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Abstract: Convolutional neural networks (CNNs) have proven to be a disruptive technology in most vision,
speech and image processing tasks. Given their ubiquitous acceptance, the research community is investing
a lot of time and resources on deep neural networks. Custom hardware such as ASICs are proving to be
extremely worthy platforms for running such programs. However, the ever-increasing complexity of these
algorithms poses challenges in achieving real-time performance. Specifically, CNNs have prohibitive costs in
terms of computation time, throughput, latency, storage space, memory bandwidth, and power consumption.

Hence, in the last 5 years, a lot of work has been done by the scientific community to mitigate these costs.
Researchers have primarily focused on reducing the computation time, the number of computations, the
memory access time, and the size of the memory footprint. In this survey paper, we propose a novel taxonomy
to classify prior work, and describe some of the key contributions in these areas in detail.

1 INTRODUCTION
In the last few years, we have seen great advances in the field of neural networks, particularly
Convolutional Neural Networks (CNNs). The field has seen a huge upsurge since 2012, when CNNs
proved their mettle by providing a significant improvement in the accuracy of the ILSVRC [101]
image classification tasks [8]: the accuracy increased to 85% from 74% (best conventional method).
This led to a revolution in the field of neural networks where every passing year these networks
continuously got deeper and better. The field matured from the 7-layered AlexNet (proposed by
Krizhevsky) to the 152-layered ResNet [54]. The latter had an error rate of 3.6%. Additionally, the
structure of these networks was modified suitably to cater to different applications such as object
recognition, face recognition, speech processing, and even self driving vehicles [74].
As of 2019, deep neural networks are the building blocks of many commercial applications

that have captured public imagination such as Amazon’s Alexa, and Google Deepmind. As the
networks have grown deeper, the computational complexity of these networks has increased,
thereby prohibiting their deployment for real-time applications. Some statistics by Sundaram [115]
suggest that the complexity (defined as Flops/pixel) of these algorithms is increasing at the rate
of roughly 10x per decade (since the early 70s). Furthermore, the amount of data that needs to be
processed is increasing at the rate of 1000x [115] per decade. Thus, the computational throughput
needs to scale by 10,000 times to match with the requirements of these algorithms. Also the number
of parameters for these networks has been increasing at an exponential rate [125]. Figure 1 gives
an idea of the increasing computational and memory requirements of these networks since 2012:
3000X increase in the computational time, and 10X increase in memory requirements. Hence, the
need to efficiently run these networks is urgent.

Additionally, these networks require millions of parameters [53, 117] for their functioning, which
translates to very high memory storage and bandwidth requirements. Thus, the job of hardware
researchers involves making these algorithms affordable both in terms of computation and memory
requirements. On the hardware side, the end of Dennard scaling has prohibited any increase in the
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Fig. 1. Evolution of CNNs in recent years (data taken from [111])

Metric GPUs FPGAs ASICs References
Time-to-market Low Medium High 2 months for FPGA design, 30 months for

ASIC design [66]. The number of lines of
code in CUDA is lesser than its VHDL coun-
terpart [19]

Frequency High Low Medium ASIC/FPGA frequency ratio is 3-4X [70] for
a general suite of applications. TPU (ASIC)
to Microsoft Catapult V1 (FPGA) frequency
ratio is 3.5X [14]. GPU to FPGA frequency
ratio is 10X [12]

NRE∗ cost Low Low High $350K-$1000K for ASIC [33, 35], none for
FPGA [9]

Power High Medium Low FPGA/ASIC dynamic power ratio of 7-
14X [70] and GPU/FPGA power ratio of
10X [48, 92]

Energy efficiency Low Medium High ASIC to FPGA performance per watt ratio
is 10X [33, 88] and FPGA (Stratix 10) to
GPU (Titan X) performance per watt ratio
is 2.3-4.3X [89]

Reconfigurability N/A High Low N/A
On-chip storage Fixed memory

hierarchy
Constrained
by BRAMs

Flexible
design

N/A

Area Large Large Small FPGA to ASIC area ratio is 18-35X [70] for
a general suite of applications and 8.7X [14]
for Chain-NN [122]

DSP blocks N/A Fixed preci-
sion

Customizable N/A

Unit Cost Medium High Low $200-$3200 for FPGA, $30 for ASIC [9, 35]
(without NRE)

Performance Low Medium High ASIC to FPGA performance ratio of
6.3X [14]. FPGA (Stratix 10) to GPU (Ti-
tan X) performance ratio is 2.1-3.5X [89]

NRE is Non-Recurrent Engineering Cost
Table 1. Comparison of FPGAs and ASICs (adapted from the observations in [9, 14])
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processor frequency (saturated at 4GHz) since 2006 [100]. Furthermore, the demise of Moore’s law
means that the number of cores per chip are not expected to increase significantly.

Hence, the scientific community has justifiably changed its focus to FGPAs and GPUs that provide
greater throughput. GPU instruction throughput has increased 100x in the last decade [91]. FPGA
technology has made similar strides, and as of date, the best single-board FPGAs in the market
outperform single-GPU systems while inferencing neural networks [89].

For large neural networks, it is hard to say which platform, FPGA, ASIC or GPU, is better without
creating an optimal implementation on all the platforms. Thus, we cite the general trends and the
results from the related work that compare all the platforms. Table 1 shows the differences between
a GPU, an FPGA, and an ASIC implementation in the second, third and fourth columns respectively.
In the fifth column, we cite the numbers from the original papers to support the comparison. For
some cases, the comparison is qualitative and thus the fifth column is N/A (not applicable) for them.

1.1 Scope of the Survey
In this survey paper, we focus on only ASIC based implementations of CNN accelerators and look
at their design and optimizations, notably reduction of the computation time, memory access time
and memory footprint. We shall exclude the discussion of CNN designs on other substrates such as
FPGAs. There are already several survey papers on FPGA based CNN accelerators [1, 13, 47, 79, 107],
and GPU based implementations [72, 81].
There are a lot of non-conventional architectures for implementing CNNs (not covered in this

paper). Let us briefly provide some pointers to relevant work in this area. For CNN inferencing
processor-in-memory (PIM) architectures such as Prime [29] and Pipelayer [112] are very popular.
They embed processing engines within memory such that it is easier to handle the memory
requirements of modern CNNs. This line of thought can be extended to co-design CNN architectures
and memory systems (Tu et al. [118]). Mittal [80] and Umesh et al. [119] provide comprehensive
surveys on ReRAMbased and spintronics based architectures for processing-in-memory respectively.
There are many more proposals that use unconventional hardware such as a switched capacitor
for MAC operations [87], and analog computing engines [73, 103]. However, due to a lack of
space our survey is limited to hardware made with conventional devices. Mittal [82] provides a
detailed discussion of the impact of various design decisions on the reliability of the neural network
accelerators.
We shall not be discussing the works pertaining to the acceleration of the training of CNNs.

Even though training is carried out offline and is generally a one-time process, it is performance
sensitive and can affect the overall turnaround time of the model. However, the training process
is substantially different than the inferencing due to the presence of derivatives and continuous
weight updates. Hence, it deals with a different regime of power, timing, and physical form factor
of the device. There are several works that accelerate the training process, however, discussing
such works is out of the scope of this survey. Such a wide field of work needs a separate dedicated
survey with the proper background. We restrict ourselves to discussing the works that accelerate
the inferencing of CNNs.
Since the space of techniques that we shall present have not been implemented on a common

platform, comparing the designs on the basis of performance or throughput is not feasible (see
Section 3). We shall thus provide qualitative insights and intuitions based on first principles. We
provide some basic form of quantitative comparison based on the data collected from the original
papers in Section 8.
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1.2 Organization
We start by providing a brief overview of a CNN (Section 2.1) and then present a generic architecture
of an accelerator on custom hardware (Section 2.3). We also identify the components of the generic
architecture that can be targeted for optimizations. We then present a novel taxonomy of different
optimizations for accelerating CNNs in Section 3. We then discuss each optimization in detail.
Section 4 presents the techniques employed by various papers to fit the computational needs of a
CNN within the available computational resources. Then we move on to discuss methods to reduce
the memory access time in Section 5. Next, we discuss the challenges of storing the parameters of
all the neurons in the section on reducing the overall memory footprint (Section 6). We discuss
the industrial designs of the accelerators in Section 7. In Section 8, we compare multiple works
together both qualitatively and quantitatively on the basis of performance, energy, and accuracy.
We finally conclude in Section 10.

2 BACKGROUND
2.1 Overview of a Convolutional Neural Network (CNN)
An artificial neural network is inspired by the human brain and as the name implies it is a network
of artificial neurons. The analogy of the neural network is drawn from the nervous system in the
human body where the nerve cells communicate with other cells via synapses. A Convolutional
Neural Network (CNN) is a type of artificial neural network that consists of multiple stages, where
each stage is a small neural network in its own right. It is called a layer. Each layer finds a given
feature of the data, and gradually as we move towards later layers, the complexity of the identified
features increases till we can recognize full objects. A CNN generally consists of 4 types of layers –
convolution layer, pooling layer, ReLU (rectified linear unit) layer and fully connected layer. There
are some non-traditional layers such as deconvolution layer [18] and dilated convolution layer [58].
Each type of layer is discussed in detail in the following paragraphs.
(1) Convolution Layer: A 2D convolution operation between an input image matrix a (size R ×C)

and a filter f (sizeW × L) is a point-wise multiplication and addition of the corresponding
pixels. The filter (usually smaller in size than the input image matrix) first multiplies with the
W ×L sized-block of the input image, accumulates the result, slides to the subsequent block of
the input image, and repeats the process. It may be noted that the point-wise multiplication
is performed between the matrices of same size, thus the input image (usually larger in size
than the filter) is processed incrementally, one block at a time, till the entire R ×C elements
of the image are processed. Equation 1 shows a 2D convolution operation. This convolution
is a 2D convolution because the filter slides in two directions, along the height and the width
of the input. Note that we will not be discussing 3D convolutions in this survey.

b = f ⋆ a, b (r , c ) =
W −1∑
w=0

L−1∑
l=0

f (w, l ) × a(r +w −
⌊W
2

⌋
, c + l −

⌊L
2

⌋
) (1)

Here, b (r , c ) represents an output pixel in the output matrix b, where the coordinates of each
pixel are represented as (r , c). Also note that in the first sub-equation, the ⋆ operator stands
for a convolution operation. l andw are the iterators over the length and width of the filter.

A convolution layer in a CNN performs the 2D convolution of N input matrices with the
corresponding filters to produce M output matrices. For example, an RGB image consists of
pixels that can be represented as a combination of three primary colors: red, green, and blue.
Thus, the image matrix can be decomposed into three new matrices (also called channels),
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where the pixels in the new matrices indicate their contribution to the entire RGB image. This
is also called the depth of the input. As explained earlier that in a 2D convolution, the filter
slides in only two directions, thus for performing the convolution of an input of depth N , the
filter should also be of depth N . The convolution of R×C×N -sized input withW ×L×N -sized
filter produces an output of size R × C × 1 (assuming padding is being done on the input
appropriately). WhenM such filters are convolved with the input, we getM output matrices.
TheseM output matrices become the input matrices for the next layer.
These matrices (except for the first set of input matrices) are called the feature maps. A
feature map, as the name suggests, is a map of the features detected in the input matrix,
produced as a result of sliding a filter over the entire input. It is also sometimes referred to as
an activation map (ai in Equation 3) and each element of this map is known as an activation
(airc in Equation 2) or a neuron. It may be noted that the input image can have various features
such as a straight line, a circle, or a curved line at various locations. The kind of feature
detected in a feature map depends on the filter used.
The filter, also sometimes called the kernel (f i j in Equation 3), is a matrix of values or weights
(f i jwl in Equation 2), which when convolved with the input matrix, results in the detection
of features (produces the feature map). As an example, say we have two filters, where the
first one detects a straight line and the second one detects a circle, then a linear combination
of the two generated feature maps may detect a curved line – simple detectors combine to
detect higher level features. A mathematical definition is as follows.

(2)

bi =



bi11 bi12 · · · bi1C

bi21 bi22 · · · bi2C
...

...
. . .

...
biR1 biR2 · · · biRC



f i j =



f i j11 f i j12 · · · f i j1L

f i j21 f i j22 · · · f i j2L
...

...
. . .

...

f i jW 1 f i jW 2 · · · f i jW L



ai =



ai11 ai12 · · · ai1C

ai21 ai22 · · · ai2C
...

...
. . .

...
aiR1 aiR2 · · · aiRC



(2)

Let us summarize the definitions of the key terms. bi is the ith output feature map, f i j is the
convolution kernel that maps the ith input feature map to the jth output feature map, and ai
is the ith input feature map.

(3)

z⃗ =



b1

b2

...
bM



K =



f 11 f 12 · · · f 1N

f 21 f 22 · · · f 2N

...
...

. . .
...

f M1 f M2 · · · f MN



y⃗ =



a1

a2

...
aN



(3)

Let y⃗ represent a vector of N input feature maps (a1,a2, ..,aN ), where each ai is an R × C
matrix. Let z⃗ represent a vector of M output feature maps (b1,b2, ..,bM ), where each bi is
an R × C matrix, and let K represent a matrix of M × N (mapping each output to input)
convolution kernels (f 11, f 12, .., f MN ), where each f i j is aW × L matrix.

(4) Equation 4 convolves N kernels with the N input feature maps to generate an output feature
map.The total number of multiply-and-accumulate (MAC) operations are O (WLRCN ). This
equation is calculatedM times (withM different filters) to generated all the output feature
maps (see Figure 2), leading to a computational complexity of O (WLMNRC ).

z⃗i =
N∑
j=1

Ki j ⋆ y⃗j (4)
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The process of convolution can be graphically visualized in the left side of Figure 2.
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Fig. 2. A convolution layer and a pooling layer in a CNN

(5) Pooling layer: The primary job of feature detection is done by the convolution layer. The
pooling layer accentuates the detected features and introduces a degree of non-linearity (in
the case of max-pooling). Specifically, a pooling layer introduces translational invariance in
the feature map by replacing the activations in a window with a representative activation.
For example, a max-pooling layer takes in an input feature map and replaces a window
of activations in the feature map by the largest activation in that window. This size of the
window of activations is equal to the size of the pooling filter. The pooling filter then slides
by a certain length (also called stride) to traverse the entire feature map. Note that the filter
slides in a way such that it first traverses right to cover all the columns of a row and then
slides down to cover the subsequent rows in the same manner. Thus, the size of the output
feature map is reduced by the size and the stride of the pooling filter (see Figure 2).

(6) ReLU layer: ReLU stands for Rectified Linear Unit. This layer introduces non-linearity in the
network by replacing negative outputs with 0. This also helps deeper networks in learning
complex functions and ensures faster training.

(7) Fully Connected (FC) layer: This layer connects all pairs of neurons in the input and output
layers. In the FC layer, we can proceed with the computations in two ways: output-preferred or
input-preferred. We coin these names based on the requirement of the user. A full connection
means that an output of a fully connected layer is formed by the contribution of all the input
neurons in the input layer. Thus, to get the final output activation, we need to load all the
inputs in the cache and perform a weighted sum. However, the on-chip cache is limited
in capacity. If the user prefers a complete output (as opposed to a partial output), we need
to load all the inputs contributing to an output activation, which has prohibitive memory
requirements.
Alternatively, if the user prefers to use all the loaded inputs before loading the next batch
of inputs, we need to produce all the partial output activations for which these inputs are
contributing. Such a formulation will require us to have a large amount of memory to store
the partial outputs. Note that the outputs are called partial outputs when there are more
inputs contributing to them than the actually loaded ones. Thus, it can be deduced that this
layer not only requires a large amount of memory (equal to the size of the network) but it is
also associated with a significant number of memory accesses.

(8) Deconvolution/Transposed convolution layer: This layer is responsible for increasing the
size of the feature map as opposed to the reduction in the size of the feature map done by a
convolution layer [18]. This is done by inserting zero values in between the original values
in the feature map (also called upsampling) and subsequently convolving it with a kernel.
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This is primarily used in depth estimation based tasks where a depth prediction is needed for
every pixel or in super resolution based tasks where the size of an image is increased.

(9) Dilated convolution layer: Some tasks such as image segmentation require a wider global
context to be captured in each output pixel. In such cases, the filter is up-sampled and
convolved with the input image to capture a larger receptive field [58].

To summarize, CNNs are feed-forward neural networks that are simple neural networks, where
the inputs of each layer come from the immediately preceding layer and the outputs are forwarded
to the immediately following layer. Unfortunately, these networks are extremely complex, use
millions of weights, and are intensive both in terms of the number of computations and memory
bandwidth requirements. Qiu et al.[99] analyzed the requirements of the convolution layers and
the FC layers. They found the former to be highly compute intensive, and the latter to be very
memory intensive primarily because a large amount of memory is required to storeO (N 2) weights
(N is the number of neurons in each layer) and a large number of memory accesses is required due
to lower weight reuse as compared to the convolution layers. Both the transposed and the dilated
convolution layers are special form of the convolution layer and hence most of the optimizations
remain the same.

2.2 Running Example: Convolution Layer
The left side of Figure 3 shows the code of a convolution layer (for batch size=1) using 6 nested
loops. The outermost loop iterates through all the output feature maps (f map_out[]). Each such
output feature map is the sum of the convolutions of each input feature map with its corresponding
kernel (the figure is self explanatory). Depending on the size of the CNN, computing the result
of such a deeply nested for loop can be computationally very expensive. Hence, it is essential to
parallelize the process of computing all the output feature maps.

The parallelization can be exploited by employing the classical technique: partitioning (or tiling)
the 6D space and mapping either the partitions or the computations in each partition to parallel
PEs. If the partitions are computationally independent of each other then the PEs can progress
independently. Thus, the 6D nested loop structure can be modified to form 12 nested loops, where
the outermost 6 loops partition the 6D space and the innermost 6 loops perform the convolution
operation for each partition (see right side of Figure 3). The outermost 6 loops look the same as the
innermost 6 loops; however, instead of incrementing by one in each iteration, they get incremented
by bi , where bi is the block size of the ith loop (varies from 1 to 6). This is the classical way of
partitioning the space. The innermost 6 loops compute the convolution for each partition – portion
of the space of iterations assigned to it by the 6 outer loops. In each partition we compute the result
for b1 × b2 . . . × b6 iterations.

