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Abstract—IR drop estimation is a classical problem in electronic
design and automation (EDA), and is an integral part of the design
signoff process. Even after decades of research on efficient circuit
simulation and power grid modeling, IR drop estimation tools are
still slow and often take hours to compute the IR drop profile even
for moderate-sized designs. Given that it is hard to parallelize
them, and often there is a need to run them iteratively thousands
of times for design space exploration, there is a need for a much
faster method, albeit with a minor reduction in accuracy. ML-
based approaches have proven to be quite effective in this space;
they are at least 10-100X faster. Sadly, they are quite inaccurate
as of 2024. Given that they are oblivious to the underlying physics,
the errors in predicting hotspots are undesirably high. In this
paper, we propose a semi-analytical model AnaIR, which uses
Green’s functions to quickly arrive at an approximate IR-drop
profile. It is further refined using a small U-Net based neural
network to arrive at a much more precise estimate. It is 3.9×
faster than competing work and is 32.6% more accurate.

Index Terms—Green’s function, IR drop prediction, Neural
network, Electronic design automation, Machine learning

I. INTRODUCTION

IR drop analysis is a vital aspect of an integrated circuit’s
design and sign-off process. With advancements in technology
nodes, the density of transistors on a chip is increasing exponen-
tially, while the supply voltage is decreasing. This combination
leads to significant IR drops in circuits. Furthermore, thin metal
wires in futuristic technology nodes result in a power delivery
network with high resistance, exacerbating the IR drop issue
[1]. IR drops are also a serious concern during the testing of
an integrated circuit (IC). As a result, it may be necessary to
conduct IR drop analyses thousands of times throughout the
entire design and testing phases. However, IR drop simulation is
computationally intensive and slow. With billions of nodes in a
commercial design, computing the voltage at each node can take
several hours. Hence, there is a pressing need to accelerate IR
drop analysis. In recent studies conducted in the last three years,
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Fig. 1: IR drop prediction (heat map): power map, ground
truth, MAVIREC [2] (state-of-the-art, note the inaccuracy)

machine learning (ML) has been used to predict IR drops with

notable speedups [2]–[5]. These approaches typically convert
IR drop prediction problems to image processing problems,
where ML models take the feature maps derived from circuits as
inputs and produce the corresponding IR drop maps as outputs.
Generative networks such as U-Net [6] have performed well in
such tasks. Although the results of these ML-driven methods
are encouraging, these models are complex and inaccurate
(see Fig. 1). They are entirely based on ML algorithms and
are unaware of the underlying physics of IR drop simulation.
Hence, these methods perform extensive feature engineering to
embed circuit information in their models; for example, Chen et
al. [4] extract 124 features per standard cell instance of a design,
and Chhabria et al. [2] extract 24 spatial feature maps. Often,
these features are correlated, making some of them redundant.
Most of these works employ complex neural networks that
require large datasets to realize good performance. In contrast,
a recent study [5] shows good results with limited data and
fewer feature maps. Sadly, their method fails to provide a
speedup over traditional solvers. To the best of our knowledge,
no prior work leverages the inherent properties of the PDN for
faster IR drop prediction.

We shall observe that combining neural networks with an
analytical approach based on Green’s functions (the impulse
response of a unit power source) can significantly speed up
ML-based IR drop estimation. It can also make it more accurate.
Our proposed tool, AnaIR, eliminates the need for extensive
feature engineering and large datasets using such insights. To
the best of our knowledge, this is the first work that applies
Green’s functions to speed up IR drop simulations. Furthermore,
unlike competing methods [2], [5], [7], our approach is more
explainable. The crux of our approach is to derive the weights
of the first layer from the computed Green’s function and then
use additional layers in the DNN network to account for edge
and corner effects, sparsity, orientation of the power grid and
to make the method independent of the design size.

