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Abstract—With rising power densities in modern-day electronic sys-
tems, temperature has emerged as a fundamental design constraint. This
has led to the advent of a range of thermal-aware design and runtime
management techniques. However, such techniques are heavily dependent
on a fast and accurate thermal modeling method. These methods need
to account for manufacturing variability, that significantly impacts the
chip’s power and performance. Similarly, leakage power too contributes
to a substantial portion of the total power. Thus a thermal modeling
method can be accurate only if it is capable of incorporating the effects
of process variation as well as leakage power.

In this paper, we propose a simple and elegant residual convolutional
neural network for thermal estimation in the presence of variability,
which leverages the physics of heat transfer. Our approach is capable
of modeling modern-day 3D chips with microchannels and incorporates
accurate leakage power models. To enable ultra-fast thermal estimation,
we implement our technique on a GPU. Our experiments show that our
technique is orders of magnitude faster than the state-of-the-art with
a similar, if not better, accuracy. The mean absolute error using our
technique is 0.61◦C, for a maximum temperature rise of 67.5◦C (0.9%).

I. INTRODUCTION

In the last two decades, Moore’s law-based scaling of electronic
devices has led to a continuous increase in power densities in modern-
day chips. This increase in power densities has led to temperature
becoming a fundamental constraint in electronic design automation.
Thus, thermal modeling has gained significant attention in the past
few years. However, several challenges in thermal modeling have not
been adequately addressed yet. Some of these challenges are:
1) With the advent of 3D ICs, the thermal problem has become much
more severe. In a 3D IC, multiple layers are stacked on each other,
resulting in poor heat transfer paths. To alleviate the hotspots in
3D ICs, microchannels have emerged as a promising solution [1].
However, they pose new thermal modeling challenges.
2) Leakage power can contribute to 30-50% of the total power
in modern-day chips [2]. It has an exponential dependence on
temperature. An increase in temperature increases the leakage power,
which further increases the temperature. This results in a feedback
loop. For any thermal modeling tool to have acceptable accuracy,
it must capture the thermal effects of leakage power. Most existing
techniques consider the effects of leakage power iteratively, but this
multiplies the runtime by 3-10X.
3) With the continued miniaturization of chips, process variation has
emerged as another significant design challenge. A chip designed by
ignoring variation may actually fail after fabrication [3] or fail to
meet the design specifications. There are several design techniques
aimed at mitigating the effects of variation, such as frequency binning
and body biasing [4]. However, to design such techniques, a fast and
accurate thermal simulator is needed that can model the effects of
variation in 2D as well as 3D chips.
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Existing thermal modeling techniques fail to factor in the effects of
these crucial contributors to temperature. This limits the accuracy of
the models, which in turn affects their usability. Most existing thermal
simulators are based on the finite-difference method. However, these
methods are slow. Green’s function-based methods are faster than
these numerical approaches ([5], [6]). Although these methods can
model leakage power, they use a linear model for the temperature
dependence of leakage power, limiting their accuracy. Such methods
do not model process variation or more complex geometries, such as
chips with microchannels and TSVs. Hence, there is a further need
for better thermal modeling methods.

To ameliorate such problems, learning-based techniques have been
shown to have great potential in thermal estimation [7], [8], [9].
Most state-of-the-art techniques either use sensor measurements
or data from performance counters to predict future temperatures.
However, such empirical thermal data is often either unavailable, or
available for a very limited region, or prone to processing delays
and noise. Sadly, such learning-based techniques ignore the effects
of leakage power and process variation. Moreover, such methods do
not generalize well.