The parallelization can be achieved in two ways: either map the different partitions generated by
the outermost 6 loops to different PEs, or map the computations of each partition (innermost 6
loops) to different PEs. The simplest implementation of the first idea is to map each partition to a
PE, where we have (M/b1) × (N /b2) × (R/b3) × (C/b4) × (W /b5) × (L/b6) PEs (or partitions). This is
typically very expensive; hence, we choose a set of axes (loop iterations) that we want to parallelize.
For example, if we choose to compute the output feature maps in parallel, then we create M/b1
partitions, where each PE computes b1 output feature maps.
The second idea requires b1 × b2 . . . × b6 computations to be mapped to PEs. Analogous to the

previous example, this is very expensive in terms of the required computation units and hence we
choose a subset of these iterations to map to the parallel PEs.

The quintessential problem that needs to be solved in this space is to decide the values of b1 . . .b6.
This has implications in terms of the data dependences across the PEs, data communication, and
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     fmap_out[ao][ar][ac] +=
     weights[ao][ai][w][l] x
     fmap_in[ai][P x ar+w][P x ac+l]

for ao = no; ao < min (no+b1, M); ao++ {
for ai = ni; ai < min (ni+b2, N); ai++ {

}  }  }  }  }  }

convolution
operation

for ar = init_row; ar < min (init_row+b3, R); ar++{ 
for ac= init_col; ac< min (init_col+b4, C); ac++ {
for w = i; w < min (i+b5, W); w++ {
for l = j; l < min (j+b6, L); l++ {

M= Number of output feature maps
N= Number of input feature maps
R=Number of Rows in a feature map
C=Number of Columns in a feature map
W x L=Size of the filter
P=Stride of filter movement
b1,b2,b3,b4,b5,b6= corresponding tile sizes

}  }  }  }  }  }

for no = 0; no < M; no += b1 { 
for ni = 0; ni < N; ni += b2 { 

for i = 0; i < W; i += b5 {
for j = 0; j < L; j += b6 {

for init_row = 0; init_row < R; init_row += b3 {  
for init_col = 0; init_col < C; init_col += b4 { Loop

blocking

convolution
operation

     fmap_out[no][init_row][init_col] +=
     weights[no][ni][i][j] x
     fmap_in[ni][P x init_row+i][P x init_col+j]

}  }  }  }  }  }

for no = 0; no < M; no++ { 
for ni = 0; ni < N; ni++ { 

for i = 0; i < W; i++ {
for j = 0; j < L; j++ {

for init_row = 0; init_row < R; init_row++ {  
for init_col = 0; init_col < C; init_col++ {

// outputs

// intputs

Index of a
filter weight

// iterates over output feature maps
// iterates over input feature maps
// iterates over the rows in a feature map
// iterates over the columns in a feature map
// iterates over the width of the filter
// iterates over the length of the filter

Fig. 3. Algorithm for a tiled convolution layer (adapted from Figure 5 in [126], names of variables have been
changed)

the amount of parallelism. Therefore, at the high level, we can create two broad classes of problems:
❶ decide the method of partitioning the convolution space, and ❷ for a given partitioning optimize
computation and communication. We can either reduce the computation time, reduce the amount of
memory stored on-chip, or reduce the access latency. A typical optimization problem is as follows:
Minimize the latency in a given CNN architecture subject to a constraint on the amount of on-chip
memory.

2.3 Reference Architecture of a CNN Accelerator

PE=Processing ElementCU=Control Unit

ALU=Arithmetic and Logic Unit RF=Register File

ALU
CU

RF
ALU
CU

RF
ALU
CU

RF
ALU
CU

RF

ALU
CU

RF
ALU
CU

RF
ALU
CU

RF
ALU
CU

RF

ALU
CU

RF
ALU
CU

RF
ALU
CU

RF
ALU
CU

RF

ALU
CU

RF
ALU
CU

RF
ALU
CU

RF
ALU
CU

RF

Input/
Output
Buffer

Weight
Buffer

Weight
Buffer

Off-chip Memory

PE

RF

Inter-PE network

Global Buffer

DRAM

1x

2x

6x

200x

Memory Hierarchy Data movement 
energy w.r.t ALU

(a)

(b)

(highest level)

(lowest level)

Fig. 4. (a) Reference dataflow architecture for CNNs (adapted from [28, 117], and (b) Normalized energy
(w.r.t ALU) for accessing data from the memory hierarchy.

Every CNN accelerator can be abstracted in the form of a vanilla/reference accelerator architecture
as shown in Figure 4. The basic accelerator architecture is characterized by multiple processing
elements (PEs), where parts of the computation are mapped to each PE as discussed in Section 2.2.
Furthermore, we can have connections between PEs to transfer data in the case of data dependences,
and for transferring results from one layer of the CNN to the next: either within the same CNN
layer or across layers. We would like to pass as much of data as possible without accessing memory
structures.
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Each such PE comprises an ALU, CU (control unit), and a register file (RF) (see Figure 4). Addi-
tionally, there exist two global buffers each for input/output activations and weights. In some cases,
the buffers may not be separate. The on-chip storage is typically not sufficient to hold millions of
values across several layers. Thus we need to have off-chip memory to hold all the data. Apart from
the global buffer, each PE stores the most frequently used data in its local register file. Additionally,
there is an inter-PE network to stream the data directly from one PE to the other.

It is worth noting that the reference accelerator architecture presented above is a basic skeleton
of an accelerator. The basic building blocks – PEs, MACs (multiply accumulate units), register files,
interconnects, PE arrangements and the global buffers – are present in some or the other form in
most of the proposals discussed in this survey. Let us provide examples regarding how they can
be modified for better power and performance at a high level. For the MAC we can modify the
operand values or their bit-widths. We can compress the data stored in the registers such as the
weights, and in addition we can optimize the global buffer by using a combination of technologies
such as SRAM and eDRAM arrays. Some architectures even experiment with different inter-PE
interconnections, and try to optimize the flow of data.
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Fig. 5. Different types of architectures: (a) 1D Systolic, (b) 2D systolic, (c) 1D array, and (d) 2D matrix (adapted
from [39]). DLY is the delay.

2.3.1 Categorization of Types of Architectures. We can classify the architectures on the basis of the
arrangement of PEs and the kind of dataflow exploited by them. Most of the architectures have
either a 1D or 2D arrangement of PEs. The inter-PE network can be of two types: point-to-point
connections between PEs, or all of them are connected to a global buffer. A direct point-to-point
communication among the PEs assumes a producer-consumer relationship between the neighboring
PEs. The data produced by a PE is passed to the neighboring PE in the next time step. This continuous
production and transfer of data is analogous to the process of pumping of blood by the heart and is
termed as systolic (refer to the literature on systolic arrays [69, 98])1. If we consider all the possible
combinations of the arrangement of PEs and the dataflow pattern, we get 4 different accelerator
architectures. These are as follows(also see Figure 5).
1D systolic: The characteristic of this architecture is the 1D arrangement of PEs allowing a systolic

flow of data.
2D systolic: In this architecture, the PEs are arranged as a 2D matrix, and they receive data from

both the horizontal and vertical directions and flows between the PEs in a systolic fashion.
1D array: The PEs are arranged in a 1D format with each PE receiving the data that has been

broadcasted from the global buffer. There is no direct communication between the neighboring
PEs.

1Note: For the purpose of this survey, we do not distinguish between the different types of systolic architectures.
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2D matrix: This is similar in functionality to the 1D array except that it has a 2D arrangement of
PEs.

3 TAXONOMY
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Each of the proposals discussed in this survey optimize one or more of the parameters of the
basic building blocks of the reference architecture. There can be many parameters and building
blocks that can be optimized, however classifying the proposals on this basis would not provide
a concise and generic classification. Thus, we dissect the space of techniques based on the type
of architectural optimization (x axis of Figure 6). We mostly target three kinds of optimizations:
reduction of the computation time, reduction of the memory access time, and reduction of the
memory footprint. The motivation for this breakup comes from the CPU-memory performance
equation that has primarily three components: CPI (cycles per instruction), memory latency, and
the number of memory accesses. There is a one-to-one correspondence between these terms of the
performance equation, and our metrics.

The y axis of Figure 6 focuses on the metric being optimized or affected: area, accuracy, energy,
latency and throughput. We believe that a qualitative discussion of the techniques from the point of
view of these metrics is important because the quantitative comparison of these numbers is almost
impossible given that each research paper tests its design on a different set of parameters. Figure 7
shows a Venn diagram of the techniques based on the type of optimization that they propose. We
dedicate a section to each of these optimizations (shown in the diagram).

4 REDUCTION IN COMPUTATION TIME
Ever since the algorithmic complexity of CNNs started increasing, the computation time has also
increased drastically. Cong et al. [32] studied the breakdown of the time taken by the different
layers of AlexNet for an image recognition task. They showed that the runtime of the task was
dominated (90.7%) by the time taken by the computations in the convolution layer (see Figure 3).
Given the applications of CNNs in image classification and object recognition, where real-time
implementation plays a crucial role, elevated computation times pose serious questions with regards



Accelerating CNN Inference on ASICs: A Survey 11

to their deployment. The only intuitive way to reduce the computation time is by ❶ utilizing the
parallel resources to effectively reduce the total execution time, ❷ reducing the number of computations,
❸ reducing the execution time of each computation involved in a convolution operation, or ❹ utilizing
the idle cycles in a computation for some useful work. Let us discuss research contributions in each
of these categories.

4.1 Exploiting the Inherent Parallelism in CNNs
The operation of a convolutional layer is inherently parallel due to the nested loop structure as
explained in Section 2.2. The process of convolution of a set of pixels with the kernel is independent
of the convolution operations on another set of pixels, thus there is a scope for parallelism (see the
work of Motamedi et al. [86]).

Since a CNN is a feed-forward network, each layer is data dependent on its previous layer. Thus,
it is not possible to run them in parallel. Nevertheless, the different layers of a CNN can be pipelined
subject to memory constraints. We do not consider inter-layer pipelining to be a type of parallelism
per se and hence do not discuss it further.

Loop iterator Iterates over
ao , no the number of output feature maps
ai , ni the number of input feature maps

ar , init_row the rows in the feature map
ac , init_col the columns in the feature map

w , i the width of the filter
l , j the length of the filter

Table 2. Glossary of loop iterators in a tiled CNN

Parallelism inner loop
type variables

Inter-output ao , ai
Inter-kernel ar , ac
Intra-kernel w , l

Table 3. Loop variables targeted for
parallelization

Let us now provide a brief description of the types of parallelism opportunities in a convolution
layer. Each kind of parallelism can be perceived as creating a different kind of partition in our 6D
space of outermost loop iterators (see Figure 3 – our running example). The key terms used in our
running example are reproduced in the glossary in Table 2 in the same order.
Since we have 6 inner loop iterations in our running example, in theory we can parallelize a

computation by choosing any subset of axes(iterations), and then appropriately choosing block
sizes. However, we need to simultaneously look at data communication and storage constraints.
Considering these limitations, researchers have primarily looked at three kinds of parallelism: inter-
output, inter-kernel, and intra-kernel. The intra-kernel parallelism performs thew × l multiply-add
operations of a convolution operation in parallel. The inter-kernel parallelism produces the activa-
tions of an output feature map in parallel. The inter-output parallelism produces the activations of
multiple output feature maps in parallel. The loop variables chosen for each parallelization method
are shown in Table 3. The block sizes depend on the number of available PEs for the convolutional
layer.

4.1.1 Case Studies. We shall discuss some recent work in more detail (refer to Table 4). The *
marked entries in the table are subsequently discussed.

FlexFlow
Lu et al. [77] proposed FlexFlow to exploit all the three kinds of parallelisms on a 2D array of
PEs. FlexFlow, enables this by adding extra interconnections between PEs and on-chip buffers
so that there is some more flexibility to fetch any neuron from any feature map. Intuitively, this
design reduces the interconnections among PEs but at the cost of energy because the data is now
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Proposal Parallelism Type Architecture Type
Intra-output Inter-output

Inter-Kernel Intra-Kernel
CNP [42] 2D systolic

DC-CNN [17] 1D array
MAPLE [15] 2D systolic
nn-x [44] 1D systolic

[61] 1D systolic
C-Brain [113] 1D array
FlexFlow* [77] 2D matrix
Origami [16] 1D array
SCNN* [94] 2D systolic
YodaNN* [11] 1D array

Table 4. Types of parallelism exploited by different architectural implementations

being forwarded from the on-chip buffers to the PEs instead of getting forwarded in a systolic
fashion between neighboring PEs. The design achieves an increased throughput due to the parallel
functioning of the PEs, and trades off interconnect latency for the memory access latency.

SCNN
A full fledged CNN accelerator (SCNN ) proposed by Parashar et al. [94] also exploits all the kinds of
parallelism. Their architecture arranges the PEs in a 2D array with systolic connections to transfer
partial sums. Intra-kernel parallelism is exploited by arranging the multiplier array (in each PE) as
a 2D matrix to perform the 2D multiplications in parallel. Intra-output and inter-output parallelism
is exploited by distributing the input activations and weights across the PEs. Their proposal differs
from FlexFlow in the sense that the number of global buffer accesses in SCNN is lower due to a
streaming transfer of the partial sums and the stationarity of the input activations. This however
reduces the flexibility of the design.

YodaNN
Another recent proposal by Andri et al. [11] exploits inter-output parallelism by replicating the
PEs to form a 1D array with no interconnections among them. Each parallel PE gets its input data
from the on-chip buffers, thereby increasing the amount of required memory bandwidth. Each PE
is dedicated to produce an output pixel of the corresponding output feature map in a cycle. Recall
that each output map is a linear combination of the convolutions of input feature maps.
This design stores a filter (matrix of weights) in each PE. A set of values is read from the input

matrices, multiplied with the corresponding weights, and the value of an output pixel is computed
in every clock cycle. Ideally, the number of PEs should be equal to the number of output feature
maps. However, if the number of PEs is less, then this process will take several cycles till all the
output maps have been generated.

Conclusion
The conclusion of this discussion is that parallelism improves the throughput of an implementation,
however arranging these parallel units in a limited area and supplying them with appropriate data
at appropriate times pose unique challenges to the memory system and interconnect designers. We
can conclude from Table 4 that an architecture restricts the nature of optimizations and the type and
degree of parallelism that can be exploited. Details such as the number of memory buffers, and the
nature of the interconnects are very crucial, and also are the key determinants of the performance
as we shall see in the subsequent sections.
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4.2 Pattern-based Computation Reduction in Convolution
Recall that a convolution operation consists of multiplication and addition operations between
input activations and weights. Hegde et al. [55] asserted that the number of unique weights in a
CNN model is limited by the maximum number of bits used for their representation. For example,
an 8-bit representation for weights will yield 256 unique weights. Given that the filter size and the
number of filters in a CNN have been increasing with advancements in the design of CNNs, the
values of weights will certainly get repeated. Thus, each common weight can be factored out of
the multiplications it is involved in, thereby scaling down the number of multiplications by the
weight’s repetition count and clubbing together the activations to form an activation group [55]. As
an example, the weightwi in Equation 5 was factored out to form the activation group ai + aj + ak
in Equation 6. This reduction is a result of the distributive property of the multiplication operation.

z = wi × ai +wi × aj +wi × ak (5)
z = wi × (ai + aj + ak ) (6)

wiT1 wiT2 iiT1
F1

x z x
z z z
x x z

F2

IF1
a b c
d e f
g h k

IF1-row major order

F1: x*(c+g   +   a+h)  +   z*(b+d+f   +   e+k)
F2: x*(c+g) +z*(a+h)  +  x*(b+d+f) +z*(e+k)
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Fig. 8. Factorization of the dot product (adapted from [55])

Let us describe a representative architecture by Hegde et al. [55], who propose to maintain two
hardware structures: input indirection table, iiT , and weight indirection table,wiT (refer to Figure 8).
This figure shows two filters: F1 and F2. Assume that the weights are either x or z. IF1 is a feature
map. The task is to compute a convolution between the filters and the featuremap.Whilemultiplying
F1 with IF1, x will be multiplied with a, c , д, and h (element-wise multiplication). Similarly, z will
be multiplied with b, d , e , f , and k . Similar results can be derived for the multiplication with F2.
The exact expressions are shown at the bottom of the figure. Now, it can be noticed that the amount
of work can be reduced by computing the repetitive expressions such as a + h, or b + d + f only
once.
This is recorded in thewiT table (one per filter). ConsiderwiT 1 (for F1). Each entry contains a

Boolean value, which is interpreted as follows. For F1, there is a 1 in position 4, which means that
x will be multiplied with a sum of four elements of the feature map. The iiT 1 table (one per feature
map) stores the indexes of the elements in the feature map that need to be multiplied with x . Note
that this is a 1D index (the paper shows a way to convert 2D indexes to 1D). Then inwiT 1, the next
1 is at the ninth position. This means that the elements from positions 5 to 9 are multiplied with z.
Their corresponding indexes are stored in iiT1.wiT2 is constructed on similar lines; however in
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this case there are four 1s, which means it divides the set of indexes into four groups. The first and
third group are multiplied with x ; the second and fourth group are multiplied with z.
Another work by Wang et al. [124] removes the redundant computations involved in a convo-

lutional layer. They propose an architecture called Cavoluche that stores the repetitive patterns
of parameters (weights and biases) of a layer in a buffer called the pattern buffer. The MAC of a
weight pattern with an activation vector is computed in a SIMD-style PE array called a P-tile and
stored in a cache called the P2 cache. After the P2 cache is filled, for any parameter pattern and
activation vector combination, the P2 cache is looked up first. If an entry is found, it is directly
used else the computation is sent to the P-tile.

Discussion: The key idea in such approaches is a time and space tradeoff. We reuse partial results
across filters. This reduces the amount of computation at the cost of increased storage space (wiT ,
iiT tables,P2 cache, and pattern buffer). Such buffers cannot be made infinitely large and hence
there is a need to design additional rules for storing and replacing the entries from the buffers.
Additionally, this design increases the energy consumption by introducing additional buffer lookups;
however the energy is also saved by reducing the number of computations.