Our specific contributions are as follows.
❶ To the best of our knowledge, we are the first to propose a
semi-analytical approach, AnaIR, for IR drop simulation. The
weights of the first few layers is initialized with the Green’s
function. Our approach is analogous to physics-inspired neural
networks (PINNs) [8].
❷ A subsequent fully convolutional encoder-decoder-based
network refines the solution further.
❸ The Green’s function relies on linearity and shift-invariance.



These properties do not hold at the rim of a chip. Hence, we
propose a new feature namely the layout mask to take care of
such effects.
❹ Our novel AnaIR scheme outperforms the existing state-of-
the-art in terms of both speed and accuracy. AnaIR is 32.6%
more accurate, 3.9X faster and has 33.3% better structural
similarity than the nearest competing solution MAVIREC [2].

The paper is organized as follows. Section II discusses the
relevant background. We present the methodology in Section III
followed by experiments and results in Section IV. Finally, we
present the related work in Section V and conclude the paper
in Section VI.

II. BACKGROUND

In a digital IC, the Power Delivery Network (PDN) supplies
current to the logic gates and memory elements in the design.
“IR drop” refers to the voltage drop due to current flowing
through the metal wires of the PDN. Excessive voltage drops
lead to a slowing down of the circuits; if the gate is on the
critical path, this will lead to a timing failure.

Most modern chips use a power grid with a mesh topology.
They have supply and ground rings on the periphery of the
chip. The PDN has vertical power stripes to transfer current
to the horizontal power rails that further deliver power to
standard cells. The power grid network consists of resistors
and voltage/current sources. Essentially, traditional IR drop
simulators solve network equations, Eq. 1, involving n number
of nodes and have a time complexity of the order of O(n3).

∇ · (σ∇V (x,y)) =−I(x,y) (1)

In Equation 1, we are modeling the circuit as a resistive mesh.
∇ is the Gradient operator for the 2-dimensional voltage field
that is not time-varying (because we are doing static IR drop
estimation), and ∇· is the divergence. I(x,y) is the current field
and σ is a material/circuit dependent constant, which captures
the resistivity. After getting the general solution, we can apply
different boundary conditions.
A. Green’s Functions

The Green’s function (g(x)) is the impulse response of an in-
homogeneous differential equation of the form L( f (x)) = q(x),
and is given by L(g(x)) = δ (x). Here, L is the linear partial
differential operator and δ (x) is the Dirac delta function (refer
to [9]). The Green’s function can be used to solve any linear
differential equation of the form L( f (x)) = q(x). We show this
below using the property of the convolution operator ⋆ and Eq.
L(g(x)) = δ (x),

L(g(x)⋆q(x)) = L(g(x))⋆q(x) = δ (x)⋆q(x) = q(x) (2)

Therefore, g(x) ⋆ q(x) gives the solution to equations of the
aforementioned form. This motivates us to use the Green’s
function to solve the IR drop differential equation 1.

III. METHODOLOGY

A. The Green’s Function for IR Drop Simulation

1) Construction of the Green’s Function: The Green’s
function is the impulse response (IR drop profile) of a unit

Fig. 2: An illustration of the Green’s function

power source. We compute the Green’s function empirically
(details in Section IV-A). Given a design, we apply power to a
standard cell instance at the center of the chip to simulate an
impulse input. We then run IR drop analysis for this impulse
input and observe that the resulting IR drop map has a high
value at the center with a localized spread across the horizontal
power rail. This impulse response is an approximation of the
Green’s function. Fig. 2 shows the Green’s function, where we
plot the standard cell instances on a 2D map and represent their
IR drop values using their color. The Green’s function is robust
and design-independent. Computing the Green’s function is a
one-time effort for a given power grid topology.

2) Properties of the Green’s Function: Let us verify if
our empirically derived Green’s function follows the two key
properties of a classical Green’s function: linearity and shift
invariance.
Linearity of the Green’s Function: We perform experiments
to verify the linearity and superposition properties of the
Green’s function. We apply a power source of 1.11 mW
(denoted as x1) and 2.22 mW (denoted as x2, a scaled version
of x1) at an instance to obtain the IR drop maps y1 and y2,
respectively. Finally, we apply a power source of 3.33 mW
(x = x1 + x2) at the same instance to obtain the IR drop map
y. We observe that y is equal to the sum of the individual
IR drops y1 and y2 as shown in Fig. 3. Hence, the Green’s
function follows the superposition principle, as stated in Eq.
3 and is linear.

