 2 >1  forall bits i such that b") =1 (2)
I:el
Yoal? <k (3)
I
:vgt) >0 for all intervals I

Now, we write the dual of the above LP. Note that the optimal value of the dual is at
most the optimal value of the LP above. We have variables al(.t) for all bits ¢ such that
bgt) =1 (corresponding to constraints (2)) and B*) for constraint (3).

max Z agt) — k,b’(t) (4)
ibM=1
Z agt) — B0 < I(I) for all intervals I (5)

inel,bM=1

o, B4 >0

Our goal is to show that for any ¢, we can construct a feasible solution agt), B® to the
dual LP above such that the cost of the solution is at least half of the cost of our algorithm
A at time t. Once we can show this, then the cost of our algorithm will be at most twice the
cost of the dual LP, and hence at most twice the cost of the primal LP. This will show that
A is 2-competitive. In the next section, we show how to set these dual variables.

4 Setting the Dual Variables

Recall that Cft), ey C’,it) denote the set of covers constructed by A at time ¢. Further th)

denotes the gap between C’i(t) and Ci(jr)r Note that there will be k — 1 gaps. At time ¢,

let 7 denote the length of the smallest gap. We set () = max;<; v, ie., B is the
(t)
i

of specifying their exact value, we will write some invariants which will be satisfied at all
times. Once we prove these invariants, it will be easy to check that the dual constraints
are satisfied. Suppose bit bl@ =1 and it lies in cover Cﬁt). The values o' will satisfy the

i
following conditions :

highest among all time ¢ of the smallest gap. The values ;" will be more subtle. Instead

(i) If bgt) is the right end-point of C, then agt) = min(BW, \GE”D +1 (if bz(-t) lies in the
rightmost cover, we treat |G§t)\ as infinity).

(i) If 5" is not the right end-point of C{”, let b be the next bit to the right of b\ which
is 1 (so b also lies in C’T(t)). Let d(i,u) = u — ¢ — 1 be the gap between the two bits (it
counts the number of 0’s in between). Then al(.t) will have a value which will be at most
min(B® + 1,2d(i,u) + 2).

(i) 3, o — kB® is at least 3F_, |C7].

We prove this by induction on time ¢.
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Base Case : Consider time ¢t = k : we have exactly k bits which are 1. The k covers will
contain these singleton elements each. We set agk) = ") 41 for each i = 1,..., k. Also,
B*) = ~(*) Clearly, condition (i) holds. The requirements of condition (ii) do not hold for
any cover, so it is vacuously true. For condition (iii), note that >, an“) = ky®) + k., and so

it is satisfied as well.

;O . C! v C!
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Figure 1 Covers at time ¢ and arrival of new 1-bit at v

Induction Step : Suppose the invariants above hold at some time ¢t. We will prove that
they hold at time ¢ + 1 as well. Suppose at time ¢ + 1, the bit b, becomes 1. Assume that b,
lies between the covers C’i(t) and Ci(i)l' For the ease of notation, let us denote the end-points
of these covers as C’i(t) = [l;, 7], C’i(tH) = [li+1,7i+1]- Let the sequence of 0’s between r; and
v be of length Aq, and that between v and I;;1 be of length Ay (see figure above). There
are three possibilities on what our algorithm can do. We show how to set the dual variables
in each of these cases.

(a) We merge v with the right end point r; of C’Z-(t) - first of all, observe that y(**+1) < ),
because we are only reducing the size of one of the gaps. Hence, 81 stays at (). Also,
it must be the case that A; < Ay, and A; < 4. We change the dual variables as follows :

™ = 14min(84Y, Ag), afl ™ = 14+A; +min(A;+Az+1, BH)) —min(A, B4V,

Rest of the dual variables do not change. Let us now check the invariants. We need
to check condition (i) for v because it is the new right end-point of its cover. But the
definition of a{f™ is in accordance with condition. Condition (ii) now needs to be
checked for 7; : recall that A; < ~*, which is at most ¢+ So,
ol < 14 Ay + Ap +min(Ay, BT — min(A,, BY) = 24, + 2,
and
alt) <14 A+ D —min(Ay, pH) <14 gD,

Let us now check condition (iii). The induction hypothesis applied to (i) says that the
dual value ol was 1 + min(A; + Ay + 1, V). So,

(Z o+ w<t+l>) - (z o - kw) = o) 1ot ol

= A +1,
which is exactly the increase in the cost of our solution.
(b) We merge v with the left end point /;41 of C’i(i)l . As argued above, Ay < Aj, Ay < )
and B+ = () We again change the dual variables for v and r; only :

" = 1+ Ag+min(Ar + Ao +1, B) —min(Ay, F), o) = 1+min(Ay, fOY).

Let us check the invariants. Condition (i) holds for r; again. We need to check (ii) for v.
Again, note that

oY) <14+ Ay +min(Ay, BEY) 41+ Ay — min(Aq, fEFY) = 2A, + 2,
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and
oD <14 Ay + Y —min(Ay, gF) < 14 0D,

Finally, we see the change in the objective function. As in the previous case, asti) =

1+ min(A; + Az + 1, 3%). So the increase in the objecive function is
oty 4 asfz*‘l) —ar =14+ Ay,

which is also the increase in our cost.