4.3 Removal of Ineffectual Computations
Another way to reduce the number of computations is to remove the computations whose result is
zero (or below a certain threshold), which are also known as ineffectual computations. This is a
common phenomenon in algorithms for feature detection. Let us look at some of the important
proposals in this area starting with a paper that describes the general approach.
Wang et al. [123] proposed a novel technique to prevent zero-valued kernel weights or input

activations from being passed to the computation units, thereby, eliminating the number of ineffec-
tual computations. They proposed an architecture called Memsqueezer, which inserts a two-level
redundancy detector at both the input and the weight buffers (refer to Figure 9). The redundancy de-
tector detects and signals the computation units about the ineffectual computations. The first-level
detector calculates the zero masks (see Figure 9) for the inputs and the weights. The second-level of
the detector calculates the effective number of zero-valued computations by a computing a logical
AND of the zero masks of both the inputs and the weights. This is then signalled to the address
generation unit. This address generation unit is responsible for generating the addresses of weights
and activations such that the weight and activation buffers can fetch data for computation. If all
the addresses correspond to ineffectual data, then no data is sent to the PEs and the computation
for all the PEs gets cancelled for that cycle. If some of the addresses are associated with zero masks,
then the corresponding data is prevented from getting loaded to those PEs. In addition, the PEs
become idle as a result of the zero masks, and are thus power gated to save power. These can also be
utilized for some other useful work (see Section 4.5). Similar techniques have been used in hardware
accelerators [51, 52]. They prevent non-contributing computations from being performed, and also
compress weights to reduce the storage requirements.

Discussion: This approach saves both energy as well as time. It saves energy because we have the
option of quickly power or clock gating PEs when a computation need not be performed. It saves
time when a PE is given a large number of multiplications to do, and the PEs need not complete
their assigned tasks in lockstep. In this case PEs can quickly process their masks, and skip the
multiplication step. There is a performance benefit because multiplication is much slower than
checking bits in the masks. Let us now show some specific cases, where we can deliberately create
more zero-valued entries.

Specific Cases
Kim et al. [68] introduced a kernel decomposition architecture, primarily tailored for binary
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weighted CNNs, where each element in the kernel is either +1 or -1. They proposed to decompose
a binary kernel into two kernels: a base kernel and a filtered kernel. Base kernels are identical for
all the binary kernels and are formed by replacing all the elements in the original kernel with -1.
The information that is lost due to this simplification is captured in another decomposed kernel
called the filtered kernel, which is formed by eliminating all the -1 weights from the original binary
kernel and retaining only the +1 weights.
Let us analyze the design for a computation with a single input feature map (see Figure 10).

The base kernels for all the filters are the same. For producing N output feature maps with N
different filters, the base convolution is calculated once and is reused N − 1 times, thereby saving
energy. Then, the filtered convolution is calculated N times for N output feature maps, with the
number of operations now reduced to half due to only 50% non-zero weights (assuming a 50-50
distribution of ±1 weights) in the filtered kernel as compared to the original binary kernel. A naive
implementation of this idea will actually increase the computation time because one convolution
has been replaced by two; however, it is worth noting that the second convolution has a lot of
zero-valued entries.
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Fig. 10. Kernel decomposition scheme for the single input and multiple output case
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Another work in this area by Kim et al. [67] called Zena reads all the values required by the PE
from the weight and activation buffers to the local register file. Thus, the memory accesses are
not reduced at the global buffer level. The bit-vectors are then logically ANDed inside the PEs to
generate the indexes for the non-zero activations and weights, which can then be read from the
register file. Thus, this scheme reduces the computation time for each PE. However, Zena differs
from Memsqueezer in the sense that the accesses to the global buffer are also reduced in the latter
design.

Both Zena andMemSqueezer generate the bitmaps for both the activations and weights simultane-
ously, and then compute the zero masks. However, a proposal by Chole et al. [31] called SparseCore
proposes to do this sequentially. They generate the bitmap for the elements read from the activation
buffer and for each non-zero position in the bitmap, they fetch the corresponding weights from the
weight buffer. If the weight is also non-zero, then only the pair of values is sent to the functional
units. This saves the memory bandwidth of the weight buffer.

4.4 Prediction-driven Computation Reduction
The techniques discussed in Section 4.3 removed computations whose output is known to be zero.
Another approach is to detect whether an activation from a preceding CNN layer contributes any-
thing substantial to the succeeding CNN layer. Owing to the fact that the output of a convolutional
layer passes through the ReLU and pooling layers, we can conclude that all the output activations
from the previous layer do not contribute equally to the next layer. This is because the ReLU and
pooling layers reduce the size of the feature map considerably by filtering out many activations
(see their working in Section 2.1). Thus, the computations that contribute to the activations, which
get filtered out later are ineffectual [114].

Song et al. [114] proposed to perform the computations of the higher-order bits and lower-order
bits separately. Since the higher-order bits of an output activation are responsible for the final sign
and have a greater role in determining the final value, they are solely used in the first stage called
the prediction stage. The generated higher-order output activations are passed through a dedicated
Sign unit and Comparator unit to predict the activations that would be rendered ineffectual by the
ReLU and Pooling layers respectively. The predicted ineffectual activations are then marked as
zeros in both the ReLU table andMax table (see Figure 11(a)). These tables indicate the ineffectuality
of the output neurons using one bit per output neuron. These tables are further used as an input by
the execution stage for performing the remaining computations corresponding to the lower-order
bits to generate the final result.

Discussion: Note that if the predictor stage has predicted certain activations to be ineffectual, the
lower-order bits of such activations will not be processed in the execution stage. This introduces
idleness among the PEs because their architecture is a 2D array with the same input activations
broadcasted to all the PEs in the same column and the same weights broadcasted to all the PEs in
the same row. Thus, if any PE is rendered idle due to an ineffectual value in the RELU or Max table,
it has to wait for its neighboring PEs to finish their computations. This scheme saves power but
does not reduce the computation time.

Thus, to reduce the computation time, we can increase the flexibility of data fetching by allowing
only 1D sharing: share either weights or activations. The advantage is that if we allow sharing in
just one dimension, the data for the other dimension (activation or weight) can be fetched from the
memory without any synchronization with the neighboring PEs. This reduces the idleness and
hence optimizes energy, however, this would increase the pressure on the memory system since
the effectual activations needed by neighboring PEs may be located at random positions in the
main memory. There are two components that lead to an increased area in this design: the two
tables maintaining the prediction results and the area for two different bit-width multipliers for
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the execution and predictor stages. The area of the multiplier is reduced further by introducing a
common serial multiplier that can be reused by both the predictor and execution stages for variable
bit-widths. This however increases the latency because it becomes a function of the bit-width of
the serial multiplier.
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Fig. 11. (a) Prediction based (adapted from Song et al. [114]), and (b) SNAPEA (adapted from Akhlaghi et
al. [5])

Similar work was done by Akhlaghi et al. [5] called SNAPEA. However, their approach is fun-
damentally different from the previous one (Song et al. [114]) in the sense that they classify and
rearrange the weights. The ideal procedure to know that the sign of a computation is going to
be negative at the earliest is as follows: ❶ first, perform all the multiply-add operations with the
positive weights, ❷ subsequently, perform the multiplication with one negative weight per cycle
and check for the sign after every cycle. As soon as the sign turns negative, the computation can
be terminated and the output can be made zero (early ReLU). Note that to detect the termination
condition at the earliest, the multiplication with the negative weights should be performed in the
decreasing order of the magnitude of the weights: multiply with the highest magnitude negative
weight first. This mode is called the exact mode of operation because it is known precisely if the
computation will be ineffectual in future. However, this mode can lead to diminishing returns if
the number of negative weights is large while their magnitude is small.
Thus, a predictive mode exists in which a suitable threshold value of the computations is pre-

determined and the number of MAC operations needed to achieve that threshold. Subsequently,
the weights are arranged in three classes: predictive, positive, and negative. The predictive weights
are those, which when multiplied by the activations and compared to the threshold value, give a
prediction whether the computation will be ineffectual or not. If the computation is determined
to be effectual, it enters the exact mode, else it terminates instantly. Note that this can lead to
false positives when the predictive weights are not chosen appropriately. In many such cases, this
strategy may result in producing a value that is less than the threshold, while further computations
with the positive and negative weights could make it exceed the threshold.

The added advantage is that if the prediction is correct, we save K ×K −N computations, where
K is the size of the filter and N is the number of predictive weights. Note that as soon as the
ineffectuality is detected, the PEs become idle and are hence power gated to save energy. In terms
of the architecture, the reordering of weights at the time of convolution requires an index buffer to
store the corresponding indexes for the activations and hence requires more area (see Figure 11(b)).

4.5 Improving the PE Utilization
As discussed in Section 4.3, the removal of ineffectual computations may render the PEs idle. In
such a case, there are two options: either power gate the PEs, or utilize these PEs for some useful
work. In the case of utilizing the PEs for useful work, the computation time can be further reduced.



18 D. Moolchandani et al.

Time

w0
a

w0
b

w0
d

w1
b

w2
c

w3
d

x0
a x1

a x0
b x1

b x0
c x1

c
x0

d x1
d

x0
a

x1
a

x2
a

x3
a

x0
b

x1
b

x2
b

x3
b

x0
c

x1
c

x2
c

x3
c

x0
d

x1
d

x2
d

x3
d

w0
b

w0
d

Lo
ok

ah
ea

d 
w

in
do

w

w0
a *

w0
a

w0
b

w0
d

w1
b

w2
c

w3
d

x2
a x1

a x2
b x1

b x2
c x1

c
x2

d x1
d

x0
a

x1
a

x2
a

x3
a

x0
b

x1
b

x2
b

x3
b

x0
c

x1
c

x2
c

x3
c

x0
d

x1
d

x2
d

x3
d

w1
b

w2
c

w0
a

w0
b

w0
d

w1
b

w2
c

w3
d

x3
a x4

a x3
b x4

b x3
c x4

c
x3

d x4
d

x0
a

x1
a

x2
a

x3
a

x0
b

x1
b

x2
b

x3
b

x0
c

x1
c

x2
c

x3
c

x0
d

x1
d

x2
d

x3
d

w3
d

Time

w0
a

w0
b

w0
d

w1
b

w2
c

w3
d

x0
a x1

a x0
b x1

b x0
c x1

c
x0

d x1
d

x0
a

x1
a

x2
a

x3
a

x0
b

x1
b

x2
b

x3
b

x0
c

x1
c

x2
c

x3
c

x0
d

x1
d

x2
d

x3
d

w0
b

w0
d

w0
a

w1
bLookaside

w0
a

w0
b

w0
d

w1
b

w2
c

w3
d

x2
a x3

a x2
b x3

b x2
c x3

c
x2

d x3
d

x0
a

x1
a

x2
a

x3
a

x0
b

x1
b

x2
b

x3
b

x0
c

x1
c

x2
c

x3
c

x0
d

x1
d

x2
d

x3
d

w2
c

w3
d

Lookahead:  3 cycles

Lookahead + Lookaside:  2 cycles

*
MUX

*
MUX

*
MUX

*
MUX

*
MUX

*
MUX

*
MUX

*
MUX

*
MUX

*
MUX

*
MUX

*
MUX

*
MUX

*
MUX

*
MUX

*
MUX

*
MUX

*
MUX

Lookahead

Lookahead

MUX

*
MUX

Fig. 12. Weight lookaside and Weight lookahead (adapted from [37])

This is because we can get future computations to execute on these idle PEs. Thus, utilizing the
idle PEs to execute the future computations can effectively reduce the overall computation time of
the workload.
One such work by Delmas et al. [37, 38] efficiently exploited the computation cycles involving

zero-valued filter weights (sparse weights) by performing computations with the non-zero weights
that were scheduled for a later time instant (promoting the weights in time). Specifically, they
proposed two novel designs: weight lookahead and weight lookaside. These techniques are explained
in Figure 12. Please refer to this figure as we explain the techniques in the rest of this section.
The authors define a lookahead window, where the width of this window corresponds to the

time steps. The weight lookahead technique promotes the non-zero weights from the left end of the
same horizontal row in the lookahead window. Here, the leftward direction signifies a later point in
time. This technique can eliminate the sparsity of the weights in this window with the promotion
of weights within this window. Note that such a promotion in time would require activations
corresponding to the promoted weight to be available in the input buffer. This technique may not
prove to be beneficial, if a particular row has all non-zero weights. Additionally, since the rows are
executed in parallel on different PEs, the row with the maximum number of effectual weights will
decide the execution time. It may be possible that other rows have no effectual weights. Such a
load imbalance can be overcome by the weight lookaside technique that allows weight stealing (or
computation stealing) from the neighboring rows (within the lookaside window). Specifically, if
the currently executing row has an ineffectual weight in the current time step, the row can steal a
non-zero weight from a later time step of its adjacent row within the lookaside window.
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Apart from the sparsity of the network, there is another factor that can lead to idle PEs. Suppose
the mapping scheme allows the heiдht ×width dimension of the input feature map (2D Planar
mapping) to be mapped to the PE array or the depth dimension (channel direction mapping) to be
mapped to the PE array. In both these cases, the PEs will go idle if the size of the PE array is larger
than the number of activations in the mapped feature map dimensions. Liu et al. [76] propose
an adaptive algorithm that dynamically maps the dimensions to the PE array such that the PE
utilization is maximized. They employ a hybrid mapping that is a combination of both the planar
and the channel direction mapping when both the mappings individually are inefficient.

5 REDUCTION OF THE MEMORY ACCESS TIME
Let us start with an example: Sze et al. [117] reported that AlexNet [8] requires 724 million MAC
operations and 60 million weights to identify a 227x227 image. All the data including intermediate
results cannot be stored in on-chip buffers and caches. It is thus necessary to make many accesses
to main memory. For this convolution, Sze et al. estimated that the DRAM is accessed 3 billion
times to fetch and process all this data. The important point to note is that the number of accesses
is 50 times the total number of parameters. This means that the memory access time is dominated
by accesses to main memory, which is significant even if modern optimizations such as streaming
and pipelining are considered. The average memory access time needs to be reduced for realizing
better performance.
Most proposals leverage the unique patterns of data accesses in CNN workloads, which are as

follows: ❶ The same data is frequently accessed and can be reused in the future (temporally) by
storing it in local buffers or can be reused at the same time (spatially) by a different computation
unit, ❷ the accessed data leads to ineffectual computation, that is, the computed output is zero and
hence it need not be fetched, and ❸ the data accesses can be made in parallel. Note that we had
looked at ineffectual computations in the previous section as well; however, that was only from the
point of view of reduction of computation time. We shall revisit many such issues in the next few
sections, albeit from different points of view. Finally, note that in this section we will use the code
in Figure 3 as the running example.

5.1 Data Reuse: Temporal Reuse
This technique reuses the already fetched data from the off-chip memory by caching it in local
on-chip buffers. Thus, the number of accesses to the off-chip memory is reduced. Effective caching
of data in on-chip buffers has been shown to reduce the number of off-chip accesses by up to
500X [117].
As explained in Section 4.1, the mapping of different loop iterators to parallel PEs allows the

exploitation of different types of parallelisms. Hence, these parallel computations decide the data
access pattern. Thus, the iterators chosen for parallelization decide the kind of dataflow. For example,
if the ar and ac loops (Figure 3) are mapped to the parallel PEs, then each PE is responsible for
the generation of one output pixel. Additionally, the partial outputs generated by each PE should
remain in the PE’s local storage such that it is reused till the final output is produced. Since there
are three levels in our memory hierarchy of the reference accelerator architecture (see Figure 4),
data reuse can be exploited at all the three levels: register file, inter-PE network, and global buffer.
Dataflow architectures use these storage structures to locally cache weights, partial sums and
inputs. This is also referred to as keeping the parameters stationary. In more precise terms, if we
say that a parameter is stationary in a memory structure, it means that the parameter is changing
at the slowest rate in this memory structure while the rate of change of other parameters is much
more.
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To keep the data stationary we can take any number (usually <= 4) of loop iterators and partition
them across the 2D PE array. This will lead to many such combinations of the loop iterators. Because
of architectural considerations, only four such combinations are widely used as described by Chen
et al. [26] (refer to Figure 13). They result in four kinds of distinct dataflows.
The weight stationary (WS) dataflow [17, 41, 44, 46] is exploited by mapping the w and l loop

iterators to the parallel PEs. This architecture reuses the weights by storing them in the local
register file of the PEs. In each cycle, the input activations are broadcasted to the PEs and partial
sums are accumulated spatially over the PE array to form one output pixel. The weights are cached
till all the computations with those weights are completed. Additionally, as can be observed that
this mapping of the iterators will lead to one-by-one computation of the output pixels and hence
will be slow. Thus, the partitioning can be done along the filters, where each PE corresponds to
ao ,ai -pair. However, this would require the entire filter ofw × l to be cached in a PE, and hence a
bigger register file will be needed.

Similarly, the output stationary (OS) dataflow [39, 97] is exploited by mapping the ar and ac loop
iterators to the parallel PEs. It reuses the partial outputs in each PE. Since each input activation
contributes to multiple output pixels in a convolution, it is reused across the neighboring PEs via
the inter-PE array. The weights are broadcasted to all the PEs. Note that in cases where ar × ac is
smaller than the PE array size, the parallelism can be exploited along the ao dimension to improve
PE utilization. It will still be output stationary, albeit the output activations of different output
feature maps will be generated in the PE array.

The dataflow that does not keep any of the data, weight, input, and output, stationary at the local
register file is called No Local Reuse (NLR) dataflow [20–22, 126]. The data can flow between the
PEs in a systolic fashion. The PE array can be parallelized either along ai or ao iterator to compute
one or multiple output maps respectively. In Figure 13c, the ao iterator is parallelized for a cluster
of PEs and ai iterator is parallelized within the cluster of PEs. Within each cluster of PEs, the partial
sum flows between the PEs systolically to generate one output map.

Another dataflow architecture that keeps the input activations stationary at the RF level is called
the input stationary (IS) dataflow. Here, the parallelism on the PE array is along the ar and ac



Accelerating CNN Inference on ASICs: A Survey 21

iterators. This appears similar to OS, however the important point is that the partial sums are
cached in the RF in OS dataflow, while the input activations are stationary in RF in IS dataflow.
Here all the input activations are multiplied with the weights and accumulated to get one partial
sum. If the parallelization is done along ai iterator too (given that there are sufficient resources),
the entire output pixel can be generated. It will still be input stationary albeit those will be input
activations from different channels.
Finally, the all-in-one reuse architecture called the Row stationary (RS) dataflow [26] (see Fig-

ure 13(d)) reuses all the types of data – weights, activations and partial sums – at the register file.
This is done by dedicating a PE for processing a particular row of the input feature map and the
filter. If the size of the filter isW × L,W rows of the input feature map and the filter are processed
to produce one row of the output feature map and henceW PEs are required for producing one
row of the output feature map. Thus,W × R PEs in total are required to process all R rows of the
output feature map. This can be exploited by mapping the ar andw loops in the running example.