F(x1 + x2) = F(x1)+F(x2) (3)

Fig. 3: Linearity of the Green’s Function: y1, y2, y = y1 + y2

Fig. 4: Shift Invariance of the Green’s Function
Shift Invariance of the Green’s Function: We translate the
input power source across the x and y directions and observe



the corresponding IR drops as shown in Fig. 4. These plots
show that when the input power source is shifted along the
x and y axes in broadly the central region of the chip, the
Green’s function remains (mostly) the same. Hence, the Green’s
function is empirically shift-invariant: if the input is shifted by
∆ units, the output remains the same, albeit shifted by ∆ units.

Behavior at the Rim: Let us evaluate the Green’s function
at the rim of the chip. We observe that the maximum IR drop
value changes at different locations near the boundary, as shown
in Fig. 5. Hence, the Green’s function does not follow shift-
invariance near the boundary regions of designs. A bespoke
solution is needed to address this issue.

Fig. 5: Variation of the IR Drop values at the rim of the chip

Smearing by the PDN and the Green’s Function: The PDN
in our work has a mesh topology and the current is drawn from
the power rings at the periphery. Since the centre is the farthest
from the periphery, the largest IR drop occurs at the center due
to the resistance of the long metal wires (R ∝ l). Additionally,
we observe that all standard cell instances placed in the same
row draw power from the same horizontal rail. Consequently,
a smear pattern in the IR drop is observed along the horizontal
rail. Fig. 2 shows this smear pattern in the Green’s function,
demonstrating that the Green’s function captures the intrinsic
properties of the power grid through this pattern.

B. Feature Extraction
We pose IR drop simulation as an image-to-image translation

problem where both the input and output are 2D images. Our
scheme takes a power map image as input and predicts the
IR drop map image. We also propose a new feature map, the
layout mask (described later). We first extract the circuit-level
data from the following sources:

• The layout information (x,y coordinates and sizes of the
instances) from the post-route DEF file.

• Power values from the power analysis tool.
• IR drop values from static IR drop analysis.
We then parse and process this circuit-level information

to create 2D spatial maps as described next. We divide the
entire design layout into tiles of size wt ×ht . Given a design
of size Wd ×Hd , we can divide it into

[
Wd
wt

× Hd
ht

]
number of

tiles, where each tile represents a feature value. We define the
overlap ratio (Oa) of a standard cell instance with a tile as
follows:

Oa =
Areainstance

Areatile
(4)

here, Areainstance is the area of the standard cell instance from
the LEF file that falls within the tile, and Areatile is fixed to
wt ×ht .

We compute the contribution of each instance towards the
power value of the tile by multiplying its overlap ratio with its
power value. We then add the contributions of all the instances
in the tile to get the power value of that tile. We follow the
same procedure for the IR drop maps. We fix the tile size
to 1.5µm×1.5µm, similar to [3]. Our scheme takes the total
power map as an input feature map.

The Layout Mask: We propose the layout mask as a feature
for IR drop prediction. It captures the layout information of the
design. We observed and determined empirically that the tiles
where the overlap ratio is below 0.25 do not contribute much to
the power and the IR drop map. Hence, we first create a spatial
map in which each tile represents the sum of the overlap ratios
of the instances within that tile. Next, we convert this spatial
map to a Boolean mask (layout mask), where the tiles with an
overlap ratio less than 0.25 are labeled as zero, and others are
labeled as one. This is a layout-dependent activity and needs
to be done only once. We shall show the importance of the
layout mask in Sections III-D and IV.

Apart from the total power map pt , we generate maps
for internal power pi, switching power ps and toggle rate-
scaled switching power psca for implementing the state-of-the-
art approaches. We use min-max normalization to bring the
values in the power and IR drop maps into the range [0, 1].
Since convolution is distributive over addition, convolving
individual power maps with the Green’s function is equivalent
to convolving the total power map with the Green’s function.
Therefore, the total power map is sufficient for our approach.