We build on convolutional neural networks (CNNs), which have
played a prominent role in the advances in computer vision. CNNs
are well-suited to image data since they capture the complex pixel
dependencies very effectively with very few parameters. The power
applied to any floorplan element affects its neighbors the most, while
the elements far away are barely affected. The convolution operation
inherently captures such dependencies. Thus, thermal data shares
similar characteristics since the power and thermal matrices can be
thought of as images. A convolution of the impulse response of the
system with the power profile gives the temperature profile. Thus
convolution is an inherent property of the system. Hence, we propose
a novel convolutional neural network (CNN)-based architecture to
estimate the leakage-aware temperature profile. Our approach is
generic and can be used to model any type of chip. To demonstrate the
effectiveness of our approach, we choose the most challenging layout:
a 3D chip with microchannels that is affected by process variation.
We also consider the effects of leakage power in our modeling. Due
to the nature of parallel computations in a neural network, significant
gains can be obtained by implementing such techniques on a GPU.
Thus we implement our technique on a GPU along with tensor cores
and demonstrate a significant speedup. We have validated our work
using the open-source thermal modeling tool, 3D-ICE [1]. Our main
contributions can be summarized as follows:
¶ We propose a novel CNN-based machine learning architecture
for thermal estimation that leverages heat transfer physics to obtain
accurate and efficient results. Our method generalizes well to a variety
of floorplans with different die sizes, meaning that a trained CNN can
be reused even when the floorplan changes.
· We use accurate models for leakage power as well as process



variation to obtain the final leakage aware full-chip temperature.
To estimate this final temperature, our method relies on the power
dissipation profile only.
¸ Our method is simple and lightweight, with very low complexity.
The inferencing is done by simple convolution operations, which have
very efficient implementations. The inferencing time is 0.1 ms for a
high resolution 64× 64× 4 architecture.
¹ Due to the massively parallel nature of computations in a CNN,
a significant speedup is obtained by implementing our technique on
a GPU with tensor cores. We were able to reduce the training time
from over 2 days to 15 minutes (192× speedup).

II. RELATED WORK

1) Thermal Modeling in 2D and 3D ICs: Thermal modeling in
2D and 3D ICs has been widely studied [1], [10] and surveyed [11].
Most thermal modeling techniques are based on the finite difference
or finite element methods. Such techniques are robust and can model a
variety of layouts. However, these methods are slow. Moreover, most
such techniques fail to account for important thermal effects, such
as process variation and leakage power. Feng and Li [12] implement
existing finite difference based techniques on a GPU using a two-
step iterative method. Liu et al. [13] use a GPU accelerated GMRES
solver. However, even after GPU acceleration, these techniques are
still slow. If leakage power is modeled, the runtime will further
deteriorate. Jaffari and Anis [3] studied the statistical temperature
distribution in a die in the presence of variation. However, their
technique is iterative, thereby slow and prone to convergence issues.

2) Machine Learning-based Thermal Modeling: Juan et al. [9] use
an autoregressive framework to model the maximum temperature in
a layer in the presence of variation as a function of the leakage
power values. Their model is very simplistic and does not look
at the temperature distribution. Siddhu and Panda [14] predict the
temperature in 3D memories in the presence of leakage power using
a linear regression-based model. They utilize the symmetry in the
chip and a few sanity checks to greatly reduce the number of
model parameters. They do not model process variation. Sadly, linear
regression-based modeling requires a large number of parameters.
Even after the 362× parameter reduction, the number of parameters
remains large for a relatively simple system. Additionally, our CNN
based approach inherently takes care of the symmetries as well as the
neighborhood dependencies since it relies on convolution operations.

Sridhar et al. [7] use a single-layer neural network (NN) for a
3D IC with microchannels using the current power and temperature
as input to predict the temperature 500 ms into the future. They
remove the connections between neurons that are farther than a
threshold to reduce computations. They implement the online part
of their technique on a GPU. However, it is unclear how the
initial temperatures are obtained at runtime and whether any error
in the initial temperature can cause a cascade effect in the entire
estimated temperature sequence. Furthermore, these works do not
model leakage power or process variation. We show in our work that
this method is slower than our approach and results in a much larger
number of parameters; it also has a lower accuracy.