We observe from Figure 13(d) that the reuse is being done at two levels: inside each PE and across
the PEs. Inside each PE, the filter row is reused till all the output elements of a row are generated,
and the overlapping input activations are reused between the two sliding windows. Across the
PEs, the filter rows are reused horizontally across all the columns (alternatively all the rows of the
output feature map). The rows of the input feature map are reused in a diagonal manner and the
partial sums are accumulated vertically to get one row of the output feature map per column. We
show the relationship of the loops that need to be unrolled with the different dataflows in Table 5.

Dataflow Acronym Reuse Loop iterators
Weight stationary WS weights w , l
Output stationary OS partial sums ar , ac
No local reuse NLR no reuse in the register file ao , ai
Row stationary RS filters, activations, and partial sums ar , w

Table 5. Types of reuse exploited by different proposals

Discussion: Due to varying degree of reuse at different levels of the local memory hierarchy, the
number of DRAM accesses is reduced substantially and hence the energy consumption is reduced.
Additionally, the cycles spent in accessing data from the memory is reduced, thereby reducing the
CPI(memory) and hence improving the throughput. However, this technique is heavily dependent
on the reuse at on-chip buffers and hence the area for the on-chip storage structures increases. A
quantitative comparison of the four dataflow architectures in terms of energy has been given by
Sze et al. [117]. Our qualitative analysis suggests that the NLR dataflow should have the maximum
energy consumption given that it does not reuse data at the highest level of the memory hierarchy
(most energy-efficient). Also, since the RS dataflow has the maximum possible data reuse at the
highest level of the memory hierarchy, the energy spent is typically the least. Comparing the WS
and OS dataflows, the energy consumed while accessing the global buffer is more for the WS
dataflow as compared to the OS dataflow because for each partial sum, the WS dataflow writes
the data to the buffer and reads it back at the time of accumulation. While in the case of the OS
dataflow, the partial sums are held stationary in the register files.

We perform a quantitative analysis of the different dataflows using Timeloop [93] in Section 8.2.
Our quantitative results corroborate the qualitative intuition given in the previous paragraph. We
find that the NLR dataflow is the most energy-inefficient while RS dataflow is the most energy-
efficient dataflow.
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5.2 Data Reuse: Spatial Reuse
In the previous section, we discussed techniques to reuse data by storing it in local buffers. We
can also leverage spatial locality by routing data between the PEs such that we can avoid costly
memory accesses. Good routing techniques achieve an equitable tradeoff between bandwidth and
latency, where the latter is also determined by the congestion in the network. The congestion in
turn is a function of the number of accesses that the PEs make to fetch the filters weights and
input activations from the memory. Consider an example. Assume we are convolving a set of input
feature maps with the same filter to generate a batch of outputs. In this case the filter’s weights can
be shared across the PEs, and there is no need for PEs to make independent memory accesses to
the lower level of the memory hierarchy.

5.2.1 Pinned Input Feature Maps. In this regard, Dundar et al. [40] presented a routing scheme
that maximizes the ratio between the number of output feature maps and the number of accesses
to an input feature map. To maximize this ratio, when an input feature map is accessed, it should
be convolved with all the filters to produce multiple output feature maps in parallel. The method
to do this is to route the input map to all the PEs such that they can simultaneously compute all
the output feature maps. However, if the feature map is a sparse matrix and we wish to eliminate
zero-valued computations, then distributing it among PEs is non-trivial, and consequently such
optimizations lose a lot of their benefits. In this case, to get the same benefits we can run multiple
CNN inferencing applications for a batch of inputs in parallel.

5.2.2 Flexible NoCs and Dataflow Patterns. Let us compare two architectures in this space: flexflow
and Eyeriss-v2.
As explained in Section 4.1, partitioning and mapping different loops to the parallel units can

exploit different kinds of parallelism depending on the loop iteration that is mapped to the PEs. It
is worth noting that the data reuse pattern of an accelerator is highly correlated with the mapping
of the loop iterators to the PEs. For example, mapping the innermost iterators,w and l , to the PEs
would exploit weight stationary dataflow and require thew × l weights of the filter to be cached
locally in the register file of the respective PEs.
Inputs, weights and intermediates (partial sums) have varying degrees of data reuse opportu-

nities [25]. Thus, to maximally exploit all the types of data reuse, FlexFlow finds optimal values
of the tile sizes in our running example, b1 . . .b6, and hence follows a mixed dataflow approach.
The dataflow required by different groups of PEs in the PE array is different, hence the routing
of data becomes a challenge. Since the interconnects are designed to just broadcast the reusable
data, this design performs sub-optimally when there is low data reuse because all the broadcast
links cannot be fully utilized. Nevertheless, this design almost never leads to congestion due to its
simplified routing scheme.
Eyeriss-v2 [27] tackles such uncertainty in the data reuse opportunities by adopting a flexible

NoC architecture that can adapt to unicast, multicast or broadcast patterns. Note that unicast favors
low data reuse where each PE needs a different data word, multicast favors a fair amount of data
reuse where multiple PEs work simultaneously on the same data, and broadcast favors the highest
data reuse where all the PEs work simultaneously on the same data. Additionally, they do not
exploit a mixed dataflow pattern unlike FlexFlow, and instead follow an improved row stationary
dataflow pattern that uses larger tile sizes.

5.2.3 Forwarding Data between PEs. Another hurdle that arises when generating an output feature
map is that the number of convolutions needed to produce an output feature map is much larger
than the number of processing units. Thus, there is a need to temporarily store the partial sums.
Storing them in large on-chip or off-chip memory structures incurs high read and write latency
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overheads. Jin et al. [61] proposed a routing scheme that sends the stream of partial sums produced
by a PE to its neighboring PEs. Thus, the partial sums get processed immediately by effectively
routing them to the destination unit, without having to store them in memory.

5.3 Eliminate Loading of Ineffectual Data
Values that are close to zero, and are too small to make a difference in the computations are termed
ineffectual, and they need not be loaded from memory. Most proposals replace them with 0s. The
computations (also termed as ineffectual) that use those values can be skipped. Feature maps where
these small values have been converted to 0s are known as sparse feature maps. If different PEs
process different parts of these feature maps, they are expected to take different amounts of time
because of varying degrees of ineffectual computations. This presents an opportunity for accelerator
designers to make their PEs aware of the level of sparsity in the feature maps.

Let us proceed assuming a conventional architecture, where we propose different optimizations
to eliminate the need for loading ineffectual data from memory. We shall first discuss methods to
generate indexes that point to ineffectual data, and then we shall discuss methods to store them
efficiently.

5.3.1 Generating Indexes to Effectual Data. Zhang et al. [127] proposed an architecture called
Cambricon-X that does not fetch those activations that correspond to zero-valued weights. The
idea is that for producing an output element, since the filters are known in advance, the input
activations corresponding to the zero-valued weights need not be accessed. Hence, the memory
access time for fetching the input activations can be reduced.

For an element in the output feature map, the indexes of the input activations that can influence
the output’s value is needed. These indexes depend on the value of the corresponding weight: zero
or non-zero. The information of the non-zero weights is stored in a vector. Each element of the
vector contains the difference in the indexes of the two consecutive non-zero weights. This vector
is then used by the indexing module to generate the indexes for the input activations and store
them in an indexing buffer (one per PE). A variant of run-length encoding known as step-indexing
approach is used (as shown in Figure 14) to generate the offsets for the input activations in the
indexing buffer.
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Fig. 14. Step Indexing (adapted from [127])

The reduction in latency and the improvement of throughput comes at the cost of additional area,
which is required for the indexing module and indexing buffer. We need as many indexing buffers
as the number of convolutions being performed concurrently. In terms of energy, the memory
access energy is much more than the energy required to access the on-chip indexing buffer [117].
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On similar lines, Han et al. [52] also proposed a method called EIE to take advantage of sparsity
in the activations and filter weights. However, their indexing method is based on a variation of the
CSC (compressed sparse column) format [121] that tries to compress the bitmap directly instead
of converting it to a bit vector first. This indexing method compresses and stores the non-zero
weights using two tables: one containing the index of the next row and the other containing the
index of the next column.

Note that the elimination of ineffectual data in EIE is driven by the zero-valued elements in both
the weight and the activation buffers. This is done by using the CSC based indexing technique to
detect zero-valued weights. Here zero-valued activations are detected when they are read from
memory. The indexes that correspond to ineffectual data are broadcasted to all the PEs such that
they can avoid processing or fetching them. As compared to Cambricon-X, EIE exploits more
features namely weight sparsity, and input sparsity. This gives it additional opportunities to reduce
time and energy.
Another recent work by Zhou et al. [128], Cambricon-S, exploited the ineffectuality of both

weights and activations by calculating bit vectors for activations and weights called activation
indexes and synapse indexes respectively. These vectors are calculated by an indexing module called
the Neuron selector module (NSM). This technique differs from Cambricon-X in the sense that it
exploits both activation and weight sparsity. Additionally, it exploits activation sparsity that arises
at runtime due to ReLU layers. For this purpose, there is an additional indexing module at each PE
that tracks ineffectuality at runtime. Furthermore, the footprint is reduced by storing a compressed
version of the weights in the synapse buffer. The weights are compressed using Huffman encoding
that assigns a class to each weight based on its probability of occurrence. Thus, any access to the
effectual weights has to first pass through a decoder module (weight decoder module or WDM)
before being used for computation.
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Fig. 15. ZFNAf encoding format (adapted from [7])

5.3.2 Storing Effectual Data along with Indexes. There are two broad approaches for storing sparse
data: store indexes to effectual data, and store a bitmap where 1 indicates that the corresponding
element is effectual, and 0 indicates that it is ineffectual. Depending upon the degree of sparsity,
we prefer one approach over the other.

Storing Explicit Indexes
Albericio et al. [7] propose Cnvlutin that uses a Zero-Free Neuron Array format (ZFNAf)-encoding
to determine and encode only the effectual activations. In ZFNAf, each non-zero activation in
an accessed block of activations is encoded in the form of a value and an offset, where the offset
represents the index of the non-zero activation. This encoding is done at the output of the layer
and subsequently the encoded output is stored in memory (see Figure 15).
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Assume that each row of the input matrices is divided into a set of blocks with n elements each.
The offset of an element in a block thus requires loд2 (n) bits. Form effectual activations (where
m ≤ n), mloд(n) bits are required. In addition, 16m bits are needed to represent all the values
(assuming a 16-bit number system). In case of uncompressed data, 16n bits (16 bits per value) are
needed. Thus, area is saved if 16m +mloд(n) < 16n. Lastly, note that this approach encodes the
input data prior to execution.
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Fig. 16. (a) Working of Cnvlutin and Cnvlutin2 (adapted from [65])

Similarly, Liu et al. [75] proposed an architecture called Swan that stores the non-zero weights
in the compressed form in the weight buffer along with their indexes. They introduce a selector
circuit just before the MAC unit that selects the activations from the activation buffer based on the
indexes of the non-zero weights. Thus, the ineffectual weight accesses are removed. Additionally, if
the accessed activation is zero, the MAC unit is power-gated.

Storing Bitmaps
Recently, Cnvlutin2 [65] was proposed that detects the ineffectuality of both the activations and
weights on-the-fly while reading them from the buffers. This approach is different from Cnvlutin
where the effectual activations along with the offsets are first stored in memory and are then read
by the next layer. Since Cnvlutin2 exploits the ineffectuality of both the inputs and weights, it saves
more computation cycles as shown in Figure 16. Specifically, Cnvlutin2 employs the circuit shown
on the left side of Figure 16 that calculates the logical AND of the bit vectors for both the activations
and weights. A ‘1’ in the result indicates an effectual computation and the activation/weight
corresponding to this value is read from the buffers. Thus, Cnvlutin2 saves memory access time by
preventing the access of ineffectual activations and weights while Cnvlutin only saves in terms
of ineffectual activations. Additionally, the on-the-fly calculation in Cnvlutin2 saves the memory
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storage overhead of the offsets needed in the case of Cnvlutin. Figure 16(a) shows the corresponding
circuits and a sample execution for both the designs is shown in Figures 16(b) and (c) respectively.
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Fig. 17. NZVL encoding scheme (adapted from [4])

The total storage overhead with approaches that store indexes [7](Cnvlutin) was calculated to be
16m +mloд(n), wherem is the number of non-zero activations, and n is the number of elements
in each block. Now assume that we wish to store a bitmap, or a bit vector for a set of activations,
where a single bit indicates if the corresponding element (with the same index) is effectual or not.
In this case the number of bits that we require is T , where T is the total number of activations in
the matrix that we wish to compress (filter or feature map). Thus, the mathematical tradeoff is very
simple; if T > 16m +mloд(n), we use bitmaps, otherwise we explicitly store indexes.
For CNNs that will benefit by this storage method, Aimar et al. [4] proposed NullHop. It uses

the NZVL encoding to store the non-zero activations in a list and also maintains a sparsity map
(SM) for the bitmaps (refer to Figure 17). Since the SM is for the entire feature map and NZVL has
only effectual activations of the feature map, an additional circuit is needed to determine the exact
positions of the effectual activations. The insight is that the energy required for a computation is
typically lower than a few memory accesses [56].

5.4 Miscellaneous Techniques
This section covers some miscellaneous optimizations that lead to a reduction in the memory access
time.

5.4.1 ProcessingMultiple Images. Even though reusingweights is in general very effective; however,
it can be counter-productive if there is very little repetition in the values of the weights. Since a
weight is a characteristic of the network and not the input, processing a batch of input images
will ensure a greater degree of weight reuse. Thus, this technique allows for better reuse of data
by controlling the number of input images being processed simultaneously. This technique is
always the preferred approach when any other source of reuse is not available. However, processing
multiple images at once has its pitfalls in terms of a higher requirement of on-chip area, and
additional memory bandwidth.

5.4.2 Double Buffering. To optimize filter reuse, Shen et al. [108] proposed a buffering mechanism
that achieves a favorable tradeoff between on-chip storage, and off-chip bandwidth. They use a
formal approach by proposing a set of constraints and objective functions. Buffering is a good
approach in array based CNN accelerators with flexible interconnects; it is not very useful in
architectures that rely on a streaming pattern such as systolic arrays. To overcome this Jouppi et
al. [63] introduced double buffering in their systolic TPU-v1 architecture to hide the memory access
latency. They create an overlap between computation in the systolic array, and fetching data for
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the next set of computations. This strategy effectively hides the time it takes to buffer a large chunk
of data.

5.4.3 Large On-chip Buffers. Sim et al. [109] propose to use a large unified on-chip buffer for
storing both input and output feature maps. Since the entire operation is on-chip, double buffering
is not needed and the saved area can be used to increase the unified buffer size. Such a design
allows for inter-layer feature map reuse. However, in cases where the unified buffer is not able to
accommodate the feature maps, there is a need to tradeoff the amount of the two maps that can be
stored on-chip or accessed externally. The tradeoff depends on the size of the feature maps, the size
of the unified buffer, and the amount of reuse needed.

5.4.4 Remove Data Duplication. Gao et al. [43] propose to remove the data duplication in the
on-chip buffers of the PE array clusters. Their setting assumes a large PE array that is divided into
smaller PE array clusters, with each cluster having a local on-chip buffer. When these clusters
compute the different output feature maps, they will require the same input feature map at some
point of time. A more common implementation would fetch an input feature map and broadcast
it to all the clusters so that it is not accessed multiple times by multiple clusters, however this
leads to data duplication and reduces the total effective on-chip memory available. The proposed
architecture, Tangram, brings in different feature maps for the clusters and each cluster processes
different feature maps at a time. The feature maps are then rotated among the neighboring PEs to
be processed by all the clusters. This approach is called buffer sharing dataflow and it maximizes
the overall effective on-chip buffer capacity. However, the communication latency is added due to
the rotation of data.

6 REDUCTION IN THE MEMORY FOOTPRINT
CNN models have evolved significantly over time and have grown in size, thereby leading to
increased memory requirements. An estimate of the memory requirements can be obtained from
the sizes of the Caffe models of AlexNet and VGG16. The size of AlexNet’s [8] base model is
approximately 233MB while for VGG16 [110] it is more than 500MB. Das et al. [34] did further
analysis of the memory required by the Caffe model of VGG16. It is 528MB (as per their estimate),
and if we consider the storage required for the intermediate data, then the cumulative total is
732MB. Given the large memory requirements of these models, it is not possible to retain all the data
in the on-chip caches, which makes it difficult to achieve good performance due to continuously
fetching data from off-chip memory.

This is primarily due to the following reasons: ❶ a large number of intermediate values, ❷ full-
precision storage of the input activations and filter weights, and ❸ storing all the effectual and
ineffectual data. Thus, there is a need to reduce the memory required by these algorithms. Re-
searchers have proposed to ❶ reduce the precision of inputs and weights or compress them, ❷ not
store intermediates and instead consume them (this is an overlapping technique with the previous
section as this also reduces the memory access time), and ❸ not store ineffectual data or bits. Note that
in Section 5, our focus was on reducing the memory access time by keeping data closer to the PEs,
however, in this section our aim is to reduce on-chip storage of data as much as possible.