C. Dataset Construction

We took four designs from OpenCores [10] to cover a
wide range of functionalities and circuit sizes. We used two
cryptographic cores (aes 256 and keccak (SHA−3)), one DSP
core (LinkRunCCA) to perform a “linked-list run-length single-
pass connected component analysis” and an arithmetic core
(Cordic). We used different frequency settings (50, 100, 150
and 200 MHz) to synthesize variations of these designs. We
used the Cadence 45nm Generic PDK (supply voltage: 0.9 V)
for synthesis and physical design.

TABLE I: Details of the circuits used in our experiments

Circuits aes 256 LinkRunCCA Cordic Keccak fa32 array
#Instances 3,25,359 54,871 3,479 25,963 27,107

#Pixels 732 × 732 463 × 463 117 × 117 256 × 256 204 × 204

Next, we create a synthetic dataset by creating an array
of 10× 10 independent 32-bit full adders. Each row of the
2D array is controlled by an enable signal; it is possible to
generate diverse power maps programmatically. We generate
power maps with striped patterns (horizontal and vertical).
We vary the stripe widths in the range [16,80] in steps of
16 and the start location of the stripe in the range [0,151] in
steps of 50 rows or columns. We apply power values out of
[10, 30, 50, 75, 100] µW s to the instances that lie inside the
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Fig. 6: AnaIR: An encoder-decoder based network embedded with the Green’s function

stripes and set the power of other instances to zero. We use
our custom design f a32 array and the keccak 150 circuit to
generate the training dataset. We found that for high power
values (specifically, 75µW and 100µW), the IR drop values
are more than the supply voltage; hence, these samples were
discarded from the dataset. We also generated power maps
at the edges/rims to study the corresponding IR drop maps.
We supply power to small rectangular regions near the rims at
various locations (top, bottom, left, right, centre). The difference
in IR drop values due to these variations are shown in Fig. 5.

Finally, we get 352 power and IR drop map pairs. These
samples were split in the ratio of 80 : 20 (the 20% of
samples were varied) to get the training and validation datasets,
respectively. We report the final results on the test circuits
(different from the train and validation sets) to establish the
generalizability of our scheme. Table I shows the number of
standard cell instances, and the number of pixels in each design
within the dataset.

D. The Green’s Function for IR Drop Prediction

The Green’s function acts as a rectangular kernel, denoted
by fgrect , since it smears along the horizontal direction, as
shown in Fig. 2. Further, as we show in Section III-A2, the
system is linear and shift-invariant (for points not on the rim).
For such points, Eq. 5 can be used to obtain an IR drop map
(MIR) for a given input power map (Mp),

MIR = Mp ⋆ fgrect (5)

Here, ⋆ is the convolution operator. We compared the
obtained MIR map with the golden IR drop map and found
that the Green’s function provides an accurate approximation.
It captures the smeared IR drop pattern of our PDN very
well. The success of the Green’s function can be attributed
to its rectangular kernel, which corroborates the findings of
recent work [5] that the selection of rectangular kernels for
convolution is effective in the case of IR drop prediction.
However, given its empirical nature, additional processing is
required to further enhance the accuracy and make the solution
work for the rim and sparse regions in the power map.

Furthermore, to remove noisy predictions in such sparse
regions, we multiply the convolved map MIR with the layout

mask Md (defined in Section III-B) to obtain the masked
convolution map M∗

IR (see Eq. 6). This method was quite
effective.

M∗
IR = MIR ·Md (6)

In Eq. 6, Md is a Boolean map that masks the areas of the
convolved map with lower IR drop values. This basic IR drop
map needs to go through further processing in a DNN for
further accuracy enhancement.
E. AnaIR: Fusion of the Green’s Function with Machine
Learning

We propose a fully convolutional neural network, AnaIR,
with initial weights derived from the Green’s function. Our
novelty lies in mapping the Green’s function kernel to the
deep learning model. By initializing the model weights with
the Green’s function, we embed the simulator’s behavior into
the network and eliminate the need to train the model from
scratch.

