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ABSTRACT leakage power it dissipates. Moreove, is also a strong function of
temperature, which increases its variability [31].

As VLSI technology continues to scale, parameter variation is One of the most harmful effects of variation is that some sections of
about to pose a major challenge to high-performance processor dgre chip are slower than others — either because their transistors are
sign. In particular, within-die variation is directly detrimental to a intrinsically slower or because high temperature or low supply volt-
processor’s frequency and leakage power. age renders them so. As a result, circuits in these sections may be

To gain an understanding of this problem, this paper starts out byinable to propagate signals fast enough and may suffer timing errors.
proposing a microarchitecture-aware model for parameter variatiormo avoid these errors, designers in upcoming technology generations
It includes both random and systematic effects. It is partially calimay slow down the frequency of the processor or create overly con-
brated with empirical data and uses a few intuitive parameters. Thegervative designs. It has been suggested that parameter variation may
we extend the framework to model timing errors caused by paramevipe out most of the potential gains provided by one technology gen-
ter variation. This model yields the failure rate of microarchitecturaleration [3].
blocks as a function of frequency and the amount of variation. With  An important first step to redress this trend is to understand how
the combination of the variation model and the error model, we havparameter variation affects timing errors in high-performance proces-
VARIUS a comprehensive model that is capable of producing detailegors. Based on this, we could devise techniques to cope with the prob-
statistics of timing errors as a function of different process parametetem — hopefully recouping the full gains offered by every technology
and operating conditions. We propose possible applications of VARgeneration.

IUS to microarchitectural research. To address these problems, this paper propvsdRlUS a novel
microarchitecture-aware model for parameter variation and the result-
ing timing errors. VARIUS can be used by microarchitects in a variety
of studies.

As high-performance processors move into 32 nm technologies and

below, designers face the major roadblock of parameter variation -1.1. Contributions

the deviation of process, voltage, and temperature (PVT [2]) vaIueR model for parameter variation. We propose a novel model that

from nominal specifications. Variation makes designing processorgses myltivariate analysis to model parameter variation. To the best
harder because they have to work under a range of parameter valuegs knowledge, we are the first to use a Spherical correlation
Variation is induced by several fundamental effects. Process var'gtructure for systematic variation with this model

Lo A . - This matches the
ation is caused by the inability to precisely control the fabr'cat'onempirical data obtained by Friedbeegal. [10] well. Moreover, our
process at small-feature technologies.

. . I_t is a combinat_ion of SySteMio el takes into account temperature variation. Finally, it has only
atic effects [10, 23, 30] (e.g., lithographic lens aberrations) and rangree parameters — all highly intuitive — and is easy to use.
dom effects [1] (e.g., dopant density fluctuations). Voltage variations

can be caused bR drops in the supply distribution network or hy A model for timing errors due to parameter variation. \We propose

di/dt noise under changing load. Temperature variation is caused by 561 comprehensive timing error model for microarchitectural
spatially- and temporally-varying factors. All of these variations areg,cqres in dies that suffer from process variation. This model is

be_comlng more severe and harder to tolerate as technology scalescg“ed VATS It takes into account process parameters, the floorplan,
minute feature sizes. and operating conditions like temperature. We model the error rate

Two key process parameters subject to variation are the transistpy'ie structures, SRAM structures and combinations of both, and
threshold voltagelin, and the effective lengtiefr. Vi is especially  qsider both systematic and random variation. Moreover, our model

important because its variation has a substantial impact on two maj?ﬁatches empirical data and can be simulated at high speed
properties of the processor, namely the frequency it attains and the

*This work was supported in part by the National Science Foundation un- | he rest of the paper is organized as follows. We present the model
der grants EIA-0072102, EIA-0103610, CHE-0121357, and CCR-03256030r parameter variation in Section 2 and show the implications on fre-
DARPA under grant NBCH30390004; DOE under grant B347886; and giftjuency and leakage power in Section 3. We present the model for
from IBM and Intel. Jun Nakano is now with IBM Japan. Smruti R. Sarangi istiming errors in Section 4, discuss the implications of both models
now with Synopsys, India. in Section 5, present related work in Section 6, and conclude in Sec-

tion 7.