6.1 Data and Weight Compression
Most techniques compress the input data and filter weights using lossless compression algorithms.
This data is decompressed, when it is required for computation. Notably, Wang et al. [123] designed
a memory architecture called Memsqueezer that employs compression techniques for both data
and weights. They define the active weight buffer set to be a hardware structure that contains all
the weights. It uses the base-delta partitioning method to store the weights in a compressed form.
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In this method, a subset of weight values are decomposed into two values: a mean value, and a
set of differences. Since the differences are expected to be small if the values are centered around
the mean, a fewer number of bits are required to store the difference values as compared to the
number of bits required in an uncompressed form. Consider an example. We want to compress the
set ⟨5, 5, 6, 7⟩ in a system with a 4-bit number system. We would ideally require 16 bits (4 bits per
number). However, if we assume that the base is 6, then we require 4 bits to represent it, and the
remaining values can be expressed as offsets. They would be −1,−1, 0, 1. We require a 2-bit number
system to represent the offsets (deltas). Thus, the total number of bits required in the encoded
version is 4 bits for the base and (2 × 4) bits for the deltas, making it 12 bits. We thus reduce the
storage requirements from 16 bits to 12 bits (25% reduction).
These partitioned and compressed values are stored in two tables: Base Table and Delta Table,

which are indexed by an Index Buffer (see Figure 18). A weight value is generated by accessing the
values from the base and delta tables and adding them. Here, the overheads are in terms of both
time and space; however, in most cases the storage overheads can be reduced significantly.
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Additionally, Wang et al. [123] define a data buffer set for storing the intermediate data. Since
the intermediate data in a CNN dynamically changes (unlike weights that are shared across the
layer), the base-delta method does not work well. In this case, a frequent pattern mining [3] method
is used to compress the data. This is done by replacing the frequently seen patterns with shorter
identifiers (similar to Huffman coding). This method finds patterns in a block of intermediates,
and stores the frequently encountered patterns in a compact pattern table by assigning a unique
index to each pattern. The area overhead is reduced due to the storage of encoded data but this
introduces additional computational overheads to decode the data before processing. In terms of
latency, there is an improvement because the partitioning method uses a fewer number of cycles to
access the compressed repetitive data from the pattern table as compared to accessing the original
uncompressed data.

6.2 Reduction of Ineffectual Bits in the Binary Representation
The ineffectual bits in a number’s representation (input or filter weight) are of two types: statically
ineffectual and dynamically ineffectual (see Moshovos et al. [83–85]). Figure 19 explains the differ-
ence between the two forms. Specifically, statically ineffectual bits are those that are not necessary
to represent the number.
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In Figure 19 we see that the three zero bits – one in the suffix and two in the prefix – are not
needed for the representation. These are statically ineffectual bits. In contrast, there are two zero
bits in the remaining five bits (necessary for representation). Any multiplication with these zero
bits will result in a zero and hence these are also ineffectual from the point of view of multiplication.
These are dynamically ineffectual bits.

6.2.1 Removal of Statically Ineffectual Bits from Activations. A recent proposal by Judd et al. [64]
called (STR) exploited the desired precision at each CNN layer. Specifically, the precision of a layer
is decided by the maximum number of statically effectual bits needed for the representation of all
the activations in the layer. Such a precision reduction technique can result in different precision
requirements for different layers and hence different multipliers are needed for different layers
with different bit-widths. Thus, they introduced a serial multiplier unit that performs bit-wise
multiplication and hence can be reused across all the layers. However, the computation time of this
unit is proportional to the precision of the layer. Using a serial multiplier increases the latency of
the multiplication operation by the bit-width (b) of the serial data, thus they used b such parallel
units to compensate for the increased latency. Hence, the performance over the fixed bit-width
(f ) implementation improved by f /b, assuming that the b parallel units are able to efficiently hide
the increased latency due to the bit-serial multiplication. An additional observation is that each
layer has a different desired precision depending on the static ineffectual bits in all the activations,
the buffer size at the output of each layer can be customized accordingly to reduce the memory
footprint.
STR was further advanced by the introduction of Dynamic STR [36]. The primary difference

between the two is that STR already knows the per-layer precision based on profiling methods,
while Dynamic STR determines the precision of a group of activations at runtime. The precision
considered by the Dynamic STR is a further refinement over STR because it takes into account only
the activations currently being processed unlike STR that considers all the activations of a layer.
They introduced a circuit to determine the required precision (on-the-fly) for the current batch
of executing activations. Dynamic approaches are always more effective than static approaches
because they use more information, however, they have significantly more overheads also at the
same time.
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Fig. 20. (a) Parallel multiplier unit, (b) Stripes with equivalent throughput, and (c) Pragmatic with equivalent
throughput (adapted from [6])

6.2.2 Removal of dynamically ineffectual bits from activations. An advancement of STR was pro-
posed by Albericio et al. [6] called Pragmatic. Pragmatic exploits dynamic ineffectuality to determine
the precision (see Figure 19). Similarly, Sharify et al. [104] propose an extension to Pragmatic by
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exploiting the dynamic ineffectuality in both activations and weights. An extension over Pragmatic
was proposed by Mahmoud et al. [78] that performs differential convolution. For consecutive
windows of an image it stores the input image in its original form only for the first convolution
and stores the difference of the pixel values for the other windows w.r.t to the corresponding pixels
in the first window. Due to the presence of spatial correlation, these difference values are small and
hence require even lower precision.

As explained earlier dynamic ineffectuality refers to those bits in the precision that are necessary
for representation but are redundant in the computations. If we take such an ineffectuality into
account, we can further reduce the buffer sizes required for the storage of the intermediates produced
by each layer. Figure 20 explains the difference between STR and Pragmatic. Note that all the three
implementations in Figure 20 have the same throughput. As a multiplier migrates from a bit-parallel
implementation in Figure 20(a) to a bit-serial implementation in Figure 20(b) and (c), the throughput
of the implementation scales down by the number of bits. Since the activation originally has a 3-bit
representation, Figure 20 implements three instances of the activation-weight multiplication for
both the bit-serial designs: STR and Pragmatic. As shown in Figure 20(b), STR reduced the precision
of all the activations from 3-bits to 2-bits because all the activations (a0 = 001,a1 = 010,a2 =
000,a3 = 010,a4 = 010,a5 = 010) have at least 1 statically ineffectual bit and hence it is removed
from the representation. Similarly, Figure 20(c) further reduces the representation by encoding
only the positions of the effectual bits in the activations in Figure 20(b).

Despite the increased on-chip storage requirement for the parallel computation units (for equiv-
alent throughput) in all the three works, the area is not adversely affected due to the reduced
precision of the data being stored. As compared to STR, the removal of dynamic ineffectual bits by
Pragmatic reduces the precision even further, thereby reducing the area required for the storage.
Similarly, the throughput and latency are improved in the case of Pragmatic because of the complete
elimination of computations involving the ineffectual bits. The bit-serial multipliers also introduce
additional energy efficiency.

6.2.3 Removal of ineffectual bits from weights. All the three bit-serial designs discussed till now
exploited the ineffectuality in the representation for the activations only. Sharify et al. [105]
advanced the field by exploiting the per-layer ineffectuality in the weights too. They used bit-serial
multipliers as well. However, the difference with respect to prior implementations is that those
implementations fixed the bit-width of the weights and fed input activations serially bit-by-bit
while LOOM [105] exploited serial processing for both the operands of the MAC operation: weights
and activations. They thus reduced the area requirements even further at the cost of additional
latency. For example, in STR one of the 16-bits of an activation was multiplied with all the 16-bits
of a weight per cycle, resulting in a total of 16 cycles for a 16-bit x 16-bit multiplication. However,
LOOM multiplies a 1-bit weight with a 1-bit activation per cycle. The 16-bit x 16-bit multiplication
requires 256 cycles in the worst case. Specifically, the performance advantages for STR and LOOM
over a baseline (fixed-precision) design will be 16/ap and 256/(ap ×wp ) respectively (assuming a
fixed 16-bit precision for weights and activations in the baseline design), where ap andwp are the
reduced precisions for the activations and weights respectively.

6.2.4 Optimizing the processing of the effectual bits: In this section, we discuss the works that
replace the bit-serial multipliers by a flexible multiplier architecture that adapts itself according to
the given design. The limitation of a bit-serial multiplier is that it works well when the bit-widths
are in a given range. This restricts the amount of effectuality that can be exploited by all the layers
of a CNN. An easy solution to this could be to have multiple bit-serial multipliers for all the layers
of a CNN such that they can be adapted to different bit-widths. However, bit-serial multipliers
are slow, and thus they limit the final performance. Sharma et al. [106] proposed to use a 2 × 2
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multiplier as the basic unit and called it a BitBrick. It is possible to fuse these bricks to create larger
multipliers on demand. This depends on the values of the weights and activations in a given layer.

Hence, the main challenge is to determine the method to fuse these BitBricks. Recall that we have
described two paradigms for reusing data: spatial and temporal. These concepts can be adapted for
this case as well. First an n-bit multiplication is broken down into smaller 2 × 2 multiplications.
Subsequently, these multiplications are either distributed across different clusters of BitBricks
(spatial) or are scheduled the on the same cluster in a time-multiplexing manner (temporal). Sharma
et al. describe an approach to first create optimal clusters of BitBricks on demand, and then reuse
them both temporally as well as spatially.
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Lee et al. [71] proposed an optimization to reduce the number of computations done via bit-serial
arithmetic in their architecture called UNPU. The main insight is as follows (refer to Figure 21). In a
16-bit x 16-bit MAC, for each 1-bit x 1-bit bit-serial operation between a weight and an activation, the
corresponding input activations say, X , Y ,and Z (each 1-bit) are multiplied with the corresponding
weights say, wx [MSB : LSB], wy[MSB : LSB], and wz[MSB : LSB], bit-serially over MSB − LSB
cycles. These multiplications are accumulated to form a 1-bit output activation per cycle. Thus,
the input activations are reused overMSB − LSB cycles. Since each of the input activations X , Y
and Z is the same forMSB − LSB cycles, and the number of unique combinations of (wx ,wy ,wz ) is
limited, the number of unique output activations is also limited. In our case of 3 weights (wx ,wy ,
andwz ), the number of such unique combinations will be 23 = 8 and hence 8 possible values are
stored in the LUT, which is indexed by the unique weight combinations. Thus, upon subsequent
MAC operations, if the value exists in the LUT table, the bit-serial multiplication is replaced by an
LUT access. This design reduces the area overhead of bit-serial processing unit by introducing a
small lookup table (LUT) inside the PEs. Note that the idea of introducing the LUT at the highest
level of the memory hierarchy improves the energy requirements.

6.3 Reduction of Precision
Recently a set of techniques have been proposed that convert the encoding of values to reduce the
number of bits required, possibly at the cost of precision. For example, when we convert double
precision numbers to single precision numbers, we are reducing their precision. The advantage of
reducing precision is a higher computational performance, and a significantly reduced memory
footprint but the cost is accuracy. Fortunately for CNNs, this approach can be used very effectively
to compress different parts of the model such that the reduction in accuracy is minimized.

Let us trace the evolution of this area. In the initial CNN implementations [22, 102, 126], a fixed-
precision was used for the entire network. Subsequently, researchers realized the performance and
storage advantages of precision reduction and started using only the minimum required precision
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per layer. This sadly necessitated multiple designs for the functional units and hence, increased
the design and verification complexity significantly. Then came the era of bit-serial computations
(see Section 6.2) to support any level of precision with just one multiplier design. The bit-serial
multiplication also helped in eliminating multiplications with ineffectual bits, thereby leading to
further speedups. The precision was decided using either static or profile-driven analysis; later
approaches did this dynamically as discussed in Section 6.2.

In this regard, Qiu et al. [99] provide a comprehensive analysis of different data precision reduction
strategies and their effect on accuracy. They experimented with a dynamic-precision based strategy,
where weights and feature maps belonging to different layers of a CNN have different degrees of
precision in their binary encoding. Their experiments have shown that reducing the precision of
weights and feature maps from 16 bits to 8 or 4 bits can double the performance of the convolution
layer with only a 0.04% loss in accuracy for the VGG16 model. Concomitantly, the authors show a
50% reduction in the storage space required for the intermediates, which is significant.
Similar works by Chen et al. [20, 21] showed that using a 16-bit multiplier instead of a 32-bit

multiplier increased the error rate of the dot product computation by just 0.26% with a 16.4%
reduction in the memory footprint. Park et al. [96] experimented with reducing the precision of
weights to only 3 bits such that all the weight values of the network fit in the on-chip memory. At
the cost of accuracy, this approach resulted in significantly reduced time and energy.

Another work by Park et al. [95] reduces the precision of majority of non-critical computations,
while performing the full precision computation of the outlier activations in parallel. This introduces
complexity in terms of introducing different multiplier units for outliers and non-outliers. However,
the parallel computation, and data reuse allow for significant savings.

7 INDUSTRIAL DESIGNS OF CNN ACCELERATORS
Unlike academic research where a fair mix of systolic and SIMD designs have been explored for
CNN accelerators, recent trends in industry have seen an upsurge in SIMD (single instruction,
multiple data), MIMD (multiple instruction, multiple data), and VLIW paradigms. These designs do
not prefer off-chip memory because of its high energy and latency requirements. The processing
units in a SIMD architecture are arranged in an array of lanes that cannot communicate with each
other and hence a global on-chip buffer feeds all the lanes with data. Moreover, instead of designing
just a CNN accelerator on the chip, industrial chips are equipped with multiple, heterogeneous
processing units to support both inference and training. In order to maximize parallelism, these
units are fed with their corresponding instructions simultaneously and hence the independent
instructions are packed in a very large instruction word (VLIW). Additionally, some designs are
generic enough to provide program level parallelism, where all the processing units are full-fledged
processors with their own share of local memory for storage (MIMD paradigm).

Let us discuss some of the recent designs along with their pros and cons.

7.1 SIMD-based design
One of the recent works by Jiao et al. [60] propose a Neural Processing Unit (NPU) primarily for
datacenter applications that has four Tensor Engines (TEs) dedicated to accelerating the convolution
operations. Each TE is based on a SIMD architecture, containing B lanes of dot product and
accumulator units spread across K channels. Apart from the on-chip buffers (present in the earlier
designs too) on each TE, there is a large banked on-chip local memory (LM) that is shared among
the four TEs. Thus, the introduction of an extra on-chip level in the memory hierarchy in a SIMD
design reduces the energy consumption significantly, which would have been huge if all the data
was fetched from the external memory. The weights are stored in a compressed form to fit all the
data on-chip and are decompressed before their corresponding MAC operations.
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7.2 VLIW + SIMD
One of the recent proposals, Groq TSP (tensor streaming processor) [2, 49], implements a VLIW
processor that follows the SIMD paradigm. The Groq TSP has seven different functional units
arranged horizontally. There are a total of 20 such horizontal arrangements (also called a superlane)
of the functional units stacked over one another. Here, 20 instances of each functional unit need to
operate on different data values and each of the seven types of functional units in a superlane fetch
and execute a set of VLIW instructions.

They save on the instruction/data memory bandwidth, energy, time, and synchronization logic by
following a systolic communication architecture. Each VLIW instruction enters the first superlane
and ripples down to the next stacked superlane. Similarly, data enters the leftmost functional unit
and ripples to the right.
Hence, the entire burden lies on the compiler to dispatch instructions and data at the right

time such that the corresponding instruction (travelling from top to bottom vertically) as well as
its operands (travelling left to right) reach the functional unit at the same time. This leads to a
deterministic flow of execution, which is leveraged to reduce the off-chip memory accesses by
pre-filling the on-chip memory with the temporally local data.
Similarly, Habana Goya [50] employs eight TPCs (tensor processing cores) for accelerating the

convolution operations. Each TPC is a VLIW based SIMD engine. A large on-chip SRAM is shared
among all the TPCs, and other processing units to minimize the accesses to the external memory.
Additionally, banking allows the designers to effectively partition the large SRAM and perform
simultaneous accesses from different banks.

7.3 MIMD paradigm
A recent industrial example of the MIMD paradigm is Graphcore’s Intelligent Processing Unit
(IPU) [59]. It contains 1216 IPU processing tiles, where each tile is composed of a full-fledged core,
and a local SRAM scratchpad with no external memory. It allows for the exploitation of fine-grained
parallelism by allowing fast irregular data accesses from the local scratchpad.

7.4 VLIW with Systolic Computation
Google’s TPU-v1 [63] consists of a systolic PE array that performs 8-bit integer multiplications
instead of 32-bit floating point multiplications, which saves area, compute time, and energy with
a negligible loss in accuracy. In general, a systolic array is able to cut down the energy spent in
reading data from SRAM by half [62], and hence systolic arrays are in many cases preferred over
SIMD.

To accelerate the training of CNNs, Google developed a supercomputer called TPU-v2 [62]. The
matrix multiply unit follows the same systolic architecture as in TPU-v1, however there are multiple
units to accelerate other linear and non-linear operations involved in training a CNN. These units
(scalar ALU, vector ALU, vector load, vector store, matrix multiply, and transpose) are supplied
with their corresponding instructions packed in a 322-bit VLIW word. Additionally, it uses High
Bandwidth Memory (HBM) that provides 20X higher data bandwidth than the SRAMs in TPU-v1.
TPU-v3 [62] improves over TPU-v2 by using a higher clock frequency and more 2X HBMs than
TPU-v2.

Discussion: In a SIMD design, a large chunk of on-chip area is dedicated to a sophisticated data
distribution network that is capable of multicasting, unicasting and broadcasting data. Hence, a
systolic array can accommodate more PEs per unit area as compared to a SIMD design. Systolic
designs are, however, inferior when it comes to exploiting irregular access patterns because of the
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rigid data movement patterns between the PEs. On the other hand, SIMD/VLIW designs are able to
exploit irregular parallelism.
In general, VLIW is used when multiple units can be run in parallel and there are independent

instructions to be executed on these units. For an architecture with a single type of units, systolic
arrays and SIMD lanes are the popular architectures. Furthermore, for VLIW based designs, the
compiler needs to do the main job of finding the independent instructions and packing them into
a single large instruction. Such compiler-dependent paradigms allow deterministic flow of the
execution. Owing to this reason, Groq TSP does not take advantage of sparsity in the network,
which creates irregularity in the execution.

The large on-chip SRAM in these designs leads to inefficiency in data distribution due to the
wiring and interconnect delays; it also leads to thermal issues. Thus, most of these designs with
large on-chip SRAMs follow one of the two approaches: divide the large on-chip SRAM into small
SRAM arrays and distribute them evenly [59], or allow banking in the large on-chip SRAM to
enable concurrent accesses [49, 60].

8 DISCUSSION
Table 6 classifies recent work on the basis of the technique that is used: orchestration of dataflow,
data reuse, loop unrolling, and the method used for the exploitation of sparsity of data and weights.
As discussed in previous sections, sparsity can be exploited by locating either zero-valued activations,
weights or zero bits in the binary representation of weights and activations. In general, such sparsity
exploitation techniques are also called value-based acceleration techniques because they need to
take into account the exact values of the parameters. Our taxonomy in Section 3 classified these
works on the basis of three optimization objectives; in this section we present a far more specific
classification based on the techniques that are used (refer to Table 6).