Abad et al. [15] use feature selection over a large set of per-
formance counters to determine the best features to predict future
temperatures. Zhang et al. [8] use a set of features to predict future
temperatures in HPC environments. They classify these features into
application features and physical features. The average error is under
3.7◦C. Sadiqbatcha et al. [16] provide an LSTM (long short-term
memory) based learning algorithm to estimate the temperature ther-
mal data collected from IR cameras. However, all these techniques

rely on the current temperature, which cannot be accurately and
quickly obtained at runtime. There is often a significant time lag in
getting these readings. Additionally, such measurements are prone to
noise and need data preparation steps to be usable in actual runtime
environments.

Performance-counter based methods cannot be used at design time.
Additionally, these methods are very strong functions of micro-
architectural features. In fact, other than the work by Sridhar et
al. [7], none of the other works presented here have demonstrated
the generalizability of their method.

III. GREEN’S FUNCTIONS AND CNNS

A. Convolutional Neural Network (CNN)

CNNs are a widely used class of neural networks that use layers
to progressively learn patterns in the data. A CNN is best suited for
image analysis since it can learn the spatial and temporal depen-
dencies in the data using a set of filters that respond to a receptive
field. Since the power and temperature maps in ICs are also images, a
CNN based approach is well suited to capture the dependencies in the
power matrix. It can easily capture the neighborhood dependencies
with a very few parameters. This is especially important when
modeling process variation since process variation exhibits strong
spatial correlation. A CNN consists of the following basic layers:

1) Convolutional layer: The convolutional layer uses a kernel,
which is slid over the input matrix, and the convolution of the kernel
with the input image is computed. The resulting output is another
matrix. The kernel is learned in the training phase. The resulting
equation is as follows:

output = w ? input+ b, (1)

where input and output are the inputs and outputs of the convo-
lutional layer, w and b are the weights and bias values respectively,
learned in the training phase, and ? is the convolution operator.

2) ReLu layer: In this layer, an element-wise activation function
is applied to the input. The ReLu activation function computes
max(0, x) for each pixel x in the image.

3) Pooling layer: In this layer, a downsampling operation is done
to reduce the dimensionality of the image.

4) Fully connected layer: Here, each neuron is connected to every
neuron in the previous layer. The output from the previous layer is
flattened and given to the fully connected layer, which computes its
matrix multiplication with a weight matrix. The output is then passed
through softmax activation to get the final output labels.

Although, a CNN is generally used for classification tasks, there
is an entire body of work where it has been used for regression [17].

B. Green’s Function-based Thermal Estimation

Green’s function-based methods rely on obtaining the impulse
response (also called the Green’s function) for a unit power source.
It can be calculated empirically, measured, or simulated. Next, the
temperature profile at runtime is obtained by convolving the Green’s
function with the dynamic power profile:

T = G ? P (2)

where T is the temperature profile, G is the Green’s function, and
P is the power profile. Sarangi et al. [18] have shown that if the
Green’s function is modified to be leakage-aware, the leakage-aware
temperature profile may be obtained by the same equation.

The convolutional layer in a CNN performs a similar operation.
Comparing Equations 1 and 2, if the input is the power profile, w is
the leakage-aware Green’s function, and b = 0, then the output



will be the leakage-aware thermal profile. Thus using a CNN, it
is possible to learn the Green’s function, instead of deriving or
empirically obtaining it. The Green’s function learned using CNNs is
an adaptive kernel that adapts itself on the basis of the properties of
the chip. This kernel can be progressively learned such that the fine
irregularities in the thermal profile because of variation is modeled.
This is particularly helpful in situations where it is prohibitively
difficult to derive the leakage-aware Green’s function, such as in ICs
affected by process variation or having complex layouts.

The unique advantage of using this approach is that since the
impulse response is independent of both the floorplan and the input
power applied, any floorplan and power dissipation profile can be
used to train the CNN. The learned network can then be used to
predict the thermal response corresponding to any other floorplan
or power profile. No other machine learning-based technique offers
this advantage.