1. Introduction




2. Modeling Variation To determine how(r) changes fronp(0) = 1 to p(c0) = 0 asr
Parameter variation can be broken down into two major COmponemlncreases, we use the Spherical model [7, 14], which has the following

namely die-to-die (D2D) and within-die (WID). Furthermore, WID ?érm: 5 )

variation can be divided into random and systematic components. _J1=0Br/2¢) 4+ (r/9)°/2 if(r <¢) 1
o R . p(r) = : @

Thus, variation in any parametét, like V;, or Leg, can be repre- 0 if (r > ¢)

sented as follows: . . . . . .
This model is very similar to the correlation function experimen-

AP = APpsp + APwip = APpap + APrgng + APsys tally measured by Friedbesg al. [10] for the WID variation of gate
length. Our rationale for using this model is that gate length variation
In this work, we focus on WID variation, but D2D variation is is the main determinant of systematig, variation.
easily modeled: One needs only add a chip-wide offset tolfhe Figure 1 shows the functiop(r). At a finite distancep that we
and Lqg parameters of every transistor on the die. For simplicity,call range the function converges to zero. Intuitively, this assump-
we model the two components of WID process variation with normation implies that thé/}, of a transistor is highly correlated to thg,
distributions. This is an accepted approach [12, 29]. of those in its immediate vicinity. The correlation decreases linearly
From a microarchitectural perspectiidy, and Lgg variation are  with distance at small distances. Then, it decreases more slowly. At
of key importance: they directly affect a chip’s leakage and frequencydistancep, there is no longer any correlation between two transistors’
The WID variation of these parameters is impacted by both systematiy,.

and random effects [1]. Limitations of the lithography and other man- p(l’)
ufacturing processes introduce systematic variations. Typically, such
variations exhibit a spatial structure with a certain scale of parameter 1

changes over the two-dimensional space [10, 23, 30]. On the other
hand, a variety of materials effects, such as changes in the dopant
density of the channel [1] and lithographic phenomena like line edge

roughness [35], introduce random variations. Such random variations
have a different profile for each transistor and are in effect noise su-

perimposed on the systematic variation.

We treat random and systematic variation separately, since they 0 0 ! r
arise from different physical phenomena. As described in [29], we ¢
assume that their effects are additive. Figure 1. Correlation between thgy, at two points as a

function of the distance between them.

2.1. Systematic Variation ) ) ) )
In this paper, we express as a fraction of the chip’s width. A

Systematic variation is characterized by a spatial correlation, meaningrge implies that large sections of the chip are correlated with each
that adjacent areas on a chip have roughly the same systematic cogther; the opposite is true for small As an illustration, Figure 2
ponents. Such correlation can be characterized using different modeshows example systemalig, variation maps for chips witth = 0.1

For example, [19, 29] use a quad tree model that recursively partitiongnd$ — 0.5. Both maps were generated by the geoR statistical pack-
the die into four parts. In this paper, we use a different method thajge [26] of R [25]. In thep = 0.5 case, we discern large spatial
models systematic variation using a multivariate [24] normal distribufeatures, whereas in the= 0.1 one, the features are small. A distri-
tion with a specific correlation structure. bution without any correlationy( = 0) appears as white noise.

We divide a Chlp intaV small rectangular cells. The value of the Fina“yl to estimate the Systematic ComponenLeff’ we proceed
systematic component df, is assumed to be constant within one as follows. The ITRS report [13] tells us that the taidl of Leg is
small cell. This is consistent with other work [29]. We also aSSUmQ()ugmy half of that OMh Moreover, according to [4], the systematic
that the value OMh for all the cells has a normal distribution with Component OfLeff is Strong|y correlated with the systematic compo-
meany and standard deviation. Along with this, the values ofi,  nent of4,. Hence, we use the following equation to generate a value
are spatially correlated. of the systematic component B¢ given the value of the systematic