AnaIR is an encoder-decoder network (as shown in Fig. 6)
with weights initialized from the Green’s function kernel. It
takes the convolved and masked IR drop map (M∗

IR) as input,
and the golden IR drop map as the ground truth. The latter
is generated using a state-of-the-art commercial tool. AnaIR
is inspired from the UNet architecture [6]. AnaIR is a fully
convolutional network (FCN) and thus can handle different
input feature sizes. It takes 2D input maps of any size and
gives the output of the same size as that of the input.

The primary layer of AnaIR consists of a 2D convolution
layer followed by BatchNorm and ReLU layers. Two such
primary layers are stacked to form a double convolution layer.
In the encoder network, we use two pairs of double convolution
and max pooling layers. The symmetrical decoder network
contains two pairs of upsample and double convolution layers
(refer to Fig. 6). The encoder network learns where features
are located in the image by reducing feature dimensions and
increasing the number of channels, while the decoder network
learns what the image contains by expanding feature maps and
reducing the number of channels.

Each layer of the encoder and decoder networks is connected
via skip connections, which provide fine-grained details about
the input image to the decoder network. Finally, note that



TABLE II: Comparison of AnaIR with ML-based IR Drop Predictors

Metrics/Methods IRPNet MAVIREC XGBoost Convolution Convolution + Masking AnaIR
MAPE (%) 409 125.9 348.4 286.73 203.4 93.25

SSIM 0.17 0.57 0.38 0.14 0.28 0.76
Inference Time (ms) 25.82 161.92 101 2.9 3.06 41.5

AnaIR has fewer layers than other state-of-the-art approaches
( [2], [5]). AnaIR’s smaller size leads to fewer parameters and
faster training times.

IV. EVALUATIONS AND RESULTS
A. Setup

We use Cadence Genus v19.12 to synthesize the digital
circuits and Innovus v20.14 for the physical design (including
placement and routing). Cadence Voltus v20.14 runs the power
and IR drop analysis. The codebase from the CircuitNet [3]
paper was modified to parse the post-route DEF; the power and
IR drop reports were generated using Voltus. As a reference,
we used the Keccak 150 design to derive the Green’s function;
however, any other design can also be used. We use an Nvidia
RTX A6000 GPU and Pytorch v1.11.0 framework to train and
infer all the ML models. We found an optimal learning rate
for the AdamW optimizer to be 1×10−4 through experiments.
It is safe to assume that commercial tools are the best-known
algorithms in the conventional space. They are our ground
truth.
B. Evaluation Metrics

We use the structural similarity (SSIM), & mean absolute
percentage error (MAPE) as our evaluation metrics for image
similarity and IR drop value prediction, respectively. SSIM
is computed over tiles of pixels; SSIM between the windows
of pixels x and y is defined in Eq. 7. SSIM values lie in the
range [0,1], and a higher value is considered better. MAPE is
defined in Eq. 8. MAPE is a superior metric compared to mean
absolute error (MAE) as it computes the per-pixel relative error;
hence, we use it. We use the convolve function of the Scipy
library to perform the convolution of the Green’s function with
the power map.

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x +µ2

y + c1)(σ2
x +σ2

y + c2)
(7)

Here, µ and σ denote the mean and the standard deviation
of the pixels in the image window (resp.).

MAPE =
1
n ∑

i∈p

∣∣∣∣ygoldi − ypredi

ygoldi

∣∣∣∣∗100 (8)

Here, ygold and ypred represent the ground truth and predicted
IR drop maps, respectively, and p is the set of pixels where
ygold is non-zero.