C. Motivation for a CNN based approach

Although Green’s function approach can fairly quickly give the
thermal profile for a 3D IC, there are several bottlenecks that reduce
its applicability. Some of these are:
¶ The Green’s function-based method cannot be trivially extended
to complex chips, such as chips with microchannels.
· These methods cannot be used with a higher-order leakage model
since the complexity makes the problem intractable. So the existing
Green’s function approaches assume a linear temperature dependence
of leakage power, which may underestimate the temperature.
¸ A separate correction needs to be applied to such chips to account
for the edge and corner effects, which increases the runtime.
¹ When process variation is considered, the temperature profile no
longer remains symmetric. In such circumstances, a Green’s function-
based approach cannot be directly used or results in very large errors.
º If the chip’s properties change, the CNN may adapt, depending
on the variety of inputs given in the training process. For a regular
Green’s function-based approach, the Green’s function will have to
be obtained again, and its leakage aware version recomputed.
» Finally, the runtime implementation is much faster in a CNN
based approach, especially with GPUs.

IV. A LEARNING BASED THERMAL ESTIMATION FRAMEWORK

CONSIDERING VARIABILITY

A. Overview

We first provide an overview of our approach.
¶ We model the power consumption in the presence of process
variation using its statistical properties.
· We propose a novel CNN based architecture that is based on the
physics of heat transfer.
¸ The inputs to step · are the dynamic power dissipation profiles
and the baseline leakage power profile, while the corresponding
leakage-aware temperature maps are needed for training. The baseline
leakage power maps considering process variation are obtained in
step ¶. The leakage-aware thermal profile is obtained from 3D-
ICE [1] iteratively, assuming a quadratic temperature-dependent
leakage model. For greater accuracy, we could obtain the power and
thermal training data using real hardware or open-source toolchains
like HotSniper [19] (for chips that can be modeled in HotSpot [10]).
¹ We apply several machine learning optimizations to improve the
accuracy and convergence of the proposed model. To speed up the
training process, we implement our technique on a GPU.

We describe each of these in greater detail next.
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Fig. 1: 3D CNN Architecture

B. Modeling Process Variation

First, we need the baseline leakage power maps at the ambient
temperature in the presence of variation. Process variation has two
main components: inter-die (∆X inter) and intra-die component. The
intra-die component has two sub-components: systematic variation
(∆X sys), which is spatially correlated and occurs because of litho-
graphic aberrations, and a random component (∆X rand) that occurs
because of random dopant fluctuations and some other uncorrelated
effects. The two prominent parameters affected by variability are the
gate length and oxide thickness. Systematic variation is modeled
by a multivariate Gaussian distribution, while random variation is
modeled by a zero-mean Gaussian random variable. The chip is
divided into tiny grids, and the spatial correlation is described by
the covariance matrix of each parameter, assuming the properties
remain the same within a grid. The random variation is described
by its variance. The total variation considering all the components is
given by Equation [3]:

ψX(i, i) = σ2
∆Xinter + σ2

∆Xsys + σ2
∆Xrand

ψX(i, j) = cov(∆Xi,∆Xj) = σ2
∆Xinter

+ ρ(dij)σ
2
∆Xsys

(3)

Here, ψX is the covariance matrix of parameter X (gate length or
oxide thickness), i, j are grid points, dij is the distance between
grid points i and j, ρ is the correlation function, and σ2 represents
the variance. The parameters here are obtained from ITRS data or
empirical measurements in the literature. These equations give us the
baseline leakage power at ambient temperature considering process
variation, P varleak0

.
Next, we need to obtain the temperature-dependent leakage power

maps in the presence of process variation. These are obtained by
fitting a quadratic leakage model into the BSIM equation:

Ileak ∝ v2
T ∗ e

VGS−Vth−Voff
η∗vT (1− e

−VDS
vT ) (4)

where, vT is the thermal voltage (kT/q), Vth is the threshold voltage,
Voff is the offset voltage in the sub-threshold region, and η is a
constant. Process variation results in a change in the threshold voltage
via changes in the oxide thickness and gate length. Although Ileak
has an exponential dependence on temperature, in the operating range
of real ICs (40-80◦C), a quadratic approximation results in less than
a 0.5% error [11]. Thus, we arrive at the following equation:

Ileak ∝ (1 + β1∆T + β2∆T 2)eβL∆L+βtox∆tox

Pleak = (1 + β1∆T + β2∆T 2)P varleak0

(5)

where β represents the change of leakage power with temperature,
βtox is a constant representing the variability in oxide thickness tox
and βL represents variability in gate length L, and P varleak0

is the
leakage power at ambient temperature considering variability. This
gives us an expression for the temperature-dependent leakage.