To determine the spatial correlation, we make the following ascomponent ofi,. Let Leffo be the nominal value of the effective
sumptions. First, we treat the distribution B, as isotropic and  |ength and let/;,o be the nominal value of the threshold voltage. We
position-independent. This means that given two poihendy in ~ yse:
the grid, the correlation between them depends only on the distance
betweenz and g, and not on the direction of the segment that goes
from Z to %, or the position of¢ andy in the grid. We verify these
assumptions by analyzing the empirical data obtained by Friediterg
al. [10] and using results from [29]. Nevertheless, we acknowledg&-2. Random Variation

the fact that in reality there are some anisotropic effects — for examrhe random variation occurs at a much finer granularity than the sys-
ple in defects due to misalignment of the masks. . tematic variation; it occurs at the level of individual transistors, rather

Given the assumptions of position independence and isotropy, th&an at the level of millions of transistors. Hence, it is not possible to
correlation function o¥/n() andVin (i) is expressible as(r), where el random variation in the same explicit way as systematic vari-
r = |Z —g|. By definition, p(0) = 1 (i.e., totally correlated). We atjon — py simulating a grid where each cell has its own parameter

also setp(co) = 0 (i.e., totally uncorrelated) because two infinitely ajyes. Instead, random variation appears in the model analytically.
separated points have independ&pt when we only consider WID

variation.

1
Left = Leffo (1 +5(Vth = Vino)/ Vtho) 2)



Figure 2. Systematid/y, variation maps for a chip witth = 0.1 (left) and¢ = 0.5 (right).

Random components &%y, and Leg are normally distributed with a  3.1. Leakage Power

Orand AN & Z€r0 Mean. Subthreshold leakage is the main source of leakage in current and

future technologies, especially now that the accelerated adoption of
high-k gate dielectric is set to reduce gate leaka@e-fold [5]. The
To combine systematic and random components, we use the followirfgllowing subthreshold leakage model is based on that of HotLeak-

2.3. Combining Variations

equations: age [36], itself a simplification of the full BSIM3 SPICE model:
a(Vors—Vin)
Utotal = Hrand t+ Usys (3) Ileak x (kT/q)Qe o (5)
Ttotal = /024 + 02ps (4) WwhereViy = Tci + co, kis Boltzmann's constant, angthe elec-

tron charge, while1, c2, n andV, ¢ are empirically determined pa-

Since the random and systematic components are assumed to@&neters. We find the value for these parameters by fitting the leak-
normal distributions, the combination of them is also normal. Thisage Equation 5 to experimental data for the 32 nm technology node

i ot and Leg. obtained from SPICE simulations using the Predictive Technology
applies to bothjy eff
Model [37].
2.4. Valuesfor p, o and ¢ In order to estimate the impact of different levelslgf variance

. L . . on the chip’s leakage power, we take &g distribution and integrate
rfglro‘gihéswaenzeitgc/lﬁ d;sgzgtrT ?}I]Se Izycs(:grsrzttiecn;vr\llghr;r?c?(;-:tcuc:;:)ZCnhen Squation 5 over all the transistors in the chip. The result is the total

Moreover, according to empirical data gathered by [17], these twoeakage current in the chip. Léfeqy andIO|eak be ‘f}e chip leakage
components are approximately equal for 32 nm technology. HencBOVe! and current undéf, variation, andeq and/jeqy be the same .
. . ' R rameters when there is no variation. The expected value of the ratio
we assume that they have equal variances. Since both components .\ - riation and pre-variation leakage is:
are modeled as normal distributions, their standard deviations: P P gels
ando.y,. are equal td%/v/2 = 6.4% of the mean. This value for 0o 0 (qo/nkT)2/2
the ra;dom component/matches the empirical data of Keshasfarzi Peal/ Peak = Tieak/ lieak = ¢**""""/ (©)
al. [18]. which implies that the increase in the chip’s leakage power and current
As explained before, we take the totgly of Legs to be half of that  due toV4, variation depends on the standard deviatioof V. Fig-
of Vih. ConsequentlyLeg's o/p is 4.5%. Furthermore, assuming ure 3 plots the relative power as a functionoofIt increases rapidly
again that the two components of variation are more or less equal, ve&so goes up.
have thatr,.4nq ando,s for Leg are equal tot.5%/+v/2 = 3.2% of Another important factor affecting leakage power is temperature.
the mean. Figure 4 shows how the relative leakage power changes as a func-
To estimatep, we note that Friedbergt al. [10] experimentally  tion of temperature, for different threshold voltages at 900Leak-
measured the correlation of gate length to be around half of the chigge power increases dramatically with temperature (3X frof5®
length. The rest of this paper also adopts= 0.5, but depending 100°C). In addition, we observe that the leakage dependence on the
on how¢ scales with die size, larger values may be appropriate fothreshold voltage is significant. For differel, (different lines in