Dataflow: In the third column, we classify the works on the basis of the dataflow exploited by
them. We observe that early CNN accelerators were developed primarily for dense CNNs
and hence followed a uniform dataflow strategy as discussed in Section 5.1, while the latter
accelerators were developed for sparse CNNs. In a sparse CNN, the effectual data is scattered
and thus new dataflow paradigms are required. These accelerators require efficient routing
of effectual data. This non-uniformity of data can be exploited in the following ways: ❶
Dot-product: identify the activation vector corresponding to a non-zero weight vector and
then compute the dot-product, ❷ Vector-scalar1: identify a non-zero activation and multiply
it with the weight vector, ❸ Vector-scalar2: identify a non-zero activation and multiply it
with a non-zero weight vector, and ❹ Cartesian-product: identify both non-zero activations
and non-zero weights and perform an all-to-all multiplication.
In addition, RS+ is an improved and flexible version of RS that allows data tiling to improve
the utilization of the PEs. RS provides good mappings and utilization for dense CNNs while
RS+ performs well for both dense as well as sparse CNNs.

Reuse: In the fourth column, we identify the input that is reused by different accelerator designs.
As explained in Section 5.1, there is a strong affinity between certain dataflows and types
of reuse. For example, WS allows weight reuse, OS allows the reuse of partial sums and RS
allows the reuse of inputs, weights and partial sums at the register file. In the case of a sparse
CNN, we need to find effectual weights and reuse them for all effectual activations. There are
different designs in this space that have different levels of aggressiveness when it comes to
locating and eliminating computations involving ineffectual values.

Unrolling: The nested loop structure of a CNN allows us to partition and map different combi-
nations of loop iterators to parallel computation units. The accelerators developed till date
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Proposal Year Dataflow Reuse Unrolling Architecture
Early CNN accelerators

NN-X [44] 2014 WS weights w, l 1D systolic
DianNao [21] 2014 NLR - ao ,ai 1D array

DaDianNao [23] 2014 NLR - ao ,ai 1D array
ShiDianNao [39] 2015 OS psums ar ,ac 2D matrix
UCLA [126] 2015 NLR - ao ,ai 1D array
TPU [63] 2017 WS weights w, l 2D systolic

FlexFlow [77] 2017 flexible adaptive flexible 2D matrix
Origami [16] 2017 WS weights w, l 1D array
YodaNN [11] 2018 WS weights w, l 1D array

CNN accelerators exploiting sparsity
Sparsity exploitation

Indexing Bitmap
Eyeriss [24] 2016 RS weights, act., psums ar ,w 2D array act. -
Cnvlutin [7] 2016 Vector-scalar1 act. - 1D array act. -

Cambricon-X [127] 2016 Dot-product - - 1D array weights -
Cnvlutin2 [65] 2017 Vector-scalar1 act. - 1D array - act.
SCNN [94] 2017 Cartesian product act.+weights - 2D systolic act.+weights -
ZeNA [67] 2017 Vector-scalar2 act. - 1D array - act.+weights

Cambricon-S [128] 2018 Dot-product - - 1D array act.+weights -
SparseCore [31] 2018 Vector-scalar2 act. - 1D array - act.+weights
NullHop [4] 2018 Vector-scalar1 act. - 1D array - act.
TCL [37] 2019 Dot product - - 1D array - weights

Eyeriss-v2 [27] 2019 RS+ weights, act., psums ar ,w 2D array act.+weights -
Swan [75] 2020 Dot product act.+weights - 2D systolic weights -

CNN accelerators exploiting ineffectuality in representation
Sparsity exploitation

Static Ineff. Dynamic Ineff.
STR [64] 2016 NLR - ao ,ai 1D array act. -

D-STR [36] 2017 NLR - ao ,ai 1D array act. -
Pragmatic [6] 2017 NLR - ao ,ai 1D array - act.
Loom [105] 2018 NLR - ao ,ai 1D array act. + weights -

WS→ weight stationary, OS→ output stationary, NLR→ no local reuse, RS→ row stationary, RS+→ row stationary plus
act.→ activations, ineff.→ ineffectuality, psums→ partial sums/intermediates

Table 6. Types of optimizations exploited by different proposals

decide the loop unrolling based on the kind of parallelism that is required and the type of
data to be reused. For the first part of the table (Early CNN accelerators), the unrolling factors
are discussed in detail in Section 5.1. For the second part of the table involving accesses to
sparse CNNs, only the RS dataflow uses a constant unrolling factor, wheres for the rest of
the approaches these factors are decided dynamically. For them the aim is to just route the
effectual data to the computation units and this data can belong to any loop iterator.
For the third part of the table where we list accelerators that exploit ineffectuality at the level
of bits (inside the representation of a number), all the four designs are an extension of the
DaDianNao architecture. They use different versions of bit-serial multipliers. Specifically,
later works compensate for the performance loss due to bit-serial multipliers by increasing
the block size, bi (defined in Section 2.2). This allows for a higher degree of parallelism,
while simultaneously retaining the flexibility to eliminate arithmetic operations involving
the ineffectual bits.

Architecture: In the sixth column, we classify the works on the basis of the accelerator architecture
employed by different works. These were introduced in Section 2.3.1.

Sparsity exploitation: The last group of columns characterizes the proposals on the basis of the
technique employed for the exploitation of sparsity in the network. Our primary aim in such
architectures is to prevent the computation of ineffectual data and utilize the PEs for the
effectual computations only. The first part of the table consists of early accelerators that
were not tailored to take care of sparse networks. The second part describes stand alone
accelerators that record the locations of effectual data by using either indexing or bitmaps
(see Section 5.3). Subsequently, they propose methods to eliminate those computations. The
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third part of the table (explained in Section 6.2) lists papers that have proposed optimizations
to the basic bit-serial multiplier architecture.

8.1 Accuracy of the Competing Architectures
The accuracy of a CNN accelerator refers to the accuracy of the task for which the CNN is being
used. Let us divide our set of optimizations in two classes: ❶ optimizations that perform all the
effectual computations and ❷ optimizations that eliminate some of the effectual computations.
Effectual computations are those that actually contribute to the value of an output pixel. For
example, the multiplication of a zero-valued weight and a non-zero valued activation is ineffectual.
The optimizations such as parallelism, data reuse, sub-expression elimination, removal of in-

effectual computations, and removal of redundant operations fall within the first class. These
optimizations will have no effect on the accuracy of the CNNs because they rearrange, and remap
the computations to the underlying hardware, however the effectual computations remain the same
and hence the final result is the same.
The accuracy will be impacted only when the MAC operation or its operands are perturbed in

some way. This is done by either changing the operands, removing a few operands, reducing the
precision of the operands, truncating the operands, changing the bit-width of the multiplier, or
replacing the multiplication operation with some approximate operation. Such kind of optimizations
fall within the second class of optimizations. All such proposals are presented in Table 7, where the
loss in accuracy is obtained from the results published in the corresponding original papers.

It can be observed from Table 7 that the accuracy loss is within 3% in almost all the cases. Another
observation is that the accuracy loss is more pronounced if the small-weight values are removed as
compared approximating them to a nearby value.

Some proposals use fixed-point multiplication as opposed to floating point multiplication. This
optimization is preferred because it leads to a reduction in the area of the chip with negligible or lim-
ited accuracy loss in the classification tasks. Cambricon-X is one such example (see Table 7). Another
recent proposal called Cavoluche [124] employs a lookup based technique for frequently occurring
patterns in the weight-activation pair. However, the accuracy reduction is due to approximating
near-identical patterns as the already stored patterns in order to reduce the computations.

Year Proposal Accuracy
loss (%)

Reason

2016 Memsqueezer [123] <1.6% Removal of non-zero valued small weights
2018 SNAPEA [5] <=3% Predict the early termination of the computation.
2018 Cambricon-S [128] <2% Pruning technique to reduce the irregular sparsity
2018 Outlier-aware [95] 3% for ResNet Use 4-bit quantization
2018 Cambricon-X [127] negligible 16-bit fixed-point multiplier
2019 Cavoluche [124] 0.44% Stores output corresponding toweight-input patterns in a lookup

table. Use the lookup results for the approximate patterns too.
Table 7. Accuracy loss of several recently proposed techniques

8.2 Comparison of the schemes
In this section, we quantitatively compare the discussed proposals subject to some simplifying
assumptions. We classified the proposals on the basis of multiple metrics as discussed in Section 8.
The type of dataflow is the distinguishing feature among all the accelerators, so we use it for
our comparison. Note that we will be comparing the dataflows and not the exact architecture of
different proposals because there are many unique features in each proposal and such features
cannot be captured by state-of-the-art CNN modeling tools[93].
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Dataflow Energy (pJ/MAC) Performance (MACs/cycle) PE Utilization
16 x 16 array 32 x 32 array 16 x 16 array 32 x 32 array

NLR 96.2 69.3 144 512 0.56
WS 49.1 30.4 144 576 0.56
IS 28 13 254 1009 0.9
OS 16.1 10.2 256 1024 1
RS 6.30 6.27 192 768 0.75
Table 8. Comparison of dataflows (data obtained by running Timeloop [93])

8.2.1 Experimental Setup. We use the Timeloop [93] tool to find an optimal mapping of the
computations in a CNN layer to the PE array. However, Timeloop is not able to model sparse
dataflows and hence it can be used for the comparison of only IS, WS, NLR, RS, and OS dataflows. It
takes as input the specifications of the hardware architecture and the model of the neural network.
It formulates an optimization problem with the desired metric – delay or energy – to compute
the optimal mapping. The constraints of the optimization problem are specified in terms of the
six loop iterators (see Section 2). The generated mapping is then passed to an analytical model (in
Timeloop) to get the PE utilization, energy efficiency, and performance of the mapping.

Our experimental setup is as follows. For comparing these dataflows, the specifications of the
hardware architecture and the neural network layer are kept the same. We perform the experiments
for two sizes of the PE array: 16 × 16 and 32 × 32. These are representative numbers for the PE
array; they have been sourced from [24, 90, 93]. The global buffer is 128 KB in the 16 × 16 array
and 512 KB in the 32 × 32 array. Each PE has a register file of 16 entries. Since there is no register
file in the NLR dataflow, the size of the global buffer is increased to keep the total storage area the
same across the dataflows. We simulate the second layer of VGG-16 [110], where the kernel size
is 3 × 3 pixels and the size of the output feature map is 56 × 56 pixels. The number of input and
output channels is 256 each. The batch size and the stride are set to 1.

8.2.2 Performance Comparison of Dataflows. Table 8 shows the energy efficiency (pJ/MAC),
performance (MACs/cycle), and PE utilization of the five dataflows discussed in Section 5.1. We
observe in Table 8 that the RS dataflow has the lowest energy per MAC because it has a high degree
of data reuse and hence the DRAM accesses are significantly reduced. The NLR dataflow has the
highest energy per MAC because it has no local reuse and hence it has the highest number of
DRAM accesses. Additionally, the WS dataflow has a higher value of the energy per MAC than the
OS dataflow because for each output partial sum, there is a global buffer access while for an OS
dataflow these accesses are not there. Another observation is that even with an extensive design
space exploration and sufficient relaxations in the constraints, the WS dataflow was not able to
achieve full PE utilization. This lower PE utilization for the WS architecture (specifically in TPU)
was also observed in [76]. The reason is the inflexible nature of the spatial mapping: either channel
direction or planar mapping (refer to Section 4.5).

Similar trends for energy efficiency were obtained by Sze et al. [117] using their in-house energy
model. Additionally, the performance in terms of MACs per cycle is the highest for the OS dataflow
because it has a higher PE utilization and hence the idle PE cycles are minimized. As we increase
the size of the PE array and the global buffer, the energy per MAC decreases. This is because a
larger amount of data can now fit in the global buffer and hence redundant DRAM accesses for the
same data are minimized. To summarize, a higher PE utilization leads to better performance and a
dataflow with better reuse opportunities leads to lesser energy consumption.

8.2.3 Performance Comparison of Sparsity-aware Accelerators. To the best of our knowl-
edge, there is no tool (as of 2020) to model the dataflows that exploit sparsity. Thus, we compare
these works by deriving and scaling [57] the performance numbers from the original papers and
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normalizing them with respect to a common baseline, DaDianNao [23]. We choose DaDianNao as
the baseline because most of the sparsity-aware accelerators build on the basic DaDianNao architec-
ture. Table 9 shows the performance and energy comparison of the sparsity-aware accelerators with
respect to DaDianNao [23]. We observe from Table 9 that the exploitation of dynamic ineffectuality
leads to better performance as compared to just using static ineffectuality. Also, the exploitation
of static ineffectuality of activations yields better performance if the statically ineffectual bits are
determined at runtime as in DynamicSTR [36]. This is because DynamicSTR takes in only the
current working set of activations unlike STR that takes into account all the activations of a layer
to determine the static ineffectual bits. Thus, DynamicSTR eliminates ineffectuality at a much finer
granularity. Another observation is that the performance improvement achieved by exploiting
the sparsity in the activations and weights is at par with the improvement achieved by exploiting
the ineffectuality in the bits. This implies that even the non-zero values in a neural network have
significant ineffectuality. Similar are the trends for energy efficiency. To summarize, exploiting the
sparsity of weights and activations along with exploiting the ineffectuality in the non-zero weights
and activations can maximize the performance and energy efficiency.

Proposal Performance Energy Eff. Sparsity Methodology
STR [64] 1.8X 1.5X Static ineffectuality of bits from activations offline

DynamicSTR [36] 2.6X 2.1X Static ineffectuality of bits from activations runtime
Loom [105] 2.8 - 3.2X 2.6 - 2.95X Static ineffectuality of bits from activations and weights offline
Pragmatic [6] 2.25 - 4.31X 1.30 - 1.71X Dynamic ineffectuality of bits from activations runtime
Cnvlutin [7] 1.37X 1.07X Sparsity of activations runtime
Zena [67] 2.74X N/A Sparsity of activations and weights runtime

N/A -> not found in the original paper, Eff. -> efficiency
Table 9. Performance comparison of the proposals w.r.t. [23] (taken from original papers)

9 CHALLENGES IN ASIC DESIGN OF CNN ACCELERATORS
In general, FPGAs are flexible and reconfigurable in nature. GPUs also offer some sort of flexibility
due to a large number of cores, caches, and scratchpads. As opposed to FPGAs and GPUs, ASICs are
not flexible. Once fabricated, the design is fixed and it cannot be reconfigured. Thus, multiple design
decisions need to be made to build an architecture that generalizes well and hence compensates for
the large turnaround time and lack of reconfigurability in an ASIC. Let us elaborate.
Size of the PE array: The compiler plays an important role in mapping the computations to the PE

array such that it is efficiently utilized for most layers and feature map sizes. For this purpose,
the software/compiler and the PE array have to address the following design concerns: ❶
support for pipelining, and ❷ support for folding and scheduling the computations. If multiple
layers are executed on a PE array concurrently as in [10, 103], a synchronization mechanism
among the PEs is necessary to support the pipelining of the layers. It will typically be the case
that the feature map sizes are not the same as the size of the PE array. In such cases, we need to
partition the set of computations and serially execute the partitions (this is known as folding).
If some PEs are idle, we can schedule computations from another channel. Such decisions
will necessitate the development of complex algorithms in both software and hardware.

Systolic vs SIMD: In an ASIC chip, the interconnects are not flexible and are decided at design
time. There are certain area, power, and bandwidth constraints associated with designing
an NoC. The NoC design is highly dependent on the type of dataflow supported by the PE
array: systolic, semi-systolic, or SIMD. A systolic array allows only the PEs at the edges to
access data from the global buffers and hence a lesser bandwidth is required as compared to
a SIMD array that allows all the PEs to access data from the global buffers. This increases
the area of the NoC in the SIMD design. Thus, given the area constraint, more PEs (and
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hence compute) can be packed in a systolic array as compared to a SIMD array. Nevertheless,
the SIMD array allows the exploitation of irregular parallelism. Thus, a trade-off exists in
deciding the appropriate architecture.

Functionality within a PE: There is a design choice involved in deciding the level of functionality
in a PE: a single MAC [21, 77] or multiple computation units such as a tree of adders or a
multiplier array [94].While a PEwithmore computation units is able to process a larger chunk
of data, the complexity and hence the area and power of the PE increase. Additionally, larger
PEs have less synchronization requirements, however, the startup delay and the bandwidth of
prefilling the PEs increases. Thus, the advantage of systolic dataflow is not fully exploited. On
the contrary, a less complex PE is able to minimize the bandwidth requirement and maximize
the reuse among the PEs.

Memory issues: Given the constraints on the on-chip area, it is important to decide the nature of
on-chip buffers, their bit-widths, and their size. The size of the on-chip memory decides the
degree of temporal locality that can be exploited. However, a large on-chip SRAM increases
the power consumption and the access latency. Another important issue is the bit-width
of the different types of data involved in a MAC operation: inputs, outputs, and weights. If
there is a unified SRAM and the bit-widths of the data types are not integer multiples of
the bit-widths of the SRAM, it leads to wasted bandwidth during data accesses. Thus, many
works [21] split the on-chip SRAM to accommodate the bit-width requirements of different
types of data.
Secondly, the on-chip SRAMs need to support banking to allow simultaneous data accesses by
the PE array. This involves a design decision regarding the number of banks for each type of
data. Another important issue in designing the memory system is to prevent the stalling of the
computation array due to the memory accesses. This requires double buffering, a technique
that has a secondary buffer along with the primary buffer and uses them interchangeably
for computation and prefetching. This increases the on-chip area at the cost of improved
performance.
When the on-chip area is limited, circular buffers [21] are sometimes used instead of double
buffering [63]. A circular buffer allows us to access data from one end and prefetch the
data to the other end of the queue. Such buffers have to be carefully designed because of
the conflicting requirements of accessing data and prefetching. In general, it is sufficient to
prefetch as much of data as is needed to process the next row of the output. However, this is
dependent on the neural network model’s parameters.

Level of reconfigurability: Finally, since the development cycle of an ASIC is large, researchers
want to design an ASIC that caters to a large variety of CNNs or ANNs. Owing to this, a
certain degree of dynamic reconfigurability is required to be embedded in the chip. However,
it would lead to increased area and power owing to the extra logic and wiring.