C. Architecture of the CNN: CNNbasic

We first propose a basic CNN architecture, which assumes that
each silicon layer in a stacked 3D-IC is independent of all other



layers. Our proposed CNN has five layers. Here, the input is a
2D power dissipation matrix. In the case of a 3D-IC, the power
dissipation of each silicon layer is considered as a new sample. This
input matrix is convolved with a weight matrix. The size of the
weights is kept the same as the input size. To keep the output of
the convolutional layer the same size as the input, zero padding is
done around the edges of the input. A small bias is added to the input
to account for non-idealities in the thermal profile and the random
effects of process variation. Since machine learning approaches are
purely mathematical in nature, we obtain negative outputs that are not
practical. Thus we apply the ReLU activation to the output, where
the negative output values are replaced by zero. We use two more
identical convolutional layers. These layers help in progressively
learning finer features of the thermal map, especially in the presence
of process variation. These layers are optional and may be omitted
with a minor loss of accuracy. The final output is obtained after this.

Although a traditional CNN has several more layers, such as max
pooling and fully connected layers, we do not include these for two
reasons: 1) we want the complexity of the architecture to be as low
as possible. 2) Our goal here is to use a CNN for predicting the
temperature values, which is essentially a regression task. We are not
using the CNN for classification. Hence these layers are not necessary
in our case.

D. Architecture of a more advanced CNN: CNN3D

The basic CNN architecture discussed above, while well-suited for
2D chips, fails to account for the interdependence between the various
silicon layers of a 3D-IC, leading to higher errors. Thus we propose
another architecture, CNN3D, which accounts for this dependence.
This is achieved by adapting the Green’s function-based method for
3D chips. Thus, we need a 3D weights matrix, each layer of which
is convolved with the corresponding power dissipation matrix and
added. We achieve this using a CNN as follows:

1) Input layer: Here, the input is a 3D power dissipation matrix.
The z-axis corresponds to the silicon layers in the chip.
2) Convolutional Layer 1: The input matrix is convolved with a
weights matrix, which has the same depth as the input. The weights of
each chip layer along the depth are convolved with the corresponding
layer of the input and added. Zero padding is done around the edges
of the input to keep the output size the same. Finally, a ReLU
activation is applied.

Tleak,1 = Pin(:, :, 1) ? W1(:, :, 1) + Pin(:, :, 2) ? W1(:, :, 2)

+ Pin(:, :, 3) ? W1(:, :, 3) + . . .+ b,
(6)

where Tleak,1 is the leakage-aware thermal profile for layer 1, Pin
is the corresponding power dissipation map, and W1 is the weight
matrix for layer 1 and b is the bias.
3) Convolutional Layers 2,3: We use two more identical CNN
layers to help in learning the finer features; these will take process
variation into account. We have empirically observed that having
three CNN layers gives us the best accuracy while keeping the
complexity of the system in check.
4) Skip Connections: When using three convolutional layers, we
added an identity block after the second convolutional layer that
forwards the input power map to the input of the third convolutional
layer. This skip connection greatly improves the convergence of the
training algorithm, as well as the accuracy for unseen floorplans.
5) Output layer: Finally, we get the stacked temperature matrix of
each chip layer, considering leakage power and process variation.