smaller dies. Figure 4), the leakage changes significantly.
3. Impact on Chip-Level Behavior 3.2. Chip Frequency
To evaluate the impact of variation on a chip’s behavior, we look aff he delay of an inverter gate is given by the alpha-power model [27]
two key characteristics: chip leakage and chip frequency. as:
T, o etV @)

ST (V= Vip)
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Figure 3. Relative leakage power in the chip as a functioigfs
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Figure 4. Relative leakage power versus temperature for different

threshold voltages at 18&C. We useV;,g=0.150V at 106C.

where « is typically 1.3 and p is the mobility of carriers
(w(T) x T™*®). As V}y, decreasesy — V4, increases and the gate
becomes faster. A8 increasesy — Vi,(T') increases, but(7") de-
creases [15]. The second factor dominates and, with hi@hehe
gate becomes slower. Figure 5 plots the dependence between relative

Empirically, we find that Equation 8 is nearly linear with respect
to Vi, for the parameter range of interest. Becalfggis normally
distributed and a linear function of a normal variable is itself normal,
T, is approximately normal.

Assuming that every critical path in a processor consistsdpf
gates, and that a modern processor chip has thousands of critical paths,
Bowmanet al. [3] compute the probability distribution of the longest
critical path delay in the chipfax{Zcp}). Such path determines the
processor frequencyl ( max{Tcp}). Using this approach, we find
that the value o¥jy's o affects the chip frequency.

Figure 6 shows the probability distribution of the chip frequency
for different values ofii’s 0. The frequency is given relative to a
processor withoulyy, variation (F'/Fp). The figure shows that, as
o increases, (i) the mean chip frequency decreases and (ii) the chip
frequency distribution gets more spread out. In other words, given a
batch of chips, a$iy's o increases, the mean frequency of the batch
decreases and, at the same time, an individual chip’s frequency devi-
ates more from the mean.
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Figure 6. Probability distribution of the relative chip frequency as
a function of Vi's 0. We useliy,g=0.150V at 106C, 12 FO4s
in the critical path, and 10,000 critical paths.

switching frequency and temperature as dictated by Equation 7. We

can see that the dependence is not very strong.
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Figure 5. Relative switching frequency versus temperature for

different threshold voltages at 18@. We useV;,p=0.150V at
100°C.

3.3. Summary of the Effects of Variation

We saw thafiiy's o directly affects chip leakage and frequency. As

o increases, chip leakage increases rapidly, and chip frequency de-
creases in mean value and varies more. Therefigge(and Lgg)
variation is very detrimental.

4. VATS: Modeling Timing Errors

As we move to 32nm and below, designing processors for worst-case
parameter values will be unacceptable. Instead, processors may need
to be designed for closer to nominal-value parameters, inevitably re-
sulting in some sections of the chip being too slow to meet the chip’s
frequency. In this case, the result will likely be timing faults due to
variation-induced slow paths. In this section, we extend the parame-
ter variation framework to model timing errors in processor pipelines
due to parameter variation. We call the model VATS. In the follow-
ing, we first describe our assumptions, then model errors in logic and
in SRAM memory, and finally present an empirical validation of the

Consider now a fixed temperature. Substituting Equation 2 im‘?nodel

Equation 7 and factoring out constants with respedfgoproduces:

1
~ 1+ Vin/Vino

T
I (V= Vip)®

(8)



4.1. General Approach For example, Figure 7(c) shows the cdf of Figure 7(b), and the
éhick segment isPg(tr) attg=1. The cdf approach of Equation 9
uarllows. for fast evaluation of the error probability at a variety of fre-
guencies.

A pipeline stage typically has a multitude of paths, each one with it
own time slack — possibly dependent on the input data values. In o
analysis, we make two simplifying assumptions.