C. Results

We compare our proposed scheme with the most recent and
competing state-of-the-art ML-based predictors. We keep the
training and test dataset consistent across all three competing
methods. We implement their proposed algorithms with the
same set of hyperparameters as provided in the respective

papers. We implement the IRPNet architecture from the most
recent state-of-the-art paper [5]. We fine-tune the pre-trained
model provided by Circuitnet [3] for reproducing MAVIREC
[2]. We also implement the XGBoost model from [4], where
we compare AnaIR with a traditional ML method. We evaluate
these models along with our proposed Green’s function inspired
scheme on the test dataset comprising real circuits (Table I).

Table II shows the comparison of MAPE, SSIM and
inference time of all the methods. We show an improvement of
32.6% in accuracy and 33.3% in SSIM while being 3.9× faster
than the nearest competing work [2]. Note that even though
IRPNet is the fastest of all methods, it is highly inaccurate.
Moreover, masking of the convolved map reduces the error
by 83.3% and doubles the SSIM without adding any overhead
in terms of execution time, as shown in Table II. Hence, the
experiments show that the layout mask is a vital input feature.

We also show a comparison of MAPE and SSIM of all
the methods for every test circuit in Fig. 7. Fig. 7 shows that
AnaIR outperforms all the existing work through consistent
improvement in both the metrics across all the test circuits.

Fig. 8 shows the predicted IR drop maps from AnaIR,
masked convolution with the Green’s function and results
generated by competing works for the Cordic 200 circuit.
We also plot the respective absolute error maps w.r.t. the
ground truth maps (generated from Voltus). We observe that
AnaIR’s IR drop map looks the most similar to the ground
truth map, justifying its significant improvement in both MAPE
and SSIM. Just masking has a high MAPE; hence, additional
neural network layers were required. We experimented with
different convolution neural networks (CNNs): a CNN with
2-3 layers, Pyramid Scene Parsing Network (PSPN) [11] and
UNet [6]. Among all these networks, UNet performed the
best (backbone of AnaIR).

V. RELATED WORK

Our primary focus was on recent work (published in the last
three years) in the area of ML-based static IR drop prediction.
In 2021, Chhabria et al. proposed IREDGe [7], a generative
encoder-decoder-based neural network that takes power maps,
the power grid, and power pad distributions as inputs to predict
static IR drops. Later in the same year, Chhabria et al. [2]
introduced a 3D UNet architecture, MAVIREC, which takes
per-instance power and effective resistance values, along with
their spatial maps, as input features to predict per-instance IR
drop values. A year later, Chen et al. [4] proposed using an
XGBoost model for per-instance IR drop prediction. This work
leverages 72 features, including circuit information, power,
and toggle information for each instance. All these works are
transferable across designs synthesized in the same technology.
A recent work [12] incorporates attention modules in the



Fig. 7: MAPE and SSIM for the Test Circuits using AnaIR and Different ML-based IR Drop Predictors
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Fig. 8: Comparison of AnaIR’s Prediction with the Existing ML-based Predictors for the Cordic Circuit

UNet architecture and performs feature selection. However,
incorporating the attention module increases the computational
overhead, making it much slower with no or minimal gain in
accuracy. Hence, we do not evaluate this work. These ML-
based approaches require large datasets and extensive feature
engineering, quite unlike AnaIR. Very recently Meng et al. [5]
incorporated the Kirchhoff’s current law into the loss function
to enable neural network training with limited data. This work
proposed a pyramid scene parsing network that takes current,
PDN density, and via maps as inputs. All these works rely
entirely on ML to obtain IR drop values without accounting
for the intrinsic properties of the power grid. Thus, there is
a need for IR drop physics-aware analytical methods that are
more robust, accurate, and explainable.

VI. CONCLUSION

We propose AnaIR, a semi-analytical Green’s function-
inspired neural network for static IR drop prediction. Our
novelty lies in processing the power map analytically with the
Green’s function and the layout mask, and then refining it fur-
ther with a neural network initialized with the Green’s function.
AnaIR is 32.6% more accurate, has 33.3% better SSIM and
is 3.9× faster than the nearest competing proposal [2]. We
conclude that using the Green’s function for IR drop simulation
is more explainable and accurate than other deep learning-
inspired approaches.
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