E. Data Collection

We obtained the training data using the open-source simulator 3D-
ICE. We collect the temperature profiles for multiple widely varying
floorplans of different sizes after discretizing them into a 64 × 64
grid. The dynamic power dissipation profile is obtained in some cases
from the literature and in other cases by running McPAT [20]. A
few more maps are synthetically generated by modifying the power
consumption of each architectural unit randomly such that it stays
within the maximum allowed power dissipation. A diverse training
input set is key to predicting the temperature maps for new floorplans.
The coefficients in Equation 5 are obtained by curve fitting (we derive
the points from the BSIM equation, Equation 4). Next, we use 3D-
ICE to compute the leakage-aware temperature profiles iteratively.

F. Data Normalization

Normalizing the input data improves the numerical stability of the
training algorithm. In this work, we use a modified version of the min-
max normalization technique, which works well for process variation.
The min-max normalization is given by:

Xout =
Xin −min(Xin)

max(Xin)−min(Xin)
(7)

where Xin is the input data and Xout is the normalized data. To
generalize our method to a variety of floorplans, we divide Xout by
the total area of a layer of the chip, A. Note that the temperature is
correlated with the power density of the chip, rather than the absolute
power values.

X ′out =
Xout
A

(8)

G. Training of the CNN

Using the collected data, we train the CNN with the mean absolute
error as the loss function. The weights and biases are updated in each
training iteration using the ADAM optimizer [21]. We use an adaptive
learning rate to obtain a balance between very long training times
and an unstable training process. We choose an exponential decay
function in which every few steps, the learning rate is reduced by a
fixed decay rate. This helps in quickly moving towards the minima
(convergence). Once we are in the vicinity of the minima, a lower
learning rate helps in attaining the minima without overshooting it.
The input training data from multiple floorplans is presented in a
randomly shuffled order to help the CNN learn from a diverse set of
inputs. This helps in quicker training and prevents overfitting, so that
our CNN can adapt to new unseen floorplans.

H. GPU Implementation

To further speed up our algorithm, we implement our technique
on a Tesla Turing GPU with 320 tensor cores. These Turing tensor
cores have been optimized for machine learning and artificial intelli-
gence operations. They can perform large matrix computations, and
achieve high degrees of parallelism. To port from a CPU to a GPU
implementation, we set up a GPU build of our framework on the
Tesla T4 machine and compile our code to enable GPU support.

V. EVALUATION

A. Setup

We run all of our algorithms on Ubuntu 16.04. To generate the
random power consumption maps, we use an R script. A C wrapper
script is used to get the leakage-converged temperature values from
the open-source tool 3D-ICE. These two components are generated
on a Desktop PC running Ubuntu 16.04 having 16 GB of RAM.
Finally, we implement our CNN algorithm in Tensorflow 2.0 using
Python 3.6 on a Tesla T4 GPU having 320 tensor cores.



1) Geometry of the Chip: We consider a 3D chip with four active
layers of silicon. Under each silicon layer, there is a microchannel
layer, carrying water in it and a thermal interface layer. We assume
that the number of active layers in the chip remains constant. This
is generally the case. The chip is discretized into a high-resolution
64× 64× 4 grid.

2) Dataset Generation: We use the Varius toolkit [22] to generate
the baseline leakage power maps in the presence of process variation.
To obtain the dynamic power maps, we assume one of the chip
layers to be a processor layer while the remaining are memory layers
with a uniform power dissipation (generated from a uniform random
distribution within the typical power dissipation range). We choose
the floorplan of the processors Alpha21264, Nehalem, Gainestown,
and a modified version of it to generate the training data. These
floorplans have different die sizes. The power profiles are discretized
to a 64×64×4 grid and normalized using Equation 8. We generate a
set of 5000 dynamic power maps for the processor Alpha 21264, 2000
maps for Nehalem, 1000 maps for Gainestown, and 1000 maps for
a modified version of the Gainestown floorplan. We get the dynamic
power dissipation profiles from either open-source tools or McPAT
and vary the power consumption of the architectural units within the
typical power ranges to generate more power maps. Next, we run
3D-ICE iteratively to get the leakage aware temperature maps. Each
of these maps is of dimension 64×64×4. The ambient temperature
is 45◦C. To generate each leakage-converged temperature map, 3D-
ICE took over 15 s on a Desktop running Ubuntu 16.04. Thus it took
38 hours to generate the data.