Assumption 1: A path causes a timing fault if and only if it is exer- - . .
cised and its delay exceeds the clock period. Note that this fault defini4-'2' Timing Errors in Logic
tion does not account for any architectural masking effects. HowevelVe start by considering a pipeline stage of only logic. We represent
architectural vulnerability factors (AVFs) could be applied to modelthe logic path delay in the absence of variation as a random variable
these masking effects if desired. Diogic, Which is distributed in a way similar to Figure 7(a). Such delay
Assumption 2: A pipeline stage is tightly designed. This means that,is composed of both wire and gate delay. For simplicity, we assume
in the absence of process variation, there is at least one path whodet wire accounts for a fixed fractidn, of total delay. This assump-
delay for a certain input data value equals the clock period. tion has been made elsewhere [12]. Consequently, we can write:

In the following, path delay is normalized by expressing it as a
fractiont of the pre-variation clock perioth. Let us first examine Diogic = Duwire + Dgates
the probability density function (pdf) of the normalized path delays in Duyire = kw Diogic (20)

a pipeline stage. Figure 7(a) shows an example pdf before variation Dyates = (1 — kuw) Diogic
effects. The right tail abuts th€ = 1 abscissa and there are no timing
errors. We now consider the effects of variation. Since variation typically
has a very small effect on wires, we only consider the variation of
Dgates, Which has a random and a systematic component. For each
path, we divide the systematic variation componeNt);qtes_sys)
into two terms: (i) the average value of it for all the paihishe stage
(ADgates_sys) — Which we call the stage systematic mean — and (ii)
(a) the rest ADgates_sys — ADgates_sys) — Which we call intra-stage
systematic deviation.
Given the high degree of spatial correlation in proc&s0d tem-
perature T) variation, and the small size of a pipeline stage, the intra-
R stage systematic deviation is small. In Section 2.4, we suggested a
value of ¢ equal to 0.5 (half of the chip length). On the other hand,
the length of a pipeline stage is less than 0.1 of the length of, say, a
typical 4-core chip. Therefore, given that the stage dimensions are
significantly smaller tharp, the transistors in a pipeline stage have
highly-correlated systematity, values and systematiEqf values.
Using Monte Carlo simulations with the parameters of Section 2.4,
we find that the intra-stage systematic deviation/&f,..s has a
Ointrasys ~ 0.004 x pu, while the variation ofADgqtcs_sys aCross
the pipeline stages of the processor has,dersys ~ 0.05 x p. Sim-
ilarly, T' varies much more across stages than within them.

The random component @ ,.:.,'s variation is estimated from the
fact that we model a path asFO4 gates connected with short wires.
Each gate’s random component is independent. Consequently, for the

g whole n-gate pathDgates'S orand IS V1o X Orand.D o, » WhereDpoy
P (c) is the delay of one FO4 gate. If we take= 12 as representative of

high-end processors, the overall variation is small. It can be shown
thatDgates'S Orana = 0.01 X% p. Finally, T has no random component.

We can now generate the distribution B.g;c with variation
(which we call Dyari0gic and show in Figure 7(b)) as follows. We
model the contribution oA Dyq¢es_sys iN the stage as a factorthat

Figure 7. Example probability distributions. multiplies Dgq:es. This factor is the average increase in gate delay
across all the paths in the stage due to systematic variation. Without

As the pipeline stage paths suffer parameter variation, the pdfariation,n = 1.
changes shape: the curve may change its average value and its spreadVe model the contribution of the intra-stage systematic deviation
(e.g., Figure 7(b)). All the paths that have become longer than 1 gemnd of the random variations &%..+,., a small additive normal delay
erate errors. Our model estimates the probability of error at a giveperturbation. Sincé.,:ro cOmbinesDyq..,'s intra-stage systematic
clock period Pr(tr)) a§_the area of th(_a shaded region_ in the figure 44 random effectSteatra = /02, 1aae + 02,4 FOF OUr param-
The same error probability can be obtained by generating the cumula; Y ren

. o : S . eters,oeztra &= 0.011 x p. Like 1, Degira Should multiply Dgazes
tive distribution function (cdf) of the distribution, and observing that: as shown in Equation 11. However, to simplify the computation and

) becauseD;,qi. is clustered at values close to one, we prefer to ap-
proximateD.,.r, as an additive term as in Equation 12:

Dlogic

pdf

Dvarlogic

pdf

—

Dvarlogic

cdf

S

PE(tR) =1- Cdf(tR).