We merge covers C’j(.t) and C1). | where j #i. So, we add a new cover consisting of the

J+1
singleton element v. Let A denote the length of the gap G;t) (between C](t) and C](-:Zl).
So, A < min(Ay, Ay). Further A =~%. Also, it is possible that y(*+1) is larger than ().
So AU+ = max (M, y#+1), Let the end-points of C](t) be [I,7]. For this, we consider
two sub-cases.

B = B . We set

ol = min(Ay, YY) 41, = min(Ay, SO + 1,

and
ol = 2A 41+ min(A; + Ay + 1, 84D) —min(A,, S4H)) — min(A,, fEHY),

All other dual variables remain unchanged. Note that the bit at position r is no longer
the end-point of a cover, so we need to check condition (i) for r; and v only. Again,
by definition, the conditions hold here. We need to check condition (ii) for bit 7 now.
Observe that

oY <A £ 14+1=2A+2,

and because A < Ay, Ay, S+,
al*) <1 4+ min(Aq, B4 + min(Ag, SHY) + min(A; + Ay + 1,5
— min(Ay, D) —min(Ay, D) < 14 g+,
Finally, we calculate the change in the objective function. By induction hypothesis
and condition (i), we know that

ozgf) =A+ 1,047("? = min(A; + Ay + 1,,8<t+1)) + 1.

So, the change in objective function is

altt) 4ol 4 o(tHD) o) 00 = 2A 43+ min(A; + Ap +1,80H)) A —1
—min(A; + Ay + 1,800y —1 = A+ 1,

which is exactly the increase in the cost of the algorithm.

B = 4+ 5 3() Tt must be the case that Aq, Ay > 4. For all the right end

points r; of the covers in the solution at time (¢ 4+ 1) (which includes the singleton

element v), we set agH) = AU+ 4 1. Rest of the dual variables remain unchanged.

Note that the bit at position r is no longer the end-point of a cover, and so, agﬂ) =
ol = A + 1. Condition (i) is satisfied because gap between any two covers is at least
D Condition (ii) is also trivially satisfied — for bit 7, note that the gap to the
next 1 bit on the right is A. So, we just need to check the change in the objective
function. Note that we have change the dual value of the right end point of all covers
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except r at time ¢. Also, we added a new cover {v}. Since agt) < B 41 for all bits

bgt) (invariant (i)), the change is

(Z a£t+1) _ kﬁ(Hl)) _ (Z Oéi _ kﬂt>

v

k(3D 41)

— (k=18 +1)) — K(8+Y - 5))

= B 4+1 > A+1
which is again the increase in our cost.

Thus, we have shown that the invariants hold at all times. We now need to show that the
dual variables are feasible to the dual LP.

» Lemma 1. For any interval I and time t,

Yl -9 <.

iael,bM =1

Proof. Consider an interval I = [a,b]. Suppose a € Cj(t) and b € C’l(t) <D Ifiel
and b; = 1, let n(i) be the next bit (on the right) which is 1. Let A be the set of all bit
positions which are 1 in I except for the last such bit. So if i € A, then n(i) € I. Also,
I(I) =123, 4(n(i) — i) (we are not counting the last 1-bit, so we subtract 1 from LHS).
For any i € A, agt) < 2(n(i) —4). Indeed, for any bit i € A which is not the last bit in the
cover containing it, this follows from condition (ii). For bits ¢ which are the right end-point
of a cover, this follows from condition (i) (in fact, we do not need the factor 2 here). Let u
be the last bit in I which is 1. By condition (ii) or (i), al(f) < B 4 1. Putting, everything
together, we have

S al?=3"al + 0l <3 (nli) i)+ B + 1< 2(1) + Y.

iiel b =1 €A €A

This proves the lemma. |

The lemma shows that ozl(t) /2, 31 /2 are dual feasible. Condition (iii) implies that the cost
of this solution is at least half the cost of our algorithm. So our algorithm is 2-competitive.

5 Lower Bound for the Greedy Algorithm

In this section, we show that the competitive ratio of our algorithm can be close to 2.

» Lemma 2. Given any constant ¢ < 2, there is an instance for which our algorithm has
competitive ratio at most c.

Proof. We consider a bit string of length n, where n is large enough. We also fix a parameter
k (which is much smaller than n). Our instance is required to maintain k covers. Initially
all bits are 0. Now suppose the first £ 4 1 rounds, the bits which become 1 are at positions
0,D,2D, ..., kD for some parameter D ( assume n > kD). Our greedy algorithm must have
some interval which contains two of these 1’s. Assume that one of the greedy covers includes
[iD, (i + 1) D] for some i. Now, we pick a j different from 4, and in the next D — 1 rounds,
we set all the bits in the positions [jD, (j + 1)D] to 1. So the greedy algorithm must have
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cost at least 2D. However, the optimal off-line algorithm will pay at most D + K : it will
have one of the covers as [jD, (j + 1)D] and the remaining 1-bits can be covered by k — 1
intervals of unit length. Now if D is much larger than K then we get the desired result. <«
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