3) Training: We split our data into three sets: training, validation,
and test data. We shuffled the order of the inputs to randomize the
inputs and avoid getting stuck in local minima. The weights were
initialized to a random normal distribution with a standard deviation
of 0.5, while the bias was initialized to a constant value (= 0.5). The
mean absolute error is chosen as the loss function. We use Adam
optimizer [21] with an adaptive learning rate, and an exponential
decay function with a starting learning rate of 0.001. After every 200
iterations, the learning rate is reduced by a factor of 0.9.

B. Results

1) CNNbasic: This architecture works better for 2D chips. Using
the 3-layer architecture, we are able to train the network in 4 minutes,
using 12800 (3200*4) input power maps. The mean absolute error
for training is 2.5◦C (3.7%), while the mean absolute error for testing
is 2.6◦C (3.9%) when both training and testing are done on power
profiles from the Alpha21264 floorplan. The maximum temperature
is 112.5◦C, which means that the temperature rise above the ambient
temperature is 67.5◦C. The time required to predict the temperature
profile for one power profile is 0.025 ms.

2) CNN3D: A CNN with a single convolutional layer takes 10
minutes to train on a GPU, with a mean absolute error of 0.79◦C and
a validation error of 0.8◦C. The test error is 0.81◦C (1.2%). The time
required to predict one 64× 64× 4 temperature profile is 0.05 ms.
For a 3-layer residual convolutional neural network on a GPU,
our algorithm takes 15 minutes to complete the training process.
The mean absolute error for training is 0.61◦C for a maximum
temperature of 112.5◦C for the Alpha 21264 floorplan, while the
test error is 0.62◦C (0.9%). The time required for predicting one
full thermal profile is 0.1 ms. We choose several combinations of
floorplans for training and testing. We notice that using a mix of
floorplans for training improves the accuracy for all data sets. The
error lies between 0.12◦C and 3.3◦C (4.9%) when training and testing
on multiple combinations of datasets. When the floorplan being tested

TABLE I: Different combinations used for training and testing

Train Floorplans Test Floorplan Test error (◦C)

alpha alpha 0.6K
gaine1,gaine2,alpha,nehalem gaine1 0.81
gaine1,gaine2,alpha,nehalem gaine2 0.52
gaine1,gaine2,alpha,nehalem nehalem 0.32
gaine1,gaine2,alpha,nehalem alpha 1.1

gaine1,alpha, nehalem gaine2 1.1
gaine1,gaine2,nehalem alpha 3.3

gaine1,gaine2,alpha nehalem 2.5

is a part of the training data, the error lies within 1.1◦C (1.6%) for all
test cases. The results are summarized in Table I. If random shuffling
of the input is not done, then the algorithm takes much longer to reach
the minima, especially when training on a combination of multiple
floorplans.

These results show that our algorithm is able to train high-
resolution thermal maps with a small training set and few learnable
parameters. This is primarily because we have captured the physics of
heat transfer using convolution operations, rather than taking a large
amount of data and letting the learning algorithm work unanchored.

C. GPU vs CPU Implementation

We first implemented a single-layer CNN on a Desktop PC. The
training time of the algorithm was over two days (∼ 66 hours).
We then implemented the same algorithm on a server PC with a
GPU and tensor cores (configuration described in Section V-A). The
training time of the algorithm was brought down to under 15 minutes
for the same training set. Thus we obtained a 192× speedup by
implementing our algorithm on a GPU.

D. Generalization to new Floorplans

To see how well our algorithm generalizes to new floorplans
that it did not see in the training phase, we use power maps from
two floorplans for training and test on the third floorplan. The
mean absolute error using this approach lies between 1◦C and
3.3◦C (4.9%), for a maximum temperature rise of 67.5◦C (maximum
temperature = 112.5◦C). Thus our method is able to generalize for
a variety of floorplans, with a small error. Note that all of these
floorplans have different dimensions.