Vbp
D'Uarlogig = (77 + Dezt’ra) Dgates + Dwire (11)
(1 = kw) (0 Diogic + Dewtra) (12) b— —
+ kw Dlogic

Once we have th®,,104:c distribution, we numerically integrate
it to obtain itsedfp, (Figure 7(c)). Then, the estimated error l Vg AXR

varlogic
LG

:
]

rate Pg of the stage cycling with a relative clock period is:

Pg(tr) =1—cdfp 400 (LR) (13)

4.2.1. How to use the model -

To apply Equation 12, we must calculdtg, 7, Deztra, aNdDiogic BL . BR
for the prevailing variation conditions. To do this, we produce a grid- Figure 8. A 6-transistor SRAM cell.

ded spatial map of process variation using the model in Section 2.1 Consequently, we focus on modeling Access errors only. Accord-

and superimpose it on a high-performance processor floorplan. Fg{q to [22], the cell access time under variation on a read is:

each pipeline stage, we computérom the pipeline stage's and the

systematicLqg andV, maps. Moreover, by subtracting the resulting e 1

mean delay of the stage from the individual delays in the grid points varace O T AXR (14)

inside the stage, we produce the intra-stage systematic deviation. We

combine the latter distribution with the effect of the random process

variation to obtain thé). .+ distribution. Des+, is assumed normal. whereVi,axr and Lax r are theVy, and Legs of the AXR access
Ideally, we would obtain a per-stage andD;.4;:. through timing  transistor in Figure 8, antl;;, xr and Ly r are the same parameters

analysis of each stage. For our evaluation in this paper, we assume tliat the NR pull-down transistor in Figure 8.

the LF adder in [11] is representative of processor logic stages, and set To determinely..:axr and theh function, we use Kirchoff's

k. = 0.35 [12]. Additionally, we derivepdfp,, ;. Using experimen-  current law to equate the currents through the AXR and NR transis-

tal data from Ernset al. [9] — as explained in detail in [28]. With tors. The alpha-power model [27] is used for the individual transistor

this data, we find that the resulting distributionfof, ;. (normalized  currents. It is then trivial to solve for the operating point and find

to the nominal access time in a chip with no variation) fias 0.019 Tisatax r @nd, subsequently, — as detailed in [28].

andp = 0.84. For simplicity, we modeD;,4;. as a normal distribu- Using multivariable Taylor expansion [24] ok, the mean

tion. UTvarace @Nd VarianC& ryarace Of Tvarace €aN be put as a function
Strictly speaking, thigodelogic curve only applies to the circuit of thep ando of each ofV;axr, Vinng, Laxr, andLyr. Toarace

and conditions measured in [9]. To generptp,, . for a different  is assumed normally distributed.

stage with a different technology and workload characteristics, one In reality, an SRAM array access does not read only one cell at a

would need to use timing analysis tools on that particular stage. Itime, but a line — e.g., 8-1024 cells. Consequently, we need to com-

practice, Section 4.5 shows empirical evidence that this method prgute the distribution of the maximum access time of all the cells in a

ducegdfp,,,,. curves that are usable under a range of conditions, nditne. There is no exact analytical solution for the distribution of the

= h(Vihaxr, VinNr, LAXxR, LNR)

just those under which they were measured. maximum ofn. normally distributed variables, but we use an approx-
Finally, since Diogic and Degiro are normally distributed, imation from [6]. The resulting distribution has mean.,qrray and
Dyariogic in Equation 12 is also normally distributed. standard deviatiobyararray-
Finally, the access to the memory array itself takes only a fraétion
4.3. Timing Errors in SRAM Memory of the whole pipeline cycle — the rest is taken by logic structures such