10 CONCLUSION
In this paper, we presented a comprehensive survey of CNN accelerator architectures on custom
hardware. We proposed two ways to classify related work. In Section 3 we classified the related
work based on the performance-enhancing optimization that they target. We took a different look
at related work in Section 8 where we classify CNN accelerator architectures on the basis of their
design. These are two different ways of looking at the same body of work and convey very different
insights. The point to note is that the same design decision can often be used to implement different
performance-enhancing optimizations. For example, we can use a dynamic ineffectuality detector
to either eliminate computations, or to reduce the memory footprint. In many ways both the
taxonomies are orthogonal yet supplementary in nature.
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Let us now comment on the directions in which research is progressing. Early research was
focused on developing accelerators for CNNs assuming that all the data is effectual and the CNN is
dense. Designers thus created rigid designs and dataflows – exploiting the data reuse and deciding
the computations to be unrolled and mapped to different PEs. The second phase saw an upsurge of
sparse CNNs. The networks grew a lot sparser and hence following a previously a rigid dataflow
was a suboptimal choice. This was because these dataflows were not concerned about the number
of ineffectual computations that the sparsity lead to. They followed the same rules everywhere for
bringing in and multiplying the data. Thus, this phase of research focused on developing dataflows
such that only the effectual data is multiplied and read from memory. Most of these were greedy
approaches where decisions were taken when a value was read from memory. They were not
deferred to a later point in time, and most of these decisions were local to the layer. The interactions
between layers was not considered.

The third phase of research focused more on the number of effectual bits in the representation of
the data: weights and activations. These bit-level techniques can be used over and above any of the
previously proposed techniques. One common observation across the second and the third phase
of accelerators was that they allowed sparsity exploitation, be it data sparsity or value sparsity,
across both weights and activations.
There is a lot of work that still needs to be done to ensure that we have proper programming

models, debugging tools, and compiler infrastructure to ensure that CNN accelerators can be
seamlessly integrated in contemporary computing systems. Most of these issues are expected to be
addressed in the coming years.

11 FUTURE DIRECTIONS
Some of the open research problems in this domain are described below in brief.

(1) Novel Memory Hierarchies: Most contemporary industrial designs have opted for an
all-SRAM architecture where the off-chip memory is either non-existent or has a minimal
presence. SRAMs have scalability issues [116], and thus sooner or later there will be a need to
rethink the memory hierarchy of accelerators. A novel memory hierarchy will most likely be a
combination of embedded DRAM, hybrid memory cube technologies, and NVM (non-volatile
memory) technologies.

(2) Processing-in-Memory Paradigms:Over the next few years, processing-in-memory (PIM)
technologies for deep learning accelerators are expected to become very popular. The key
idea here is to perform an analog computation to compute the partial sums, where the weights
are coded as the resistances of transistors or memristive elements such as ReRAMs.
This paradigm greatly reduces the data movement and allows us to quickly get an estimate of
the value of each output pixel. While using NVM elements, we do not need to read in a large
array of weights from memory whenever the system is started; the weights will already be
stored as the state of the NVM elements and thus the overhead of reading and initializing the
network is almost nil.
Analog computation of this nature has its challenges as well. We need an analog to digital
converter, which can have quantization errors, and such signals are increasingly susceptible
to noise. Additionally, implementing max-pooling in the analog domain is difficult [80].
Sadly, the power consumption of DACs and ADCs (digital to analog converters) has been
found to be roughly 50% of the total power consumption in some systems [116]. Some
proposals have handled this by breaking the computation into smaller chunks at the level
of bits and distributing them over the entire 2-D memory array such that the ADCs require
lesser precision; this reduces their power consumption.



Accelerating CNN Inference on ASICs: A Survey 41

(3) New Algorithms: There are many new deep learning algorithms that are becoming increas-
ingly popular such as RNNs [30], GANs [45] and Transformers [120]. Current work has
primarily focused on inferencing in CNNs. Modern networks such as Transformer networks
have an additional self-attention mechanism to embed the information from the neighboring
values in the sequence in the current prediction, thereby leading to a complicated network of
feed-forward and nonlinear layers. The current architectural optimizations focus mainly on
the feed-forward layers while the upcoming networks demand specific optimizations for the
non-linear and normalization layers too. Many innovations are required to implement such
futuristic networks.

(4) Multi-tenancy: In a realistic setting we will have multiple applications that will share a
single accelerator. Modern accelerators do not support multi-tenancy and thus their use in a
cloud setting is limited. There is a need to enable this and make appropriate provisions for
virtual memory and security to enable multiple concurrent applications.

(5) CNN accelerators for IoT devices:
Another challenging direction is the development of accelerators for ultra-lighweight IoT
devices that are limited by the computational resources and battery capacity. There is a need
to create extremely power-efficient versions of CNN inferencing accelerators that provide
acceptable levels of accuracy.

REFERENCES
[1] Kamel Abdelouahab, Maxime Pelcat, Jocelyn Serot, and François Berry. 2018. Accelerating CNN inference on FPGAs:

A Survey. arXiv preprint arXiv:1806.01683 (2018).
[2] Dennis Abts, Jonathan Ross, Jonathan Sparling, Mark Wong-VanHaren, Max Baker, Tom Hawkins, Andrew Bell, John

Thompson, Temesghen Kahsai, Garrin Kimmell, et al. [n.d.]. Think Fast: A Tensor Streaming Processor (TSP) for
Accelerating Deep Learning Workloads. ([n. d.]).

[3] Charu C Aggarwal, Mansurul A Bhuiyan, and Mohammad Al Hasan. 2014. Frequent Pattern Mining Algorithms: A
Survey. In Frequent Pattern Mining. Springer International Publishing, 19–64.

[4] Alessandro Aimar, Hesham Mostafa, Enrico Calabrese, Antonio Rios-Navarro, Ricardo Tapiador-Morales, Iulia-
Alexandra Lungu, Moritz B Milde, Federico Corradi, Alejandro Linares-Barranco, Shih-Chii Liu, et al. 2018. Nullhop:
A Flexible Convolutional Neural Network Accelerator Based on Sparse Representations of Feature Maps. IEEE
Transactions on Neural Networks and Learning Systems (TNNLS) 30, 3 (2018), 644–656.

[5] Vahideh Akhlaghi, Amir Yazdanbakhsh, Kambiz Samadi, Rajesh K Gupta, and Hadi Esmaeilzadeh. 2018. SnaPEA:
Predictive Early Activation for Reducing Computation in Deep Convolutional Neural Networks. In International
Symposium on Computer Architecture (ISCA). IEEE, 662–673.

[6] Jorge Albericio, Alberto Delmás, Patrick Judd, Sayeh Sharify, Gerard O’Leary, Roman Genov, and Andreas Moshovos.
2017. Bit-pragmatic deep neural network computing. In International Symposium on Microarchitecture (MICRO). ACM,
382–394.

[7] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright Jerger, and Andreas Moshovos. 2016.
Cnvlutin: ineffectual-neuron-free deep neural network computing. In ACM SIGARCH Computer Architecture News,
Vol. 44. IEEE Press, 1–13.

[8] Krizhevsky Alex, Sutskever Ilya, Hinton, and Geoffrey E. 2012. ImageNet Classification with Deep Convolutional
Neural Networks. In Advances in neural information processing systems (NIPS). 1097–1105.

[9] Falih SM Alkhafaji, Wan ZW Hasan, MM Isa, and N Sulaiman. 2018. Robotic controller: ASIC versus FPGA-a review.
Journal of Computational and Theoretical Nanoscience 15 (2018), 1–25.

[10] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. 2016. Fused-layer CNN accelerators. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 1–12.

[11] Renzo Andri, Lukas Cavigelli, Davide Rossi, and Luca Benini. 2018. YodaNN: An Architecture for Ultralow Power
Binary-Weight CNN Acceleration. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD) 37, 1 (2018), 48–60.

[12] Shuichi Asano, Tsutomu Maruyama, and Yoshiki Yamaguchi. [n.d.]. Performance comparison of FPGA, GPU and CPU
in image processing. In 2009 international conference on field programmable logic and applications. IEEE, 126–131.

[13] Ahmed Ghazi Blaiech, Khaled Ben Khalifa, Carlos Valderrama, Marcelo AC Fernandes, and Mohamed Hedi Bedoui.
2019. A survey and taxonomy of FPGA-based deep learning accelerators. Journal of Systems Architecture 98 (2019),



42 D. Moolchandani et al.

331–345.
[14] Andrew Boutros, Sadegh Yazdanshenas, and Vaughn Betz. 2018. You Cannot Improve What You Do not Measure:

FPGA vs. ASIC Efficiency Gaps for Convolutional Neural Network Inference. ACM Transactions on Reconfigurable
Technology and Systems (TRETS) 11, 3 (2018), 20.

[15] Srihari Cadambi, Abhinandan Majumdar, Michela Becchi, Srimat Chakradhar, and Hans Peter Graf. 2010. A pro-
grammable parallel accelerator for learning and classification. In International Conference on Parallel architectures and
Compilation Techniques (PACT). ACM, 273–284.

[16] Lukas Cavigelli and Luca Benini. 2017. Origami: A 803-GOp/s/W Convolutional Network Accelerator. IEEE Transac-
tions on Circuits and Systems for Video Technology (TCSVT) 27, 11 (2017), 2461–2475.

[17] Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari Cadambi. 2010. A dynamically configurable
coprocessor for convolutional neural networks. In ACM SIGARCH Computer Architecture News, Vol. 38. ACM, 247–257.

[18] Jung-Woo Chang and Suk-Ju Kang. 2018. Optimizing FPGA-based convolutional neural networks accelerator for
image super-resolution. In 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 343–348.

[19] Shuai Che, Jie Li, JeremyW Sheaffer, Kevin Skadron, and John Lach. 2008. Accelerating compute-intensive applications
with GPUs and FPGAs. In 2008 Symposium on Application Specific Processors. IEEE, 101–107.

[20] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier Temam. 2014. DianNao: a
small-footprint high-throughput accelerator for ubiquitous machine-learning. In ACM Sigplan Notices, Vol. 49. ACM,
269–284.

[21] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier Temam. 2014. DianNao:
A Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-Learning. In International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS). ACM, 269âĂŞ284.

[22] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier Temam. 2015. A
High-Throughput Neural Network Accelerator. IEEE Micro 35, 3 (2015), 24–32.

[23] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun,
et al. 2014. Dadiannao: A machine-learning supercomputer. In International Symposium on Microarchitecture (MICRO).
IEEE, 609–622.

[24] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: a spatial architecture for energy-efficient dataflow for
convolutional neural networks. In International Symposium on Computer Architecture (ISCA). IEEE, 367–379.

[25] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2018. Eyeriss v2: A Flexible and High-Performance Accelerator for
Emerging Deep Neural Networks. arXiv preprint arXiv:1807.07928 (2018).

[26] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2016. Eyeriss: An Energy-Efficient Reconfigurable
Accelerator for Deep Convolutional Neural Networks. IEEE Journal of Solid-State Circuits 52, 1 (2016), 127–138.

[27] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2: A Flexible Accelerator for Emerging
Deep Neural Networks on Mobile Devices. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 2
(2019), 292–308.

[28] Jian Cheng, Pei-song Wang, Gang Li, Qing-hao Hu, and Han-qing Lu. 2018. Recent advances in efficient computation
of deep convolutional neural networks. Frontiers of Information Technology & Electronic Engineering 19, 1 (2018),
64–77.

[29] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang, and Yuan Xie. 2016. PRIME: a
novel processing-in-memory architecture for neural network computation in ReRAM-based main memory. In ACM
SIGARCH Computer Architecture News, Vol. 44. IEEE Press, 27–39.

[30] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[31] Sharad Chole, Ramteja Tadishetti, and Sree Reddy. 2018. SparseCore: An Accelerator for Structurally Sparse CNNs.
(2018).

[32] Jason Cong and Bingjun Xiao. 2014. Minimizing Computation in Convolutional Neural Networks. In International
Conference on Artificial Neural Networks. Springer, 281–290.

[33] William J. Dally, Yatish Turakhia, and Song Han. 2020. Domain-Specific Hardware Accelerators. Commun. ACM 63, 7
(June 2020), 48âĂŞ57. https://doi.org/10.1145/3361682

[34] Subhasis Das and Song Han. 2018. NeuralTalk on Embedded System and GPU-accelerated RNN. In CVA group,
Stanford University.

[35] DeepChip. 2011. FPFA vs ASIC. https://www.deepchip.com/downloads/fpga-vs-asic.pdf
[36] Alberto Delmas, Patrick Judd, Sayeh Sharify, and Andreas Moshovos. 2017. Dynamic Stripes: Exploiting the Dynamic

Precision Requirements of Activation Values in Neural Networks. arXiv preprint arXiv:1706.00504 (2017).
[37] Alberto Delmas, Patrick Judd, Dylan Malone Stuart, Zissis Poulos, Mostafa Mahmoud, Sayeh Sharify, Milos Nikolic,

and Andreas Moshovos. 2018. Bit-Tactical: Exploiting Ineffectual Computations in Convolutional Neural Networks:

https://doi.org/10.1145/3361682
https://www.deepchip.com/downloads/fpga-vs-asic.pdf


Accelerating CNN Inference on ASICs: A Survey 43

Which, Why, and How. arXiv preprint arXiv:1803.03688 (2018).
[38] Alberto Delmas Lascorz, Patrick Judd, Dylan Malone Stuart, Zissis Poulos, Mostafa Mahmoud, Sayeh Sharify, Milos

Nikolic, Kevin Siu, and Andreas Moshovos. 2019. Bit-Tactical: A Software/Hardware Approach to Exploiting Value
and Bit Sparsity in Neural Networks. In International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). ACM, 749–763.

[39] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo, Xiaobing Feng, Yunji Chen, and Olivier
Temam. 2015. ShiDianNao: shifting vision processing closer to the sensor. In ACM SIGARCH Computer Architecture
News, Vol. 43. ACM, 92–104.

[40] Aysegul Dundar, Jonghoon Jin, Vinayak Gokhale, Berin Martini, and Eugenio Culurciello. 2014. Memory access
optimized routing scheme for deep networks on a mobile coprocessor. In High Performance Extreme Computing
Conference (HPEC). IEEE, 1–6.

[41] Clément Farabet, Berin Martini, Benoit Corda, Polina Akselrod, Eugenio Culurciello, and Yann LeCun. 2011. Neu-
Flow: A Runtime Reconfigurable Dataflow Processor for Vision. In IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW). IEEE, 109–116.

[42] Clément Farabet, Cyril Poulet, Jefferson Y Han, and Yann LeCun. 2009. CNP: An FPGA-based processor for Convolu-
tional Networks. In International Conference on Field Programmable Logic and Applications (FPL). IEEE, 32–37.

[43] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos Kozyrakis. 2019. Tangram: Optimized coarse-grained
dataflow for scalable NN accelerators. In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems. 807–820.

[44] Vinayak Gokhale, Jonghoon Jin, Aysegul Dundar, Berin Martini, and Eugenio Culurciello. 2014. A 240 g-ops/s mobile
coprocessor for deep neural networks. In IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW). 682–687.

[45] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. 2014. Generative adversarial nets. In Advances in neural information processing systems. 2672–2680.

[46] Hans P Graf, Srihari Cadambi, Venkata Jakkula, Murugan Sankaradass, Eric Cosatto, Srimat Chakradhar, and Igor
Dourdanovic. 2009. A Massively Parallel Digital Learning Processor. In Advances in Neural Information Processing
Systems (NIPS). 529–536.

[47] Kaiyuan Guo, Shulin Zeng, Jincheng Yu, Yu Wang, and Huazhong Yang. 2017. A Survey of FPGA Based Neural
Network Accelerator. arXiv preprint arXiv:1712.08934 (2017).

[48] Linley Gwennap. 2020. Groq Rocks Neural Networks. https://tractica.omdia.com/automation-robotics/fpgas-challenge-
gpus-as-a-platform-for-deep-learning/

[49] Linley Gwennap. 2020. Groq Rocks Neural Networks. https://www.linleygroup.com/newsletters/newsletter_detail.
php?num=6110&year=2020&tag=3

[50] Linley Gwennap. 2020. Groq Rocks Neural Networks. https://habana.ai/wp-content/uploads/pdf/habana_labs_goya_
whitepaper.pdf

[51] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang Xie, Hong Luo, Song Yao, Yu Wang, et al.
2016. ESE: efficient speech recognition engine with compressed LSTM on FPGA. arXiv preprint arXiv 1612 (2016).

[52] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J Dally. 2016. EIE:
Efficient Inference Engine on Compressed Deep Neural Network. In International Symposium on Computer Architecture
(ISCA). IEEE Press, 243–254.

[53] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights and connections for efficient neural
network. In Advances in Neural Information Processing Systems (NIPS). 1135–1143.

[54] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 770–778.

[55] Kartik Hegde, Jiyong Yu, Rohit Agrawal, Mengjia Yan, Michael Pellauer, and Christopher W Fletcher. 2018. UCNN:
exploiting computational reuse in deep neural networks via weight repetition. In International Symposium on Computer
Architecture (ISCA). IEEE Press, 674–687.

[56] Mark Horowitz. 2014. 1.1 Computing’s energy problem (and what we can do about it). In International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC). IEEE, 10–14.

[57] Wei Huang, Karthick Rajamani, Mircea R Stan, and Kevin Skadron. 2011. Scaling with design constraints: Predicting
the future of big chips. IEEE Micro 31, 4 (2011), 16–29.

[58] Dongseok Im, Donghyeon Han, Sungpill Choi, Sanghoon Kang, and Hoi-Jun Yoo. 2019. Dt-cnn: Dilated and transposed
convolution neural network accelerator for real-time image segmentation on mobile devices. In 2019 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 1–5.

[59] Zhe Jia, Blake Tillman, MarcoMaggioni, and Daniele Paolo Scarpazza. 2019. Dissecting the Graphcore IPUArchitecture
via Microbenchmarking. arXiv preprint arXiv:1912.03413 (2019).

https://tractica.omdia.com/automation-robotics/fpgas-challenge-gpus-as-a-platform-for-deep-learning/
https://tractica.omdia.com/automation-robotics/fpgas-challenge-gpus-as-a-platform-for-deep-learning/
https://www.linleygroup.com/newsletters/newsletter_detail.php?num=6110&year=2020&tag=3
https://www.linleygroup.com/newsletters/newsletter_detail.php?num=6110&year=2020&tag=3
https://habana.ai/wp-content/uploads/pdf/habana_labs_goya_whitepaper.pdf
https://habana.ai/wp-content/uploads/pdf/habana_labs_goya_whitepaper.pdf


44 D. Moolchandani et al.

[60] Yang Jiao, Liang Han, Rong Jin, Yi-Jung Su, Chiente Ho, Li Yin, Yun Li, Long Chen, Zhen Chen, Lu Liu, et al. 2020.
7.2 A 12nm Programmable Convolution-Efficient Neural-Processing-Unit Chip Achieving 825TOPS. In 2020 IEEE
International Solid-State Circuits Conference-(ISSCC). IEEE, 136–140.