E. Effects of Process Variation

To quantify the effects of process variation on the design, we
replace the leakage power at ambient temperature by its nominal
values and obtain the leakage-converged temperature map from 3D-
ICE. We observe that an error of up to 15.5◦C is obtained for a
maximum temperature rise of 50.6◦C. The average error is 5.83◦C.
This is equivalent to an 11% error in temperature estimation. Thus
ignoring process variation in modern-day chips can lead to under-
provisioning of cooling resources, which may cause hotspots and
reduce the lifetime and reliability of the chip. Figure 2 shows the
errors in various test cases upon ignoring the effects of process
variation.

F. Comparison with State-of-the-art Approaches

1) Finite Difference/Green’s Function Methods: Finite difference
methods such as 3D-ICE support the modeling of complex geometries
such as chips with microchannels. However, the major drawback of
these methods is the slow computational speed. Additionally, most
such methods model leakage power by iterating through the leakage-
temperature loop, which makes them slower. It is also not easy
to implement such methods on a GPU. To generate our training
data, 3D-ICE took about 11− 30s per simulation depending on the
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number of iterations needed for convergence1. In comparison, our
method takes 0.1 ms to compute the equivalent values, resulting in
over 100, 000× speedup in inferencing once the longer training is
completed. The accuracy of most thermal modeling methods is in
the same range as ours. The open-source tool Hotspot [10] is unable
to model the temperature distribution when a granularity of 64×64 is
used2. When a power distribution granularity of 16×16 is used with a
grid size of 64×64 (this is much coarser than the granularity modeled
by us), HotSpot takes 2 minutes and 57 seconds to obtain the leakage
converged temperature values. Green’s function methods have been
used to model 3D chips with microchannels, but without process
variation [23]. However, such works include simple leakage models
and require extra work to incorporate microchannels. The offline
time of such an algorithm for a problem of the same granularity is
72 ms, and the online time is 15 ms (150X slower). Thus for finer
granularities, our CNN-based method is a very promising solution.

2) Machine Learning Methods: There are a few learning-based
thermal modeling methods that have tackled either 3D chips with
microchannels or process variation, but not both together. Most works
ignore leakage. Sridhar et al. [7] have used a single-layer neural
network to model the temperature in a 3D chip with microchannels.
They have not considered leakage power or microchannels. However,
if we consider a four-layer 64X64 neural network, a single neuron
in the hidden layer would have 16384 weights, and the entire single-
layer neural network would have 268435456 weights. A similar
number of weights would exist in a linear regression method [14].
Even after the proximity-based reduction in connections/symmetry-
based reduction, the number of weights would still be huge. In
comparison, in a CNN, for a single layer, we need 16384 weights
in the complete network (plus four bias parameters). If the number
of layers is increased, the number of parameters gets multiplied by
the number of layers. This linear increase can be easily managed by
modern computing systems. We implemented a similar NN-based
method on an identical platform as ours and obtained a 0.3 ms
simulation time for a single layer network with an error of over
2◦C when training and testing on the same floorplan. Comparatively,
our equivalent single-layer CNN3D method takes .05ms with an
error under 1◦C. Their method leads to high errors when testing
on different floorplans.

VI. CONCLUSION

In this paper, we have proposed a CNN-based architecture for
thermal simulation that is able to accurately predict the leakage
aware thermal profile for complex IC geometries. It can account for
the effects of process variation and is able to adapt to a variety of

1A small part of this time is overhead because of file operations, but still
the time taken (11 s) is much higher than our algorithm (0.0001s)

2While HotSpot theoretically supports modeling of such a size, it was
unable to read the input files we provided

floorplans. Our algorithm takes the power profile only as its input.
For further speedup, we have implemented it on a GPU. We have
demonstrated our approach for a 4-layer 3D IC, where we obtained
the temperature values for a 64× 64× 4 grid in just 0.1 ms with a
mean absolute error of 0.61◦C (0.9%). As device scaling exacerbates
the effects of process variation, our algorithm will increasingly prove
to be very useful for modeling temperature.
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