To model variation-induced timing errors in SRAM memory, we build @ sense amplifiers, decoders, and comparators. Such logic delays are
on the work of Mukhopadhyagt al.[22]. They considerandomV, m_odeleq gccordlng to Sectlon 4.2. Consequently,_ thg to_tal path delay
variation only and describe four failures in the SRAM cell of Figure 8:With variation Duarmcrm s the sum of the normal distributions of the
Read failure, where the contents of a cell are destroyed after the c&flays in the line access and in the logic. It is distributed normally

is read; Write failure, where a write is unable to flip the cell; Hold With:

failure, where a cell loses its state; and Access failure, where the time

needed to access the cell is too long, leading to failure. The authors ~ Hvarmem = k pwararray + (1 = k) fivartogic

provide analytical equations for these failures, which show that, for Coarmem = \/k2 2 ararray + (1 — k)2 Ugaﬁoqic

the standard deviations &}, considered here, Access failures domi- o

nate. Then, the estimated error rate of a memory stage cycling with a

Iwhile [22] only considers the random componentigf variation, it can relative clock period g, is:
be shown that the previous statement also holds for the combination of random
and systematic components, and for the variation of bgthand L. Pe(tr) =1 — cdfDyarmen (tR) (15)



4.4. Error Rate per Instruction

We model am-stage pipeline as a series failure system, where eac
stagei can fail independently. Now, each stage has an activity facto

a;, which is the number of times that the average instruction exercise%'_I

the stage. Hence, the error rate per instruction as a function of th

relative clock period is:

n

Py(tr) =Y (o X Pg,(tr)) (16)

=1
4.5. Empirical Validation

To partially validate the model of timing errors, we use it to explain
some error rate data obtained empirically elsewhere. We validate both
the logic and memory model components. For the former, we use the
curves obtained by Dast al. [8], who reduce the voltagé/) of the

logic units in an Alpha-like pipeline and measure the error rate. They
report curves for three differerit: 45°C, 65°C, and 95°C. Their
curves are shown in solid pattern in Figure 9.

latency banks, and measure the error rate as they reduce the voltage
V). The resulting curve is shown in solid pattern in Figure 10. The
ifferent-latency banks explain the steps in the curve. To re-generate

curve, we use the method of Section 4.3. The resulting curve,

Error Rate(%)

25 30 35

15 20

10

own in dashes in Figure 10 is very close to the original one. Overall,
tﬁese two experiments give us confidence in our model.
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Figure 10. Validating the memory model.
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5. Discussion
5.1. Applications of the Variation Model

Process variation introduces many problems. It is not possible to
ignore variation unless we are overly conservative — in which
case, performance suffers considerably. Hence, it is necessary to
understand the implications of process variation. We list a number of
potential studies that can be carried out using our variation model.

Find delay and leakage power for different microarchitectural

structures. We can generate a large sample set of dies and find

the average delay and leakage power of different microarchitectural
To validate our model, we use the %6 curve to predict the other ~structures while they are running real workloads. Our model will also

two curves. Specifically, we take the 85 curve and follow the pro- take temperature effects into account.

cedure outlined in Section 4.2.1 (and detailed in [28]) to generate the

distribution for D;4:.. We then useD;,4;. to predict, say, the 9ec Evaluate the effectiveness of delay and leakage reduction tech-

curve as follows. First, we generate a large number of voltage valugdques. Using our variation model, we can evaluate the effectiveness

(V4). For each;, we compute)(V;) at 95°C using Equation 7, as the of delay and leakage reduction techniques. We can then use the tech-

ratio of gate delay a¥; and gate delay at the minimum voltage in [8] niques that yield the maximum benefit for the largest number of chips.

for which no errors were detected. Since the data in [8] came from an

older 180nm process with little process variatidh .+, = 0. Know- Evaluate the effectiveness of architectural techniques to tolerate

ing the Dy,4i. distribution, we use Equation 12 for eagfi;) to com-  variation. There are some architectural techniques that help mitigate

pute theD,qri0gic(V;) distribution. We can then compute: the effects of variation, such as pipeline adaptation [32], port

switching [19], spare functional units [33] or using functional unit

redundancy [34]. Due to the nature of process variation, not all chips

can benefit from a given technique. However, we can still evaluate
Finally, we plot the resulting pair§V;, P=(V;)). The resulting their average effectiveness using our computationally-inexpensive

curves for 48°C and 95°C are shown in dashed lines in Figure 9. We model.

also show the recomputed curve for®5 — it does not fully match

the original one because we use a normal approximatio{gy;.