[61] Jonghoon Jin, Vinayak Gokhale, Aysegul Dundar, Bharadwaj Krishnamurthy, Berin Martini, and Eugenio Culurciello.
2014. An efficient implementation of deep convolutional neural networks on a mobile coprocessor. In International
Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 133–136.

[62] Norman P. Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant Patil, James Laudon, Cliff Young, and David
Patterson. 2020. A Domain-Specific Supercomputer for Training Deep Neural Networks. Commun. ACM 63, 7 (June
2020), 67âĂŞ78. https://doi.org/10.1145/3360307

[63] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh
Bhatia, Nan Boden, Al Borchers, et al. 2017. In-datacenter performance analysis of a tensor processing unit. In
International Symposium on Computer Architecture (ISCA). IEEE, 1–12.

[64] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M Aamodt, and Andreas Moshovos. 2016. Stripes: Bit-serial
deep neural network computing. In International Symposium on on Microarchitecture (MICRO). IEEE, 1–12.

[65] Patrick Judd, Alberto Delmas, Sayeh Sharify, and Andreas Moshovos. 2017. Cnvlutin2: Ineffectual-Activation-and-
Weight-Free Deep Neural Network Computing. arXiv preprint arXiv:1705.00125 (2017).

[66] Moein Khazraee, Lu Zhang, Luis Vega, and Michael Bedford Taylor. 2017. Moonwalk: Nre optimization in asic clouds.
ACM SIGARCH Computer Architecture News 45, 1 (2017), 511–526.

[67] Dongyoung Kim, Junwhan Ahn, and Sungjoo Yoo. 2018. ZeNA: Zero-Aware Neural Network Accelerator. IEEE Design
& Test 35, 1 (2018), 39–46.

[68] Hyeonuk Kim, Jaehyeong Sim, Yeongjae Choi, and Lee-Sup Kim. 2017. A Kernel Decomposition Architecture for
Binary-weight Convolutional Neural Networks. In Proceedings of the Design Automation Conference (DAC). ACM, 60.

[69] HT Kung. 1986. Why Systolic Architectures?. In Advanced computer architecture. IEEE Computer Society Press,
300–309.

[70] Ian Kuon and Jonathan Rose. 2007. Measuring the gap between FPGAs and ASICs. IEEE Transactions on computer-aided
design of integrated circuits and systems 26, 2 (2007), 203–215.

[71] Jinmook Lee, Changhyeon Kim, Sanghoon Kang, Dongjoo Shin, Sangyeob Kim, and Hoi-Jun Yoo. 2018. UNPU: An
energy-efficient deep neural network accelerator with fully variable weight bit precision. IEEE Journal of Solid-State
Circuits 54, 1 (2018), 173–185.

[72] Xiaqing Li, Guangyan Zhang, H Howie Huang, Zhufan Wang, and Weimin Zheng. 2016. Performance Analysis of
GPU-Based Convolutional Neural Networks. In International Conference on Parallel Processing (ICPP). IEEE, 67–76.

[73] Robert LiKamWa, Yunhui Hou, Julian Gao, Mia Polansky, and Lin Zhong. 2016. RedEye: analog ConvNet image
sensor architecture for continuous mobile vision. In ACM SIGARCH Computer Architecture News, Vol. 44. IEEE Press,
255–266.

[74] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E Haque, Lingjia Tang, and Jason Mars. 2018. The
Architectural Implications of Autonomous Driving: Constraints and Acceleration. In ACM SIGPLAN Notices, Vol. 53.
ACM, 751–766.

[75] Bosheng Liu, Xiaoming Chen, Yinhe Han, Ying Wang, Jiajun Li, Haobo Xu, and Xiaowei Li. 2020. Search-free
Accelerator for Sparse Convolutional Neural Networks. In 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE, 524–529.

[76] Bosheng Liu, Xiaoming Chen, Ying Wang, Yinhe Han, Jiajun Li, Haobo Xu, and Xiaowei Li. 2019. Addressing the
issue of processing element under-utilization in general-purpose systolic deep learning accelerators. In Proceedings of
the 24th Asia and South Pacific Design Automation Conference. 733–738.

[77] Wenyan Lu, Guihai Yan, Jiajun Li, Shijun Gong, Yinhe Han, and Xiaowei Li. 2017. FlexFlow: A Flexible Dataflow
Accelerator Architecture for Convolutional Neural Networks. In International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 553–564.

[78] Mostafa Mahmoud, Kevin Siu, and Andreas Moshovos. 2018. Diffy: A Déjà vu-free differential deep neural network
accelerator. In International Symposium on Microarchitecture (MICRO). IEEE, 134–147.

[79] Sparsh Mittal. 2018. A survey of FPGA-based accelerators for convolutional neural networks. Neural Computing and
Applications (2018), 1–31.

[80] Sparsh Mittal. 2018. A Survey of ReRAM-Based Architectures for Processing-In-Memory and Neural Networks.
Machine Learning and Knowledge Extraction 1, 1 (2018), 75–114.

[81] Sparsh Mittal. 2019. A Survey on optimized implementation of deep learning models on the NVIDIA Jetson platform.
Journal of Systems Architecture 97 (2019), 428–442.

[82] Sparsh Mittal. 2020. A survey on modeling and improving reliability of DNN algorithms and accelerators. Journal of
Systems Architecture 104 (2020), 101689.

https://doi.org/10.1145/3360307


Accelerating CNN Inference on ASICs: A Survey 45

[83] Andreas Moshovos, Jorge Albericio, Patrick Judd, Alberto Delmas, Sayeh Sharify, Mostafa Mahmoud, Tayler Hether-
ington, Milos Nikolic, Dylan Malone Stuart, Kevin Siu, et al. 2018. Identifying and Exploiting Ineffectual Computations
to Enable Hardware Acceleration of Deep Learning. In International New Circuits and Systems Conference (NEWCAS).
IEEE, 356–360.

[84] Andreas Moshovos, Jorge Albericio, Patrick Judd, Alberto Delmás Lascorz, Sayeh Sharify, Tayler Hetherington, Tor
Aamodt, and Natalie Enright Jerger. 2018. Value-Based Deep-Learning Acceleration. IEEE Micro 38, 1 (2018), 41–55.

[85] Andreas Moshovos, Jorge Albericio, Patrick Judd, Alberto Delmás Lascorz, Sayeh Sharify, Zissis Poulos, Tayler
Hetherington, Tor Aamodt, and Natalie Enright Jerger. 2018. Exploiting Typical Values to Accelerate Deep Learning.
Computer 51, 5 (2018), 18–30.

[86] Mohammad Motamedi, Philipp Gysel, Venkatesh Akella, and Soheil Ghiasi. 2016. Design space exploration of
FPGA-based Deep Convolutional Neural Networks. In Proceedings of the Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE, 575–580.

[87] Boris Murmann, Daniel Bankman, E Chai, Daisuke Miyashita, and Lita Yang. 2015. Mixed-signal circuits for embedded
machine-learning applications. In Asilomar Conference on Signals, Systems and Computers (ACSSC). IEEE, 1341–1345.

[88] Eriko Nurvitadhi, David Sheffield, Jaewoong Sim, Asit Mishra, Ganesh Venkatesh, and Debbie Marr. 2016. Accelerating
binarized neural networks: Comparison of FPGA, CPU, GPU, and ASIC. In 2016 International Conference on Field-
Programmable Technology (FPT). IEEE, 77–84.

[89] Eriko Nurvitadhi, Ganesh Venkatesh, Jaewoong Sim, Debbie Marr, Randy Huang, Jason Ong Gee Hock, Yeong Tat
Liew, Krishnan Srivatsan, Duncan Moss, Suchit Subhaschandra, et al. 2017. Can FPGAs Beat GPUs in Accelerating
Next-Generation Deep Neural Networks?. In International Symposium on Field-Programmable Gate Arrays (FPGA).
ACM, 5–14.

[90] Nvidia. 2017. NVDLA Open Source Project. (2017).
[91] NVIDIA. 2019. NVIDIA CUDA C Programming Guide, Version 10.1. https://docs.nvidia.com/cuda/cuda-c-programming-

guide/
[92] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy Fowers, Karin Strauss, and Eric S Chung. [n.d.]. Accelerating

deep convolutional neural networks using specialized hardware. ([n. d.]).
[93] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen, Victor A Ying, Anurag Mukkara, Rang-

harajan Venkatesan, Brucek Khailany, Stephen W Keckler, and Joel Emer. 2019. Timeloop: A systematic approach to
dnn accelerator evaluation. In 2019 IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS). IEEE, 304–315.

[94] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan Venkatesan, Brucek Khailany,
Joel Emer, Stephen W Keckler, and William J Dally. 2017. SCNN: An accelerator for compressed-sparse convolutional
neural networks. In International Symposium on Computer Architecture (ISCA). IEEE, 27–40.

[95] Eunhyeok Park, Dongyoung Kim, and Sungjoo Yoo. 2018. Energy-efficient neural network accelerator based on
outlier-aware low-precision computation. In International Symposium on Computer Architecture (ISCA). IEEE, 688–698.

[96] Jinhwan Park and Wonyong Sung. 2016. FPGA based implementation of deep neural networks using on-chip memory
only. In International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 1011–1015.

[97] Maurice Peemen, Arnaud AA Setio, Bart Mesman, and Henk Corporaal. 2013. Memory-centric accelerator design for
convolutional neural networks. In International Conference on Computer Design (ICCD). IEEE, 13–19.

[98] Nikolay Petkov. 1993. Systolic Parallel Processing. Advances in Parallel Computing. Volume 5, North-Holland, Elsevier
Sci. Publ., Amsterdam. ISBN 0444887695, 1993 (1993).

[99] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen
Song, et al. 2016. Going Deeper with Embedded FPGA Platform for Convolutional Neural Network. In International
Symposium on Field-Programmable Gate Arrays (FPGA). ACM, 26–35.

[100] Karl Rupp. 2018. 42 Years ofMicroprocessor TrendData. https://www.karlrupp.net/2018/02/42-years-of-microprocessor-
trend-data/

[101] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. 2015. ImageNet Large Scale Visual Recognition Challenge. International
Journal of Computer Vision 115, 3 (2015), 211–252.

[102] Murugan Sankaradas, Venkata Jakkula, Srihari Cadambi, Srimat Chakradhar, Igor Durdanovic, Eric Cosatto, and
Hans Peter Graf. 2009. A Massively Parallel Coprocessor for Convolutional Neural Networks. In International
Conference on Application-specific Systems, Architectures and Processors (ASAP). IEEE, 53–60.

[103] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian, John Paul Strachan, Miao Hu, R Stanley
Williams, and Vivek Srikumar. 2016. ISAAC: a convolutional neural network accelerator with in-situ analog arithmetic
in crossbars. In International Symposium on Computer Architecture (ISCA). IEEE Press, 14–26.

[104] Sayeh Sharify, Alberto Delmas Lascorz, Mostafa Mahmoud, Milos Nikolic, Kevin Siu, Dylan Malone Stuart, Zissis
Poulos, and Andreas Moshovos. 2019. Laconic Deep Learning Inference Acceleration. In International Symposium on

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/


46 D. Moolchandani et al.

Computer Architecture (ISCA). ACM, 304–317.
[105] Sayeh Sharify, Alberto Delmas Lascorz, Kevin Siu, Patrick Judd, and Andreas Moshovos. 2018. Loom: exploiting

weight and activation precisions to accelerate convolutional neural networks. In Proceedings of the Design Automation
Conference (DAC). ACM, 20.

[106] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson Chau, Vikas Chandra, and Hadi Esmaeilzadeh. 2018.
Bit fusion: bit-level dynamically composable architecture for accelerating deep neural networks. (2018), 764–775.

[107] Ahmad Shawahna, Sadiq M Sait, and Aiman El-Maleh. 2018. FPGA-Based Accelerators of Deep Learning Networks
for Learning and Classification: A Review. IEEE Access 7 (2018), 7823–7859.

[108] Yongming Shen, Michael Ferdman, and Peter Milder. 2017. Escher: A CNN Accelerator with Flexible Buffering to
Minimize Off-Chip Transfer. In International Symposium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 93–100.

[109] Hyeonuk Sim, Jason H Anderson, and Jongeun Lee. 2019. XOMA: exclusive on-chip memory architecture for energy-
efficient deep learning acceleration. In Proceedings of the 24th Asia and South Pacific Design Automation Conference.
651–656.

[110] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556 (2014).

[111] Kevin Siu, Dylan Malone Stuart, Mostafa Mahmoud, and Andreas Moshovos. 2018. Memory Requirements for
Convolutional Neural Network Hardware Accelerators. In IEEE International Symposium onWorkload Characterization
(IISWC). IEEE, 111–121.

[112] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. 2017. PipeLayer: A Pipelined ReRAM-Based Accelerator for
Deep Learning. In International Symposium on High Performance Computer Architecture (HPCA). IEEE, 541–552.

[113] Lili Song, Ying Wang, Yinhe Han, Xin Zhao, Bosheng Liu, and Xiaowei Li. 2016. C-Brain: A deep learning accelerator
that tames the diversity of CNNs through adaptive data-level parallelization. In Proceedings of the Design Automation
Conference (DAC). IEEE, 1–6.

[114] Mingcong Song, Jiechen Zhao, Yang Hu, Jiaqi Zhang, and Tao Li. 2018. Prediction Based Execution on Deep Neural
Networks. In International Symposium on Computer Architecture (ISCA). IEEE, 752–763.

[115] Narayanan Sundaram. 2012. Making Computer Vision Computationally Efficient. Ph.D. Dissertation. UC Berkeley.
[116] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. 2020. Efficient Processing of Deep Neural Networks.

Synthesis Lectures on Computer Architecture (2020).
[117] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017. Efficient Processing of Deep Neural Networks: A

Tutorial and Survey. Proc. IEEE 105, 12 (2017), 2295–2329.
[118] Fengbin Tu, Weiwei Wu, Shouyi Yin, Leibo Liu, and Shaojun Wei. 2018. RANA: towards efficient neural acceleration

with refresh-optimized embedded DRAM. In International Symposium on Computer Architecture (ISCA). IEEE Press,
340–352.

[119] Sumanth Umesh and Sparsh Mittal. 2019. A survey of spintronic architectures for processing-in-memory and neural
networks. Journal of Systems Architecture 97 (2019), 349–372.

[120] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. In Advances in neural information processing systems. 5998–6008.

[121] Richard Wilson Vuduc. 2003. Automatic performance tuning of sparse matrix kernels. Vol. 1. University of California,
Berkeley.

[122] Shihao Wang, Dajiang Zhou, Xushen Han, and Takeshi Yoshimura. 2017. Chain-NN: An energy-efficient 1D chain
architecture for accelerating deep convolutional neural networks. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2017. IEEE, 1032–1037.

[123] Ying Wang, Huawei Li, and Xiaowei Li. 2016. Re-architecting the on-chip memory sub-system of machine-learning
accelerator for embedded devices. In Proceedings of the International Conference on Computer-Aided Design (ICCAD).
ACM, 13.

[124] Ying Wang, Shengwen Liang, Huawei Li, and Xiaowei Li. 2019. A None-Sparse Inference Accelerator that Distills and
Reuses the Computation Redundancy in CNNs. In Proceedings of the 56th Annual Design Automation Conference 2019.
1–6.

[125] Xiaowei Xu, Yukun Ding, Sharon Xiaobo Hu, Michael Niemier, Jason Cong, Yu Hu, and Yiyu Shi. 2018. Scaling for
edge inference of deep neural networks. Nature Electronics 1, 4 (2018), 216.

[126] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. 2015. Optimizing FPGA-based
Accelerator Design for Deep Convolutional Neural Networks. In International Symposium on Field-Programmable
Gate Arrays (FPGA). ACM, 161–170.

[127] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo, Tianshi Chen, and Yunji Chen. 2016.
Cambricon-x: An accelerator for sparse neural networks. In International Symposium on Microarchitecture (MICRO).
IEEE, 1–12.



Accelerating CNN Inference on ASICs: A Survey 47

[128] Xuda Zhou, Zidong Du, Qi Guo, Shaoli Liu, Chengsi Liu, Chao Wang, Xuehai Zhou, Ling Li, Tianshi Chen, and
Yunji Chen. 2018. Cambricon-S: Addressing Irregularity in Sparse Neural Networks through A Cooperative Soft-
ware/Hardware Approach. In International Symposium on Microarchitecture (MICRO). IEEE, 15–28.


	Abstract
	1 Introduction
	1.1 Scope of the Survey
	1.2 Organization

	2 Background
	2.1 Overview of a Convolutional Neural Network (CNN)
	2.2 Running Example: Convolution Layer
	2.3 Reference Architecture of a CNN Accelerator

	3 Taxonomy
	4 Reduction in Computation Time
	4.1 Exploiting the Inherent Parallelism in CNNs
	4.2 Pattern-based Computation Reduction in Convolution
	4.3 Removal of Ineffectual Computations
	4.4 Prediction-driven Computation Reduction
	4.5 Improving the PE Utilization

	5 Reduction of the Memory Access Time
	5.1 Data Reuse: Temporal Reuse
	5.2 Data Reuse: Spatial Reuse
	5.3 Eliminate Loading of Ineffectual Data
	5.4 Miscellaneous Techniques

	6 Reduction in the Memory Footprint
	6.1 Data and Weight Compression
	6.2 Reduction of Ineffectual Bits in the Binary Representation
	6.3 Reduction of Precision

	7 Industrial Designs of CNN Accelerators
	7.1 SIMD-based design
	7.2 VLIW + SIMD
	7.3 MIMD paradigm
	7.4 VLIW with Systolic Computation

	8 Discussion
	8.1 Accuracy of the Competing Architectures
	8.2 Comparison of the schemes

	9 Challenges in ASIC Design of CNN Accelerators
	10 Conclusion
	11 Future Directions
	References