(Section 4.2.1). We see that the %5 and 95°C curves track the 5.2. Applications of the Error Model

experimental data closely. The small inaccuracy comes largely fro

the normal approximation @D;.4:., which is assumed for simplicity.
To validate the memory model, we use data from Kardl. [16].

They take a 64KB SRAM with 32-bit lines and multiple, different-

Figure 9. Validating the logic model.

P(Duariogic(Vi) > 1) =1 = cdfp, 10000 (vi) (1) = Pe(Vi)

"Brocess variation renders traditional static timing analysis ineffective.
Along with this, it forces us to deal with timing errors in microar-
chitectural structures. We can use our error model to achieve the



following goals. variation. They provide a lot of empirical data that we have used in
our models. They observed that a significant portion of the WID vari-
Evaluate the error rates of different microarchitectural struc- ation is systematic. Cao and Clark [4] proposed a model that attributes
tures. We can evaluate the error rates for different clock frequencie¥}y, variation to gate length variation and studied the impact of spatial
for different microarchitectural structures. This will allow us to find correlation on the delay of one critical path. For dgg model, we
the susceptibility of different units to timing errors. mainly rely on Friedberg’s data.
There are several approaches to model variation [29]. The first
Evaluate the effectiveness of error checkers and checkpointing one includes multivariate normal methods like the one we use. One
mechanisms. Knowing the expected error rates, it is possible tonovelty of our work is that we propose a Spherical correlation ma-
make decisions about the nature of error checking and checkpointingix. In addition, we enhance the variation model with a timing er-
Depending on the error frequency, we may want to checkpointor model. Two other approaches are quad-tree modeling [19] and
different parts of the machine. regression-based approaches [12]. In the former, it is difficult to con-
trol aspects of the correlation structure and the distribution parameters.
Study fault-tolerant circuit and architectural designs. We can  In regression-based approaches like [12], the model is deterministic.
find that some circuit techniques are amenable to a reduction in errermodels the distribution of the systematic component of just one die.
rate, whereas others are not. Likewise, we can distinguish betwedicannot be used to study a set of dies to find average statistics.
different floorplans and different architectural designs based on their Mukhopadhyayet al. [22] proposed models for timing errors in
fault-tolerant capabilities. SRAM memory due to randory, variation. They considered several
failure modes. We extended their model of Access time errors by
(i) including systematic variation effects, (ii) considering variation in
5.3. Example Evaluation Leff as well, and (jii) modeling the maximum access time fe of

As an example evaluation, we simulate a processor like the AMDRAM, since [22] only modeled the access time of a single cell.
Athlon 64 at 32nm technology. The pipeline has 12 stages. We di- Memik et al. [20, 21] modeled errors in SRAM memory due to
vide the pipeline stages into those that are mostly logic and those th&oSs-talk noise as they overclock circuits. They used high degrees
are mostly memory. of overclocking — they d_oubled the noml_nal frequency and more.
Figure 11 shows the error rate versus the frequency for the differefi®" the range of frequencies that we consider, such cross-talk errors
pipeline stages. Frequency is normalized to that of a processor witho@fe Negligible. For very small feature-size technologies however, the
process variation. The processor runs all the Specint and SpecFP gl!}_uatlon may change.
plications in sequence. We can see that the error rate increases steeply )
as we increase the frequency — more and more paths fail to meét Conclusions
timing. Parameter variation is the next big challenge for processor designers.
To gain insight into this problem from a microarchitectural perspec-
tive, this paper made two contributions. First, it developed a novel
model for process and temperature variation. The model uses three
intuitive input parameters, and is computationally inexpensive.
Second, the paper extends the variation model with VATS, a novel
model of timing errors due to parameter variation. The model is
widely usable, as it applies to logic and SRAM units and is driven with
intuitive parameters. The model has been partially validated with em-
pirical data. The resulting combined model, called VARIUS, has been
used to estimate timing error rates for pipeline stages in a processor
with variation.
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